Appendix A. Plots of System Performance Check

Report No. : FA210405-01

The plots are shown as follows.

 Sporton International Inc. (Shenzhen)
 Report Version : Rev.01

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Issued Date : May 05, 2022

 FCC ID: 2A4DH-2587
 Page A1 of A1
 Report Template No. : 200414

System Check_Head_2450MHz

DUT: D2450V2-SN:924

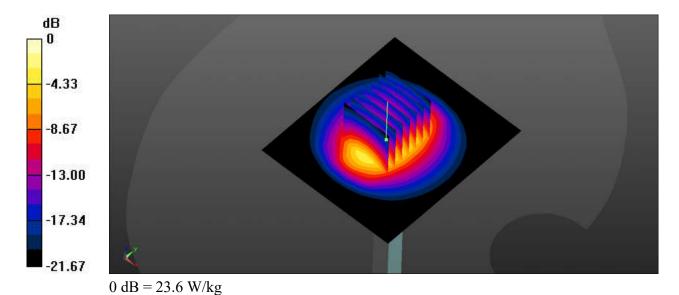
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL 2450 220419 Medium parameters used: f = 2450 MHz; $\sigma = 1.762$ S/m; $\varepsilon_r = 40.953$;

Date: 2022/4/19

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.5 °C


DASY5 Configuration:

- Probe: ES3DV3 SN3282; ConvF(4.65, 4.65, 4.65); Calibrated: 2021/11/4
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2021/7/15
- Phantom: Twin-SAM1(P1aP2a20); Type: QD 000 P40 CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Pin=250mW/Area Scan (71x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 23.6 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.4 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.5 W/kgMaximum value of SAR (measured) = 23.6 W/kg

Appendix B. Plots of High SAR Measurement

Report No. : FA210405-01

The plots are shown as follows.

 Sporton International Inc. (Shenzhen)
 Report Version : Rev.01

 TEL : +86-755-86379589 / FAX : +86-755-86379595
 Issued Date : May 05, 2022

FCC ID : 2A4DH-2587 Page B1 of B1 Report Template No. : 200414

Communication System: UID 0, Bluetooth (0); Frequency: 2480 MHz; Duty Cycle: 1:1.161 Medium: HSL 2450 220419 Medium parameters used: f = 2480 MHz; $\sigma = 1.794$ S/m; $\varepsilon_r = 40.857$;

Medium: HSL_2450_220419 Medium parameters used: I = 2480 MHz; G = 1.794 S/m; $\varepsilon_r = 40.85$ /;

Date: 2022/4/19

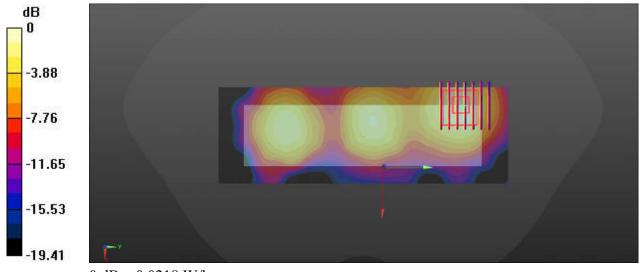
 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3282; ConvF(4.65, 4.65, 4.65); Calibrated: 2021/11/4
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2021/7/15
- Phantom: Twin-SAM1(P1aP2a20); Type: QD 000 P40 CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch39/Area Scan (51x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0231 W/kg


Ch39/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.682 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.0340 W/kg

SAR(1 g) = 0.017 W/kg; SAR(10 g) = 0.0091 W/kg

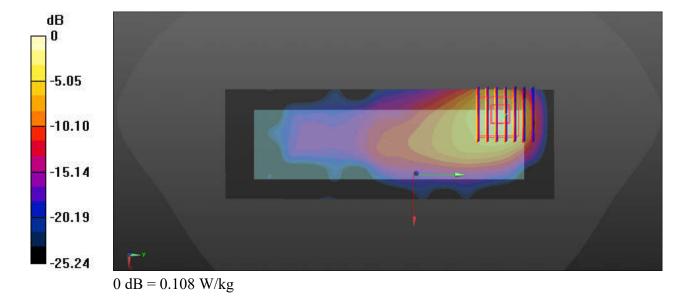
Maximum value of SAR (measured) = 0.0218 W/kg

0 dB = 0.0218 W/kg

Communication System: UID 0, Bluetooth (0); Frequency: 2440 MHz; Duty Cycle: 1:1.161 Medium: HSL_2450_220419 Medium parameters used: f = 2440 MHz; $\sigma = 1.75$ S/m; $\epsilon_r = 40.984$; $\rho = 1000$ kg/m³

Date: 2022/4/19

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.5 °C


DASY5 Configuration:

- Probe: ES3DV3 SN3282; ConvF(4.65, 4.65, 4.65); Calibrated: 2021/11/4
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2021/7/15
- Phantom: Twin-SAM1(P1aP2a20); Type: QD 000 P40 CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Ch19/Area Scan (51x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.108 W/kg

Ch19/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.512 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.177 W/kg SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.032 W/kg

Maximum value of SAR (measured) = 0.0941 W/kg

Appendix C. DASY Calibration Certificate

Report No. : FA210405-01

The DASY calibration certificates are shown as follows.

 Sporton International Inc. (Shenzhen)
 Report Version : Rev.01

 TEL: +86-755-86379589 / FAX: +86-755-86379595
 Issued Date : May 05, 2022

FCC ID : 2A4DH-2587 Page C1 of C1 Report Template No. : 200414

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Katibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: D2450V2-924_Sep20

CALIBRATION CERTIFICATE

Object D2450V2 - SN:924

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: September 02, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX30V4	SN: 7349	29-Jun-20 (No. EX3-7349_Jun20)	Jun-21
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID II	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	D. Kytin
Approved by:	Kalja Pokovic	Technical Manager	aus

Issued: September 2, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	(#114)	2211

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.9 Ω + 7.2 jΩ
Return Loss	- 22.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-924_Sep20 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 02.09.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:924

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020

Sensor-Surface: L4mm (Mechanical Surface Detection)

Electronics; DAE4 Sn601; Calibrated; 27.12.2019

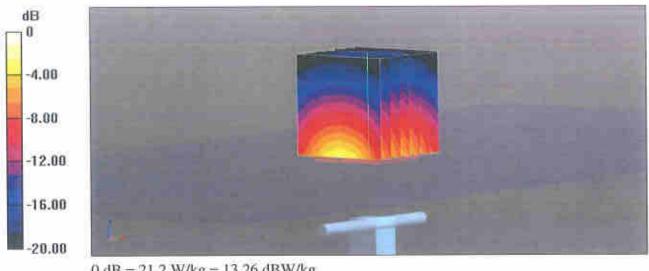
Phantom: Flat Phantom 5.0 (front); Type: QD 000 PS0 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

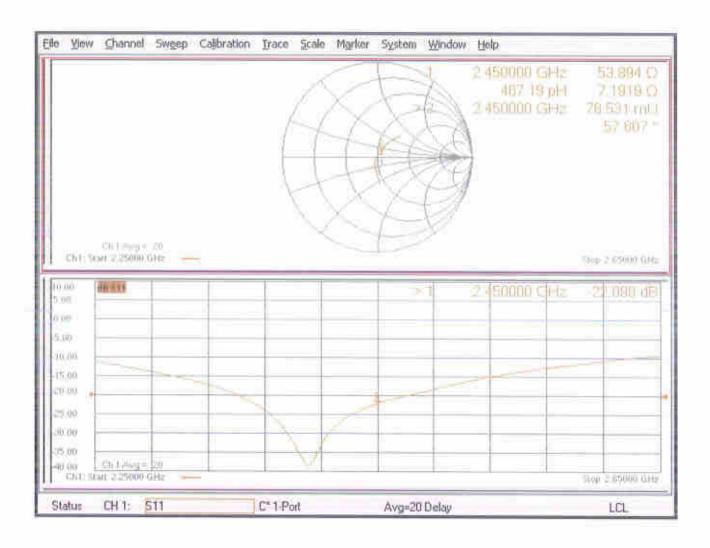
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.2 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 13.0 W/kg; SAR(10 g) = 6.04 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 51%

Maximum value of SAR (measured) = 21.2 W/kg

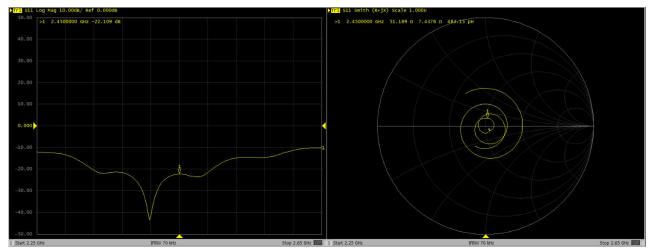
0 dB = 21.2 W/kg = 13.26 dBW/kg

Impedance Measurement Plot for Head TSL

D2450V2, Serial No. 924 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

					D2450V2 –	serial no	. 924			
	2450 Head									
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)				
2020.9.2	-22.1		53.9		7.2					
2021.9.1	-22.1	0.0	51.2	2.7	7.4	-0.2				


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D2450V2, serial no. 924

2450MHz - Head----2021.9.1

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

CALIBRATION **CNAS L0570**

Client:

Auden

Certificate No: Z21-60269

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 910

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

July 15, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	15-Jun-21 (CTTL, No.J21X04465)	Jun-22

Calibrated by:

Name

Function

Signature

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

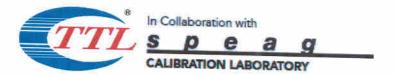
Issued: July 22, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics


Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2512

Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

 $6.1 \mu V$,

full range =

-100...+300 mV

Low Range:

1LSB =

61nV,

full range =

-1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Υ	Z
High Range	403.064 ± 0.15% (k=2)	402.759 ± 0.15% (k=2)	403.240 ± 0.15% (k=2)
Low Range		3.94213 ± 0.7% (k=2)	3.95056 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	268.5° ± 1 °

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

sporton

Certificate No: Z21-60373

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN: 3282

Calibration Procedure(s)

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

November 04, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID #		Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2 101919		15-Jun-21(CTTL, No.J21X04466)	Jun-22	
Power sensor NRP-Z91 101547		15-Jun-21(CTTL, No.J21X04466)	Jun-22	
Power sensor NRP-Z91	101548	15-Jun-21(CTTL, No.J21X04466)	Jun-22	
Reference 10dBAttenuator	18N50W-10dB	10-Feb-20(CTTL, No.J20X00525)	Feb-22	
Reference 20dBAttenuator	18N50W-20dB	10-Feb-20(CTTL, No.J20X00526)	Feb-22	
Reference Probe EX3DV4	SN 3617	27-Jan-21(SPEAG, No.EX3-3617_Jan21	1) Jan-22	
DAE4	SN 1556	15-Jan-21(SPEAG, No.DAE4-1556_Jan	21) Jan-22	
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
SignalGenerator MG3700A 6201052605		16-Jun-21(CTTL, No.J21X04467)	Jun-22	
Network Analyzer E5071C	MY46110673	21-Jan-21(CTTL, No.J20X00515)	Jan-22	
Na	me	Function	Signature	
Calibrated by:	u Zongying	SAR Test Engineer	Amond	
Reviewed by:	n Hao	SAR Test Engineer	林光	
Approved by:	i Dianyuan	SAR Project Leader	32	

Issued: November 06, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60373

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 <u>Http://www.chinattl.cn</u>

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal

A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ or rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com <u>Http://www.chinattl.cn</u>

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3282

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> =2)
Norm(μV/(V/m)²) ^A	1.11	0.96	0.75	±10.0%
DCP(mV) ^B	104.0	108.0	105.1	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc ^E
	System Name		dB	dBõV		dB	mV	(<i>k</i> =2)
0	CW	Х	0.0	0.0	1.0	0.00	235.6	±2.2%
		Υ	0.0	0.0	1.0		220.2	
	*	Z	0.0	0.0	1.0		189.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

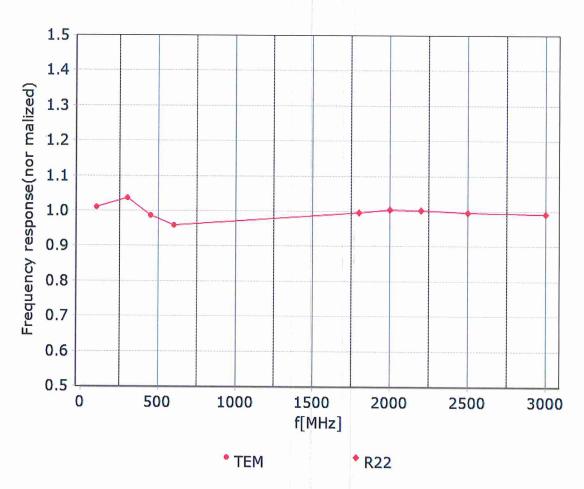
E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 <u>Http://www.chinattl.cn</u>

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3282

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G	Unct. (<i>k</i> =2)
	Permittivity	(3/111)					(mm)	(A-Z)
750	41.9	0.89	6.45	6.45	6.45	0.40	1.45	±12.1%
835	41.5	0.90	6.22	6.22	6.22	0.44	1.41	±12.1%
900	41.5	0.97	6.20	6.20	6.20	0.41	1.50	±12.1%
1750	40.1	1.37	5.33	5.33	5.33	0.72	1.17	±12.1%
1900	40.0	1.40	5.10	5.10	5.10	0.65	1.27	±12.1%
2000	40.0	1.40	5.01	5.01	5.01	0.90	1.05	±12.1%
2300	39.5	1.67	4.76	4.76	4.76	1.61	0.88	±12.1%
2450	39.2	1.80	4.65	4.65	4.65	0.90	1.10	±12.1%
2600	39.0	1.96	4.48	4.48	4.48	0.95	1.15	±12.1%


^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

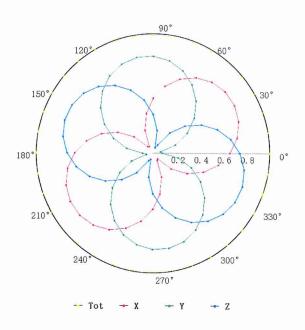
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

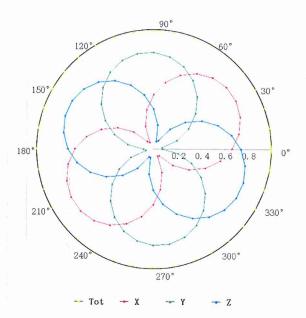
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

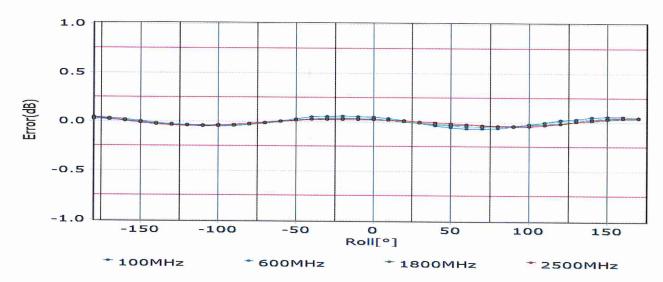
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

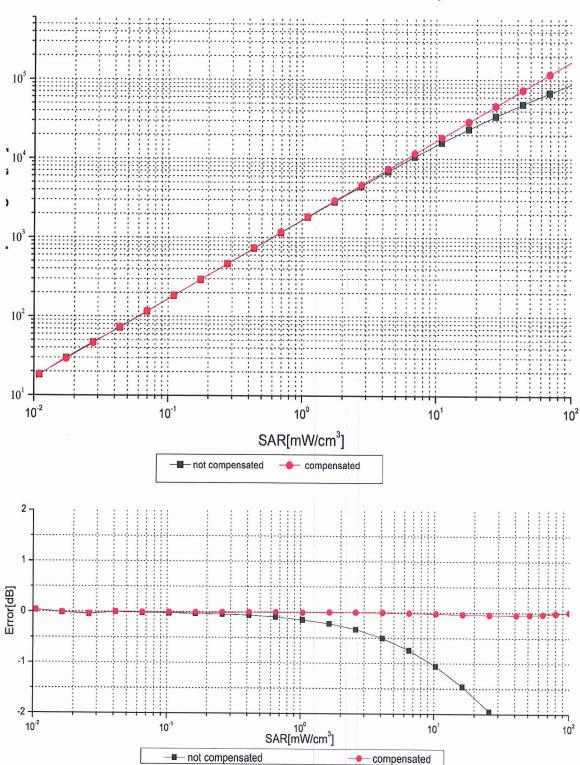

E-mail: cttl@chinattl.com


Http://www.chinattl.cn


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22


Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2)

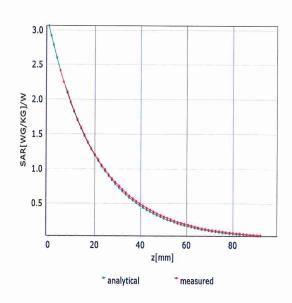
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

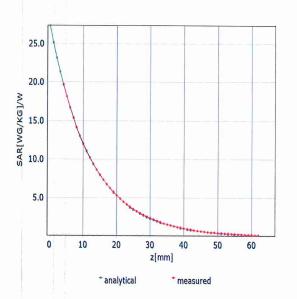
Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 <u>Http://www.chinattl.cn</u>

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

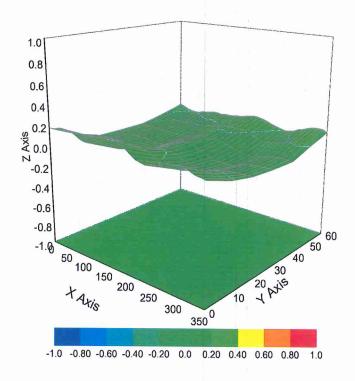
Uncertainty of Linearity Assessment: ±0.9% (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504


E-mail: cttl@chinattl.com


Http://www.chinattl.cn

Conversion Factor Assessment


f=750 MHz,WGLS R9(H convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3282

Other Probe Parameters

Sensor Arrangement	Triangular		
Connector Angle (°)	130.7		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disable		
Probe Overall Length	337mm		
Probe Body Diameter	10mm		
Tip Length	10mm		
Tip Diameter	4mm		
Probe Tip to Sensor X Calibration Point	2mm		
Probe Tip to Sensor Y Calibration Point	2mm		
Probe Tip to Sensor Z Calibration Point	2mm		
Recommended Measurement Distance from Surface	3mm		