

FCC Test Report

Report No.: AGC11034231201FR01

FCC ID : 2A4AS-2312B

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: IP Camera

BRAND NAME : Reolink

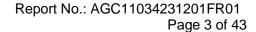
MODEL NAME : Reolink Go Ranger PT, Go Series G450

APPLICANT : EZTECH DIGITAL INC.

DATE OF ISSUE : Jan. 17, 2024

STANDARD(S) : FCC Part 22 Subpart H

REPORT VERSION: V1.0


Attestation of Global Compliance (Shenzhen) Co., Ltd.

Page 2 of 43

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jan. 17, 2024	Valid	Initial Release

Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	6
2.2 Related Submittal(S) / Grant (S)	7
2.3 Test Methodology	7
2.4 Device Capabilities	7
2.5 Special Accessories	7
2.6 Equipment Modifications	7
2.7 Emission Designator	8
3. Test Environment	g
3.1 Address of The Test Laboratory	g
3.2 Test Facility	g
3.3 Environmental Conditions	10
3.4 Measurement Uncertainty	10
3.5 List of Test Equipment	11
4. System Test Configuration	13
4.1 EUT Configuration	13
4.2 EUT Exercise	13
4.3 Configuration of EUT System	13
4.4 Equipment Used in Tested System	14
5. Summary of Test Results	15
5.1 Test Condition: Conducted Test	15
5.2 Test Condition: Radiated Test	15
6. Description of Test Modes	16
7. Conducted Output Power	18
7.1 Provisions Applicable	18
7.2 Measurement Procedure	18
7.3 Measurement Setup	18
7.4 Measurement Result	19
8. Radiated Output Power	20
8.1 Provisions Applicable	20
8.2 Measurement Procedure	20
8.3 Measurement Setup	21
8.4 Measurement Result	23
9. Peak-to-Average Ratio	24
9.1 Provisions Applicable	24

Report No.: AGC11034231201FR01 Page 4 of 43

9.2 Measurement Procedure	24
9.3 Measurement Setup	25
9.4 Measurement Result	26
10. 99% Occupied Bandwidth and 26dB Emission Bandwidth	27
10.1 Provisions Applicable	27
10.2 Measurement Procedure	27
10.3 Measurement Setup	27
10.4 Measurement Result	28
11. Band Edge Emissions at Antenna Terminal	29
11.1 Provisions Applicable	29
11.2 Measurement Procedure	29
11.3 Measurement Setup	29
11.4 Measurement Result	30
12. Spurious Emissions at Antenna Terminal	31
12.1 Provisions Applicable	31
12.2 Measurement Procedure	31
12.3 Measurement Setup	31
12.4 Measurement Result	31
13. Radiated Spurious Emission	34
13.1. Provisions Applicable	34
13.2. Measurement Procedure	34
13.3. Measurement Setup	36
13.4 Measurement Result	37
14. Frequency Stability / Variation of Ambient Temperature	39
14.1 Provisions Applicable	39
14.2 Measurement Procedure	39
14.3 Measurement Setup	40
14.4 Measurement Result	41
Appendix I: Photographs of Test Setup	43
Appendix II: Photographs of EUT	43

Page 5 of 43

1. General Information

Applicant	EZTECH DIGITAL INC.
Address	251 Little Falls Drive Wilmington Delaware 19808 United States
Manufacturer	Reolink Innovation Limited
Address	FLAT/RM 705 7/F FA YUEN COMMERCIAL BUILDING 75-77 FA YUEN STREET MONG KOK KL HONG KONG
Factory	Shenzhen Reolink Technology Co., Ltd
Address	2-4th Floor, Building 2, Yuanling Industrial Park, ShangWu, Shiyan Street, Bao'an District, Shenzhen, China
Product Designation	IP Camera
Brand Name	Reolink
Test Model	Reolink Go Ranger PT
Series Model(s)	Go Series G450
Difference Description	All the same except the model name
Date of receipt of test item	Dec. 12, 2023
Date of Test	Dec. 12, 2023~Jan. 17, 2024
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-GSM&WCDMA-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By	Bibo Zhang	
	Bibo Zhang (Project Engineer)	Jan. 17, 2024
Reviewed By	Calvin Lin	
	Calvin Liu (Reviewer)	Jan. 17, 2024
Approved By	Max Zhang	
	Max Zhang Authorized Officer	Jan. 17, 2024

Page 6 of 43

2. Product Information

2.1 Product Technical Description

Support Networks	WCDMA, HSDPA, HSUPA		
Hardware Version	E305654		
Software Version	1.0		
Support Frequency Band	⊠UMTS FDD Band V(No	on-U.S. Bands)	
Frequency Range	826.4MHz-846.6 MHz (W	/CDMA Band V)	
Type of Modulation	BPSK/QPSK Modulation For WCDMA/HSDPA/HSUPA		
Emission Designator	WCDMA Band V: 4M15F9W		
Antenna Designation	External Antenna		
Antenna Gain	WCDMA850:1.1dBi		
Power Supply	DC 3.6V by Built-in Li-ion Battery		
Single Card	WCDMA Card Slot		
Extreme Vol. Limits	DC3.06V to 4.14V (Normal: DC 3.6V)		
Extreme Temp. Tolerance	-30 °C to +50 °C		
Temperature Range	-20℃ to +50℃		

WCDMA SLOT 1:

	Maximum ERP/EIRP	Max. Average		
	(dBm)	Burst Power (dBm)		
UMTS BAND V	21.12	22.68		

Page 7 of 43

2.2 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2A4AS-2312B**, filing to comply with Part 2, Part 22 of the Federal Communication Commission rules.

2.3 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title		
1	1 47 CFR FCC Part 2 Frequency allocations and radio treaty matters, general rules and regula			
2	2 47 CFR FCC Part 22 Public Mobile Services.			
3	ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters		
3	ANSI C65.26-2015	Used in Licensed Radio Services		
4	ANSI/TIA-603-E-2016	Land Mobile FM or PM Communications Equipment Measurement and		
4	ANSI/11A-603-E-2016	Performance Standards		
E	KDB 971168	D01 v03r01 Measurement Guidance For Certification Of Licensed Digital		
5		Transmitters.		

2.4 Device Capabilities

850WCDMA/HSPA, Multi-Band LTE.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration.

The emissions below 1GHz and above 18GHz were tested with the highest transmitting power channel and the worst case configuration.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

2.5 Special Accessories

The battery was supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.6 Equipment Modifications

Not available for this EUT intended for grant.

Page 8 of 43

2.7 Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

Page 9 of 43

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 10 of 43

3.3 Environmental Conditions

	Normal Conditions	Extreme Conditions	
Temperature range	15~35℃	-20℃~50℃	
Humidity range	20 % to 75 %.	20 % to 75 %.	
Pressure range	86-106kPa	86-106kPa	
Power supply	DC 3.6V	DC3.06V or 4.14V	

Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

3.4 Measurement Uncertainty

Test	Measurement Uncertainty		
Transmitter power conducted	±0.57 dB		
Transmitter power Radiated	±2.20 dB		
Conducted spurious emission 9kHz-40 GHz	±2.20 dB		
Occupied Bandwidth	±0.01ppm		
Radiated Emission 30~1000MHz	±4.10dB		
Radiated Emission Above 1GHz	±4.32dB		
Conducted Disturbance:0.15~30MHz	±3.20dB		
Radio Frequency	± 6.5 x 10-8		
RF Power, Conducted	± 0.9 dB		

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 11 of 43

3.5 List of Test Equipment

Radiated Spurious Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\boxtimes	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2023-02-18	2024-02-17
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31
\boxtimes	AGC-ER-E032	Universal Radio Communication Tester	R&S	CMW500	120909	2023-07-05	2024-07-04
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2022-03-12	2024-03-11
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10
\boxtimes	AGC-EM-E005	Wideband Antenna	SCHWARZBECK	VULB9168	VULB9168-494	2023-01-05	2024-01-04
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2023-03-23	2024-03-22
\boxtimes	AGC-EM-E102	Broadband Ridged Horn Antenna	ETS	3117	00154520	2023-06-03	2024-06-02
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03
	AGC-EM-E021	Pre-amplifier	MITEQ	AM-4A-000115	1465421	2022-06-08	2024-06-07
\boxtimes	AGC-ER-E037	Signal Generator	Agilent	N5182A	MY50140530	2023-06-01	2024-05-31
\boxtimes	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08
	AGC-EM-A090	High Pass Filter 1 (2500-18000MHz)	N/A	N/A	N/A	2023-06-01	2024-05-31
	AGC-EM-A091	High Pass Filter 2 (1200-18000MHz)	N/A	N/A	N/A	2023-06-01	2024-05-31
\boxtimes	AGC-EM-A113	Band Stop Filter (825-850MHz)	MICRO-TRONICS	BRC50717	N/A	2023-06-01	2024-05-31
	AGC-EM-A114	Band Stop Filter (880-915MHz)	MICRO-TRONICS	BRC50718	N/A	2023-06-01	2024-05-31
	AGC-EM-A115	Band Stop Filter (1710-1785MHz)	MICRO-TRONICS	BRC50719	N/A	2023-06-01	2024-05-31
	AGC-EM-A116	Band Stop Filter (1850-1950MHz)	MICRO-TRONICS	BRC50720	N/A	2023-06-01	2024-05-31
	AGC-EM-A117	Band Stop Filter (1920-1980MHz)	MICRO-TRONICS	BRC50721	N/A	2023-06-01	2024-05-31

Page 12 of 43

• [RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-ER-E087	Spectrum Analyzer	KEYSIGHT	N9020B	MY56101792	2023-06-01	2024-05-31	
\boxtimes	AGC-ER-E032	Universal Radio Communication Tester	R&S	CMW500	120909	2023-07-05	2024-07-04	
	AGC-ER-E032	Universal Radio Communication Tester	R&S	CMU200	113939	2023-06-01	2024-05-31	
\boxtimes	AGC-ER-E075	Small Environmental Tester	SH-242	ESPEC	93008290	2022-08-03	2024-08-02	
\boxtimes	1	Universal Switch Control Unit	Tonscend	JS	N/A	N/A	N/A	
	AGC-ER-E033	RF Test Plat (DECT)	RTX	RTX-2012-HS-RF	N/A	2022-08-04	2024-08-03	
\boxtimes		RF Connection Cable	N/A	1#	N/A	Each time	N/A	
\boxtimes		RF Connection Cable	N/A	2#	N/A	Each time	N/A	

• Tes	Test Software							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information			
	AGC-ER-S006	GSM Test System	Tonscend	JS1120-4	2.1.6.0			
	AGC-ER-S007	WCDMA Test System	Tonscend	JS1120-3	2.1.5.10			
	AGC-EM-S011	RSE Test System	Tonscend	TS ⁺ Ver2.1(JS36-RSE)	4.0.0.0			

Page 13 of 43

4. System Test Configuration

4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of EUT System

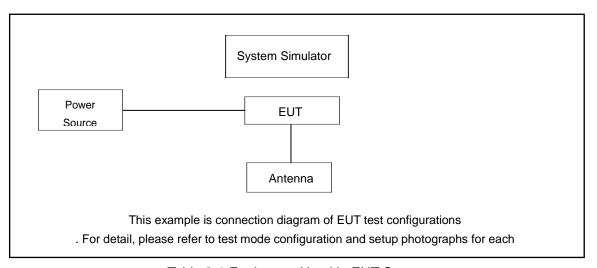


Table 2-1 Equipment Used in EUT System

Page 14 of 43

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

☐ Test Accessories Come From The Laboratory

No	. Equipment	Model No.	Manufacturer	Specification Information	Cable
1	SD Card	N/A	Changhong	N/A	N/A
2	Adapter	K-T10E0502000E	Jinbaotong	AC100-240V,50-60Hz,0.35A DC5V/2A	N/A

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1	Battery	Battery-Li15	Dongguan Large Electronics Co., Ltd.	DC 3 6V 5900mAh	
2	Antenna	N/A	N/A	N/A	N/A
3	USB Cable	N/A	N/A	N/A	1.0m unshielded
4	Solar Panel	N/A	N/A	N/A	N/A

Page 15 of 43

5. Summary of Test Results

5.1 Test Condition: Conducted Test

Item	Test Description	FCC Rules	Result
1	Occupied Bandwidth	§2.1049	Pass
2	Band Edge / Spurious and Harmonic Emissions at Antenna Terminal	§2.1051, §22.917(a)	Pass
3	Conducted Output Power	§2.1046	Pass
4	Frequency stability / variation of ambient temperature	§2.1055, § 22.355	Pass
5	Peak- to- Average Ratio	-	Pass

5.2 Test Condition: Radiated Test

Item	Test Description	FCC Rules	Result
1	Effective Radiated Power	§22.913(a)(5)	Pass
2	Equivalent Isotropic Radiated Power	-	Pass
3	Radiated Spurious and Harmonic Emissions	§2.1053, §22.917(a)	Pass

Page 16 of 43

6. Description of Test Modes

		RF Channel				
Bands	Tx/Rx Frequency	Low(L)	Middle(M)	High(H)		
	TX	Channel 4132	Channel 4182	Channel 4233		
WCDMA band V	(824 MHz ~ 849 MHz)	826.4 MHz	836.4 MHz	846.6 MHz		

Pre-scan all bandwidth and RB, find worse case mode are chosen to the report, the worse mode applicability and tested channel detail as below:

Band	Radiated	Conducted
WCDMA Band V	RMC 12.2kbps Link	RMC 12.2kbps Link

Page 17 of 43

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH	0≤ CM≤3.5	MAX(CM-1,0)
HS-DPDCH,E-DPDCH and E-DPCCH	U≤ CIVI≤3.5	IVIAA(CIVI-1,0)
Note: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all oth	er combinations of DPD	OCH, DPCCH, HS-DPCCH,

Note: CM=1 for p_c/p_d =12/15, p_{hs}/p_c =24/15. For all other combinations of DPDCH, DPCCH, HS-D E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done. However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensate for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

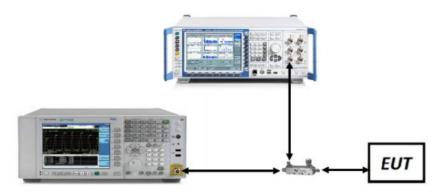
The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Page 18 of 43

7. Conducted Output Power

7.1 Provisions Applicable

The conduction test is carried out in a shielded room. According to the test, connect the device under test to the antenna port on the non-conductive platform directly to the test device for evaluation and measurement (ANSI-C63.26-2015 Clause 5.4)


7.2 Measurement Procedure

- > The transmitter output port was connected to base station.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
- > The path loss was compensated to the results for each measurement.

Measure the maximum burst average power and average power for other modulation signal.

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all mode (WCDMA/HSPA band V)at 3 typical channels (the Top Channel, the Middle Channel and the Bottom Channel) for each band.

7.3 Measurement Setup

Page 19 of 43

7.4 Measurement Result

WCDMA Band V Maximum Average Power (dBm)						
Channel	4132	4182	4233			
Frequency(MHz)	826.4 MHz	836.4 MHz	846.6 MHz			
RMC 12.2kbps	21.34	22.68	22.53			
HSDPA Subtest-1	21.53	21.62	21.53			
HSDPA Subtest-2	21.12	21.15	21.06			
HSDPA Subtest-3	21.16	21.14	21.09			
HSDPA Subtest-4	21.16	21.14	21.08			
HSUPA Subtest-1	21.61	21.59	21.55			
HSUPA Subtest-2	20.28	20.15	20.06			
HSUPA Subtest-3	20.01	19.86	19.83			
HSUPA Subtest-4	19.68	19.63	19.54			
HSUPA Subtest-5	21.78	21.77	21.75			

Page 20 of 43

8. Radiated Output Power

8.1 Provisions Applicable

The radiation test is carried out in a semi-anechoic chamber.

According to the test, put the device under test on a non-conductive platform 3 meters away from the receiving antenna (ANSI/TIA-603-E-2016 Article 2.2.17).

The following rules are for the maximum radiated power limit requirements of the product:

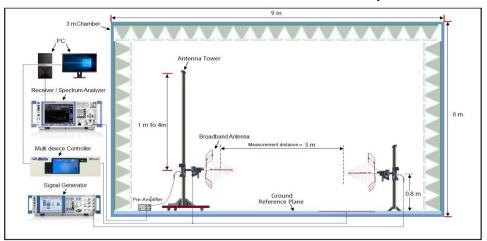
Mode	Nominal Peak Power		
WCDMA Band V	< 7 Watts max. ERP (38.45dBm)		

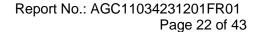
8.2 Measurement Procedure

- 1. Radiated power measurements are performed using the signal analyzer's "channel power"
- 2. measurement capability for signals with continuous operation.
- 3. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 4. VBW \geq 3 x RBW
- 5. Span = 1.5 times the OBW
- 6. No. of sweep points > 2 x span / RBW
- 7. Detector = RMS
- 8. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 9. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 10. Trace mode = trace averaging (RMS) over 100 sweeps
- 11. The trace was allowed to stabilize.

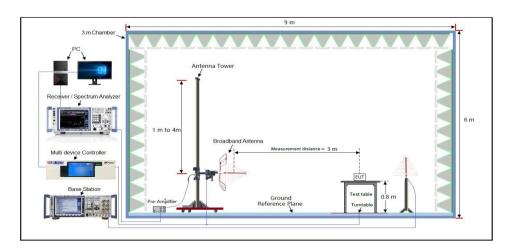
Report No.: AGC11034231201FR01 Page 21 of 43

Radiation Construction Method:

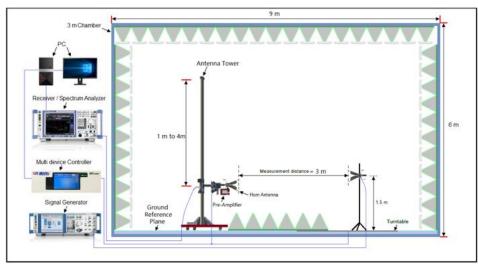

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.
- 3. The power is calculated by the following formula:

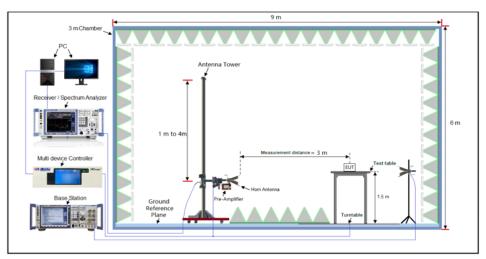

Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB)

- 4. Where: Pd is the dipole equivalent power and Pg is the generator output power into the substitution antenna.
- 5. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 6. The EUT was tested in three orthogonal planes (X, Y, Z) and in all possible test configurations and positioning.
- 7. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.


8.3 Measurement Setup

Radiated Power 30MHz to 1GHz Test setup





Radiated Power Above 1GHz Test setup

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 23 of 43

8.4 Measurement Result

	Ch./ Freq.		Substitute	Ant. Gain			Limit	EF	RP
Mode	channel	Freq. (MHz)	Level (dBm)	(dBi)	C.L	Pol.	w	w	dBm
	4132	826.4	16.43	5.90	1.21	Н		0.129	21.12
WCDMA850	4183	836.6	16.24	5.90	1.25	Н		0.123	20.89
	4233	846.6	16.02	5.90	1.24	Н	< 7.00	0.117	20.68
	4132	826.4	14.84	5.90	1.21	Н	< 7.00	0.090	19.53
HSPA	4183	836.6	15.29	5.90	1.25	Н		0.099	19.94
	4233	846.6	15.19	5.90	1.24	Н		0.097	19.85

Note:

- 1. EIRP/ERP = Substitute Level (dBm) + Ant. Gain C.L (Cable Loss)
- 2. All polarizations and modes have been tested, only the worst mode is recorded in the report

Page 24 of 43

9. Peak-to-Average Ratio

9.1 Provisions Applicable

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

9.2 Measurement Procedure

CCDF Procedure for PAPR:

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - for continuous transmissions, set to 1 ms,
 - or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time
- 4. that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

Alternate Procedure for PAPR:

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as P_{Pk} Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and recordas PAvg. Determine the P.A.R. from:

 $P.A.R(dB) = P_{Pk} (dBm) - P_{Avg} (dBm) (P_{Avg} = Average Power + Duty cycle Factor)$

Allow trace to fully stabilize.

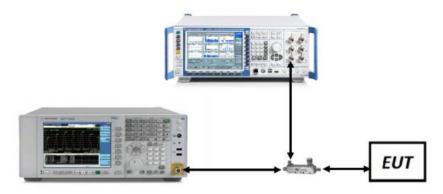
Use the peak marker function to determine the peak amplitude level.

Test Settings (Peak Power):

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW \geq 3 × RBW.

- 1. Set the RBW ≥ OBW.
- 2. Set VBW ≥ 3 × RBW.
- 3. Set span ≥ 2 × OBW.

Any reportation and the end of t


Report No.: AGC11034231201FR01 Page 25 of 43

- Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.

■ Test Settings (Average Power)

- Set span to 2 x to 3 x the OBW.
- 2. Set RBW ≥ OBW.
- 3. Set VBW ≥ 3 × RBW.
- 4. Set number of measurement points in sweep ≥ 2 × span / RBW.
- 5. Sweep time: Set ≥ [10 × (number of points in sweep) × (transmission period)] for single sweep (Automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25%.

9.3 Measurement Setup

Page 26 of 43

9.4 Measurement Result

Bands	Modulation	Peak-te	o-average rat	Limit	Result	
Danas	Woddiation	Lowest	Middle	Highest	(dB)	Nesuit
WCDMA Band V	RMC 12.2kbps	3.06	2.98	2.99	13	Pass
WCDMA Band V	HSUPA	3.77	3.18	3.19	13	Pass
WCDMA Band V	HSDPA	4.36	4.29	4.28	13	Pass

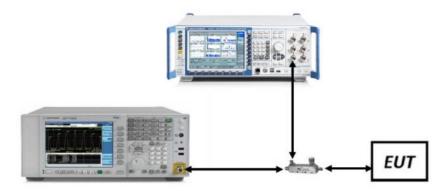
Page 27 of 43

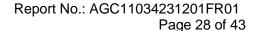
10. 99% Occupied Bandwidth and 26dB Emission Bandwidth

10.1 Provisions Applicable

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

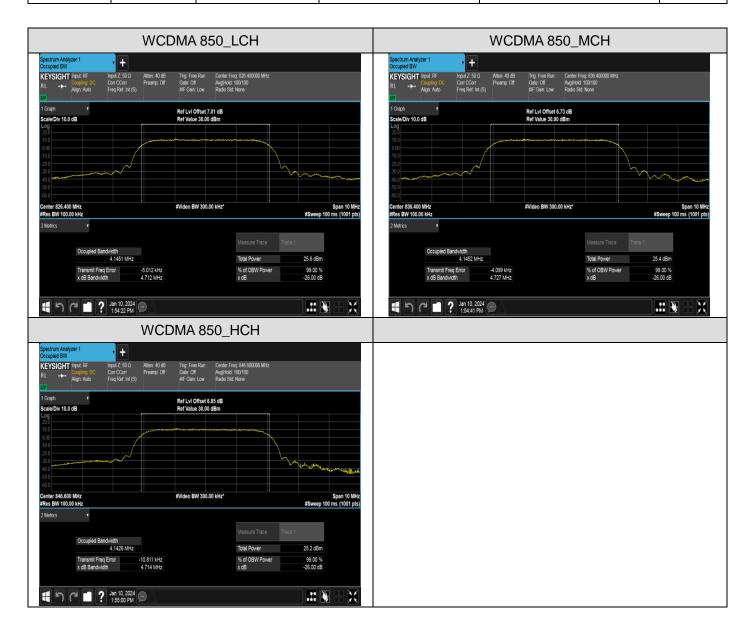

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.


The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

10.2 Measurement Procedure

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99%
- 2. Occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by
- 3. any intermediate power nulls in the fundamental emission.
- 4. RBW = 1 5% of the expected OBW
- 5. VBW \geq 3 x RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. Sweep = auto couple
- 9. The trace was allowed to stabilize
- 10. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
- 11. 1-5% of the 99% occupied bandwidth observed in Step 7

10.3 Measurement Setup



10.4 Measurement Result

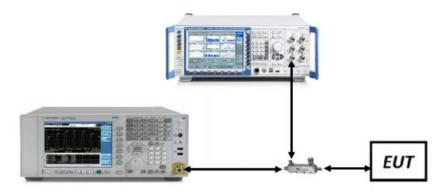
Test Band	Test Mode	Test Channel	Occupied Bandwidth (MHz)	Emission Bandwidth (MHz)	Verdict	
WCDMA 850	UMTS	LCH	4.1451	4.712	Pass	
		UMTS	MCH	4.1452	4.727	Pass
		HCH	4.1426	4.714	Pass	

Page 29 of 43

11. Band Edge Emissions at Antenna Terminal

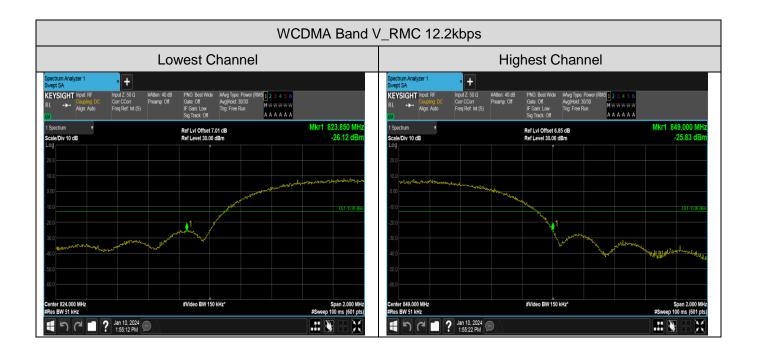
11.1 Provisions Applicable

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


11.2 Measurement Procedure

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. $VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points ≥ 2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Note


According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. All measurements were done at 2 channels(low and high operational frequency range.) The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

11.3 Measurement Setup

11.4 Measurement Result

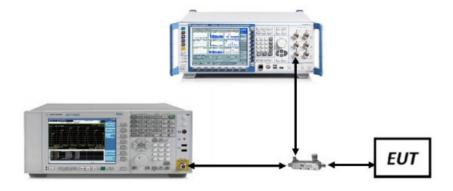
Page 31 of 43

12. Spurious Emissions at Antenna Terminal

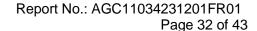
12.1 Provisions Applicable

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

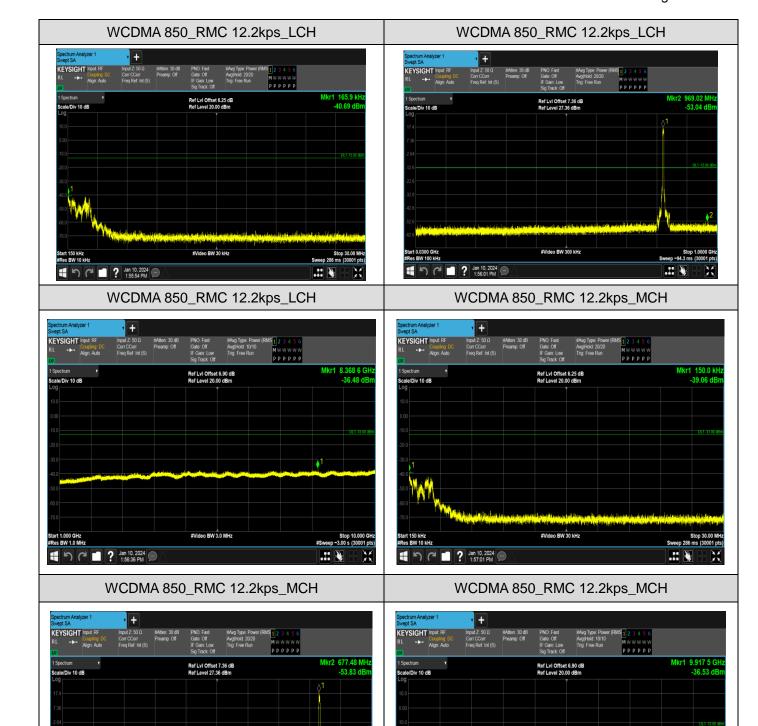
12.2 Measurement Procedure


■ Test Settings (GSM)

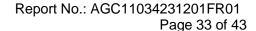
- 1. RBW = 1 MHz
- 2. VBW ≥ 3 MHz
- 3. Detector = Peak
- 4. Trace Mode = max hold
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 x Span / RBW

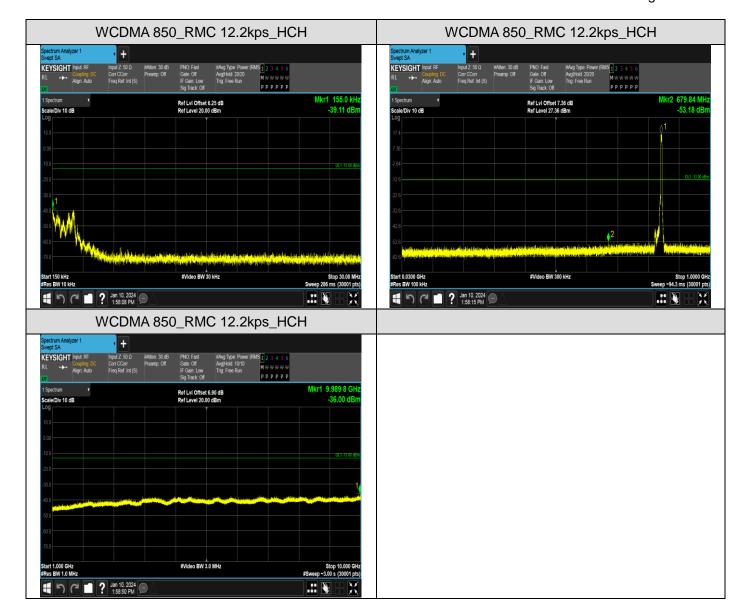

■ Test Settings (WCDMA)

- 1. RBW = 1 MHz
- 2. VBW ≥ 3 MHz
- 3. Detector = RMS
- Trace Mode = trace average
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 x Span / RBW


12.3 Measurement Setup

12.4 Measurement Result





Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

#Video BW 3.0 MHz

Note:

- 1. Below 30MHz no Spurious found and above is the worst mode data.
- 2. As no emission found in standby or receive mode, no recording in this report.

Page 34 of 43

13. Radiated Spurious Emission

13.1. Provisions Applicable

(A) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm.

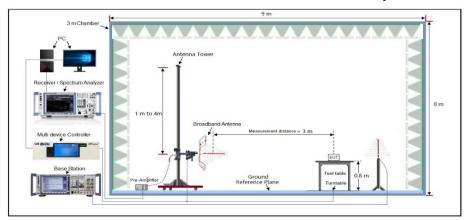
At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

(B) For specific criteria, please refer to the description in section 9.2 of the report for corresponding evaluation.

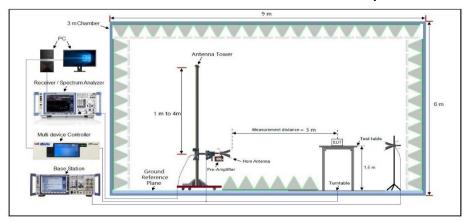
13.2. Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the

Report No.: AGC11034231201FR01 Page 35 of 43


pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- 11. For spurious emissions above 1GHz, a horn antenna is substituted in place of the EUT.
- 12. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.
- 13. The spurious emissions is calculated by the following formula;
 - ♦ Result(dBm) = Pg(dBm) +Factor(dB)
 - → Factor(dB) = Ant Gain(dB)-Cable Loss(dB) + Power Splitter(dB) (Above 1GHz)
 - → Factor(dB) = Ant Gain(dB)-Cable Loss(dB) (Below 1GHz)
- 14. Where: P_{qis} the generator output power into the substitution antenna.
- 15. If the Fundamental frequency is below 1GHz, RF output power has been converted to EIRP.



13.3. Measurement Setup

Radiated Emissions 30MHz to 1GHz Test setup

Radiated Emissions Above 1GHz Test setup

Page 37 of 43

13.4 Measurement Result

The measurement Below 1GHz data as follows:

WCDMA Band V										
	Frequency	SA	Correction	EIRP	Limit	Margin				
No.	Trequency	Reading	factor	Result	Lilling	Wargin	Ant. Pol.			
	(MHz)	(dBm)	(dB/m)	(dBm)	(dBm)	(dB)				
RMC 12.2kbps_ Lowest Channel										
1	159.759	-65.82	15.52	-50.30	-13.00	-37.30	Horizontal			
2	240.144	-62.63	16.75	-45.88	-13.00	-32.88	Horizontal			
3	754.963	-59.69	19.35	-40.34	-13.00	-27.34	Horizontal			
4	46.708	-64.51	10.44	-54.07	-13.00	-41.07	Vertical			
5	433.340	-61.97	17.75	-44.22	-13.00	-31.22	Vertical			
6	502.247	-58.99	18.66	-40.33	-13.00	-27.33	Vertical			
RMC 12.2kbps_ Middle Channel										
1	31.735	-63.32	9.78	-53.54	-13.00	-40.54	Horizontal			
2	159.759	-63.02	13.75	-49.27	-13.00	-36.27	Horizontal			
3	240.144	-62.13	16.75	-45.38	-13.00	-32.38	Horizontal			
4	43.233	-64.07	10.23	-53.84	-13.00	-40.84	Vertical			
5	433.340	-62.05	17.75	-44.30	-13.00	-31.30	Vertical			
6	498.730	-59.16	18.02	-41.14	-13.00	-28.14	Vertical			
			RMC 12.2kbps	_ Highest Cha	annel					
1	159.759	-64.20	13.75	-50.45	-13.00	-37.45	Horizontal			
2	240.144	-62.34	16.75	-45.59	-13.00	-32.59	Horizontal			
3	679.435	-59.80	19.01	-40.79	-13.00	-27.79	Horizontal			
4	43.233	-64.19	10.23	-53.96	-13.00	-40.96	Vertical			
5	433.340	-61.35	17.75	-43.60	-13.00	-30.60	Vertical			
6	498.730	-59.97	18.02	-41.95	-13.00	-28.95	Vertical			

Page 38 of 43

The measurement Above 1GHz data as follows:

WCDMA Band V											
No.	Frequency	SA Reading	Correction factor	EIRP Result	Limit	Margin	Ant. Pol.				
	(MHz)	(dBm)	(dB/m)	(dBm)	(dBm)	(dB)					
RMC 12.2kbps_ Lowest Channel											
1	1652.800	-83.27	23.12	-60.15	-13.00	-47.15	Horizontal				
2	2479.200	-85.52	28.47	-57.05	-13.00	-44.05	Horizontal				
3	1652.800	-83.39	23.12	-60.27	-13.00	-47.27	Vertical				
4	2479.200	-83.38	28.47	-54.91	-13.00	-41.91	Vertical				
	RMC 12.2kbps_ Middle Channel										
1	1672.800	-81.48	23.12	-58.36	-13.00	-45.36	Horizontal				
2	2509.200	-83.88	28.47	-55.41	-13.00	-42.41	Horizontal				
3	1672.800	-83.17	23.12	-60.05	-13.00	-47.05	Vertical				
4	2509.200	-82.25	28.47	-53.78	-13.00	-40.78	Vertical				
RMC 12.2kbps_ Highest Channel											
1	1693.200	-80.48	23.12	-57.36	-13.00	-44.36	Horizontal				
2	2539.800	-82.21	28.47	-53.74	-13.00	-40.74	Horizontal				
3	1693.200	-80.24	23.12	-57.12	-13.00	-44.12	Vertical				
4	2539.800	-80.55	28.47	-52.08	-13.00	-39.08	Vertical				

Note:

- Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.
- 2. Result = Reading + Correct Factor.
- 3. Margin = Result Limit
- 4. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test. Subsequently, only the worst case emissions are reported.

Page 39 of 43

14. Frequency Stability / Variation of Ambient Temperature

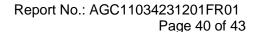
14.1 Provisions Applicable

14.1.1 For Hand carried battery powered equipment

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency. For Part 24 and Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

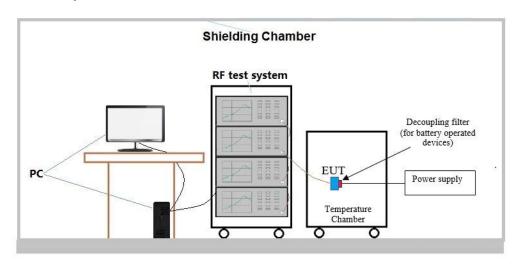

14.1.2 For equipment powered by primary supply voltage

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a
- 2. reference).
- 3. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to
- 4. the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 5. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at
- 6. least one half-hour is provided to allow stabilization of the equipment at each temperature level.

14.2 Measurement Procedure

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30°C. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on channel 20175 for LTE band 4 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 3. Repeat the above measurements at 10℃ increments from -30℃ to +50℃. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 4. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each



voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

- 5. Subject the EUT to overnight soak at +50℃.
- 6. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 7. Repeat the above measurements at 10°C increments from +50°C to -30°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 8. At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure.

14.3 Measurement Setup

Page 41 of 43

14.4 Measurement Result

• Frequency Error vs. Voltage:

Test	Test	Test	Test	Test	Freq. Error	Freq. vs Rated	Limit	Verdict	
Band	Mode	Channel	Temp.	Volt.(V)	(Hz)	(ppm)	(ppm)		
	UMTS	LCH MCH	TN	VL	-0.92	-0.001113	±2.5	Pass	
			TN	VN	-1.11	-0.001343	±2.5	Pass	
			TN	VH	-1.00	-0.001210	±2.5	Pass	
			TN	VL	-0.23	-0.000275	±2.5	Pass	
WCDMA850			TN	VN	-0.22	-0.000263	±2.5	Pass	
			TN	VH	-0.21	-0.000251	±2.5	Pass	
		НСН	TN	VL	-0.19	-0.000224	±2.5	Pass	
			TN	VN	-0.44	-0.000520	±2.5	Pass	
			TN	VH	-0.78	-0.000921	±2.5	Pass	

Page 42 of 43

Frequency Error vs. Temperature:

Test Band	Test Mode	Test Channel	Test Volt.	Test Tem. (°C)	Freq. Error (Hz)	Freq. vs Rated (ppm)	Limit (ppm)	Verdict
			VN	-30	-0.31	-0.000375	±2.5	PASS
			VN	-20	-0.46	-0.000557	±2.5	PASS
			VN	-10	-0.45	-0.000545	±2.5	PASS
MODIMA			VN	0	-0.60	-0.000726	±2.5	PASS
WCDMA	UMTS	LCH	VN	10	-0.72	-0.000871	±2.5	PASS
850			VN	20	-0.29	-0.000351	±2.5	PASS
			VN	30	-0.50	-0.000605	±2.5	PASS
			VN	40	-0.68	-0.000823	±2.5	PASS
			VN	50	-0.51	-0.000617	±2.5	PASS
	UMTS	МСН	VN	-30	-0.44	-0.000532	±2.5	PASS
			VN	-20	-0.50	-0.000605	±2.5	PASS
			VN	-10	-0.59	-0.000714	±2.5	PASS
MCDMA			VN	0	-0.41	-0.000496	±2.5	PASS
WCDMA 850			VN	10	-0.41	-0.000496	±2.5	PASS
650			VN	20	-0.66	-0.000799	±2.5	PASS
			VN	30	-0.59	-0.000705	±2.5	PASS
			VN	40	-0.74	-0.000885	±2.5	PASS
			VN	50	-0.39	-0.000466	±2.5	PASS
	UMTS	НСН	VN	-30	-0.56	-0.000678	±2.5	PASS
			VN	-20	-0.54	-0.000653	±2.5	PASS
			VN	-10	-0.49	-0.000593	±2.5	PASS
MCDMA			VN	0	-0.67	-0.000811	±2.5	PASS
WCDMA 850			VN	10	-0.58	-0.000702	±2.5	PASS
			VN	20	-0.40	-0.000484	±2.5	PASS
			VN	30	-0.43	-0.000520	±2.5	PASS
			VN	40	-0.35	-0.000424	±2.5	PASS
			VN	50	-0.39	-0.000472	±2.5	PASS

Page 43 of 43

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC11034231201AP01

Appendix II: Photographs of EUT

Refer to the Report No.: AGC11034231201AP02

----End of Report----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.