

FCC TEST REPORT

Test report On Behalf of

Feifan Innovation E-commerce (Shenzhen) Co.,Ltd.

For

USB Wireless Speakerphone

Model No.: AIRHUG 08, AIRHUG 06, AIRHUG 14, AIRHUG 28, AIRHUG 29, AIRHUG 30, AIRHUG 31, AIRHUG 32, AIRHUG 33, AIRHUG 34

FCC ID: 2A4BG-AIRHUG08

Prepared For: Feifan Innovation E-commerce (Shenzhen) Co.,Ltd.

602,Complex Building No.3 of Baoyunda Logistics Center,Fuhua community,Xixiang Street,Baoan District,Shenzhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Feb. 12, 2023 ~ Feb. 22, 2023

Date of Report: Feb. 22, 2023

Report Number: HK2211155118-E

TEST RESULT CERTIFICATION

Applicant's name : Feifan Innovation E-commerce (Shenzhen) Co.,Ltd.

Address : 602,Complex Building No.3 of Baoyunda Logistics Center,Fuhua community,Xixiang Street,Baoan District,Shenzhen, China

Manufacture's Name : Shenzhen Innotrik Technology Co., Ltd.

Room 1302-1307, Building No.13, Qinchengda Paradise, District 22, Address.....: Lingzhiyuan Community, Xin'an Street, Bao'an District, Shenzhen,

China

Product description

Trade Mark: AIRHUG

Product name...... USB Wireless Speakerphone

Model and/or type reference AIRHUG 08, AIRHUG 06, AIRHUG 14, AIRHUG 28, AIRHUG 29, AIRHUG 30, AIRHUG 31, AIRHUG 32, AIRHUG 33, AIRHUG 34

FCC Rules and Regulations Part 15 Subpart C Section 15.249

Report No.: HK2211155118-E

Standards ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests..... Feb. 12, 2023 ~ Feb. 22, 2023

Date of Issue Feb. 22, 2023

Test Result Pass

Testing Engineer:

(Gary Qian)

Technical Manager : 7

(Eden Hu)

Authorized Signatory: Jason Hwu

(Jason Zhou)

	Table of Cor	ntents	Page
1 . TEST SUMMARY			5
1.1 . Test Procedur	es and Results		5
1.2 . Information of	the Test Laboratory		5
1.3 . Measurement	Uncertainty		5
2 . GENERAL INFOR	RMATION		6
2.1 .General Descr	iption of EUT		UNKTESTING
2.2 . Operation of E	EUT During Testing		7
2.3 .Description of	Ho		8
2.4 .Measurement	Instruments List		9
3 . CONDUCTED EN	MISSIONS TEST		11
3.1. Conducted Por	wer Line Emission Lir	nit	11
3.2. Test Setup			11
3.3.Test Procedure			HIP 11
3.4.Test Result			12
4. RADIATED EMISS	SION TEST		14
4.1. Radiation Limi	t 🔍		14
4.2. Test Setup			14
4.3.Test Procedure			15
4.4. Test Result			15 HUMK 15
5. BAND EDGE			21
5.1. Limits			21
5.2.Test Procedure			21
5.3. Test Result	O HO		22
6. OCCUPIED BAND	WIDTH MEASURE	EMENT	24
6.1. Test Setup			24
6.2.Test Procedure			24
6.3.Measurement E	-quipment Usea		24
6.4. Test Result	TESTING		24
7. ANTENNA REQUI			26
8. PHOTOGRAPH O	F TEST		27
9 PHOTOS OF THE	FUT		29

Page 4 of 29

Report No.: HK2211155118-E

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Feb. 22, 2023	Jason Zhou
	-		

1. TEST SUMMARY

1.1. Test Procedures and Results

		4117
DESCRIPTION OF TEST	SECTION NUMBER	RESULT
CONDUCTED EMISSIONS TEST	15.207	COMPLIANT
RADIATED EMISSION TEST	15.249(a)/15.209	COMPLIANT
BAND EDGE	15.249(d)/15.205	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	15.215 (c)	COMPLIANT
ANTENNA REQUIREMENT	15.203	COMPLIANT

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

1.3. Measurement Uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.71dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.28dB, k=2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2. GENERAL INFORMATION

2.1.General Description of EUT

Equipment:	USB Wireless Speakerphone
Model Name:	AIRHUG 08
Series Model:	AIRHUG 06, AIRHUG 14, AIRHUG 28, AIRHUG 29, AIRHUG 30, AIRHUG 31, AIRHUG 32, AIRHUG 33, AIRHUG 34
Model Difference:	All model's the function, software and electric circuit are the same, only with a product model named different. Test sample model: AIRHUG 08.
FCC ID:	2A4BG-AIRHUG08
Antenna Type:	PCB Antenna
Antenna Gain:	2.61dBi
Operation frequency:	2408-2476MHz
Number of Channels:	18CH
Modulation Type:	GFSK
Power Source:	DC 5V from Adapter or DC 3.7V from battery
Power Rating:	DC 5V from Adapter or DC 3.7V from battery

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.1.1. Carrier Frequency of Channels

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
-STING 1	2408	8	2436	15	2464
2	2412	9	2440	16	2468
3	2416	10	2444	17	2472
4	2420	11	2448	18	2476
5 HUA	2424	12	2452		III TO THE PARTY OF THE PARTY O
6	2428	13	2456	MG W	
7	2432	14	2460		all District

2.2. Operation of EUT During Testing

Operating Mode

The mode is used: Transmitting mode

Low Channel: 2408MHz Middle Channel: 2440MHz High Channel: 2476MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.3. Description of Test Setup

Operation of EUT during conducted and under 1GHz radiation testing:

Operation of EUT Above1GHz Radiation testing:

EUT

Adapter information Model: HW-059200CHQ

Input: 100-240V~50/60Hz 0.5A

Output: 5VDC, 2A

PC information Model: TP00067A

Input: DC20V, 2.25-3.25A Output: 5VDC, 0.5A

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. Measurement Instruments List

2022 Equipment calibration list

4	2022 E	Equipment calibration	n list				
	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
		L.I.S.N.	O HOS	O HOM	MO.	O HO	
	TIN 1.	Artificial Mains	R&S	ENV216	HKE-002	Feb. 18, 2022	1 Year
		Network	HUAKTEL	TESTING	HUDKITE	TESTI	G
	2.	Receiver	R&S	ESCI 7	HKE-010	Feb. 18, 2022	1 Year
-	3.	RF automatic	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	1 Year
	4.	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 18, 2022	1 Year
	5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	1 Year
	6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 18, 2022	1 Year
Ŋ	7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Feb. 18, 2022	1 Year
55	8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Feb. 18, 2022	1 Year
	9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	1 Year
	10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 18, 2022	1 Year
	11.	Pre-amplifier	EMCI	EMC051845S E	HKE-015	Feb. 18, 2022	1 Year
	12.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	1 Year
-	13.	EMI Test Software	Tonscend	JY3120-B Version	HKE-083	N/A	N/A
Ò	14.	Power Sensor	Agilent	E9300A	HKE-086	Feb. 18, 2022	1 Year
	15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	1 Year
100	16.	Signal generator	Agilent	N5182A	HKE-029	Feb. 18, 2022	1 Year
	17.	Signal Generator	Agilent	83630A	HKE-028	Feb. 18, 2022	1 Year
	18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Feb. 18, 2022	3 Year
	19.	Hight gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 18, 2022	1 Year

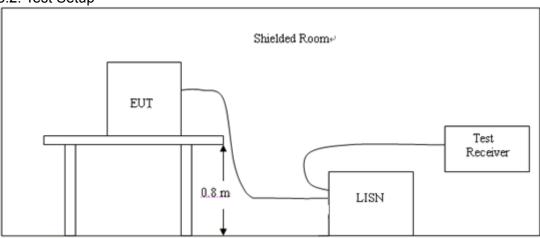
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2023 Equipment calibration list

2023 E	=quipment calibratio	n list		MAKIN		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1. KTESTING	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Feb. 17, 2023	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Feb. 17, 2023	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	⁰ 1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 17, 2023	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 17, 2023	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Feb. 17, 2023	1 Year
8. 755 TIME	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Feb. 17, 2023	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 17, 2023	1 Year
11.	Pre-amplifier	EMCI	EMC051845S E	HKE-015	Feb. 17, 2023	0 1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JY3120-B Version	HKE-083	N/A	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Feb. 17, 2023	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Feb. 17, 2023	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Feb. 17, 2023	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Feb. 17, 2023	3 Year
19.	Hight gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 17, 2023	1 Year

3. CONDUCTED EMISSIONS TEST

3.1. Conducted Power Line Emission Limit


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following.

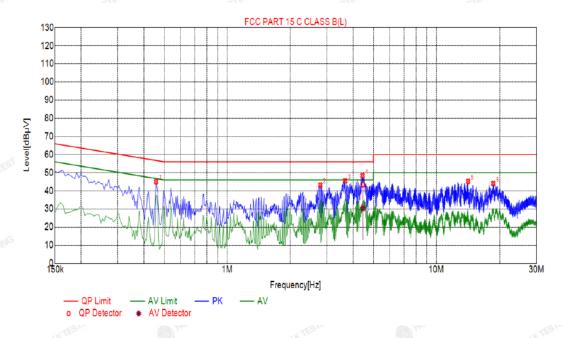
Г ионичной	M	aximum RF Li	ne Voltage (d	BμV)	
Frequency (MHz)	CLAS	SS A	CLASS B		
(11112)	Q.P.	Ave.	Q.P.	Ave.	
0.15 - 0.50	79	66	66-56*	56-46*	
0.50 - 5.00	73	60	56	46	
5.00 - 30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2. Test Setup

3.3.Test Procedure


- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3.All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4.If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5.All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3.4.Test Result

Remark: All modes of GFSK test at Low, Middle, and High channel; only the worst result of High Channel was reported as below:

Test Specification: Line

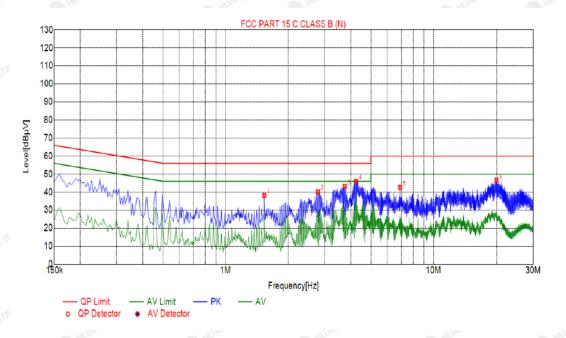
Sus	Suspected List											
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре				
1	0.4560	45.03	20.04	56.77	11.74	24.99	PK	L				
2	2.7870	43.23	20.21	56.00	12.77	23.02	PK	L				
3	3.6645	45.49	20.25	56.00	10.51	25.24	PK	L				
4	4.4340	48.37	20.25	56.00	7.63	28.12	PK	L				
5	14.0820	45.18	19.96	60.00	14.82	25.22	PK	L				
6	18.6045	44.05	20.05	60.00	15.95	24.00	PK	L				

Fin	Final Data List										
NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	AV Value [dΒμV]	AV Limit [dBµV]	AV Margin [dB]	ΑV Reading [dBμV]	Туре
1	4.4556	20.25	43.49	56.00	12.51	23.24	30.33	46.00	15.67	10.08	L

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Test Specification: Neutral

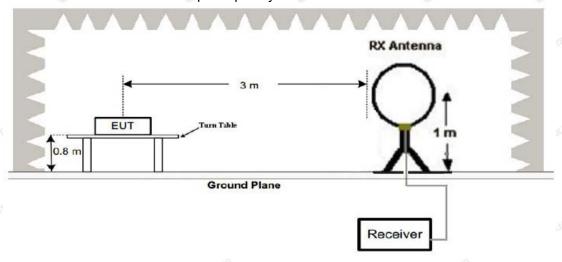
Sus	Suspected List										
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре			
1	1.5360	38.10	20.11	56.00	17.90	17.99	PK	N			
2	2.7825	40.17	20.21	56.00	15.83	19.96	PK	N			
3	3.7455	43.23	20.25	56.00	12.77	22.98	PK	N			
4	4.2405	45.97	20.25	56.00	10.03	25.72	PK	N			
5	6.9135	42.53	20.20	60.00	17.47	22.33	PK	N			
6	19.9770	46.56	20.10	60.00	13.44	26.46	PK	N			

Remark: Margin = Limit – Level

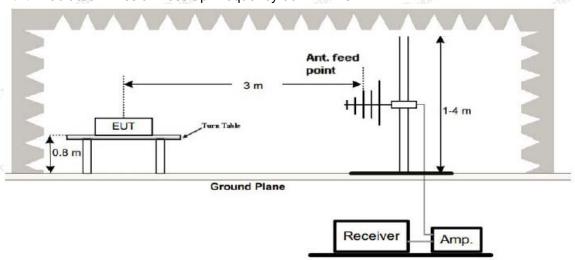
Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

4. RADIATED EMISSION TEST

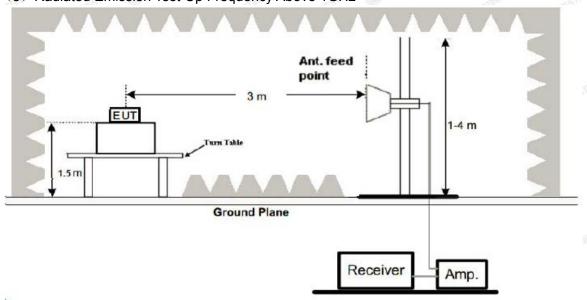
4.1. Radiation Limit


For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Ep,	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.490	300	20log 2400/F (kHz)	2400/F (kHz)
G	0.490-1.705	30	20log 24000/F (kHz)	24000/F (kHz)
	1.705-30	30	20log 30	30
	30-88	3	40	100
	88-216	3	43.5	150
	216-960	3	46	200
	Above 960	HUP 3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2. Test Setup


(1) Radiated Emission Test-Up Frequency Below 30MHz

(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

(3) Radiated Emission Test-Up Frequency Above 1GHz

4.3.Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highestemissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to25GHz per FCC PART 15.33(a).

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4. Test Result

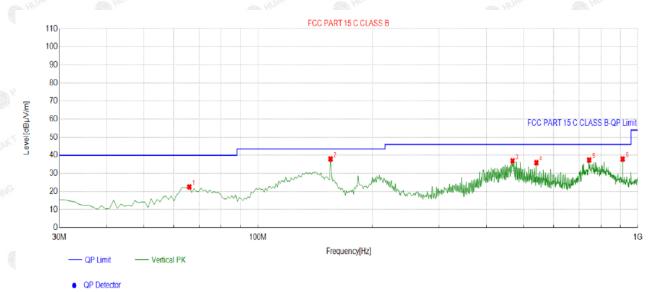
PASS

All the test modes completed for test. The worst case of Radiated Emission is CH 01(DC 12V); the test data of this mode was reported.

Below 1GHz Test Results:

Antenna polarity: H

QP		


-	5 4			MA.				4G4		
Su	spe	cted List								
N.I.)	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevite
N	Ο.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	157.1972	-18.07	52.03	33.96	43.50	9.54	100	296	Horizontal
2	2	210.6006	-14.58	48.51	33.93	43.50	9.57	100	15	Horizontal
	3	467.9079	-8.11	49.87	41.76	46.00	4.24	100	338	Horizontal
4	4	748.5185	-2.95	45.48	42.53	46.00	3.47	100	214	Horizontal
	5	780.5606	-2.34	46.71	44.37	46.00	1.63	100	349	Horizontal
(6	912.6126	-0.68	39.28	38.60	46.00	7.40	100	26	Horizontal

F	Final Data List										
Ž	NO.	Freq. [MHz]	Factor [dB]	QP Reading [dBµV/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	1	775.9520	-2.34	39.87	37.53	46.00	8.47	200	0.3	Horizontal	

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Antenna polarity: V

Sus	Suspected List											
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	65.9259	-15.14	37.71	22.57	40.00	17.43	100	120	Vertical			
2	155.2553	-18.45	56.51	38.06	43.50	5.44	100	226	Vertical			
3	467.9079	-8.11	45.09	36.98	46.00	9.02	100	106	Vertical			
4	540.7307	-6.51	42.42	35.91	46.00	10.09	100	213	Vertical			
5	744.6346	-2.93	40.32	37.39	46.00	8.61	100	239	Vertical			
6	912.6126	-0.68	38.69	38.01	46.00	7.99	100	359	Vertical			

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
W.		TESTING -	TESTING -
	HAYTESTING HAVE	LAN TESTINE	HUAN LAKTESTING
		G 0	ang Ma
	WANTEST	UN	KTEST.

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Above 1 GHz Test Results: CH Low (2408MHz)

Horizontal:

	- 4.4	100	100		100	21.0
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2408	99.86	-5.84	94.02	114 HUME	-19.98	peak
2408	85.25	-5.84	79.41	94	-14.59	AVG
4816	56.13	-3.64	52.49	74	-21.51	peak
4816	42.17	-3.64	38.53	54	-15.47	AVG
7224	53.19	-0.95	52.24	74	-21.76	peak
7224	38.74	-0.95	37.79	54	-16.21	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

- TXO	Meter		- AKTESTIIV		Π	LOKTESTIN
Frequency	Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2408	102.58	-5.84	96.74	114	-17.26	peak
2408	84.37	-5.84	78.53	94	-15.47	AVG
4816	55.03	-3.64	51.39	74	-22.61	peak
4816	43.67	-3.64	40.03	54	-13.97	AVG
7224	54.16	-0.95	53.21	^{mG} 74	-20.79	peak
7224	43.22	-0.95	42.27	54	-11.73	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

CH Middle (2440MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2440	103.49	-5.71	97.78	114	-16.22	peak
2440	77.39	-5.71	71.68	94	-22.32	AVG
4880	56.34	-3.51	52.83	74	-21.17	peak
4880	43.15	-3.51	39.64	54	-14.36	AVG
7320	55.02	-0.82	54.2	74	-19.8	peak
7320	40.02	-0.82	39.2	54	-14.8	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. L. TING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2440	102	-5.71	96.29	114	-17.71	peak
2440	83.46	-5.71	77.75	94	-16.25	AVG
4880	54.16	-3.51	50.65	74	-23.35	peak
4880	45.23	-3.51	41.72	54	-12.28	AVG
7320	52.92	-0.82	52.1	74	-21.9	peak
7320	38.97	-0.82	38.15	¹⁰⁰ 54	-15.85	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level

CH High (2476MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2476	102.35	-5.65	96.7	114	-17.3	peak
2476	82.49	-5.65	76.84	94	-17.16	AVG
4952	56.12	-3.43	52.69	74	-21.31	peak
4952	43.96	-3.43	40.53	54	-13.47	AVG
7428	54.16	-0.75	53.41	74	-20.59	peak
7428	41.25	-0.75	40.5	54	-13.5	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2476	101.35	-5.65	95.7	114	-18.3	peak
2476	81.36	-5.65	75.71	94	-18.29	AVG
4952	58.42	-3.43	54.99	74	-19.01	peak
4952	41.02	-3.43	37.59	54	-16.41	AVG
7428	52.76	-0.75	52.01	74	-21.99	peak
7428	38.91	-0.75	38.16	54	-15.84	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7)All modes of operation were investigated and the worst-case emissions are reported.

5. BAND EDGE

5.1. Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2.Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSIC63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5.3. Test Result

PASS

Radiated Band Edge Test:

Operation Mode: TX CH Low (2408MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	52.03	-5.81	46.22	74	-27.78	peak
2310	In and	-5.81	1	54	/	AVG
2390	51.37	-5.84	45.53	74	-28.47	peak
2390	1	-5.84	1	54	/	AVG
2400	53.19	-5.84	47.35	74	-26.65	peak
2400	HUAK TEST	-5.84	/ HUAKTE	54	KTESTI /	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2310	52.49	-5.81	46.68	74	-27.32	peak
2310	TING	-5.81	1 / I	54	TIME	AVG
2390	54.62	-5.84	48.78	74	-25.22	peak
2390	1	-5.84	1	54	THE I	AVG
2400	55.28	-5.84	49.44	74 HUMATE	-24.56	peak
2400	/	-5.84	@ HUPT	54	1 1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TESTING

Report No.: HK2211155118-E

Operation Mode: TX CH High (2476MHz)

Horizontal (Worst case)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	52.31	-5.65	46.66	74	-27.34	peak
2483.50	1	-5.65	MIN MAN	54	1	AVG
2500.00	54.17	-5.65	48.52	74 NY TEST	-25.48	peak
2500.00	WIESTING (1)	-5.65	TSTING / WIES	54	TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.02	-5.65	48.37	74	-25.63	peak
2483.50	ESTAG ON	-5.65	TING 1	54	1 700	AVG
2500.00	54.29	-5.65	48.64	74	-25.36	peak
2500.00	1	-5.65	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

6. OCCUPIED BANDWIDTH MEASUREMENT

6.1. Test Setup

Same as Radiated Emission Measurement

6.2.Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on ANSI C63.10 section 6.9.2: RBW=43KHz. VBW= 120 KHz, Span=8MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3. Measurement Equipment Used

Same as Radiated Emission Measurement

6.4. Test Result

PASS

Frequency	20dB Bandwidth (MHz)	Result
2408 MHz	4.315	PASS
2440 MHz	4.145	PASS
2476 MHz	4.108	PASS

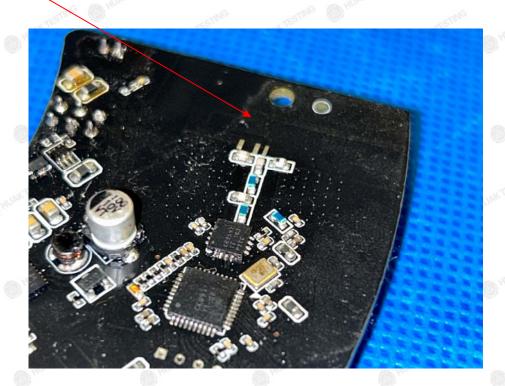
CH: 2408MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH: 2440MHz

CH: 2476MHz

7. ANTENNA REQUIREMENT

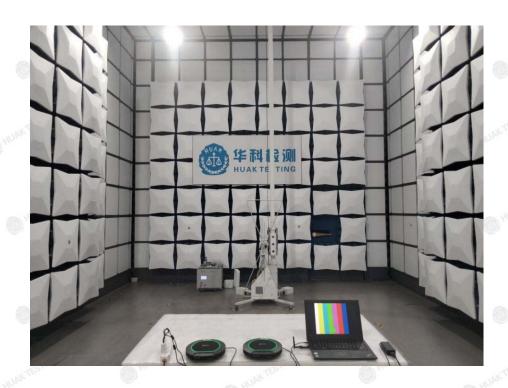

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, which have non-standard antenna jack. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 2.61dBi.

ANTENNA



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

8. PHOTOGRAPH OF TEST

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

9. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

End of test report-