

FCC RF Test Report

APPLICANT	:	Amazon.com Services LLC
EQUIPMENT	:	Digital Media Receiver
MODEL NAME	:	CP38RE
FCC ID	:	2A4DH-3877
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DSS) Spread Spectrum Transmitter
TEST DATE(S)	:	Oct. 08, 2023 ~ Feb. 21, 2024

We, Sporton International Inc. (ShenZhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (ShenZhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Product Feature of Equipment Under Test	5
	1.3	Product Specification of Equipment Under Test	5
	1.4	Modification of EUT	5
	1.5	Testing Location	6
	1.6	Test Software	6
	1.7	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	23
	3.6	Conducted Band Edges Measurement	
	3.7	Conducted Spurious Emission Measurement	
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	35
		Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	38
5	UNCE	ERTAINTY OF EVALUATION	39
AP	PEND	IX A. CONDUCTED TEST RESULTS	
AP	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
AP	PEND	IX C. RADIATED SPURIOUS EMISSION	
AP	PEND	IX D. RADIATED SPURIOUS EMISSION PLOTS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR353104-01G	Rev. 01	Initial issue of report	Dec. 22, 2023
FR353104-01G	Rev. 02	 Update the test results of fundamental frequencies 915.2MHz on Page C2 & D6 Update the fundamental frequencies mark for 915.2MHz and 927.6MHz on Page C6 	Feb. 21, 2024
FR353104-01G	Rev. 03	Remove the related test data for FSK 150kbps&FSK 250kbps	May 31, 2024

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)(i)	Number of Channels	15.247(a)(1)(i)	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	20dB Bandwidth	Pass	-
3.3	15.247(a)(1)(i)	Dwell Time of Each Channel	15.247(a)(1)(i)	Pass	-
3.4	15.247(a)(1)(i)	20dB Bandwidth	≤ 500 kHz	Pass	-
3.4	-	99% Bandwidth	-	Report Only	-
3.5	15.247(b)(2)	Peak Output Power	15.247(b)(2)	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 14.66 dB at 137.67 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 20.30 dB at 0.155 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

SUMMARY OF TEST RESULT

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty" **Disclaimer:**

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Amazon.com Services LLC

410 Terry Avenue N Seattle, WA 98109-5210 United States

1.2 Product Feature of Equipment Under Test

Product Feature				
Equipment Digital Media Receiver				
Model Name	CP38RE			
FCC ID	2A4DH-3877			
	Conducted: P0B3FD01336406W3			
SN	Conduction: G0B3230233840056			
	Radiation: G0B323023384003Q			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.3 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	902 MHz ~ 928 MHz			
Number of Channels / Data Rate	129 chs for 50kbps			
Maximum Output Power to Antenna	Data Rate 50kbps : 24.62 dBm (0.2897 W)			
99% Occupied Bandwidth	Data Rate 50kbps : 0.085 MHz			
Antenna Type / Gain	FPC Inv F Antenna with gain 3.5 dBi			
Type of Modulation	FSK			

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Testing Location

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (ShenZhen)					
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
Test Site No.	Sporton Site No. FCC Designation No. FCC Test Firm Registration No. Registration No. Registration No.					
	TH01-SZ	CN1256	421272			
Test Firm	Sporton International Inc. (ShenZhen)					
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	CO02-SZ; 03CH03-SZ	CN1256	421272			

1.6 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH03-SZ	AUDIX	E3	6.2009-8-24
2.	CO02-SZ	AUDIX	E3	6.2009-8-24al

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

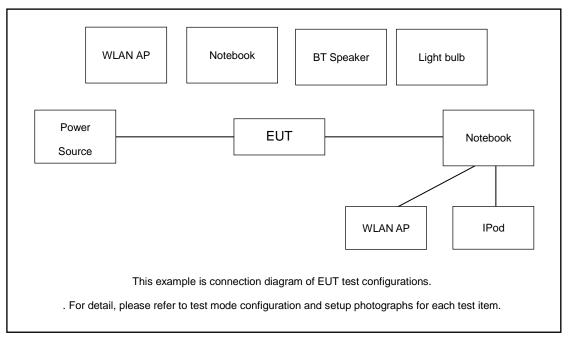
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	902.2	44	910.8	87	919.4
	2	902.4	45	911	88	919.6
	3	902.6	46	911.2	89	919.8
	4	902.8	47	911.4	90	920
	5	903	48	911.6	91	920.2
	6	903.2	49	911.8	92	920.4
	7	903.4	50	912	93	920.6
	8	903.6	51	912.2	94	920.8
	9	903.8	52	912.4	95	921
	10	904	53	912.6	96	921.2
	11	904.2	54	912.8	97	921.4
	12	904.4	55	913	98	921.6
	13	904.6	56	913.2	99	921.8
	14	904.8	57	913.4	100	922
	15	905	58	913.6	101	922.2
	16	905.2	59	913.8	102	922.4
	17	905.4	60	914	103	922.6
	18	905.6	61	914.2	104	922.8
	19	905.8	62	914.4	105	923
	20	906	63	914.6	106	923.2
000 000 MU-	21	906.2	64	914.8	107	923.4
902-928 MHz	22	906.4	65	915	108	923.6
(50Kbps)	23	906.6	66	915.2	109	923.8
	24	906.8	67	915.4	110	924
	25	907	68	915.6	111	924.2
	26	907.2	69	915.8	112	924.4
	27	907.4	70	916	113	924.6
	28	907.6	71	916.2	114	924.8
	29	907.8	72	916.4	115	925
	30	908	73	916.6	116	925.2
	31	908.2	74	916.8	117	925.4
	32	908.4	75	917	118	925.6
	33	908.6	76	917.2	119	925.8
	34	908.8	77	917.4	120	926
	35	909	78	917.6	121	926.2
	36	909.2	79	917.8	122	926.4
	37	909.4	80	918	123	926.6
	38	909.6	81	918.2	124	926.8
	39	909.8	82	918.4	125	927
	40	910	83	918.6	126	927.2
	41	910.2	84	918.8	127	927.4
	42	910.4	85	919	128	927.6
	43	910.6	86	919.2	129	927.8

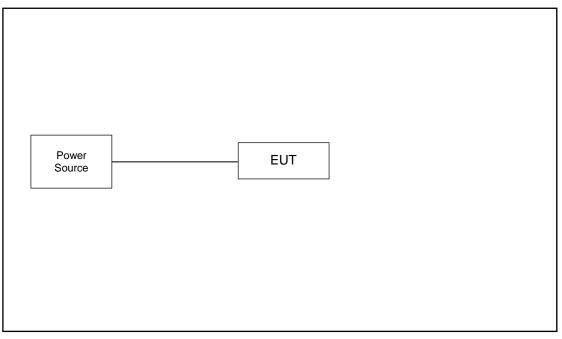
Note: The above EUT's information was declared by manufacturer.

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower) For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report,
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Modulation / Data Rate					
Test item	FSK FHSS / 50kbps					
Conducted	Low: 902.2 MHz					
Test Cases	Miid: 915 MHz					
Test Cases	High: 927.8 MHz					
Radiated	Low: 902.2 MHz					
	Miid: 915 MHz					
Test Cases	High: 927.8 MHz					
AC						
Conducted	Mode 1: Lora Tx + Zigbee Link + Bluetooth Link + WLAN(2.4G) Link					
Emission						



2.3 Connection Diagram of Test System

For AC Conducted Emission:

For Radiated Emission:

	2.4	Support	Unit used	l in test	configuration	and system
--	-----	---------	-----------	-----------	---------------	------------

ltem	Equipment	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 2.7m with Core
2.	Notebook	Inspiron 15-7570	Fcc DoC	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
3.	BT Speaker	N/A	N/A	N/A	N/A
4.	Light bulb	N/A	N/A	N/A	N/A
5.	IPod	MC525 ZP/A	Fcc DoC	Shielded, 1.0m	N/A

2.5 EUT Operation Test Setup

For FSK FHSS function, the engineering test program was provided and enabled to make EUT continuous transmit.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 0.1 dB and 20dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 0.1 + 20 = 20.1 (dB)

3 Test Result

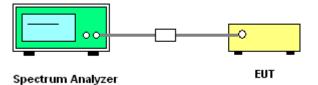
3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

3.1.2 Measuring Instruments

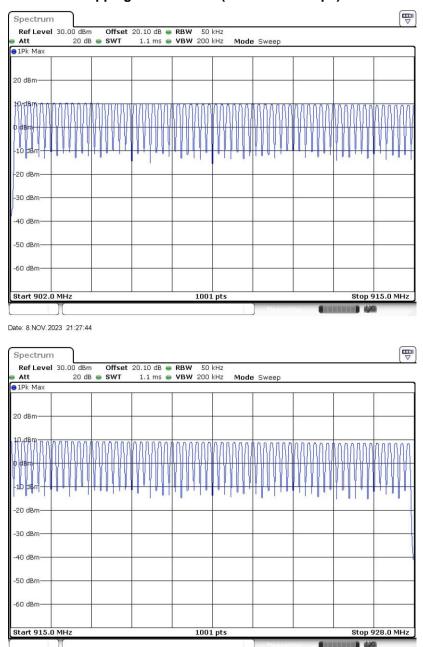
The measuring equipment is listed in the section 4 of this test report.


3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW = 50kHz, VBW = 200kHz (for 50kbps);

Sweep = auto; Detector function = peak; Trace = max hold.

- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.


3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

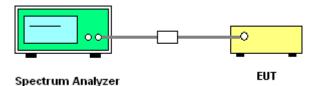
Number of Hopping Channel Plot (Data Rate 50kbps)

Date: 8.NOV.2023 21:26:18

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

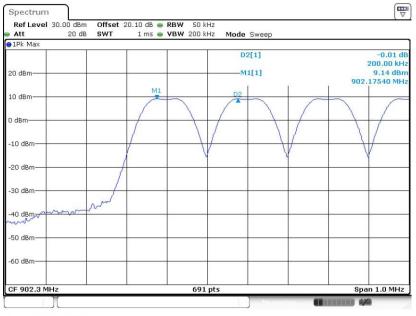

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

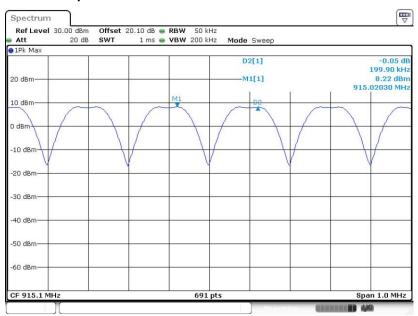
3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 50kHz, VBW = 200kHz (for 50kbps);
 Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

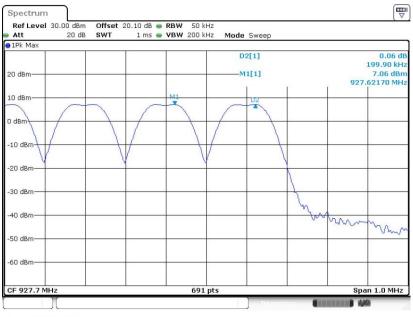
3.2.4 Test Setup


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.


<Data Rate 50kbps>

Channel Separation Plot on Low CH


Date: 14.NOV.2023 13:24:32

Channel Separation Plot on Mid CH

Date: 14.NOV.2023 13:27:47

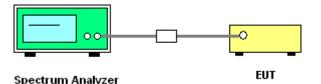
Channel Separation Plot on High CH

Date: 14.NOV.2023 13:31:08

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

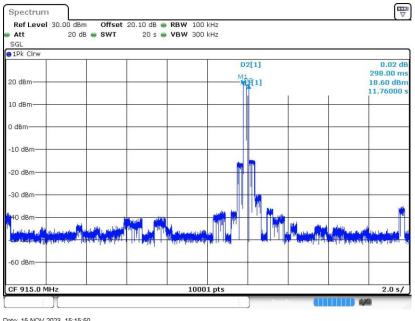
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.


3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 100 KHz; VBW = 300 KHz; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

Test Result of Dwell Time 3.3.5

Please refer to Appendix A.

DT on-time and Hops over 20 sec period for Data Rate 50kbps

Date: 15.NOV.2023 15:15:50

Remark:

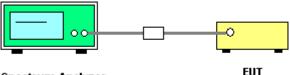
Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

= 1 (hop) x 298.00 (ms) = 0.298 (sec)

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.


3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 99% bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = sample;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<Data Rate 50kbps>

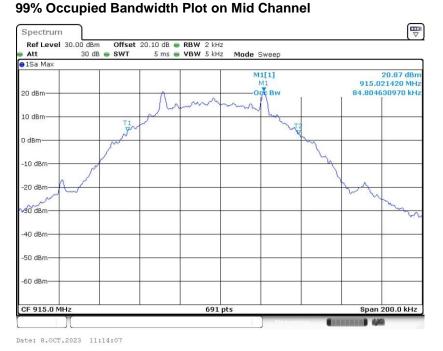
20 dB Bandwidth Plot on Low Channel

Date: 8.0CT.2023 11:01:30

Date: 8.0CT.2023 11:13:00

20 dB Bandwidth Plot on High Channel

Date: 8.0CT.2023 11:24:49


3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<Data Rate 50kbps>

99% Occupied Bandwidth Plot on Low Channel

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2A4DH-3877

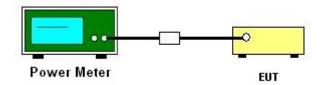
99% Occupied Bandwidth Plot on High Channel

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

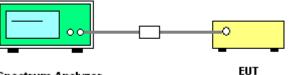
3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

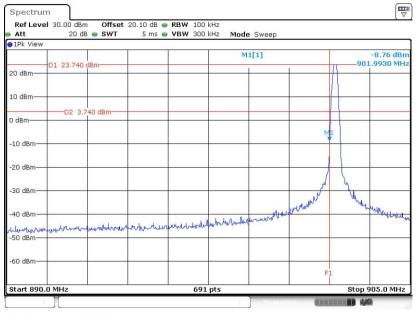

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

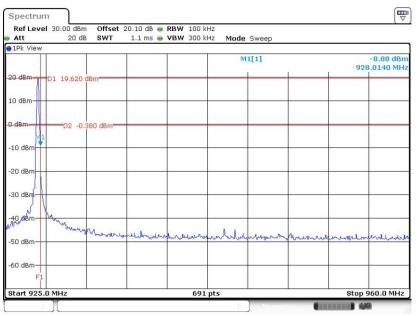
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

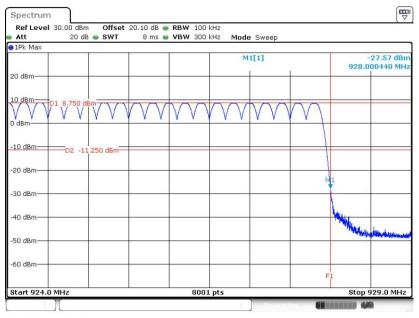
3.6.5 Test Result of Conducted Band Edges


<Data Rate 50kbps>

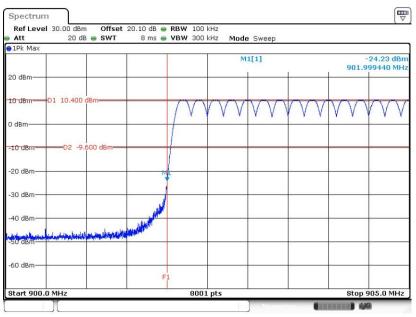
Low Band Edge Plot

Date: 8.0CT.2023 11:05:59

High Band Edge Plot


Date: 8.0CT.2023 11:35:54

3.6.6 Test Result of Conducted Hopping Mode Band Edges


<Data Rate 50kbps>

Hopping Mode Low Band Edge Plot

Date: 8.NOV.2023 20:22:29

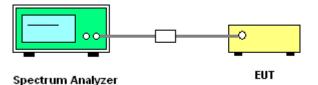
Hopping Mode High Band Edge Plot

Date: 8.NOV.2023 20:16:39

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

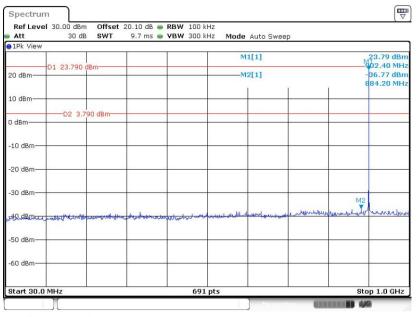

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

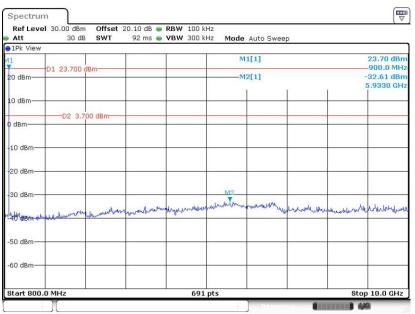
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup



3.7.5 Test Result of Conducted Spurious Emission


<Data Rate 50kbps>

Low CH CSE Plot

Date: 8.0CT.2023 11:06:39

Low CH CSE Plot

Date: 8.0CT.2023 11:07:10

Mid CH CSE Plot

Att 1Pk View	30 dB	SWT	9.7 ms 😁	VBW 300	KHZ Mode	Auto Swee	р			
JIPK VIEW				1	M	1[1]			@1.02 dBn	
	D1 24.020 0	dBm	_						-915.10 MH	
20 dBm—			-		M	2[1]			-35.26 dBn	
						1	Î.	1	778.90 MH	
10 dBm—										
	D2 4.0	20 dBm								
0 dBm										
-10 dBm—				-			-			
-20 dBm—	-		2		-					
-30 dBm—	-									
							M2		1 marsh	
40 dBm	Juniterduro	montrado	Land pour and	Www.classing	who draw to be and beard	and the same	rhe anendrily	wohenership	all have been been	
ing a day to										
-50 dBm										
				1						
-60 dBm—										
Start 30.	0 MHz			69	L pts			Ste	op 1.0 GHz	

Date: 8.0CT.2023 11:17:51

Mid CH CSE Plot

Att	30 dB	SWT	92 ms 👄	VBW 300 k	Hz Mode	Auto Swee	р			
1Pk View	SF									
11					M1[1]		23.86 dBr			
0 dBm-	D1 23.860	dBm-	-		M	2[1]		913.0 MH -32.56 dBr		
со авті—					- M	2[1]		-32.56 dBi 6.9180 GH		
0.10						1	Ĩ.	1	Contraction Inc.	
10 dBm										
- 22	D2 3.8	60 dBm							-	
) dBm										
10 dBm—										
-20 dBm										
						M2				
30 dBm—					1 A 15 B	T	12.			
	. unalis	- under the	chombergholes	n the momentum of the	mannenger	ennoverentin	britallyum	- hours and her	and the south and the	
40 dBm	hter how and here and	Marker V					-			
40 - 11 - 11 5 400 600 11 - 11										
-50 dBm—							0			
-60 dBm—									1	
Start 800	.0 MHz		10	691	pts	ļ.		Sto	p 10.0 GHz	

Date: 8.0CT.2023 11:18:21

High CH CSE Plot

Att 3 1Pk View	D dB SWT	511 115	VBW 300 k	ne moue	Auto Swee	,			
20 dBm 01 19 6	i40 dBm				1[1] 2[1]			927	64 dBn 70 MH 26 dBn
DI ISA					1		i.	836	50 MH
10 dBm									
0 dBm D2	-0.360 dBm								
-10 dBm									
-20 dBm						<u></u>			
-30 dBm						5	M2		
the decommenced	action margaret	e the the there and the second	annhallton	want der un	hall have been a start when the	of when the hard	muchina	uu	Unine
-50 dBm				-		-		-	
-60 dBm								-	
-50 dBm									
Start 30.0 MHz			691	pts			St	op 1	.0 GH

Date: 8.0CT.2023 11:36:37

High CH CSE Plot

Att	30 dB		20.10 dB 👄 92 ms 👄	VBW 300 k		Auto Swee	р		
1Pk View									
					M	1[1]			19.45 dBn
1						2[1]			926.0 MH -32.66 dBn
U dBm	D1 19.450	dBm			IVI	2[1]			5.8660 GH
							Ľ –	Ĩ.	1.000
10 dBm									
22.5									
dBm	D2 -0.	550 dBm					-		-
10 dBm									
20 dBm	1d 11						3		
30 dBm			-		M2				
10.12	. Iba	1 aller Mehr	opportunite	with mubble	maturation	muning	anderthoman	when an derivability	Malandaria
40 dames	- When the work of the	MAC ING							
-50 dBm					-		<u>ः</u>		-
60 dBm			-						
Start 800.					pts				p 10.0 GHz

Date: 8.0CT.2023 11:37:07

3.8 Radiated Band Edges and Spurious Emission Measurement

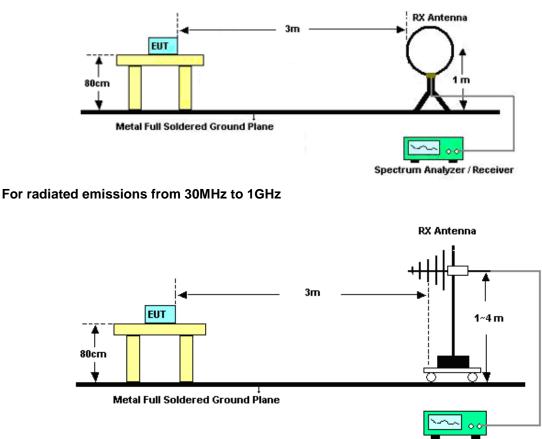
3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

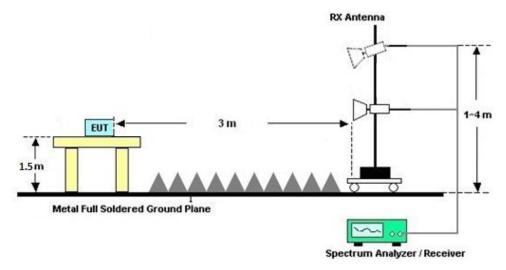
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.8.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


3.8.4 Test Setup

For radiated emissions below 30MHz

Spectrum Analyzer / Receiver

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2A4DH-3877

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C&D.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C&D.

3.8.8 Duty cycle

Mode	Duty Cycle
FSK 50kbps	100%

3.9 AC Conducted Emission Measurement

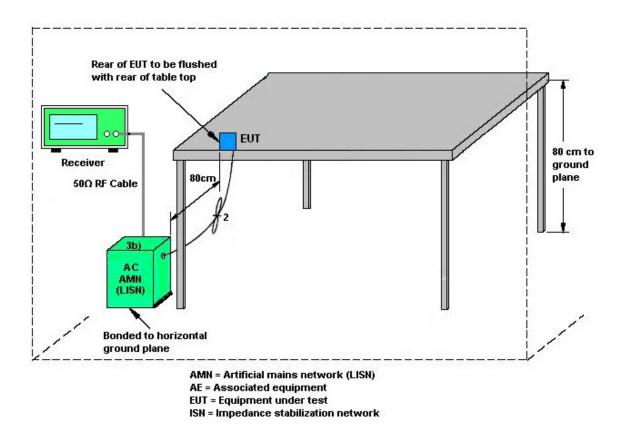
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

					Calibration				
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Date	Test Date	Due Date	Remark	
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Oct. 08, 2023~ Nov. 15, 2023	Apr. 05, 2024	Conducted (TH01-SZ)	
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 27, 2022	Oct. 08, 2023~ Nov. 15, 2023	Dec. 26, 2023	Conducted (TH01-SZ)	
Power Meter	Anritsu	ML2495A	1542004	50MHz Bandwidth	Dec. 27, 2022	Oct. 08, 2023~ Nov. 15, 2023	Dec. 26, 2023	Conducted (TH01-SZ)	
Attenuator	MICROWAV	EMVE2214-10	2	30MHz-26.5GH z	Feb. 22, 2023	Oct. 08, 2023~ Nov. 15, 2023	Feb. 22, 2024	Conducted (TH01-SZ)	
EMI Test Receiver&SA	KEYSIGHT	N9038A	MY544500 83	20Hz~8.4GHz	Apr. 04, 2023	Oct. 10, 2023~ Feb. 21, 2024	Apr. 03, 2024	Radiation (03CH03-SZ)	
EXA Spectrum Anaiyzer	KEYSIGHT	N9010A	MY551502 46	10Hz~44GHz;	Apr. 04, 2023	Oct. 10, 2023~ Feb. 21, 2024	Apr. 03, 2024	Radiation (03CH03-SZ)	
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Oct. 10, 2023~ Feb. 21, 2024	Jul. 27, 2024	Radiation (03CH03-SZ)	
Bilog Antenna	TeseQ	CBL6112D	35408	30MHz-2GHz	Aug. 20, 2023	Oct. 10, 2023~ Feb. 21, 2024	Aug. 19, 2025	Radiation (03CH03-SZ)	
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-135 5	1GHz~18GHz	Apr. 08, 2023	Oct. 10, 2023~ Feb. 21, 2024	Apr. 07, 2024	Radiation (03CH03-SZ)	
HF Amplifier	MITEQ	TTA1840-35-H G	1871923	18GHz~40GHz	Jul. 07, 2023	Oct. 10, 2023~ Feb. 21, 2024	Jul. 06, 2024	Radiation (03CH03-SZ)	
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 08, 2023	Oct. 10, 2023~ Feb. 21, 2024	Apr. 07, 2024	Radiation (03CH03-SZ)	
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 19, 2022	Oct. 10, 2023~	Oct. 18, 2023	Radiation (03CH03-SZ)	
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 18, 2023	Feb. 21, 2024	Oct. 17, 2024	Radiation (03CH03-SZ)	
HF Amplifier	MITEQ	AMF-7D-00101 800-30-10P-R	1943528	1GHz~18GHz	Oct. 19, 2022	Oct. 10, 2023~	Oct. 18, 2023	Radiation (03CH03-SZ)	
HF Amplifier	MITEQ	AMF-7D-00101 800-30-10P-R	1943528	1GHz~18GHz	Oct. 18, 2023	Feb. 21, 2024	Oct. 17, 2024	Radiation (03CH03-SZ)	
Amplifier	Agilent Technologies	83017A	MY395013 02	Hz	Dec. 26, 2022	Oct. 10, 2023~	Dec. 25, 2023	Radiation (03CH03-SZ)	
Amplifier	Agilent Technologies	83017A	MY395013 02	500MHz~26.5G Hz	Dec. 25, 2023	Feb. 21, 2024	Dec. 24, 2024	Radiation (03CH03-SZ)	
AC Power Source	Chroma	61601	616010002 729	N/A	Nov. 10, 2022	Oct. 10, 2023~	Nov. 09, 2023	Radiation (03CH03-SZ)	
AC Power Source	Chroma	61601	616010002 729	N/A	Nov. 09, 2023	Feb. 21, 2024	Nov. 08, 2024	Radiation (03CH03-SZ)	
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Oct. 10, 2023~ Feb. 21, 2024	NCR	Radiation (03CH03-SZ)	
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Oct. 10, 2023~ Feb. 21, 2024	NCR	Radiation (03CH03-SZ)	
EMI Receiver	R&S	ESR7	102297	9kHz~7GHz;	Jul. 07, 2023	Oct. 31, 2023	Jul. 06, 2024	Conduction (CO02-SZ)	
AC LISN	R&S	ENV216	101499	9kHz~30MHz	Jul. 07, 2023	Oct. 31, 2023	Jul. 06, 2024	Conduction (CO02-SZ)	
AC Power Source	CHROMA	61601	616010002 470	100Vac~250Vac	Nov. 10, 2022	Oct. 31, 2023	Nov. 09, 2023	Conduction (CO02-SZ)	

NCR: No Calibration Required.

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Spurious Emission & Bandedge	±1.34 dB
Occupied Channel Bandwidth	±0.1%
Conducted Power	±1.34 dB
Frequency	±1.3 Hz

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.7dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.9dB
of 95% (U = 2Uc(y))	4.900

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.00B

Appendix A. Conducted Test Results

Test Engineer:	Liu Qiu Qiu	Temperature:	24~26°C
Test Date:	2023/10/8~2023/11/15	Relative Humidity:	50~53%

Report Number : FR353104-01G

FSK-FHSS-50Kbps

					<u>20d</u>	<u>TEST</u> B and 99	<u>RESUL</u> % Occu			<u>dth</u>		
Mod.	od. Data Rate NTX CH. Freq. 20db BW (MHz) (MHz)				20db BW (MHz)	Limit		/ 99% Bandwidth (MHz)		ng Channel paration isurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
FSK FSK	50Kbps 50Kbps		1 65	902.2 915	0.090 0.091	0.500 0.500	0.0	85		0.200 0.200	0.0900 0.0906	Pass Pass
FSK	50Kbps	1	129	927.8	0.091	0.500	0.0	85		0.200	0.0906	Pass
							<u>RESUL</u> Dwell Ti		<u>TA</u>			
Mod.	Mod.Hopping Channel Number RateHops Over Occupancy Time(hops)Package Transfer Time (msec)Dwell Time (sec)Limits (sec)Pass/Fail											
FSK	1	29		1.00	298	.00	0.298		0.4	Pass		
						TEST	RESUL	עם אד	ΤΔ			
						-	k Powe					
mode	Freq. (MHz)	NTX		ak Power (dBm)	Power (dB		Test Result	Powe Settin				
FSK	902.2 915	1		24.43 24.62	30.		Pass Pass	0				
	927.8	1		20.20	30.	.00	Pass	-4				
	_			_		<u>TEST</u>	RESUL	TS DA	<u>TA</u>			
					N	lumber o	f Hoppir	ng Free	uency	Z		

Number of Hopping (Channel)	Limits (Channel)	Pass/Fail
129	> 50	Pass
129	> 50	Pass

Appendix B. AC Conducted Emission Test Results

of Engineer	Tao Zhana			ľ	Temperatu	re :	24~25°C
est Engineer :	Tao Zhang			1	Relative Hu	umidity :	48~49%
est Voltage :	120Vac / 60H	łz		I	Phase :		Line
			Full Spec	trum			
100T							
80+							
-						on i sua u	N.S. D.A.
					FCC Part 15C		
i di	~				-cu Part Ibu-	<u>Ave Limit at</u>	Main Ports
8 40	A hund	(miles and the state of the					
	• · · · · · · · · · · · · · · · · · · ·						
•···							
20		¥					
• • •		¥		*			
• • •							
20		500 8001	M 21	M 3M 4N		10M	
	300 400	500 8001		M 3M 4M	м 5M 6 8	1 10M	
	300 400	500 8001			vi 5M 6 8	10M	20M 30M
	СиазіРеак (dBµV)	500 8001 Average (dВµV)			4 5M 6 8	10 M	20M 30M
20 20 150k Frequency (MHz) 0.150000	QuasiPeak (dBµV) 45.44	Average (dBµV) 	Freque Limit (dBµV) 66.00	Margin (dB) 20.56	Line L1	Filter	Corr. (dB) 19.7
20 20 150k Frequency (MHz) 0.150000 0.150000	QuasiPeak (dBµV) 45.44	Average	Freque Limit (dBµV) 66.00 56.00	Margin (dB) 20.56 26.23	Line L1 L1	Filter OFF OFF	Corr. (dB) 19.7 19.7
20 20 150k Frequency (MHz) 0.150000	QuasiPeak (dBµV) 45.44	Average (dBµV) 	Freque Limit (dBµV) 66.00	Margin (dB) 20.56	Line L1	Filter OFF OFF OFF	Corr. (dB) 19.7
20 20 150k Frequency (MHz) 0.150000 0.150000 0.186540 0.186540 0.289500	QuasiPeak (dBµV) 45.44 39.90	Аverage (dBµV) 29.77 26.49 	Freque Limit (dBµV) 66.00 56.00 64.19 54.19 60.54	Margin (dB) 20.56 26.23 24.29 27.70 28.26	Line L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF	Corr. (dB) 19.7 19.7 19.7 19.7 19.7 19.7
20 20 150k Frequency (MHz) 0.150000 0.150000 0.186540 0.186540 0.289500 0.289500	QuasiPeak (dBμV) 45.44 39.90 32.28 	Average (dBμV) 29.77 26.49	Freque Limit (dBμV) 66.00 56.00 64.19 54.19 60.54 50.54	Margin (dB) 20.56 26.23 24.29 27.70 28.26 29.29	Line L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.7 19.7 19.7 19.7 19.7 19.7 19.7
20 20 150k Frequency (MHz) 0.150000 0.150000 0.186540 0.186540 0.289500 0.289500 0.289500 0.390750	QuasiPeak (dBμV) 45.44 39.90 32.28 26.64	Average (dBμV) 29.77 26.49 21.24 	Freque Limit (dBμV) 66.00 56.00 64.19 54.19 60.54 50.54 58.05	Margin (dB) 20.56 26.23 24.29 27.70 28.26 29.29 31.41	Line L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7
20 20 150k Frequency (MHz) 0.150000 0.150000 0.186540 0.186540 0.289500 0.289500 0.289500 0.390750 0.390750	QuasiPeak (dBμV) 45.44 39.90 32.28 26.64 	Аverage (dBµV) 29.77 26.49 	Freque Limit (dBµV) 66.00 56.00 64.19 54.19 60.54 50.54 50.54 58.05 48.05	Margin (dB) 20.56 26.23 24.29 27.70 28.26 29.29 31.41 28.06	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7
20 20 150k Frequency (MHz) 0.150000 0.150000 0.186540 0.186540 0.289500 0.289500 0.289500 0.390750 0.390750 0.503970	QuasiPeak (dBμV) 45.44 39.90 32.28 26.64	Average (dBµV) 29.77 26.49 21.24 19.99 	Freque Limit (dBµV) 66.00 56.00 64.19 54.19 60.54 50.54 50.54 58.05 48.05 56.00	Margin (dB) 20.56 26.23 24.29 27.70 28.26 29.29 31.41 28.06 29.06	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7
20 20 150k Frequency (MHz) 0.150000 0.150000 0.186540 0.186540 0.289500 0.289500 0.289500 0.390750 0.390750	QuasiPeak (dBμV) 45.44 39.90 32.28 26.64 	Average (dBμV) 29.77 26.49 21.24 	Freque Limit (dBµV) 66.00 56.00 64.19 54.19 60.54 50.54 50.54 58.05 48.05	Margin (dB) 20.56 26.23 24.29 27.70 28.26 29.29 31.41 28.06	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7

of Englished		Tec 7-						Ten	nperat	ure :	24~25	°C
st Enginee	er :	Tao Zh	ang					Rel	ative H	lumidity :	48~49	%
t Voltage : 120Vac / 60Hz							Phase :					
						Full Spe	ctrum					
10	0	:				· · · · · · · · · · · · · · · · · · ·						
	- _											
8	0+											
Level in dBµV	0							FC	<u> Part 15</u>	iC-QP Limit a	<u>t Main Po</u>	rts
ap o	۰Ŧ			-				FCC	Part 15	C-Ave Limit a	t Main Po	rts
<u>e</u>		m										
<u></u>	0 +	+ march		M			الطوير ويريس ويرو					
					Net when the							
												
2		•		\$								
2	0	•		*								
	0 0 150k	31		500	8001			4M 51	ннн м 6 8	10M	20M 3	H M
	0 +		00 400		8001	Frequ	ency in Hz Margin				Cor	r.
Freque (MHz	0 +	Quas (dB	siPeak βμV)	Ave		Frequ Limit (dBµV)	encv in Hz Margin (dB)		Line	Filter	Cor (dB	r.
Freque (MHz 0.1554	0 150k incy z)	Quas (dB 45	siPeak 3μV) .40	Ave (dB	rage BµV) 	Frequ Limit (dBµV) 65.70	en cv in Hz Margin (dB) 20.30		Line N	Filter	Cor (dB 19.	r.) 7
Freque (MHz 0.1554 0.1554	0 150k incy z) 190	Quas (dB 45	iPeak 3µV) .40 	Ave (dB 	rage 8μV) .65	Frequ Limit (dBµV) 65.70 55.70	Margin (dB) 20.30 27.05		Line N N	Filter OFF OFF	Cor (dB 19. 19.	r.) 7 7
Freque (MHz 0.1554	0 150k 150k 190 190 000	Quas (dB 45 	siPeak 3μV) .40	Ave (dB 	rage BµV) 	Frequ Limit (dBµV) 65.70	en cv in Hz Margin (dB) 20.30		Line	Filter OFF OFF OFF OFF	Cor (dB 19.	r.) 7 7 7
Freque (MHz 0.1554 0.1554 0.1950 0.1950 0.2930	0 150k 150k 190 190 000 000 010	Quas (dB 45 	iPeak 8µV) .40 .80	Ave (dB 	rage 5µV) .65 .77	Frequ Limit (dBµV) 65.70 63.82 53.82 60.44	Margin (dB) 20.30 27.05 25.02 28.05 26.42		Line N N N N N	Filter OFF OFF OFF OFF OFF	Cor (dE 19. 19. 19. 19. 19. 19.	r.) 7 7 7 7 7
Freque (MHz 0.1554 0.1554 0.1950 0.1950 0.2930 0.2930	0 150k 2) 490 490 000 000 010 010	Quas (dB 45 	iPeak 3µV) .40 .80 .02 	Ave (dB 	rage 8µV) .65 .77	Frequ Limit (dBµV) 65.70 63.82 53.82 60.44 50.44	Margin (dB) 20.30 27.05 25.02 28.05 26.42 28.74		Line N N N N N N	Filter OFF OFF OFF OFF OFF	Cor (dE 19. 19. 19. 19. 19. 19. 19. 19.	r.)) 7 7 7 7 7 7
Freque (MHz 0.1554 0.1950 0.1950 0.2930 0.2930 0.2930 0.3817	0 150k 190 190 10 10 10 750	Quas (dB 45 	iPeak 3μV) .02 .44	Ave (dB 	rage 8µV) .65 .77 .70 	Frequencies Limit (dBµV) 65.70 63.82 53.82 60.44 50.44 58.24	Margin (dB) 20.30 27.05 25.02 28.05 26.42 28.74 31.80		Line N N N N N N N	Filter OFF OFF OFF OFF OFF OFF	Cor (dE 19. 19. 19. 19. 19. 19. 19. 19. 19.	r.)) 7 7 7 7 7 7 7
Freque (MHz 0.1554 0.1554 0.1950 0.1950 0.2930 0.2930 0.2930 0.3817 0.3817	20 150k 20 20 20 20 20 20 20 20 20 20	Quas (dB 45 	iiPeak 3μV) .80 .02 .44	Ave (dB 28 25 25 21 21	rage 5µV) .65 .77	Frequencies Limit (dBµV) 65.70 63.82 53.82 60.44 50.44 58.24 48.24	Margin (dB) 20.30 27.05 25.02 28.05 26.42 28.74 31.80 28.28		Line N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF	Cor (dE 19. 19. 19. 19. 19. 19. 19. 19. 19.	r.)) 7 7 7 7 7 7 7 7
Freque (MHz 0.1554 0.1950 0.1950 0.2930 0.2930 0.2930 0.3817	0 150k 150	Quas (dB 45 	iPeak 3μV) .02 .44	Ave (dB 28 25 25 21 21	rage sµV) .65 .77 .70 .96	Frequencies Limit (dBµV) 65.70 63.82 53.82 60.44 50.44 58.24	Margin (dB) 20.30 27.05 25.02 28.05 26.42 28.74 31.80		Line N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF	Cor (dE 19. 19. 19. 19. 19. 19. 19. 19. 19.	r.)) 7 7 7 7 7 7 7 7 7
Freque (MHz 0.1554 0.1950 0.1950 0.2930 0.2930 0.2930 0.3817 0.3817	ncy 2) 150k 190 190 100 100 100 100 100 100 100 100	Quas (dB 45 	siPeak 8µV) .44 .61	Ave (dB 28 25 25 21 21 19 19	rage sµV) .65 .77 .70 .96 	Frequencies Limit (dBµV) 65.70 63.82 53.82 60.44 50.44 58.24 48.24 56.06	Margin (dB) 20.30 27.05 25.02 28.05 26.42 28.74 31.80 28.28 29.45		Line N N N N N N N N N	Filter OFF OFF OFF OFF OFF OFF OFF OFF	Cor (dE 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	r.)) 7 7 7 7 7 7 7 7 7 7 8

Appendix C. Radiated Spurious Emission

	Nata	F actorian and							Dreema	A -== 4	Tabla	Deels	Del
	Note	Frequency	Level	Margin	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	POI.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		<u> </u>	(H/V)
		136.7	23.47	-20.03	43.5	39.09	17.88	1.23	34.73	-	-	P	H
		259.89	23.87	-22.13	46	39.01	17.87	1.67	34.68	-	-	Р	н
000 0MU -	*	902.2	118.37	-	-	120.85	28.67	3.15	34.3	-	-	Р	Н
902.2MHz		137.67	28.82	-14.68	43.5	44.36	17.96	1.23	34.73	-	-	Р	V
		266.68	24.1	-21.9	46	38.98	18.09	1.69	34.66	-	-	Ρ	V
	*	902.2	115.13	-	-	117.61	28.67	3.15	34.3	-	-	Ρ	V
		137.67	23.71	-19.79	43.5	39.25	17.96	1.23	34.73	-	-	Ρ	н
		255.04	24.14	-21.86	46	39.45	17.72	1.66	34.69	-	-	Ρ	Н
915MHz	*	915	119	-	-	121.16	28.96	3.18	34.3	-	-	Ρ	Н
91311112		137.67	28.44	-15.06	43.5	43.98	17.96	1.23	34.73	-	-	Ρ	V
		281.23	23.5	-22.5	46	37.86	18.54	1.74	34.64	-	-	Ρ	V
	*	915	115.14	-	-	117.3	28.96	3.18	34.3	-	-	Ρ	V
		137.67	23.71	-19.79	43.5	39.25	17.96	1.23	34.73	-	-	Р	Н
		283.17	24.73	-21.27	46	39.02	18.6	1.75	34.64	-	-	Р	Н
007 0141-	*	927.8	117.48	-	-	119.3	29.27	3.21	34.3	-	-	Р	Н
927.8MHz		137.67	28.84	-14.66	43.5	44.38	17.96	1.23	34.73	-	-	Р	V
		281.23	24.72	-21.28	46	39.08	18.54	1.74	34.64	-	-	Ρ	V
	*	927.8	110.89	-	-	112.71	29.27	3.21	34.3	-	-	Р	V
Remark		o other spuriou		eak and	Average lim	it line.							

902~928MHz

FSK 50kbps (LF 30Mhz-1Ghz@ 3m)

	Note	Frequency	Level	Margin	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		862.26	50.22	-48.15	98.37	51.37	28.76	4.39	34.3	-	-	Р	Н
	*	902.2	118.37	-	-	119.58	28.67	4.42	34.3	-	-	Р	Н
902.2MHz		941.8	53.12	-45.25	98.37	53.34	29.58	4.5	34.3	-	-	Р	Н
502.211112		862.26	52.08	-43.05	95.13	53.23	28.76	4.39	34.3	-	-	Р	V
	*	902.2	115.13	-	-	116.34	28.67	4.42	34.3	-	-	Р	V
		941.8	47.11	-48.02	95.13	47.33	29.58	4.5	34.3	-	-	Р	V
		874.87	54.68	-44.32	99	55.86	28.72	4.4	34.3	-	-	Р	Н
	*	915	119	-	-	119.89	28.96	4.45	34.3	-	-	Р	Н
045MU-		955.38	55.16	-43.84	99	55.14	29.79	4.52	34.29	-	-	Р	Н
915MHz		874.87	53.6	-41.54	95.14	54.78	28.72	4.4	34.3	-	-	Ρ	V
	*	915	115.14	-	-	116.03	28.96	4.45	34.3	-	-	Р	V
		955.38	48.26	-46.88	95.14	48.24	29.79	4.52	34.29	-	-	Р	V
		887.48	51.53	-45.95	97.48	52.75	28.67	4.41	34.3	-	-	Р	Н
	*	927.8	117.48	-	-	118.04	29.27	4.47	34.3	-	-	Р	Η
007 0141-		967.99	51.42	-46.06	97.48	51.27	29.86	4.55	34.26	-	-	Р	Η
927.8MHz		887.48	49.45	-41.44	90.89	50.67	28.67	4.41	34.3	-	-	Р	V
	*	927.8	110.89	-	-	111.45	29.27	4.47	34.3	-	-	Р	V
		967.99	44.59	-46.3	90.89	44.44	29.86	4.55	34.26	-	-	Р	V
Remark		o other spurious results are PA		eak and	Average lim	it line.							

FSK 50kbps (Band Edge @ 3m)

	Note	Frequency	Level	Margin	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(110.0
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		1804.4	36.22	-62.15	98.37	60.57	29.4	4.21	57.96	-	-	Р	Н
		2706.6	43.64	-30.36	74	64.35	31.6	5.2	57.51	-	-	Р	Н
902.2MHz		3608.8	40.58	-33.42	74	58.71	32.74	6.19	57.06	-	-	Р	Н
502.210112		1804.4	37.1	-58.03	95.13	61.45	29.4	4.21	57.96	-	-	Р	V
		2706.6	45.19	-28.81	74	65.9	31.6	5.2	57.51	-	-	Р	V
		3608.8	40.95	-33.05	74	59.08	32.74	6.19	57.06	-	-	Р	V
		1830	35.04	-63.96	99	59.2	29.6	4.21	57.97	-	-	Р	Н
		2745	36.89	-37.11	74	57.53	31.6	5.24	57.48	-	-	Р	Н
0451411-		3660	40.8	-33.2	74	58.84	32.82	6.18	57.04	-	-	Р	Н
915MHz		1830	35.08	-60.06	95.14	59.24	29.6	4.21	57.97	-	-	Р	V
		2745	36.49	-37.51	74	57.13	31.6	5.24	57.48	-	-	Р	V
		3660	41.88	-32.12	74	59.92	32.82	6.18	57.04	-	-	Р	V
		1855.6	35.82	-61.66	97.48	59.84	29.7	4.25	57.97	-	-	Р	Н
		2783.4	37.08	-36.92	74	57.58	31.67	5.28	57.45	-	-	Р	Н
007.01411		3711.2	40.49	-33.51	74	58.46	32.89	6.16	57.02	-	-	Р	Н
927.8MHz		1855.6	37.2	-53.69	90.89	61.22	29.7	4.25	57.97	-	-	Р	V
		2783.4	36.9	-37.1	74	57.4	31.67	5.28	57.45	-	-	Р	V
		3711.2	40.99	-33.01	74	58.96	32.89	6.16	57.02	-	-	Р	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

FSK 50kbps (Harmonic @ 3m)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

	Note	Frequency	Level	Margin	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		136.7	23.47	-20.03	43.5	39.09	17.88	1.23	34.73	-	-	Р	Н
902.2MHz		259.89	23.87	-22.13	46	39.01	17.87	1.67	34.68	-	-	Ρ	Н
	*	902.2	118.37	-	-	120.85	28.67	3.15	34.3	-	-	Р	Н

1. Level(dBµV/m) = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 136.7MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)

= $17.88(dB/m) + 1.23(dB) + 39.09(dB\mu V) - 34.73 (dB)$

- = 23.47 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 23.47(dB\mu V/m) 43.5(dB\mu V/m)$
- = -20.03(dB)

Non-Restricted band:

	Note	Frequency	Level	Margin	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
	Í				Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
002 2001-		862.26	50.22	-48.15	98.37	51.37	28.76	4.39	34.3	-	-	Р	н
902.2MHz	*	902.2	118.37			119.58	28.67	4.42	34.3	-	-	Р	Н

1. Limit Line(dB μ V/m) = Fundamental Level(dB μ V/m) – 20(dBc)

For Peak Limit @ 862.26MHz:

- 1. Limit Line(dBµV/m)
- = Fundamental Level(dBµV/m) 20(dBc)

 $= 118.37(dB\mu V/m) - 20(dBc)$

= 98.37 (dBµV/m)

The peak measured complies with the limit line, so test result is "PASS".

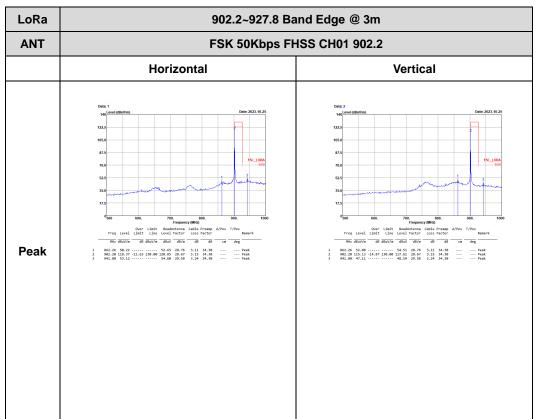
Appendix D. Radiated Spurious Emission Plots

Note symbol

-L	Low channel location
-R	High channel location

LoRa	902.2~927.8 (LF 30	Mhz-1Ghz@ 3m)						
ANT	FSK 50Kbps FHSS CH01 902.2							
	Horizontal	Vertical						
Peak	bit 300							

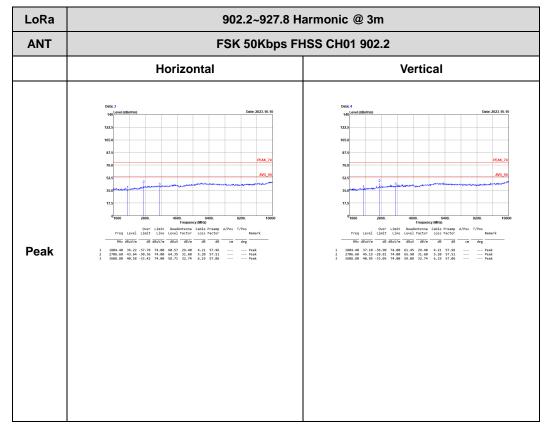
FSK 50Kbps FHSS



LoRa	902.2~927.8 (LF 30Mhz-1Ghz@ 3m)								
ANT	FSK 50Kbps FHSS CH65 915								
	Horizontal	Vertical							
Peak	Bri 1 Dec 2014 Dec 2014 Dec 2014 Dec 2014								

LoRa	902.2~927.8 (LF 3	0Mhz-1Ghz@ 3m)			
ANT	FSK 50Kbps FHSS CH129 927.8				
	Horizontal	Vertical			
Peak					

FSK 50Kbps FHSS (Band Edge @ 3m)



LoRa	902.2~927.8 Band Edge @ 3m				
ANT	FSK 50Kbps FHSS CH65 915				
	Horizontal	Vertical			
Peak					

LoRa	902.2~927.8 Ba	nd Edge @ 3m			
ANT	FSK 50Kbps FHSS CH129 927.8				
	Horizontal	Vertical			
Peak		Image: selection of the se			

FSK 50Kbps FHSS (Harmonic @ 3m)

LoRa	902.2~927.8 H	armonic @ 3m			
ANT	FSK 50Kbps FHSS CH65 915				
	Horizontal	Vertical			
Peak					

LoRa	902.2~927.8 Harmonic @ 3m	
ANT	FSK 50Kbps FHSS CH129 927.8	
	Horizontal	Vertical
Peak		