

Report No.: TBR-C-202302-0086-53 Page: 1 of 173

Radio Test Report FCC ID:2A4DV-D1221

Report No.	:	TBR-C-202302-0086-53
Applicant	11:	HUNAN ETOE Technology Co., Ltd
Equipment Under	Test	(EUT)
EUT Name		ETOE TV
Model No.	-	D1221
Series Model No.	(1)	
Brand Name	22	ETOE
Sample ID	: (202302-0086_01-01 & 202302-0086_01-02
Receipt Date	:	2023-02-23
Test Date	ė	2023-02-23 to 2023-03-24
Issue Date		2023-03-24
Standards	i	FCC Part 15 Subpart E 15.407
Test Method	10	RSS-247 Issue 2 February 2017 ANSI C63.10: 2013 KDB 789033 D02 General UNII Test Procedures New Rules v02r01
Conclusions	1.8	PASS
		In the configuration tested, the EUT complied with the standards specified above.
Witness Engineer		: Countille Li Camille Li
Engineer Supervis	or	: WAN S : LWAN S : LWAN S : LWAN S
Engineer Manager		Kay Lai.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

#cRa¥La

TB-RF-074-1.0

Contents

CO	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	6
	1.3 Block Diagram Showing the Configuration of System Tested	9
	1.4 Description of Support Units	9
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	17
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	20
	5.5 EUT Operating Mode	
	5.6 Test Data	20
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	23
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	
	6.6 Test Data	25
7.	RESTRICTED BANDS REQUIREMENT	
	7.1 Test Standard and Limit	26
	7.2 Test Setup	27
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	

TOBY Part of the Cotecno Group

	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	BANDWIDTH TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	
	8.6 Test Data	
9.	MAXIMUM CONDUCTED OUTPUT POWER	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	35
	9.4 Deviation From Test Standard	35
	9.5 EUT Operating Mode	35
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY TEST	
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 Antenna Connected Construction	
	10.6 Test Data	
11.	FREQUENCY STABILITY	
	11.1 Test Standard and Limit	
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	
	11.5 Antenna Connected Construction	
	11.6 Test Data	
12.	ANTENNA REQUIREMENT	40
	12.1 Test Standard and Limit	
	12.2 Deviation From Test Standard	40
	12.3 Antenna Connected Construction	40
	12.4 Test Data	40

ATTACHMENT A CONDUCTED EMISSION TEST DATA	41
ATTACHMENT BUNWANTED EMISSIONS DATA	.43
ATTACHMENT C RESTRICTED BANDS REQUIREMENT TEST AND BAND EDGE TES	ST
DATA1	.04

Report No.: TBR-C-202302-0086-53 Page: 5 of 173

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202302-0086-53	Rev.01	Initial issue of report	2023-03-24
Contraction of the	E		ALL STREET
THE REAL		TOUS TOUR	
Tank I	FIB	TOPS	TEL
A LE AD		OBL TUDE	AL LAND
TOBIC LAND	MB	TOP TU	The second second
Laure a		ALL	
and the		TOP TO	
THE REAL PROPERTY IN	- m0B		Ver and
		TOPP TO THE	R
	moB		L'AND

1. General Information about EUT

1.1 Client Information

Applicant	:	HUNAN ETOE Technology Co., Ltd		
Address		Room 603, Building 3, Zone A, Jindaoyuan, NO.169, Huizhi Zhong		
		Road, High-tech District, Changsha, China		
Manufacturer	:	HUNAN ETOE Technology Co., Ltd		
		Room 603, Building 3, Zone A, Jindaoyuan, NO.169, Huizhi Zhong		
Address		Road, High-tech District, Changsha, China		

EUT Name	:	ETOE TV				
HVIN/Models No.	:	D1221				
Model Difference	•					
Product Description		Operation Frequency:	U-NII-1: 5180MHz~5240MHz U-NII-2A: 5260MHz~5320MHz U-NII-2C: 5500MHz~5700MHz U-NII-3: 5745MHz~5825MHz			
	Antenna Gain: : Modulation Type: Bit Rate of Transmitter:	Antenna Gain: 2.72dBi PCB For Antenna 1(A) 2.42dBi PCB For Antenna 2(B)				
		Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM)			
		802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 150Mbps 802.11ac: at most 433.3 Mbps				
Power Rating		For Adapter (Model: TPA-46B050100UU) Input: 100-240V~50/60Hz 0.2A Output: 5.0V=1000mA				
Software Version						
Hardware Version		DV6071Z-LD4-V2				

Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

(4) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5180~5240MHz (U-NII-1)	36	5180 MHz	44	5220 MHz
	38	5190 MHz	46	5230 MHz
	40	5200 MHz	48	5240 MHz
	42	5210 MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5260~5320 MHz	54	5270 MHz	62	5310MHz
(U-NII-2A)	56	5280MHz	64	5320 MHz
	58	5290MHz		

For 20 MHz Bandwidth, use channel 52, 56, 60, 64. For 40 MHz Bandwidth, use channel 54, 62.

For 80 MHz Bandwidth, use channel 58.

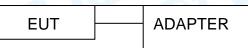
Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5500~5700 MHz	108	5540 MHz	134	5670 MHz
(U-NII-2C)	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz		

For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144

For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142

For 80 MHz Bandwidth, use channel 106, 122, 138.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5745~5825MHz (U-NII-3)	149	5745 MHz	157	5785 MHz
	151	5755 MHz	159	5795 MHz
	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz



For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159. For 80 MHz Bandwidth, use channel 155.

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

EUT	ADAPTER	

1.4 Description of Support Units

Equipment Information							
Name	NameModelFCC ID/VOCManufacturerUsed " $$ "						
Adapter	TPA-46B050100UU						
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
Cable			1.0M	Accessory			
	Remark: the USB Ca	able and adapter provid	led by the Applicant.	BU			

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

		For Conducted Test
Final Test Mode		Description
Mode 1		Charging + TX a Mode(5180MHz)
	Fo	r Radiated Test Below 1GHz
Fina	al Test Mode	Description
	Mode 2	Charging + TX a Mode(5180MHz)
	For Radiated	Above 1GHz and RF Conducted Test
Test Band	Final Test Mode	Description
	Mode 3	TX Mode 802.11a Mode Channel 36/40/48
	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/40/48
U-NII-1	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48
	Mode 6	TX Mode 802.11n(HT40) Mode Channel 38/46
	Mode 7	TX Mode 802.11ac(VHT40) Mode Channel 38/46
	Mode 8	TX Mode 802.11ac(VHT80) Mode Channel 42
	Mode 9	TX Mode 802.11a Mode Channel 52/56/64
	Mode 10	TX Mode 802.11n(HT20) Mode Channel 52/56/64
U-NII-2A	Mode 11	TX Mode 802.11ac(VHT20) Mode Channel 52/56/64
U-INII-ZA	Mode 12	TX Mode 802.11n(HT40) Mode Channel 54/62
	Mode 13	TX Mode 802.11ac(VHT40) Mode Channel 54/62
	Mode 14	TX Mode 802.11ac(VHT80) Mode Channel 58
	Mode 15	TX Mode 802.11a Mode Channel 100/116/140
	Mode 16	TX Mode 802.11n(HT20) Mode Channel 100/116/140
U-NII-2C	Mode 17	TX Mode 802.11ac(VHT20) Mode Channel 100/116/140
0-111-20	Mode 18	TX Mode 802.11n(HT40) Mode Channel 102/110/134
	Mode 19	TX Mode 802.11ac(VHT40) Mode Channel 102/110/134
m131	Mode 20	TX Mode 802.11ac(VHT80) Mode Channel 106/138
U-NII-3	Mode 21	TX Mode 802.11a Mode Channel 149/157/165
0-1411-5	Mode 22	TX Mode 802.11n(HT20) Mode Channel 149/157/165

Report No.: TBR-C-202302-0086-53 Page: 11 of 173

Mode 23	TX Mode 802.11ac(vHT20) Mode Channel 149/157/165
Mode 24	TX Mode 802.11n(HT40) Mode Channel 151/159
Mode 25	TX Mode 802.11ac(VHT40) Mode Channel 151/159
Mode 26	TX Mode 802.11ac(VHT80) Mode Channel 155

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0

802.11n (HT40) Mode: MCS 0

802.11ac(VHT20) Mode: MCS 0/ Nss1

802.11ac(VHT40) Mode: MCS 0/ Nss1

802.11ac(VHT80) Mode: MCS 0/ Nss1

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

	Test Software: CMD.EX	(E	
	U-NII-1		
Mada		Paran	neters
Mode	Frequency (MHz)	ANT. 1	ANT. 2
	5180	110	98
802.11a	5200	110	94
	5240	100	92
802.11n(HT20)	5180	92	88
	5200	94	88
	5240	84	82
A RULL	5180	92	88
802.11ac(VHT20)	5200	94	84
	5240	90	82
000 44 m/UT 40)	5190	92	88
802.11n(HT40)	5230	92	84
802 11 co(\/UT40\	5190	94	84
802.11ac(VHT40)	5230	92	82
802.11ac(VHT80)	5210	90	84

Report No.: TBR-C-202302-0086-53 Page: 13 of 173

	U-NII-2A		
Mede		Param	eters
Mode	Frequency (MHz)	ANT. 1	ANT. 2
NUL OI	5260	100	98
802.11a	5280	104	94
	5320	100	96
	5260	84	82
802.11n(HT20)	5280	84	82
	5320	88	82
COB!	5260	88	82
802.11ac(VHT20)	5280	86	88
	5320	86	84
802.11n(HT40)	5270	92	84
	5310	84	82
1	5270	76	78
802.11ac(VHT40)	5310	76	78
802.11ac(VHT80)	5290	86	76
	U-NII-2C		
		Parameters	
Mode	Frequency (MHz)	ANT. 1	ANT. 2
	5500	100	98
802.11a	5580	100	98
	5700	98	94
	5500	84	88
802.11n(HT20)	5580	88	84
	5700	84	82
AU	5500	82	84
802.11ac(VHT20)	5580	82	88
anBJ .	5700	84	82
	5510	86	78
802.11n(HT40)	5550	80	86
m du	5670	84	84
and	5510	76	86
802.11ac(VHT40)	5550	82	74
	5670	82	74

Report No.: TBR-C-202302-0086-53 Page: 14 of 173

	5530	76	74
802.11ac(VHT80)	5610	74	80
	U-NII-3	· ·	
Mode		Param	eters
Mode	Frequency (MHz)	ANT. 1	ANT. 2
ALL AL	5745	98	98
802.11a	5785	98	98
	5825	100	94
	5745	84	82
802.11n(HT20)	5785	88	94
	5825	84	82
	5745	88	84
802.11ac(VHT20)	5785	82	82
	5825	84	84
902 44 m/UT 40)	5755	80	82
802.11n(HT40)	5795	86	86
902 11 co(\/UT40)	5755	76	82
802.11ac(VHT40)	5795	76	74
802.11ac(VHT80)	5775	80	80

1.7 Measurement Uncertainty

TOBY Part of the Cotecna Group

The reported uncertainty of measurement $y \pm U_3$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Report No.: TBR-C-202302-0086-53 Page: 15 of 173

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

Standard Section	To at Manua			Remark
FCC	Test Item	Test Sample(s)	Judgment	
FCC 15.207(a)	Conducted Emission	202302-0086_01-01	PASS	N/A
FCC 15.209 & 15.407(b)	Radiated Unwanted Emissions	202302-0086_01-01	PASS	N/A
FCC 15.203	Antenna Requirement	202302-0086_01-02	PASS	N/A
FCC 15.407(a)	-26dB Emission Bandwidth	202302-0086_01-02	PASS	N/A
FCC 15.407(a)	99% Occupied Bandwidth	202302-0086_01-02	PASS	N/A
FCC 15.407(e)	-6dB Min Emission Bandwidth	202302-0086_01-02	PASS	N/A
FCC 15.407(a)	Maximum Conducted Output Power and E.I.R.P	202302-0086_01-02	PASS	N/A
FCC 15.407(a)	Power Spectral Density	202302-0086_01-02	PASS	N/A
FCC 15.407(b)& 15.205	Emissions in Restricted Bands	202302-0086_01-02	PASS	N/A
FCC 15.407(b)&15.209	Conducted Unwanted Emissions	202302-0086_01-02	PASS	N/A
FCC 15.407(g)	Frequency Stability	202302-0086_01-02	PASS	N/A
	On Time and Duty Cycle	202302-0086 01-02		N/A

Note: N/A is an abbreviation for Not Applicable.

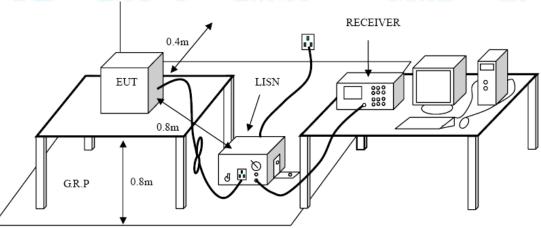
3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
	Compliance	0000		3 0	
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
	Inc	A V		0000	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 22, 2022	Jun. 21, 2023
Radiation Emissio	n Test (B Site)	-			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	KEYSIGT	N9020B	MY60110172	Sep.01.2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep.01.2022	Aug. 31, 2023

Vector Signal Generator	KEYSIGT	N5182B	MY59101429	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Dec. 15, 2022	Dec. 14, 2023
alle	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep.01.2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep.01.2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep.01.2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 23, 2022	Jun. 22, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep.01.2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Jun. 23, 2022	Jun. 22, 2023
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023


5. Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.207
 - 5.1.2 Test Limit

Frequency	Maximum RF Line Voltage (dB μ V)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 5.2 Test Setup

5.3 Test Procedure

● The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50 uH of coupling impedance for the measuring instrument.

● Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

● I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

●LISN at least 80 cm from nearest part of EUT chassis.

•The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

6. Radiated and Conducted Unwanted Emissions

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz				
Frequency	Field Strength	Field Strength	Measurement	
(MHz) (µA/m)*		(microvolt/meter)**	Distance (meters)	
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300	
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30	
1.705~30.0	0.08	30	30	

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

2, *is for RSS Standard, **is for FCC Standard.

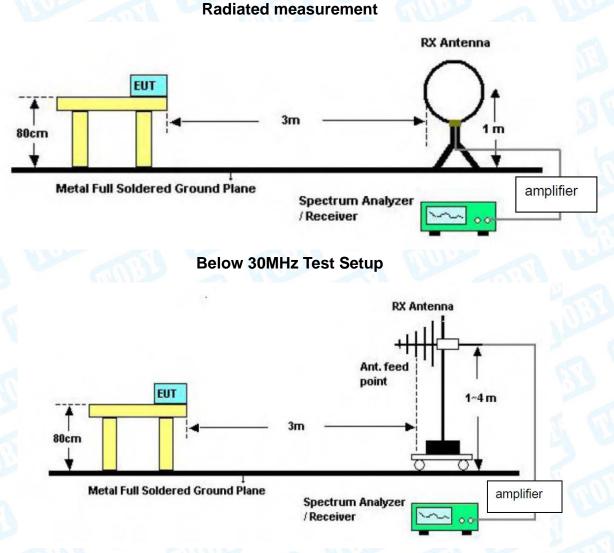
General field strength limits at frequencies above 30 MHz					
Frequency	Frequency Field strength Measurement Distance				
(MHz)	(µV/m at 3 m)	(meters)			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

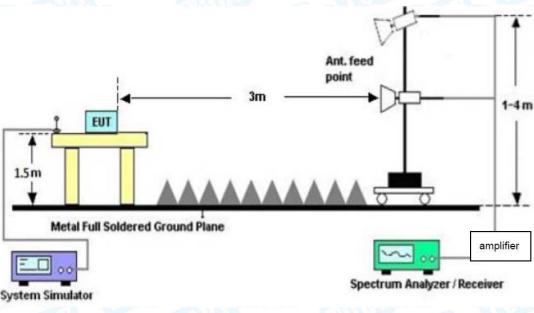
Note:

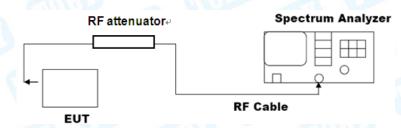
(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided

that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


6.2 Test Setup


Below 1000MHz Test Setup

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

● If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode

measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.
 Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.
- 6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix D.

7. Restricted Bands Requirement

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.407(b)

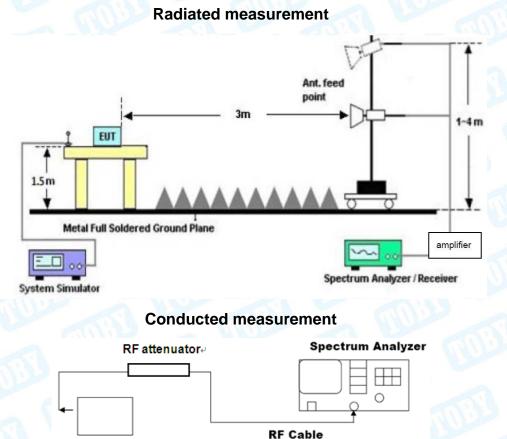
7.1.2 Test Limit

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)	
5150~5250 -27		68.3	
5250~5350	-27	68.3	
5470~5725	-27	68.3	
2	-27(Note 2)	68.3	
	10(Note 2)	105.3	
5725~5825	15.6(Note 2)	110.9	
	27(Note 2)	122.3	

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$


2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

7.3 Test Procedure

---Radiated measurement

EUT

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

● The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

 The Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

•For the actual test configuration, please see the test setup photo.

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

f) Compare the resultant electric field strength level with the applicable regulatory limit.g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

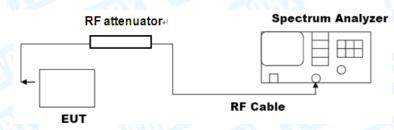
Please refer to the description of test mode.

7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the Appendix D.

8. Bandwidth Test


- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard

FCC Part 15.407(a) & FCC Part 15.407(e)

8.1.2 Test Limit

Test Item Limit		Frequency Range (MHz)	
		5150~5250	
26 Bandwidth	N/A	5250~5350	
	in the second se	5500~5725	
6 dB Bandwidth	>500kHz	5725~5850	
	N/A	5150~5250	
99% Bandwidth		5250~5350	
99% Bandwidin		5500~5725	
TUDY -		5725~5850	

8.2 Test Setup

8.3 Test Procedure

---Emission bandwidth

- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.

Report No.: TBR-C-202302-0086-53 Page: 31 of 173

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

● The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency.
 The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated

until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled.Tabular data may be reported in addition to the plot(s).

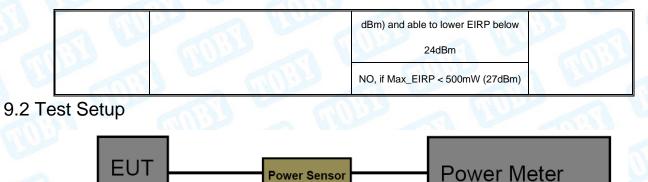
Report No.: TBR-C-202302-0086-53 Page: 33 of 173

- 8.4 Deviation From Test Standard No deviation
- 8.5 EUT Operating Mode Please refer to the description of test mode.
- 8.6 Test Data

Please refer to the Appendix D.

9. Maximum Conducted Output Power

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.407(a)
 - 9.1.2 Test Limit


1	Frequency Range(MHz)				
Limit	5150~5250	5250~5350 5500~5725		5725~5850	
Max Conducted TX Power	N/A	The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm			
Max E.I.R.P	For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.	The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.		4 W (36 dBm) with 6 dBi antenna	
ТРС	NO	YES, if Max_EIRP ≥ 500 to lower EIRP NO, if Max_EIRP <	below 24dBm	NO	

Linett	Frequency Range(MHz)			
Limit	5150~5250	5250~5350	5500~5725	5725~5850
Max Conducted TX Power	Master Device: 1 Watt(30dBm) Client Device: 250mW(24dBm)	24dBm (250 mW) or 11 dBm+ 10 log B, whichever is lower (B= 26-dB emission BW) 1 W (30 dBm) with 6 dBi antenna		1 Watt (30dBm)
Max E.I.R.P	4 W (36 dBm) with 6 dBi antenna 200 W (53 dBm) for fixed P-t-P application with 23 dBiantenna Additional rule for outdoor operation: Max_EIRP< 125 mW(21 dBm) at any elevation angle > 30°from horizon			4 W (36 dBm) with 6 dBi antenna
TPC	NO	YES, if Max_Elf	RP ≥ 500 mW (27	NO

9.3 Test Procedure

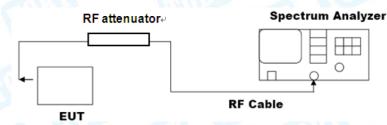
• The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

- 9.4 Deviation From Test Standard No deviation
- 9.5 EUT Operating Mode

Please refer to the description of test mode.

9.6 Test Data

Please refer to the Appendix D.



10. Power Spectral Density Test

- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard
 - FCC Part 15.407(a)
 - 10.1.2 Test Limit

Test Item	Limit		Frequency
iest item		Linin	Range(MHz)
	FCC	Master Device: 17dBm/MHz	
		Client Device: 11dBm/MHz	5150~5250
Power Spectral	IC	10dBm/MHz	
Density		11dBm/MHz	5250~5350
	and!	11dBm/MHz	5500~5725
		30dBm/500kHz	5725~5850

10.2 Test Setup

10.3 Test Procedure

•Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:

a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power....."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)

b) Use the peak search function on the instrument to find the peak of the spectrum.

- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.

TOBY Part of the Cotecno Group

2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add1 dB to the final result to compensate for the difference between linear averaging and power averaging.

d) The result is the PPSD.

e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:

1) Set RBW \geq 1 / T, where T is defined in 12.2 a).

2) Set VBW ≥ [3*RBW].

3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

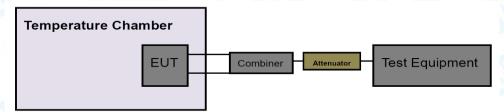
Please refer to the description of test mode.

10.6 Test Data

Please refer to the Appendix D.

11. Frequency Stability

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.407(g)

11.1.2 Test Limit

If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation.

11.2 Test Setup

11.3 Test Procedure

• Determining compliance with the peak excursion requirement shall be done by confirming that the ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed the regulatory requirement.⁹⁶ The procedure for this method is as follows:

a) The following guidance for limiting the number of tests applies only to peak excursion measurements:

1) Testing each modulation mode on a single channel in a single operating band is sufficient to determine compliance with the peak excursion requirement. (If all modulation modes are not available on a single channel in a single band, then testing must be extended to other channels and bands as needed to ensure that all modulation modes are tested.)

2) Tests must include all variations in signal structure, such as:

- i) All signal types [e.g., direct sequence spread spectrum (DSSS) and OFDM].
- ii) All modulation types [e.g., binary phase-shift keying (BPSK), quadrature
- phase-shift keying (QPSK), 16-QAM, 64-QAM, and 256-QAM].
- iii) All bandwidth modes.

iv) All variations in signal parameters (e.g., changes in subcarrier spacing or number of subcarriers).

3) For a given signal structure, testing of multiple error-correction coding rates is not

TOBY Part of the Cotecna Group

required (e.g., 1/2, 2/3, and 3/4).

4) For MIMO devices, testing of a single output port is sufficient to determine compliance with the peak excursion requirement. If a given signal structure can be exercised with various combinations of spatial multiplexing (such as different numbers of spatial streams), beamforming, and cyclic delay diversity, peak excursion tests are not required to include those variations.

b) The procedure is as follows:

1) Set the span of the spectrum analyzer or EMI receiver to view the entire emission bandwidth or occupied bandwidth.

- 2) Find the maximum of the peak-max-hold spectrum:
 - i) Set RBW = 1 MHz.
 - ii) VBW 🗆 3 MHz.
 - iii) Detector = peak.
 - iv) Trace mode = max-hold.
 - v) Allow the sweeps to continue until the trace stabilizes.
 - vi) Use the peak search function to find the peak of the spectrum.
- 3) Use the procedure found in 12.5 to measure the PPSD.
- 4) Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.
- 11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the Appendix D.

12. Antenna Requirement

12.1 Test Standard and Limit

12.1.1 Test Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.72dBi and 2.42dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type						
	Permanent attached antenna					
3 100	Unique connector antenna	N				
	Professional installation antenna					

Attachment A-- Conducted Emission Test Data

Temperature:	26 ℃	Relativ	e Humidity:	54%
Test Voltage:	AC 120V 60Hz	Can be	6	1000
Terminal:	Line	No.		anis.
Test Mode:	Mode 1			20
Remark:	Only worse case is r	eported.		
30 dBuV			mun manual a	
-20	0.5	(MHz)	5	30.000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1539	30.63	11.10	41.73	65.78	-24.05	QP
2		0.1539	20.05	11.10	31.15	55.78	-24.63	AVG
3		0.2379	27.61	10.94	38.55	62.17	-23.62	QP
4		0.2379	17.36	10.94	28.30	52.17	-23.87	AVG
5		0.4899	35.84	10.93	46.77	56.17	-9.40	QP
6	*	0.4899	29.21	10.93	40.14	46.17	-6.03	AVG
7		0.9020	29.64	10.74	40.38	56.00	-15.62	QP
8		0.9020	21.88	10.74	32.62	46.00	-13.38	AVG
9		1.1979	31.06	10.65	41.71	56.00	-14.29	QP
10		1.1979	23.93	10.65	34.58	46.00	-11.42	AVG
11		4.3059	36.80	10.07	46.87	56.00	-9.13	QP
12		4.3059	19.12	10.07	29.19	46.00	-16.81	AVG

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

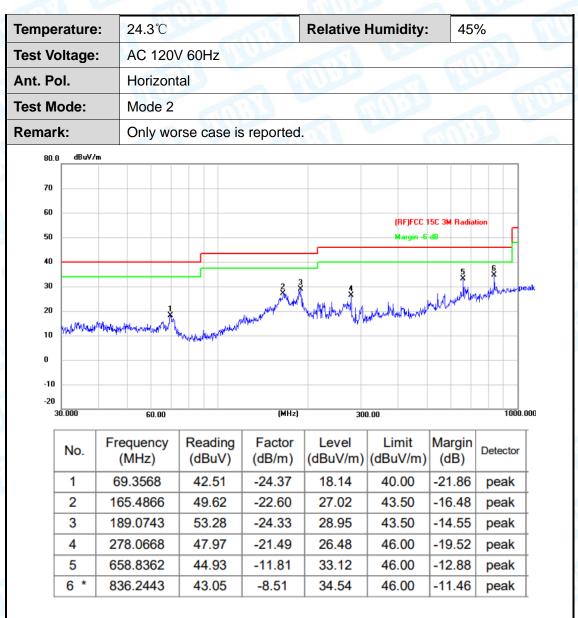
2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

No. Mk. Freq. Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 27.24 46.00 -18.76 AVG 10 3.2219 <th>Temperature:</th> <th>26℃</th> <th></th> <th>2 13</th> <th>Relative Hu</th> <th>umidity</th> <th>54%</th> <th></th>	Temperature:	26 ℃		2 13	Relative Hu	umidity	54%	
Test Mode: Mode 1 Remark: Only worse case is reported. 00.0 dBW OP: AVG: OP: AVG: <th< th=""><th>Test Voltage:</th><th>AC 12</th><th>0V 60Hz</th><th></th><th>UP -</th><th>200</th><th></th><th>U</th></th<>	Test Voltage:	AC 12	0V 60Hz		UP -	200		U
Remark: Only worse case is reported. 0 dBw 0 dBw 0	Ferminal:	Neutra		-	3	5	002	
BBL0 BBL0 <td>Fest Mode:</td> <td>Mode</td> <td>1</td> <td>100</td> <td></td> <td></td> <td></td> <td>SIN:</td>	Fest Mode:	Mode	1	100				SIN:
No. Mk. Freq. Level Correct Factor Measure- ment Limit Over 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 16.01 10.73 26.74 46.00 -13.99 AVG 6 0.9539 16.01 10.73 26.74 46.00 -13.99 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.24 46.00 -18.58 AVG 9 3.2219 35.59 10.18 27.24 46.00 -18.76 AVG 10 <td< th=""><th>Remark:</th><th>Only w</th><th>orse case i</th><th>s reported.</th><th>alor</th><th></th><th>59</th><th></th></td<>	Remark:	Only w	orse case i	s reported.	alor		59	
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.24 46.00 -18.58 AVG 9 3.2219 35.59 10.18 27.24 46.00 -18.76 AVG	80.0 dBu¥						OP	
Min Reading Level Correct Factor Measure- ment Limit Over 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59								
Min Reading Level Correct Factor Measure- ment Limit Over 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 <								
Min Reading Level Correct Factor Measure- ment Limit Over 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 <								
Min Reading Level Correct Factor Measure- ment Limit Over 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 <	Mumm	M		. X	ž 🕂			
Min Reading Level Correct Factor Measure- ment Limit Over No. Mk. Freq. Level Factor Measure- ment Limit Over 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59	V,	~~ <u>~</u> ~	man Martin Martin	MAN ANA	man my			_
No. Mk. Freq. Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 27.24 46.00 -18.76 AVG 10 3.2219 <td>30 A Manua</td> <td>. why have</td> <td></td> <td><u>ш</u></td> <td>4 . Mu</td> <td>WWW and when</td> <td>h happy marine</td> <td>- caller also</td>	30 A Manua	. why have		<u>ш</u>	4 . Mu	WWW and when	h happy marine	- caller also
No. Mk. Freq. Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 27.24 46.00 -18.76 AVG 10 3.2219 <td>WY TWY</td> <td></td> <td>the all have been been been been been been been be</td> <td>m Winner war</td> <td>MANN Thy</td> <td>wheeld M</td> <td></td> <td>and a start of the second of t</td>	WY TWY		the all have been been been been been been been be	m Winner war	MANN Thy	wheeld M		and a start of the second of t
No. Mk. Freq. Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 27.24 46.00 -18.76 AVG 10 3.2219 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>une proving a filling</td> <td>Mary Work where a</td>							une proving a filling	Mary Work where a
No. Mk. Freq. Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 27.24 46.00 -18.76 AVG 10 3.2219 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
No. Mk. Freq. Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 27.24 46.00 -18.76 AVG 10 3.2219 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
No. Mk. Freq. Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 27.24 46.00 -18.76 AVG 10 3.2219 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV dBuV dB dBuV dB Detector 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP <	20 0 150			(MH=)				30.000
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18	0.130	0.0	Peading					
1 0.1900 35.89 11.09 46.98 64.03 -17.05 QP 2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP 10 3.2219 17.06 10.18 27.24 46.00 -18.76 AVG 11 <td< td=""><td>No. Mk.</td><td>Freq.</td><td></td><td></td><td></td><td>Limit</td><td>Over</td><td></td></td<>	No. Mk.	Freq.				Limit	Over	
2 0.1900 18.18 11.09 29.27 54.03 -24.76 AVG 3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP 10 3.2219 17.06 10.18 27.24 46.00 -18.76 AVG 11 4.4778 38.40 10.07 48.47 56.00 -7.53 QP <td></td> <td>MHz</td> <td>dBuV</td> <td>dB</td> <td>dBuV</td> <td>dBuV</td> <td>dB</td> <td>Detector</td>		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
3 * 0.5100 40.48 10.92 51.40 56.00 -4.60 QP 4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP 10 3.2219 17.06 10.18 27.24 46.00 -18.76 AVG 11 4.4778 38.40 10.07 48.47 56.00 -7.53 QP	1	0.1900	35.89	11.09	46.98	64.03	-17.05	QP
4 0.5100 21.09 10.92 32.01 46.00 -13.99 AVG 5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP 10 3.2219 17.06 10.18 27.24 46.00 -18.76 AVG 11 4.4778 38.40 10.07 48.47 56.00 -7.53 QP	2	0.1900	18.18	11.09	29.27	54.03	-24.76	AVG
5 0.9539 31.36 10.73 42.09 56.00 -13.91 QP 6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP 10 3.2219 17.06 10.18 27.24 46.00 -18.76 AVG 11 4.4778 38.40 10.07 48.47 56.00 -7.53 QP	3 *	0.5100	40.48	10.92	51.40	56.00	-4.60	QP
6 0.9539 16.01 10.73 26.74 46.00 -19.26 AVG 7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP 10 3.2219 17.06 10.18 27.24 46.00 -18.76 AVG 11 4.4778 38.40 10.07 48.47 56.00 -7.53 QP	4	0.5100	21.09	10.92	32.01	46.00	-13.99	AVG
7 1.6419 32.42 10.60 43.02 56.00 -12.98 QP 8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP 10 3.2219 17.06 10.18 27.24 46.00 -18.76 AVG 11 4.4778 38.40 10.07 48.47 56.00 -7.53 QP	5	0.9539	31.36	10.73	42.09	56.00	-13.91	QP
8 1.6419 16.82 10.60 27.42 46.00 -18.58 AVG 9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP 10 3.2219 17.06 10.18 27.24 46.00 -18.76 AVG 11 4.4778 38.40 10.07 48.47 56.00 -7.53 QP	6	0.9539	16.01	10.73	26.74	46.00	-19.26	AVG
9 3.2219 35.59 10.18 45.77 56.00 -10.23 QP 10 3.2219 17.06 10.18 27.24 46.00 -18.76 AVG 11 4.4778 38.40 10.07 48.47 56.00 -7.53 QP	7	1.6419	32.42	10.60	43.02	56.00	-12.98	QP
103.221917.0610.1827.2446.00-18.76AVG114.477838.4010.0748.4756.00-7.53QP	8	1.6419	16.82	10.60	27.42	46.00	-18.58	AVG
11 4.4778 38.40 10.07 48.47 56.00 -7.53 QP	9	3.2219	35.59	10.18	45.77	56.00	-10.23	QP
	10	3.2219	17.06	10.18	27.24	46.00	-18.76	AVG
12 4 4778 18 92 10 07 28 99 46 00 -17 01 AVG	11	4.4778	38.40	10.07	48.47	56.00	-7.53	QP
	12	4.4778	18.92	10.07	28.99	46.00	-17.01	AVG

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Unwanted Emissions Data


---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

*:Maximum data x:Over limit !:over margin

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Tempera	ature:	24.3°C		R	elative Hun	nidity:	45%	
Test Vol	tage:	AC 12	20V 60Hz	81	170	VPF	~	C. C.
Ant. Pol	I.	Vertic	al		50	10	NOD I	-
Test Mo	de:	Mode	2		-		6	ABD
Remark	:	Only	worse case	e is reported.	an			
80.0 dBu	iV/m							
70								
60						(BE)ECC 15	5C 3M Radiation	
50						Margin -6 d		╞
40							E	6
30	+-+			ţ			4 ×	X .
				- R	2 3		The star of	Jill which have been a
20				min	M. Man	- Lucoby 6 Milyrolym	Ithough when	jiintii (nii dimpeak
	when any	multionly	Laggertand	and the second s	WM WM	utreat hall block	Attacent www.	jil/fik/h///peak
10	ullhunama	Hunderman	Luguin	warman with	wa	ndrainethal University	Ither and lowers	jil/www.peak
10 0	ullhunama	Hundervill	Lagyhhann	and the second s	With Milly	ndesentated Warnet	Iterne lower	jildyrywhpeak
10	ville and the	maint	Lagyhelder	and the second sec		ndraentrikent Warneler		jildiyonaan peak
10 -10		60.00	hagy where we	(MHz)	300.			1000.000
10	Frequ	60.00	Reading (dBuV)		300. Level		Margin	1000.000 Detector
10 production of the second se	Frequ	60.00 Jency Hz)	Reading	Factor	300. Level		Margin	
10 0 -10 -20 30.000	Frequ (Mł	60.00 Jency Hz) 7882	Reading (dBuV)	Factor (dB/m)	300. Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	

*:Maximum data x:Over limit !:over margin

541.3725

658.8362

793.3960

Remark:

4 5

6 *

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

44.86

45.92

45.62

-14.32

-11.81

-9.24

30.54

34.11

36.38

46.00

46.00

46.00

-15.46

-11.89

-9.62

peak

peak

peak

3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Above 1GHz

5180MHz-5240MHz(U-NII-1)

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal	n nu	A DULL
Test Mode:	TX 802.11a Mode 5180	MHz (U-NII-1) Antenna	1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10357.720	52.53	6.12	58.65	68.30	-9.65	peak
2 *	10358.355	40.43	6.12	46.55	54.00	-7.45	AVG

Remark:

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	000	
Ant. Pol.	Vertical	and the	angu a
Test Mode:	TX 802.11a Mode 5180M	1Hz (U-NII-1) Antenna	1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10358.380	52.53	6.12	58.65	68.30	-9.65	peak
2 *	10360.985	39.24	6.12	45.36	54.00	-8.64	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V	The states	100
Ant. Pol.	Horizontal	BU C	DUD -
Test Mode:	TX 802.11a Mode 5200M	1Hz (U-NII-1) Antenna	1 (1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10398.900	53.84	6.27	60.11	68.30	-8.19	peak
2	10400.960	39.05	6.27	45.32	54.00	-8.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	on B	
Test Mode:	TX 802.11a Mode 5200	/Hz (U-NII-1) Antenna	1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10398.030	53.94	6.27	60.21	68.30	-8 .09	peak
2 *	10401.395	40.26	6.27	46.53	54.00	-7.47	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4°C	Relative Humidity:	52%		
Test Voltage:	DC 5V	TUPE -			
Ant. Pol.	Horizontal		000		
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1) Antenna 1				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10478.350	39.22	6.41	45.63	54.00	-8.37	AVG
2 *	10481.675	55.03	6.42	61.45	68.30	-6.85	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11a Mode 5240M	1Hz (U-NII-1) Antenna 1	1 001

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10478.270	39.91	6.41	46.32	54.00	-7.68	AVG
2	10478.670	52.27	6.41	58.68	68.30	-9.62	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%			
Test Voltage:	DC 5V	TUDE				
Ant. Pol.	Horizontal	AN C	1000			
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5180MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10358.695	52.23	6.12	58.35	68.30	-9.95	peak
2 *	10359.550	39.20	6.12	45.32	54.00	-8.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	anis -	TU SA
Ant. Pol.	Vertical	anBl	
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1) An	tenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10357.820	52.53	6.12	58.65	68.30	-9.65	peak
2 *	10357.975	40.20	6.12	46.32	54.00	-7.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%		
Test Voltage:	DC 5V	AUGU A	200		
Ant. Pol.	Horizontal	RU C	DUD A		
Test Mode:	TX 802.11n(HT20) Mode 5200MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10399.060	52.05	6.27	58.32	68.30	-9.98	peak
2 *	10400.660	38.87	6.27	45.14	54.00	-8.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	COULD -	
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT20) Mode	5200MHz (U-NII-1) An	tenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10397.930	52.38	6.27	58.65	68.30	-9.65	peak
2 *	10398.825	40.05	6.27	46.32	54.00	-7.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%			
Test Voltage:	DC 5V					
Ant. Pol.	Horizontal	AN C	1000			
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10477.860	39.91	6.41	46.32	54.00	-7.68	AVG
2	10479.010	51.27	6.41	57.68	68.30	-10.62	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%				
Test Voltage:	DC 5V	anus -	TU SA				
Ant. Pol.	Vertical	anB					
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5240MHz (U-NII-1) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10478.110	39.91	6.41	46.32	54.00	-7.68	AVG
2	10478.920	53.21	6.41	59.62	68.30	-8.68	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

23.4℃	Relative Humidity:	52%			
DC 5V	TUPE -	1			
Horizontal		TOPP -			
TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1) Antenna 1+2					
	DC 5V Horizontal	DC 5V Horizontal			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10357.645	52.50	6.12	58.62	68.30	-9.68	peak
2 *	10358.320	39.09	6.12	45.21	54.00	-8.79	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	and by	TU SA				
Ant. Pol.	Vertical	anB					
Test Mode:	TX 802.11ac(VHT20) Mo	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10358.705	39.09	6.12	45.21	54.00	-8.79	AVG
2	10358.985	51.12	6.12	57.24	68.30	-11.06	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

23.4℃	Relative Humidity:	52%			
DC 5V					
Horizontal		TOPP -			
TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1) Antenna 1+2					
	DC 5V Horizontal	DC 5V Horizontal			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10398.590	39.36	6.27	45.63	54.00	-8.37	AVG
2	10398.625	51.38	6.27	57.65	68.30	-10.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11ac(VHT20) Mo	de 5200MHz (U-NII-1)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10398.135	38.97	6.27	45.24	54.00	-8.76	AVG
2	10398.630	51.38	6.27	57.65	68.30	-10.65	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%		
Test Voltage:	DC 5V	TUP-			
Ant. Pol.	Horizontal	RU G	1050		
Test Mode:	TX 802.11 ac(VHT20) Mode 5240MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10477.775	38.83	6.41	45.24	54.00	-8.76	AVG
2	10478.815	51.24	6.41	57.65	68.30	-10.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%			
Test Voltage:	DC 5V		TU SA			
Ant. Pol.	Vertical	mB				
Test Mode:	TX 802.11ac(VHT20) Mc	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10477.560	39.91	6.41	46.32	54.00	-7.68	AVG
2	10477.650	51.83	6.41	58.24	68.30	-10.06	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%		
Test Voltage:	DC 5V	- TUU	100		
Ant. Pol.	Horizontal	RU C	1000		
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10377.580	52.05	6.19	58.24	68.30	-10.06	peak
2 *	10379.125	39.44	6.19	45.63	54.00	-8.37	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%			
Test Voltage:	DC 5V					
Ant. Pol.	Vertical	anB				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5190MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10377.855	51.43	6.19	57.62	68.30	-10.68	peak
2 *	10381.415	39.17	6.21	45.38	54.00	-8.62	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

		T			
Temperature:	23.4 °C	Relative Humidity:	52%		
Test Voltage:	DC 5V	TUP -			
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10457.900	51.90	6.37	58.27	68.30	-10.03	peak
2 *	10458.710	39.31	6.37	45.68	54.00	-8.32	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%			
Test Voltage:	DC 5V					
Ant. Pol.	Vertical	anB				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5230MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10457.510	38.95	6.37	45.32	54.00	-8.68	AVG
2	10457.660	52.95	6.37	59.32	68.30	-8.98	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%		
Test Voltage:	DC 5V	The second	2		
Ant. Pol.	Horizontal	RU C	1000		
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10378.155	38.95	6.19	45.14	54.00	-8.86	AVG
2	10379.510	50.27	6.20	56.47	68.30	-11.83	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	anis -	TUP
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11ac(VHT40) Mc	de 5190MHz (U-NII-1)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10377.655	50.55	6.19	56.74	68.30	-11.56	peak
2 *	10378.950	39.17	6.19	45.36	54.00	-8 .64	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%		
Test Voltage:	DC 5V	TUP-			
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10457.910	51.37	6.37	57.74	68.30	-10.56	peak
2 *	10459.230	38.99	6.37	45.36	54.00	-8.64	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	anis -	TUP
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11ac(VHT40) Mc	de 5230MHz (U-NII-1)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10458.055	38.95	6.37	45.32	54.00	-8.68	AVG
2	10459.775	50.37	6.37	56.74	68.30	-11.56	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4°C	Relative Humidity:	52%			
Test Voltage:	DC 5V	TUPE	100			
Ant. Pol.	Horizontal	RU C	DUD A			
Test Mode:	TX 802.11ac(VHT80) Mc	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11417.520	48.65	8.98	57.63	68.30	-10.67	peak
2 *	11418.790	36.34	8.98	45.32	54.00	-8.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		TUP
Ant. Pol.	Vertical	mB	
Test Mode:	TX 802.11ac(VHT80) Mc	de 5210MHz (U-NII-1)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11418.315	47.65	8.98	56.63	68.30	-11.67	peak
2 *	11422.265	36.34	8.98	45.32	54.00	-8.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5260MHz-5320MHz(U-NII-2A)

Temperature:	23.5 ℃	Relative Humidity:	46%			
Test Voltage:	DC 5V		2			
Ant. Pol.	Horizontal		1000			
Test Mode:	TX 802.11a Mo	TX 802.11a Mode 5260MHz (U-NII-2A) Antenna 1				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10518.375	51.24	6.44	57.68	68.30	-10.62	peak
2 *	10518.575	39.88	6.44	46.32	54.00	-7.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11a Mode 5260M	1Hz (U-NII-2A) Antenna	1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10517.675	52.77	6.44	59.21	68.30	-9.09	peak
2 *	10517.725	39.88	6.44	46.32	54.00	-7.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	DC 5V	The states	1		
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11a Mode 5280MHz (U-NII-2A) Antenna 1				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10557.790	52.92	6.43	59.35	68.30	-8.95	peak
2 *	10558.615	39.89	6.43	46.32	54.00	-7.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anBl	
Test Mode:	TX 802.11a Mode 5280M	1Hz (U-NII-2A) Antenna	1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10558.110	39.89	6.43	46.32	54.00	-7.68	AVG
2	10558.160	52.22	6.43	58.65	68.30	-9.65	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	DC 5V	TUP-	200		
Ant. Pol.	Horizontal		DUD A		
Test Mode:	TX 802.11a Mode 5320MHz (U-NII-2A) Antenna 1				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10637.670	53.67	6.65	60.32	68.30	-7.98	peak
2 *	10638.635	40.91	6.66	47.57	54.00	-6.43	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11a Mode 5320M	1Hz (U-NII-2A) Antenna	1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10638.910	39.69	6.66	46.35	54.00	-7.65	AVG
2	10639.835	51.99	6.66	58.65	68.30	-9.65	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

23.5℃	Relative Humidity:	46%		
DC 5V				
Horizontal	BU C	1000		
TX 802.11n(HT20) Mode 5260MHz (U-NII-2A) A Antenna 1+2				
	DC 5V Horizontal	DC 5V Horizontal		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10517.705	51.10	6.44	57.54	68.30	-10.76	peak
2 *	10517.760	39.88	6.44	46.32	54.00	-7.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 5V	anis -	TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT20) Mode	5260MHz (U-NII-2A) A	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10517.565	50.30	6.44	56.74	68.30	-11.56	peak
2 *	10517.970	39.19	6.44	45.63	54.00	-8.37	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	DC 5V	TUPE	200		
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11n(HT20) Mode 5280MHz (U-NII-2A) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10558.130	39.20	6.43	45.63	54.00	-8.37	AVG
2	10558.675	52.22	6.43	58.65	68.30	-9.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 5V	anis -	
Ant. Pol.	Vertical	anB!	
Test Mode:	TX 802.11n(HT20) Mode	5280MHz (U-NII-2A) A	Intenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10557.765	51.42	6.43	57.85	68.30	-10.45	peak
2 *	10558.770	39.89	6.43	46.32	54.00	-7.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	DC 5V	RUSS	200		
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11n(HT20) Mode 5320MHz (U-NII-2A) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10638.560	39.66	6.66	46.32	54.00	-7.68	AVG
2	10639.655	51.03	6.66	57.69	68.30	-10.61	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 5V	anis -	TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT20) Mode	5320MHz (U-NII-2A) A	Intenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10638.260	39.66	6.66	46.32	54.00	-7.68	AVG
2	10638.865	51.02	6.66	57.68	68.30	-10.62	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.5 ℃	Relative Humidity:	46%		
Test Voltage:	DC 5V	TUDE	2		
Ant. Pol.	Horizontal		1050		
Test Mode:	TX 802.11ac(VHT20) Mode 5260MHz (U-NII-2A) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10517.630	38.88	6.44	45.32	54.00	-8.68	AVG
2	10517.785	50.30	6.44	56.74	68.30	-11.56	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5°C	Relative Humidity:	46%
Test Voltage:	DC 5V	and by	TU SA
Ant. Pol.	Vertical	anB!	
Test Mode:	TX 802.11ac(VHT20) Mo	de 5260MHz (U-NII-2A	a) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10518.235	38.90	6.44	45.34	54.00	-8.66	AVG
2	10518.665	50.41	6.44	56.85	68.30	-11.45	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	DC 5V	TUP	100		
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11ac(VHT20) Mode 5280MHz (U-NII-2A) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10557.625	50.01	6.43	56.44	68.30	-11.86	peak
2 *	10557.820	38.93	6.43	45.36	54.00	-8.64	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 5V		TU SA
Ant. Pol.	Vertical	mB	
Test Mode:	TX 802.11ac(VHT20) Mc	de 5280MHz (U-NII-2A	a) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10558.105	50.81	6.43	57.24	68.30	-11.06	peak
2 *	10558.655	38.93	6.43	45.36	54.00	-8.64	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	DC 5V	TUP-	200		
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11 ac(VHT20) Mode 5320MHz (U-NII-2A) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10638.660	37.58	6.66	44.24	54.00	-9.76	AVG
2	10640.410	50.74	6.67	57.41	68.30	-10.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 5V		TU SA
Ant. Pol.	Vertical	mB	
Test Mode:	TX 802.11ac(VHT20) Mc	de 5320MHz (U-NII-2A	a) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10638.810	50.75	6.66	57.41	68.30	-10.89	peak
2 *	10639.315	38.66	6.66	45.32	54.00	-8.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	DC 5V	TUPE -	1		
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11n(HT40) Mode 5270MHz (U-NII-2A) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10538.420	39.88	6.44	46.32	54.00	-7.68	AVG
2	10538.470	51.24	6.44	57.68	68.30	-10.62	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	DC 5V	anis -	TU SA			
Ant. Pol.	Vertical	anBl				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5270MHz (U-NII-2A) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10537.695	39.87	6.45	46.32	54.00	-7.68	AVG
2	10538.035	50.42	6.45	56.87	68.30	-11.43	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

23.5℃	Relative Humidity:	46%		
DC 5V				
Horizontal	BU C	1000		
TX 802.11n(HT40) Mode 5310MHz (U-NII-2A) Antenna 1+2				
	DC 5V Horizontal	DC 5V Horizontal		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10618.700	51.73	6.53	58.26	68.30	-10.04	peak
2 *	10619.265	38.83	6.53	45.36	54.00	-8.64	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	DC 5V		TU SA
Ant. Pol.	Vertical	mB	
Test Mode:	TX 802.11n(HT40) Mode	5310MHz (U-NII-2A) A	Intenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10617.755	40.33	6.52	46.85	54.00	-7.15	AVG
2	10618.900	52.71	6.53	59.24	68.30	-9.06	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	DC 5V	TUPE -	200		
Ant. Pol.	Horizontal		1000		
Test Mode:	TX 802.11ac(VHT40) Mode 5270MHz (U-NII-2A) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10538.945	38.80	6.44	45.24	54.00	-8.76	AVG
2	10539.270	50.30	6.44	56.74	68.30	-11.56	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	DC 5V		TU SA			
Ant. Pol.	Vertical	mB				
Test Mode:	TX 802.11ac(VHT40) Mc	TX 802.11ac(VHT40) Mode 5270MHz (U-NII-2A) Antenna 1+2				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10537.530	36.83	6.44	43.27	54.00	-10.73	AVG
2	10539.550	48.10	6.44	54.54	68.30	-13.76	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.5°C	Relative Humidity:	46%			
Test Voltage:	DC 5V	- TUU	1			
Ant. Pol.	Horizontal	RU C	1000			
Test Mode:	TX 802.11ac(VHT40) Mode 5310MHz (U-NII-2A) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10617.815	38.80	6.52	45.32	54.00	-8.68	AVG
2	10619.475	50.88	6.53	57.41	68.30	-10.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5°C	Relative Humidity:	46%			
Test Voltage:	DC 5V	COULD -				
Ant. Pol.	Vertical	anB				
Test Mode:	TX 802.11ac(VHT40) Mode 5310MHz (U-NII-2A) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10617.615	51.13	6.52	57.65	68.30	-10.65	peak
2 *	10619.595	38.79	6.53	45.32	54.00	-8.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

23.5℃	Relative Humidity:	46%			
DC 5V					
Horizontal		TOPP -			
Test Mode: TX 802.11ac(VHT80) Mode 5290MHz (U-NII-2A) Antenna 1+2					
	DC 5V Horizontal	DC 5V Horizontal			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10577.825	51.25	6.43	57.68	68.30	-10.62	peak
2 *	10581.330	38.93	6.43	45.36	54.00	-8.64	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	DC 5V		TU SA			
Ant. Pol.	Vertical	mB				
Test Mode:	e: TX 802.11ac(VHT80) Mode 5290MHz (U-NII-2A) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10578.000	52.09	6.43	58.52	68.30	-9.78	peak
2 *	10578.210	38.93	6.43	45.36	54.00	-8.64	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5500MHz-5720MHz(U-NII-2C)

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mod	le 5500MHz (U-NII-2C) Antenna	1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10997.560	50.48	8.17	58.65	68.30	-9.65	peak
2 *	11000.440	37.15	8.17	45.32	54.00	-8.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11a Mode 5500M	1Hz (U-NII-2C) Antenna	a 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11001.710	38.16	8.16	46.32	54.00	-7.68	AVG
2	11004.750	50.50	8.15	58.65	68.30	-9.65	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V	Num and	B
Ant. Pol.	Horizontal	and a	2
Test Mode:	TX 802.11a Mode 5580M	1Hz (U-NII-2C) Antenna	a 1

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11159.840	37.48	7.84	45.32	54.00	-8.68	AVG
2	11162.880	51.46	7.86	59.32	68.30	-8.98	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4°C	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		TUU'
Test Mode:	TX 802.11a Mode 5580N	/Hz (U-NII-2C) Antenna	a 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11159.300	37.52	7.84	45.36	54.00	-8.64	AVG
2	11163.640	51.66	7.86	59.52	68.30	-8.78	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4°C	Relative Humidity:	52%
Test Voltage:	DC 5V	The states	200
Ant. Pol.	Horizontal	BU C	1000
Test Mode:	TX 802.11a Mode 5700N	1Hz (U-NII-2C) Antenna	a 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11395.460	37.34	8.98	46.32	54.00	-7.68	AVG
2	11399.190	49.67	8.98	58.65	68.30	-9.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11a Mode 5700M	1Hz (U-NII-2C) Antenna	a 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11395.640	51.23	8.98	60.21	68.30	-8.09	peak
2 *	11400.060	38.53	8.98	47.51	54.00	-6.49	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V	The states	
Ant. Pol.	Horizontal	RU C	1000
Test Mode:	TX 802.11n(HT20) Mode	e 5500MHz (U-NII-2C) A	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10998.435	49.97	8.17	58.14	68.30	-10.16	peak
2 *	10999.750	38.15	8.17	46.32	54.00	-7.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V		TU SA
Ant. Pol.	Vertical	mB	
Test Mode:	TX 802.11 n(HT20) Mode	e 5500MHz (U-NII-2C)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10998.045	49.48	8.17	57.65	68.30	-10.65	peak
2 *	11001.350	37.47	8.16	45.63	54.00	-8 .37	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

23.4℃	Relative Humidity:	52%
DC 5V	TUP-	
Horizontal	RU G	TOD D
TX 802.11n(HT20) Mode	5580MHz (U-NII-2C) A	Antenna 1+2
	DC 5V Horizontal	DC 5V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11158.885	50.81	7.84	58.65	68.30	-9.65	peak
2 *	11159.145	38.48	7.84	46.32	54.00	-7.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	COUL -	
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT20) Mode	5580MHz (U-NII-2C) A	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11159.225	50.81	7.84	58.65	68.30	-9.65	peak
2 *	11160.065	37.52	7.84	45.36	54.00	-8 .64	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	TUDE -	200
Ant. Pol.	Horizontal		DUD A
Test Mode:	TX 802.11n(HT20) Mode	9 5700MHz (U-NII-2C)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11399.245	48.56	8.98	57.54	68.30	-10.76	peak
2 *	11400.465	37.34	8.98	46.32	54.00	-7.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	anis -	TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT20) Mode	5700MHz (U-NII-2C) A	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11398.250	37.37	8.98	46.35	54.00	-7.65	AVG
2	11399.065	48.87	8.98	57.85	68.30	-10.45	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

23.4 ℃	Relative Humidity:	52%
DC 5V	TUP-	
Horizontal		1000
TX 802.11ac(VHT20) M	ode 5500MHz (U-NII-20	C) Antenna 1+2
	DC 5V Horizontal	DC 5V

No		quency 1Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	109	97.620	38.18	8.17	46.35	54.00	-7.65	AVG
2	109	99.490	49.24	8.17	57.41	68.30	-10.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	and by	TU SA
Ant. Pol.	Vertical	anBl	
Test Mode:	TX 802.11 ac(VHT20) M	ode 5500MHz (U-NII-20	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10997.975	37.46	8.17	45.63	54.00	-8.37	AVG
2	10998.305	50.37	8.17	58.54	68.30	-9.76	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V	TUP-	200
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11 ac(VHT20) M	ode 5580MHz (U-NII-20	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11157.820	37.51	7.84	45.35	54.00	-8.65	AVG
2	11157.880	49.81	7.84	57.65	68.30	-10.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	and by	TU SA
Ant. Pol.	Vertical	anBl	
Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5580MHz (U-NII-20	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11157.645	38.48	7.84	46.32	54.00	-7.68	AVG
2	11158.350	50.57	7.84	58.41	68.30	-9.89	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V	The second	E C
Ant. Pol.	Horizontal	THUS A	200
Test Mode:	TX 802.11 ac(VHT20) M	ode 5700MHz (U-NII-2	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11397.955	36.23	8.98	45.21	54.00	-8.79	AVG
2	11401.635	48.56	8.98	57.54	68.30	-10.76	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	and a	TU S
Test Mode:	TX 802.11 ac(VHT20) M	ode 5700MHz (U-NII-2	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11398.770	48.67	8.98	57.65	68.30	-10.65	peak
2 *	11400.375	36.36	8.98	45.34	54.00	-8.66	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	The states	200				
Ant. Pol.	Horizontal	RU C	DUD A				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5510MHz (U-NII-2C) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11018.505	38.23	8.09	46.32	54.00	-7.68	AVG
2	11019.555	49.76	8.09	57.85	68.30	-10.45	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	and by	TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT40) Mode	5510MHz (U-NII-2C) A	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11017.695	38.22	8.10	46.32	54.00	-7.68	AVG
2	11018.820	49.32	8.09	57.41	68.30	-10.89	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	TUDE	1				
Ant. Pol.	Horizontal		TOPP -				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5550MHz (U-NII-2C) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11098.325	38.75	7.77	46.52	54.00	-7.48	AVG
2	11099.170	50.09	7.76	57.85	68.30	-10.45	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	and by	TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT40) Mode	5550MHz (U-NII-2C) A	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11098.765	37.55	7.77	45.32	54.00	-8.68	AVG
2	11101.510	48.98	7.76	56.74	68.30	-11.56	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4°C	Relative Humidity:	52%				
Test Voltage:	DC 5V	TUPE	100				
Ant. Pol.	Horizontal	RU C	DUD -				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5670MHz (U-NII-2C) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11337.570	49.74	8.91	58.65	68.30	-9.65	peak
2 *	11337.625	37.41	8.91	46.32	54.00	-7.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V		TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT40) Mode	5670MHz (U-NII-2C) A	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11338.170	49.50	8.91	58.41	68.30	-9.89	peak
2 *	11338.280	36.41	8.91	45.32	54.00	-8.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	TUDE	2				
Ant. Pol.	Horizontal		TOUS				
Test Mode:	TX 802.11ac(VHT40) M	TX 802.11ac(VHT40) Mode 5510MHz (U-NII-2C) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11017.705	48.04	8.10	56.14	68.30	-12.16	peak
2 *	11018.835	37.23	8.09	45.32	54.00	-8.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		TU SA
Ant. Pol.	Vertical	mB	
Test Mode:	TX 802.11ac(VHT40) Mo	de 5510MHz (U-NII-20	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11017.985	49.22	8.10	57.32	68.30	-10.98	peak
2 *	11018.945	37.25	8.09	45.34	54.00	-8.66	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	TUDE	100				
Ant. Pol.	Horizontal		1000				
Test Mode:	TX 802.11ac(VHT40) M	TX 802.11ac(VHT40) Mode 5550MHz (U-NII-2C) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11097.695	37.55	7.77	45.32	54.00	-8.68	AVG
2	11098.770	48.97	7.77	56.74	68.30	-11.56	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	mB	
Test Mode:	TX 802.11ac(VHT40) Mo	de 5550MHz (U-NII-20	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11099.145	37.60	7.76	45.36	54.00	-8.64	AVG
2	11100.585	48.59	7.76	56.35	68.30	-11.95	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

23.4 ℃	Relative Humidity:	52%				
DC 5V	The states	200				
Horizontal	TRU C	1055				
TX 802.11ac(VHT40) M	TX 802.11ac(VHT40) Mode 5670MHz (U-NII-2C) Antenna 1+2					
	DC 5V Horizontal	DC 5V Horizontal				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11338.190	47.50	8.91	56.41	68.30	-11.89	peak
2 *	11338.830	36.41	8.91	45.32	54.00	-8.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	anis -	TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11ac(VHT40) Mc	de 5670MHz (U-NII-20	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11339.150	36.45	8.91	45.36	54.00	-8 .64	AVG
2	11341.655	47.23	8.91	56.14	68.30	-12.16	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	TUPE	200
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11ac(VHT80) Mc	ode 5530MHz (U-NII-20	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11059.400	37.44	7.92	45.36	54.00	-8.64	AVG
2	11062.050	49.74	7.91	57.65	68.30	-10.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V	and by	TU SA
Ant. Pol.	Vertical	anBl	
Test Mode:	TX 802.11ac(VHT80) Mc	de 5530MHz (U-NII-20	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11057.865	50.48	7.93	58.41	68.30	-9.89	peak
2 *	11058.930	37.44	7.92	45.36	54.00	-8.64	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	The states	200
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11ac(VHT80) Mc	ode 5610MHz (U-NII-20	C) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11219.630	37.23	8.09	45.32	54.00	-8.68	AVG
2	11221.010	48.64	8.10	56.74	68.30	-11.56	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V		TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11ac(VHT80) Mo	de 5610MHz (U-NII-20	c) Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11217.525	49.17	8.07	57.24	68.30	-11.06	peak
2 *	11221.745	37.25	8.11	45.36	54.00	-8 .64	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5745MHz-5825MHz(U-NII-3)

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V	TUDE -	100
Ant. Pol.	Horizontal	AL C	1000
Test Mode:	TX 802.11a Mode 5745M	/Hz (U-NII-3) Antenna	1 603

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11491.050	51.15	8.99	60.14	68.30	-8.16	peak
2 *	11493.550	37.33	8.99	46.32	54.00	-7.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11a Mode 5745M	1Hz (U-NII-3) Antenna	1 004

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11489.780	49.33	8.99	58.32	68.30	-9.98	peak
2 *	11490.290	37.33	8.99	46.32	54.00	-7.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	The states	1				
Ant. Pol.	Horizontal		1000				
Test Mode:	TX 802.11a Mode 5785M	TX 802.11a Mode 5785MHz (U-NII-3) Antenna 1					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.810	50.57	8.75	59.32	68.30	-8 .98	peak
2 *	11574.360	36.59	8.73	45.32	54.00	-8.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	B	
Test Mode:	TX 802.11a Mode 5785M	IHz (U-NII-3) Antenna 1	1 00.9

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11568.370	50.89	8.76	59.65	68.30	-8.65	peak
2	11572.380	36.58	8.74	45.32	54.00	-8.68	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4°C	Relative Humidity:	52%				
Test Voltage:	DC 5V	The states	1				
Ant. Pol.	Horizontal		TOPP -				
Test Mode:	TX 802.11a Mode 5825M	TX 802.11a Mode 5825MHz (U-NII-3) Antenna 1					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11647.530	37.62	8.70	46.32	54.00	-7.68	AVG
2	11653.530	50.62	8.70	59.32	68.30	-8.98	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anB.	
Test Mode:	TX 802.11a Mode 5825N	/Hz (U-NII-3) Antenna	1 001

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.890	49.62	8.70	58.32	68.30	-9.98	peak
2 *	11654.630	36.62	8.70	45.32	54.00	-8.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	The second	1				
Ant. Pol.	Horizontal		DUD -				
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5745MHz (U-NII-3) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11489.150	37.32	9.00	46.32	54.00	-7.68	AVG
2	11491.290	49.66	8.99	58.65	68.30	-9.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	MILL S	
Ant. Pol.	Vertical	anB!	
Test Mode:	TX 802.11n(HT20) Mode	5745MHz (U-NII-3) An	tenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11491.580	49.66	8.99	58.65	68.30	-9.65	peak
2 *	11492.210	37.33	8.99	46.32	54.00	-7.68	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V	TUP	
Ant. Pol.	Horizontal	AL C	1000
Test Mode:	TX 802.11n(HT20) Mode	9 5785MHz (U-NII-3) Ar	ntenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11568.710	36.87	8.76	45.63	54.00	-8.37	AVG
2	11571.295	48.88	8.74	57.62	68.30	-10.68	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	and by	TU SA
Ant. Pol.	Vertical	anBl	
Test Mode:	TX 802.11n(HT20) Mode	5785MHz (U-NII-3) An	itenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11568.855	47.99	8.75	56.74	68.30	-11.56	peak
2 *	11569.765	37.57	8.75	46.32	54.00	-7.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	TUP-	
Ant. Pol.	Horizontal	BJ C	TOUS A
Test Mode:	TX 802.11n(HT20) Mode	5825MHz (U-NII-3) An	tenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11647.540	36.93	8.70	45.63	54.00	-8.37	AVG
2	11648.710	49.15	8.70	57.85	68.30	-10.45	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	COULD -	TUP
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT20) Mode	5825MHz (U-NII-3) An	itenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11651.405	48.54	8.70	57.24	68.30	-11.06	peak
2 *	11651.435	36.93	8.70	45.63	54.00	-8.37	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%
Test Voltage:	DC 5V	The states	100
Ant. Pol.	Horizontal	RU C	1000
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5745MHz (U-NII-3)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11490.195	36.33	8.99	45.32	54.00	-8.68	AVG
2	11490.305	48.66	8.99	57.65	68.30	-10.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		TU SA
Ant. Pol.	Vertical	mB	
Test Mode:	TX 802.11ac(VHT20) Mc	de 5745MHz (U-NII-3)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11488.755	49.37	9.00	58.37	68.30	-9.93	peak
2 *	11492.135	36.22	8.99	45.21	54.00	-8.79	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%			
Test Voltage:	DC 5V	A AUSE	200			
Ant. Pol.	Horizontal	BU C	1000			
Test Mode:	TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3) Antenna 1+2					
	*					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11490.035	48.41	8.99	57.40	68.30	-10.90	peak
2 *	11491.725	36.37	8.99	45.36	54.00	-8 .64	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	and by	TU SA
Ant. Pol.	Vertical	anBl	
Test Mode:	TX 802.11ac(VHT20) Mo	de 5785MHz (U-NII-3)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11487.725	47.57	9.00	56.57	68.30	-11.73	peak
2 *	11489.015	36.21	9.00	45.21	54.00	-8 .79	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	The states	1				
Ant. Pol.	Horizontal		1000				
Test Mode:	TX 802.11ac(VHT20) Mc	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11649.315	49.44	8.70	58.14	68.30	-10.16	peak
2 *	11651.520	36.66	8.70	45.36	54.00	-8.64	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	COUL -	
Ant. Pol.	Vertical	anBl	
Test Mode:	TX 802.11ac(VHT20) Mc	de 5825MHz (U-NII-3)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11647.695	47.54	8.70	56.24	68.30	-12.06	peak
2 *	11648.975	35.51	8.70	44.21	54.00	-9.79	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%				
Test Voltage:	DC 5V						
Ant. Pol.	Horizontal	AL C	1000				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5755MHz (U-NII-3) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11510.425	37.37	8.95	46.32	54.00	-7.68	AVG
2	11511.985	49.47	8.94	58.41	68.30	-9.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3) An	itenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11512.095	36.47	8.94	45.41	54.00	-8.59	AVG
2	11512.205	47.38	8.94	56.32	68.30	-11.98	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	The state	2
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3) An	itenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11587.650	36.65	8.70	45.35	54.00	-8.65	AVG
2	11589.535	49.96	8.69	58.65	68.30	-9.65	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V	anus -	TUC
Ant. Pol.	Vertical	anB!	
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3) An	itenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11587.685	36.54	8.70	45.24	54.00	-8.76	AVG
2	11588.570	48.04	8.70	56.74	68.30	-11.56	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4 ℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	The second	200				
Ant. Pol.	Horizontal	RU C	1000				
Test Mode:	TX 802.11ac(VHT40) Mc	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11509.385	36.41	8.95	45.36	54.00	-8.64	AVG
2	11512.160	48.80	8.94	57.74	68.30	-10.56	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 °C	Relative Humidity:	52%
Test Voltage:	DC 5V		TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11ac(VHT40) Mo	de 5755MHz (U-NII-3)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11511.505	36.38	8.94	45.32	54.00	-8.68	AVG
2	11512.360	48.91	8.94	57.85	68.30	-10.45	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4℃	Relative Humidity:	52%				
Test Voltage:	DC 5V	The states	1				
Ant. Pol.	Horizontal		DUD -				
Test Mode:	TX 802.11ac(VHT40) Mc	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3) Antenna 1+2					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11590.480	48.96	8.69	57.65	68.30	-10.65	peak
2 *	11591.865	36.64	8.68	45.32	54.00	-8.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) Mc	de 5795MHz (U-NII-3)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11587.545	37.62	8.70	46.32	54.00	-7.68	AVG
2	11590.120	48.53	8.69	57.22	68.30	-11.08	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.4°C	Relative Humidity:	52%
Test Voltage:	DC 5V	TUP-	
Ant. Pol.	Horizontal	RU C	1000
Test Mode:	TX 802.11ac(VHT80) Mc	ode 5775MHz (U-NII-3)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11550.770	49.03	8.82	57.85	68.30	-10.45	peak
2 *	11552.500	36.51	8.81	45.32	54.00	-8.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	52%
Test Voltage:	DC 5V	anis -	TU SA
Ant. Pol.	Vertical	anB	
Test Mode:	TX 802.11ac(VHT80) Mc	de 5775MHz (U-NII-3)	Antenna 1+2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11548.790	35.50	8.82	44.32	54.00	-9.68	AVG
2	11549.360	47.52	8.82	56.34	68.30	-11.96	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Attachment C-- Restricted Bands Requirement Test and

Band Edge Test Data

Temperature	24.1℃Relative Humidity:54%	
Test Voltage:	DC 5V	2
Ant. Pol.	Horizontal	2
Test Mode:	TX 802.11a Mode 5180MHz Antenna 1	39
Remark:	Only show the worst case.	
110.0 dBuV/m		
100		
90		2
80		
70	(RF) FCC PART 15.407 (PEAK	<u>)</u>
60	(RF) FCC PART 15C (AVG)	-+
50	× · · · · ·	pe.
40	3	
30		
20		
10		
0		
-10		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	49.65	0.87	50.52	68.30	-17.78	peak
2	5150.000	39.23	0.87	40.10	54.00	-13.90	AVG
3 X	5175.000	94.33	0.92	95.25	Fundamental Frequency Fundamental Frequency		peak
4 *	5183.900	86.26	0.94	87.20			AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	24.1	°C		Relative	e Humidity:	54%	
Test Voltage:	DC 5	ν		TAN .	6	MBD	-
Ant. Pol.	Verti	cal		1 and 1			TB
Test Mode:	TX 8	02.11a N	/lode 5180	MHz Antenr	na 1	AU	
Remark:	Only	show th	e worst ca	se.		10	
110.0 dBu∀/m							
100						3 X 4	
90					(γ
80							
70					(RF) FCC PAI	RT 15.407 (PEAK)	
60				l	ARF) FCC PAL	RT 15C (AVG)	
50				3 mont	N		
40							
30							
20							
10							
0							
-10 5093.500 5103.50	5113.50	5123.50	5133.50 (MHz) 5153.5	0 5163.50 51	173.50 5183.5	0 5193.5

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	53.29	0.87	54.16	68.30	-14.14	peak
2	5150.000	43.55	0.87	44.42	54.00	-9.58	AVG
3 X	5176.800	95.33	0.92	96.25	Fundamental Frequency		peak
4 *	5183.000	92.70	0.94	93.64	Fundamental Frequency		AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	24.1 ℃	Relative Humidity:	54%
Test Voltage:	DC 5V	RU G	000
Ant. Pol.	Horizontal		Can B
Test Mode:	TX 802.11a Mode 5320M	MHz Antenna 1	3
Remark:	Only show the worst cas	se.	
110.0 dBu¥/m			
100 2 90 1 80	\ \		
70		(RF) FCC PAI	3T 15.407 (PEAK)
60	X	(RF) FCC PAI	RT 15C (AVG)
40	*		pe
30			
20			
10			
-10			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5322.400	85.43	1.07	86.50	Fundamental Fre	equency)	AVG
2 X	5324.500	93.96	1.09	95.05	Fundamental Fr	equency	peak
3	5350.000	60.90	1.19	62.09	68.30	-6.21	peak
4	5350.000	43.69	1.19	44.88	54.00	-9.12	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	24.1 ℃	Relative Humidity	/: 54%						
Test Voltage:	DC 5V	DC 5V							
Ant. Pol.	Vertical								
Test Mode:	TX 802.11a Mod	e 5320MHz Antenna 1							
Remark:	Only show the w	orst case.							
110.0 dBuV/m									
100 <u>1</u> 90 <u>2</u> 80									
70	han	(Krjrcc	PART 15.407 (PEAK)						
60		(RF) FCC	PART 15C (AVG)						
50 40 30			59q						
20									
10									
-10									

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 X	5317.000	96.46	1.05	97.51	Fundamental Frequency		peak
2 *	5322.700	89.88	1.08	90.96	Fundamental Fr	equency ;	AVG
3	5350.000	52.71	1.19	53.90	68.30	-14.40	peak
4	5350.000	44.50	1.19	45.69	54.00	-8.31	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	: 24.1℃	Relative Humidity: 54%
Test Voltage:	DC 5V	THE MOULD
Ant. Pol.	Horizontal	AND
Test Mode:	TX 802.11a Mode 55	00MHz Antenna 1
Remark:	Only show the worst	case.
110.0 dBuV/m		
100		3
90		
80		
70		(RF) FCC PART 15.407 (PEAK)
60		1 (RF) FCC PART 15C (AVG)
50		3
40		
30		
20		
10		
-10		
5411.500 5421.5	0 5431.50 5441.50 5451.50	(MHz) 5471.50 5481.50 5491.50 5501.50 5511.5

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5470.000	60.84	1.64	62.48	68.30	-5.82	peak
2	5470.000	45.98	1.64	47.62	54.00	-6.38	AVG
3 X	5498.000	98.89	1.73	100.62	Fundamental Frequency		peak
4 *	5498.000	90.31	1.73	92.04			AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	24.1 ℃	Relative Humidity:	54%
Test Voltage:	DC 5V		NU A
Ant. Pol.	Vertical		anB
Test Mode:	TX 802.11a Mode \$	5500MHz Antenna 1	3 12
Remark:	Only show the wor	st case.	
110.0 dBuV/m			
100			3
90			×1
80			
70		(BF) FCC PART	
60		1 (BETFCC PART	15C (AVG)
50 40		3	
30			
20			
10			
-10			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5470.000	51.82	1.64	53.46	68.30	-14.84	peak
2	5470.000	41.46	1.64	43.10	54.00	-10.90	AVG
3 X	5502.400	90.58	1.73	92.31	Fundamental Frequency		peak
4 *	5502.500	85.51	1.73	87.24	Fundamental Frequency		AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	24.1 ℃	Relative Humidity:54%
Fest Voltage:	DC 5V	THE THE
Ant. Pol.	Horizontal	The second second
Fest Mode:	TX 802.11a Mode 5	700MHz Antenna 1
Remark:	Only show the wors	t case.
110.0 dBuV/m		
70		(BF) FCC PART 15.407 (PEAK)
50	×	(RF) FCC PART 15C (AVG)
50	*	
0		p
0		
20		
0		
10		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 X	5698.600	97.26	1.66	98.92	Fundamental Frequency		peak
2 *	5699.000	89.63	1.66	91.29	Fundamental Frequency		AVG
3	5725.000	58.12	1.60	59.72	68.30	-8.58	peak
4	5725.000	46.44	1.60	48.04	54.00	-5.96	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	24.1 ℃	Relative Humidity:54%
Test Voltage:	DC 5V	COBY COULS
Ant. Pol.	Vertical	
Test Mode:	TX 802.11a Mode	5700MHz Antenna 1
Remark:	Only show the wor	st case.
110.0 dBuV/m		
100 1		
90 2	<u> </u>	
80		
70		(RF) FCC PART 15.407 (PEAK)
60	3 X	(RF) FCC PART 15C (AVG)
50	*	
40		- And
30		
20		
10		
0		
-10 5691.000 5701.00		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 X	5701.800	97.15	1.66	98.81	Fundamental Frequency		peak
2 *	5701.800	88.56	1.66	90.22	Fundamental Frequency		AVG
3	5725.000	58.91	1.60	60.51	68.30	-7.79	peak
4	5725.000	47.32	1.60	48.92	54.00	-5.08	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	24.1 ℃	Relative Humidity: 54%
Test Voltage:	DC 5V	A STORE AND A
Ant. Pol.	Horizontal	
Test Mode:	TX 802.11a Mode 574	15MHz Antenna 1
Remark:	Only show the worst of	case.
130.0 dBu∀/m		
120 110 90 80 70 60 50 Lenin Juliorer ungenerit		RP FCC PART 15.407 Maxin -6 dB
40		Image: selection of the

No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector
1 *	5725.000	79.30	1.60	80.90	122.30	-41.40	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	24.1 ℃	Relative Humidity:	54%
Test Voltage:	DC 5V		100
Ant. Pol.	Vertical		CON S
Test Mode:	TX 802.11a Mode 5745	MHz Antenna 1	200
Remark:	Only show the worst cas	se.	
130.0 dBu¥/m			
120 110 100 90 80 70 60 50	in the second		<u>FCC PART 15.407</u> gin -6 dB
40			

No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector
1 *	5725.000	79.71	1.60	81.31	122.30	-40.99	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	24.1 ℃	Relative Humidity:	54%				
Test Voltage:	DC 5V	AN C	MUD A				
Ant. Pol.	Horizontal						
Test Mode:	Mode: TX 802.11a Mode 5825MHz Antenna 1						
Remark:	Only show the worst case.						
130.0 dBuV/m							
120 110 100 90 80 70 60 50			P FEC PART-15.407				
40 30 20 10							
0 -10 5600.000 5640.00	5680.00 5720.00 5760.00 ()	4Hz) 5840.00 5880.00 5:	920.00 5960.00 6000.0				

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	5850.000	66.94	1.42	68.36	122.30	-53.94	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

