

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

1. Set RBW = 100 kHz.

- 2. Set the video bandwidth (VBW) \ge 3 xRBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Page 49 of 64

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX Mode-ANT1-Worst mode		

	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Resu
	2412	10.065	>500	Pase
802.11b	2437	10.091	>500	Pas
	2462	10.106	>500	Pase
	2412	13.82	>500	Pass
802.11g	2437	11.943	>500	Pase
	2462	13.206	>500	Pase
	2412	11.334	>500	Pase
802.11n20	2437	16.292	>500	Pase
	2462	13.809	>500	Pass
	2422	33.858	>500	Pass
802.11n40	2437	32.542	>500	Pas
	2452	33.691	>500	Pas

Test plot as follows:

ter Freq 2.412000000 GH:

nter 2.412 GHz s BW 100 kHz

Occupied Bandwidth

Transmit Freg Error

13.398 MHz

67.243 kHz

10.06 MHz

Ref Offset 2.01 dB Ref 22.01 dBm

Center Freq: 2.4 Trig: Free Run

#VBW 300 kHz

11.2 dBm

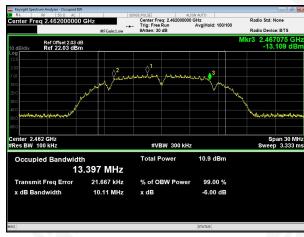
99.00 %

-6.00 dE

otal Power

% of OBW Power


802.11g



Radio Std: No

2.4171 (-12.966 d

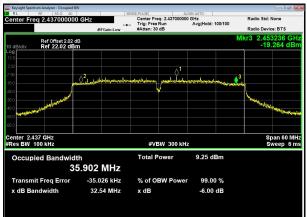
Span 30 MH Sweep 3.333 m

Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



Highest channel





801.11n40

Middle channel

enter Freq 2.462000000 GHz Radio Std: None Center Freq: 2.462000000 GHz Trig: Free Run Avg ld: 100/100 Radio Device: BTS Ref Offset 2.03 dB Ref 22.03 dBm 15.604 **♦**³ enter 2.462 GHz Res BW 100 kHz Span 30 MH Sweep 3.333 m #VBW 300 kHz Total Power 9.09 dBm Occupied Bandwidth 17.617 MHz 3.354 kHz 99.00 % nit Freq Error % of OBW Power 13.81 MHz -6.00 dB x dB

Highest channel RL RF 50 Ω AC Center Freq 2.452000000 GHz Radio Std: None Center Freq: 2.452000000 GHz Trig: Free Run Avgl old: 100/100 Radio Device: BTS Ref Offset 2.02 dB Ref 22.02 dBm enter 2.452 GHz Res BW 100 kHz Span 60 MH Sweep 6 m #VBW 300 kHz Total Power 9.55 dBm Occupied Bandwidth 35.925 MHz -18.674 kHz Transmit Freq Error % of OBW Pow 99.00 % 33.69 MHz -6.00 dB dB Bandwi x dB

Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔀 zkt@zkt-lab.com

🔬 www.zkt-lab.com

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES/LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS		

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

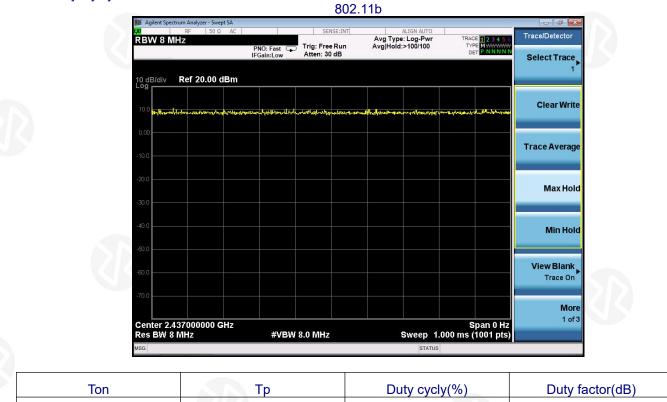
8.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	AC 120V/60Hz

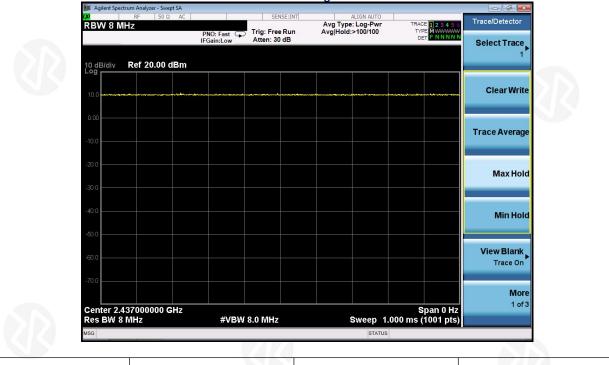
Test CH	802.11b		802.11g		Limit(dBm)	Result
	ANT1	ANT2	ANT1	ANT2		
Lowest	9.307	9.187	10.626	10.084		
Middle	9.487	9.026	10.578	10.117	30.00	Pass
Highest	9.399	9.149	10.386	10.126		

	Peak Output Power (dBm)							Total power(dBm)		
Test CH		n(HT20) Bm)		n(HT40) Bm)		n(HT20) W)	802.11r (m	n(HT40) W)	802.11n (HT20) (dBm)	802.11n (HT40) (dBm)
/	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2	/	/
Lowest	8.493	9.302	8.572	9.436	7.068	8.515	7.198	8.782	11.926	12.035
Middle	8.442	9.348	8.553	9.557	6.986	8.606	7.166	9.030	11.929	12.094
Highest	8.587	9.316	8.568	9.498	7.223	8.543	7.191	8.908	11.977	12.068

Frequency	Output Power	Antenna gain	EIRP
(MHz)	(dBm)	(dBi)	(dBm)
Lowest	9.307	2.5	11.807
Middle	9.487	2.5	11.987
Highest	9.399	2.5	11.899
Lowest	10.626	2.5	13.126
Middle	10.578	2.5	13.078
Highest	10.386	2.5	12.886
Lowest	11.926	5.51	17.436
Middle	11.929	5.51	17.439
Highest	11.977	5.51	17.487
Lowest	12.035	5.51	17.545
Middle	12.094	5.51	17.604
Highest	12.068	5.51	17.578
	(MHz) Lowest Middle Highest Lowest Middle Highest Lowest Middle Highest Lowest Middle	(MHz) (dBm) Lowest 9.307 Middle 9.487 Highest 9.399 Lowest 10.626 Middle 10.578 Highest 10.386 Lowest 11.926 Middle 11.925 Middle 11.929 Highest 12.035 Middle 12.094	(MHz) (dBm) (dBi) Lowest 9.307 2.5 Middle 9.487 2.5 Highest 9.399 2.5 Lowest 10.626 2.5 Middle 10.578 2.5 Middle 10.578 2.5 Highest 10.386 2.5 Lowest 11.926 5.51 Middle 11.929 5.51 Highest 11.977 5.51 Lowest 12.035 5.51 Middle 12.094 5.51



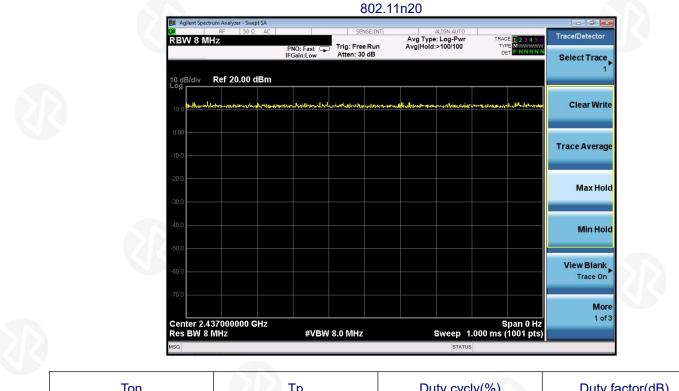
0.00


100.00

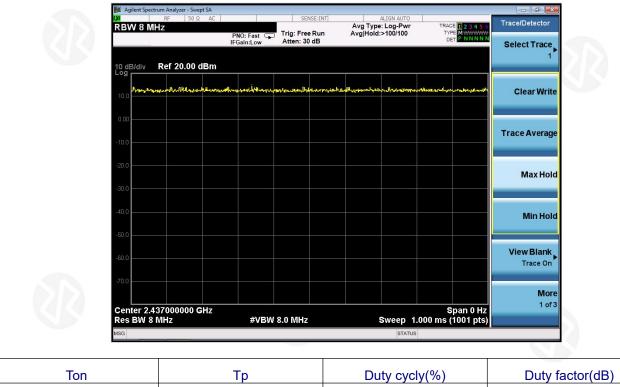
100.00%

100.00

Ton	Тр	Duty cycly(%)	Duty factor(dB)
100.00	100.00	100.00%	0.00


Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

T



Project No.:ZKT-240705L7755E Page 55 of 64

Ton	Тр	Duty cycly(%)	Duty factor(dB)
100.00	100.00	100.00%	0.00

802.11n40

Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

100.00

100.00

昌

100.00%

0.00

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

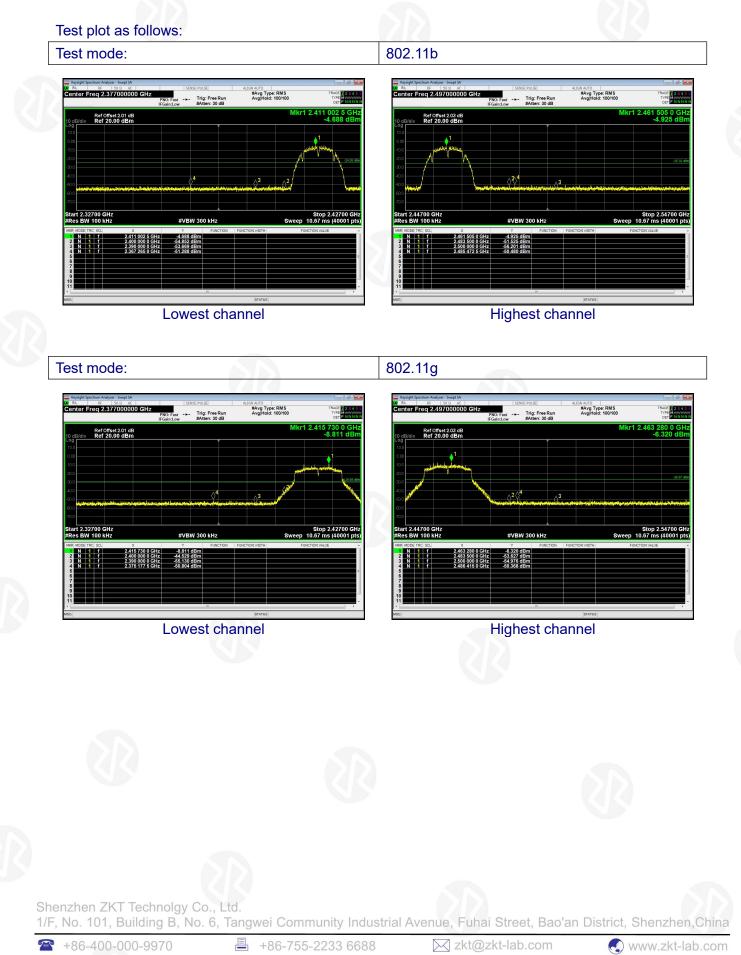
in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

9.2 TEST PROCEDURE Using the following spectrum analyzer setting: A) Set the RBW = 100KHz. B) Set the VBW = 300KHz. C) Sweep time = auto couple. D) Detector function = peak. E) Trace mode = max hold. F) Allow trace to fully stabilize. 9.3 DEVIATION FROM STANDARD No deviation.

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Pre-test the EUT in continuous transmitting mode with setup as stand-alone in only ANT1 transmits and only ANT2 transmits, found the worst case is ANT1 transmit and report the data.

Project No.:ZKT-240705L7755E Page 58 of 64

Test mode:

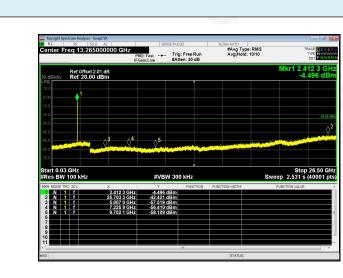
Test mode:

#Avg Type: RMS Avg|Hold: 100/100 ter Freq 2.377000000 GHz 10.5 ---- Trig: Free Run Ref Offset 2.01 dB Ref 20.00 dBm Stop 2.42700 G 10.67 ms (40001 p -9.174 de -43.247 de -54.214 de 2.408 257 5 GH2 2.400 000 0 GHz 2.390 000 0 GHz 2.338 010 0 GHz Lowest channel

ter Freq 2.497000000 GHz #Avg Type: RMS Avg|Hold: 100/100 Trig: Free Run Ref Offset 2.03 dB Ref 20.00 dBm Stop 2.54700 GI 2.463 270 0 GHz 2.483 500 0 GHz 2.500 000 0 GHz 2.496 557 5 GHz -6.258 dBm -55.049 dBm -55.873 dBm **Highest channel**

802.11n(HT40)

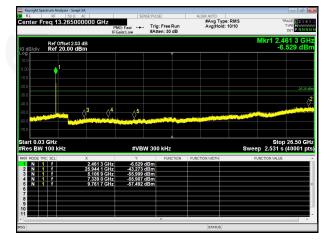
802.11n(HT20)



Pre-test the EUT in continuous transmitting mode with setup as stand-alone in only ANT1 transmits and only ANT2 transmits, found the worst case is ANT1 transmit and report the data.

Test plot as follows:

802.11b


Lowest channel

Middle channel

enter	Freq	50 Ω AC 13.2650000	PN		g: Free Run tten: 30 dB	ALIGN AUTO #Avg Type: Avg Hold: *	RMS 10/10	TRACE 2 3 4 TYPE MWWW DET PINNN
10 dB/dit	Ref v Rei	Offset 2.02 dB f 20.00 dBm					Mkr1	2.436 1 GH -5.282 dB
10.0								
0.00		1						
10.0								
20.0								
-30.0								
-40.0								
-50.0		A3					and the second	A STREET
60.0		Marrie Harrison	Markin V. I.		a chaite de state	and the second se	Statement Street	
		Constant of the local division of the local		and a state of the state				
-70.0								
Start 0. Res B				#VBW 30	IO kHz		Sweep 2.5	Stop 26.50 Gi i31 s (40001 p
Start 0. #Res B	W 100	kHz ×		Y	FUNCTION	FUNCTION WIDTH	Sweep 2.5	i31 s (40001 p
Start 0. #Res B MKR MODE	W 100	kHz ×	2.436 1 GHz	۲ -5.282 dBm	FUNCTION	FUNCTION WIDTH	Sweep 2.5	i31 s (40001 p
Start 0. #Res B MKR MODE 1 N 2 N 3 N	W 100	KHz ×	2.436 1 GHz 6.081 1 GHz 4.856 8 GHz	Y -5.282 dBm -42.645 dBm -56.743 dBm	FUNCTION	FUNCTION WIDTH	Sweep 2.5	i31 s (40001 p
Start 0. #Res B MKR MODE	W 100	KHz ×	2.436 1 GHz 6.081 1 GHz	Y -5.282 dBm -42.645 dBm -56.743 dBm -56.745 dBm	FUNCTION	FUNCTION WIDTH	Sweep 2.5	i31 s (40001 p
Start 0. #Res B MKR MODE 1 N 2 N 3 N 4 N 5 N 6	W 100 TRC SCL 1 f 1 f 1 f 1 f	KHz ×	2.436 1 GHz 6.081 1 GHz 4.856 8 GHz 7.245 7 GHz	Y -5.282 dBm -42.645 dBm -56.743 dBm	FUNCTION	FUNCTION WOTH	Sweep 2.5	i31 s (40001 p
Start 0. #Res B MKR MODE 1 N 2 N 3 N 4 N 5 N 6 7 8	W 100 TRC SCL 1 f 1 f 1 f 1 f	KHz ×	2.436 1 GHz 6.081 1 GHz 4.856 8 GHz 7.245 7 GHz	Y -5.282 dBm -42.645 dBm -56.743 dBm -56.745 dBm	FUNCTION	FUNCTION WIDTH	Sweep 2.5	i31 s (40001 p
Start 0. #Res B MKR MODE 1 N 2 N 3 N 4 N 5 N 6 7 7 8 9	W 100 TRC SCL 1 f 1 f 1 f 1 f	KHz ×	2.436 1 GHz 6.081 1 GHz 4.856 8 GHz 7.245 7 GHz	Y -5.282 dBm -42.645 dBm -56.743 dBm -56.745 dBm	FUNCTION	FUNCTION WIDTH	Sweep 2.5	i31 s (40001 p
Start 0. #Res B MKR MODE 1 N 2 N 3 N 4 N 5 N 6 7 8	W 100 TRC SCL 1 f 1 f 1 f 1 f	KHz ×	2.436 1 GHz 6.081 1 GHz 4.856 8 GHz 7.245 7 GHz	Y -5.282 dBm -42.645 dBm -56.743 dBm -56.745 dBm	FUNCTION	FUNCTION WIDTH	Sweep 2.5	Stop 26.50 Gi 31 s (40001 pi value

Highest channel

Lowest channel

Ref 20.0	JO dBm					-11.002 u	-
<u> </u>							
_							
						-28.3	3 dBn
							2
							\rightarrow
1.000		5				Annual states and the second states	
	Y Y	Y I		The state of the state of the state	and the second	Nice and a state of the state o	
			Statement of the state	other in the local division in the local div			
							_
Hz						Stop 26.50 (GHZ
		#VBW	300 kHz		Swee	Stop 26.50 (p. 2.531 s (40001	GHZ pts)
00 kHz			300 kHz			p 2.531 s (40001	GHz pts)
SCL	x	Y	FUNCTION	FUNCTION WIDTH		Stop 26.50 (p 2.531 s (40001	GHZ pts)
SCL	2.416 3 GHz	ې -11.062 de	FUNCTION	FUNCTION WIDTH		p 2.531 s (40001	GHZ pts)
00 kHz scl f	2.416 3 GHz 26.101 0 GHz	Y -11.062 dE -43.420 dE	FUNCTION 3m	FUNCTION WIDTH		p 2.531 s (40001	SHZ pts)
DO KHZ SCL f f	2.416 3 GHz 26.101 0 GHz 4.724 5 GHz	-11.062 dE -43.420 dE -57.187 dE	FUNCTION Bm Bm	FUNCTION WIDTH		p 2.531 s (40001	SHZ pts)
00 kHz scl f	2.416 3 GHz 26.101 0 GHz	Y -11.062 dE -43.420 dE	FUNCTION Bm Bm Bm Bm	FUNCTION WIDTH		p 2.531 s (40001	SHz pts)
DO KHZ SCL f f f	2.416 3 GHz 26.101 0 GHz 4.724 5 GHz 7.343 7 GHz	Y -11.062 dE -43.420 dE -57.187 dE -56.248 dE	FUNCTION Bm Bm Bm Bm	FUNCTION WIDTH		p 2.531 s (40001	SHz pts)
DO KHZ SCL f f f	2.416 3 GHz 26.101 0 GHz 4.724 5 GHz 7.343 7 GHz	Y -11.062 dE -43.420 dE -57.187 dE -56.248 dE	FUNCTION Bm Bm Bm Bm	FUNCTION WIDTH		p 2.531 s (40001	GHz pts)
DO KHZ SCL f f f	2.416 3 GHz 26.101 0 GHz 4.724 5 GHz 7.343 7 GHz	Y -11.062 dE -43.420 dE -57.187 dE -56.248 dE	FUNCTION Bm Bm Bm Bm	FUNCTION WIDTH		p 2.531 s (40001	GHz pts)
DO KHZ SCL f f f	2.416 3 GHz 26.101 0 GHz 4.724 5 GHz 7.343 7 GHz	Y -11.062 dE -43.420 dE -57.187 dE -56.248 dE	FUNCTION Bm Bm Bm Bm	FUNCTION WIDTH		p 2.531 s (40001	GHZ pts)
DO KHZ SCL f f f	2.416 3 GHz 26.101 0 GHz 4.724 5 GHz 7.343 7 GHz	Y -11.062 dE -43.420 dE -57.187 dE -56.248 dE	FUNCTION Bm Bm Bm Bm	FUNCTION WIDTH		p 2.531 s (40001	GHZ pts)
DO KHZ SCL f f f	2.416 3 GHz 26.101 0 GHz 4.724 5 GHz 7.343 7 GHz	Y -11.062 dE -43.420 dE -57.187 dE -56.248 dE	FUNCTION Bm Bm Bm Bm	FUNCTION WIDTH		p 2.531 s (40001	GHZ pts)
00 kHz	2.416 3 GHz 26.101 0 GHz 4.724 5 GHz 7.343 7 GHz	Y -11.062 dE -43.420 dE -57.187 dE -56.248 dE	FUNCTION 3m 3m 3m 3m 3m	FUNCTION WIDTH		p 2.531 s (40001	GHz pts)

#Avg Type: RMS Avg|Hold: 10/10

 Korjajt promini kong.u
 So Q AC
 Senservices

 Inter Freq 13.265000000 GHz PN0: Fast FGain:Low
 Trig: Free Run #Atten: 30 dB

Offset 2.01 dB

Middle channel

RL											
nter F	RF req 1	50 Ω AC 3.265000	000 GHz		ENSE:PUU	g: Free Run	ALIGN	Avg Type	RMS		TRACE
				PNO: Fast		ten: 30 dB	^	wginoid.	10/10		DET P N
B/div	Ref C	offset 2.02 di 20.00 dBn	B							Mkr1 2. -10	437 4 0 0.957 d
	1101					Ť					
	•										
— ·											
		0 ³	<u></u>	4 0 ⁵				مر دار زمر ا	and of a set of the	in the second	
-	-	and a state		the second s				and the state of the	and the particular		
		and an other states									
		Hz		#\/E	314/ 30	0 kHz			Swi	Sto	p 26.50
s BW	100 k		x	#VE	3W 30	0 kHz	FUNCTION	WDTH	Swe	Sto eep 2.531 s	6 (40001
S BW	100 k		2.437 4 GHz	۲ -10.95	7 dBm		FUNCTION	WIDTH	Swe	eep 2.531	6 (40001
S BW	100 k		2.437 4 GHz 26.157 2 GHz	-10.95 -43.30 -57.12	7 dBm 0 dBm 6 dBm		FUNCTION	WDTH	Swe	eep 2.531	6 (40001
SBW MODE TR N 1 N 1 N 1 N 1	100 k RC SCL f		2.437 4 GHz 26.157 2 GHz 4.778 1 GHz 7.497 8 GHz	-10.95 -43.30 -57.12 -56.53	7 dBm 0 dBm 6 dBm 3 dBm		FUNCTION	WIDTH	Swe	eep 2.531	6 (40001
S BW	100 k RC SCL f		2.437 4 GHz 26.157 2 GHz 4.778 1 GHz	-10.95 -43.30 -57.12 -56.53	7 dBm 0 dBm 6 dBm 3 dBm		FUNCTION	WDTH	Swe	eep 2.531	6 (40001
SBW MODE TR N 1 N 1 N 1 N 1	100 k RC SCL f		2.437 4 GHz 26.157 2 GHz 4.778 1 GHz 7.497 8 GHz	-10.95 -43.30 -57.12 -56.53	7 dBm 0 dBm 6 dBm 3 dBm		FUNCTION	WIDTH	Swe	eep 2.531	6 (40001
SBW MODE TR N 1 N 1 N 1 N 1	100 k RC SCL f		2.437 4 GHz 26.157 2 GHz 4.778 1 GHz 7.497 8 GHz	-10.95 -43.30 -57.12 -56.53	7 dBm 0 dBm 6 dBm 3 dBm		FUNCTION	WIDTH	Swe	eep 2.531	6 (40001
SBW MODE TR N 1 N 1 N 1 N 1	100 k RC SCL f		2.437 4 GHz 26.157 2 GHz 4.778 1 GHz 7.497 8 GHz	-10.95 -43.30 -57.12 -56.53	7 dBm 0 dBm 6 dBm 3 dBm		FUNCTION	WIDTH	Swe	eep 2.531	6 (40001
MODE TR N 1 N 1 N 1 N 1	100 k RC SCL f		2.437 4 GHz 26.157 2 GHz 4.778 1 GHz 7.497 8 GHz	-10.95 -43.30 -57.12 -56.53	7 dBm 0 dBm 6 dBm 3 dBm		FUNCTION	WIDTH	Swe	eep 2.531	6 (40001

Highest channel

RL	1		50 Ω A0	2		SENSE:	PULSE		ALIGN				
Center	Fre	q 13.2	65000	000 GHz	PNO: Fast FGain:Low		Frig: Free Atten: 30			Avg Typ Avg Hold			TRACE 2 3 TYPE MWW DET PINN
10 dB/di	v	Ref Offse Ref 20.	t 2.03 d 00 dBr	B								Mkr1 2 -1	.458 0 G 0.213 di
10.0													
0.00		1-											
-10.0													
-20.0													
-30.0													A.
-40.0				3									X
-50.0 -60.0	de el Alt		Ŷ		(5		all when					
70.0								1					
Start 0. #Res B					;	WBW 3	300 kHz				Swee	St p 2.531	op 26.50 C s (40001
MKR MODE		SCL f		х		Y		CTION	FUNCTION	I WIDTH	FL	INCTION VAL	UE
1 N 2 N	1	f .		2.458 0 GH 25.309 5 GH	-43	213 dBr 253 dBr	n						
	1	f		4.872 7 GH 7.370 8 GH	-56	596 dBr 826 dBr							
3 N	1			9.717 4 GH	-57	.017 dBr	n						
4 N 5 N													
4 N 5 N 6 7													
4 N 5 N 6 7 8 9													
4 N 5 N 6 7													

Lowest channel

Middle channel

		nalyzer - Swept SA									
RL enter F	RF red 1	50 Q AC	00 GHz	SEM	ISE:PULSE		ALIG	#Avg Typ	e: RMS		TRACE 1 2 3 4
				PNO: Fast FGain:Low	Trig: Free #Atten: 30			Avg Hold	10/10		DET P N N N
0 dB/div		Offset 2.02 dE 20.00 dBm									2.439 4 GI 10.756 dB
og 10.0	1101										
0.00	-	1									
10.0	-1										
20.0											-29.04
40.0											
50.0		0	³ 0 ⁴	5				المعلي القرير			
50.0 		the second						mad (Land	a sacre and		
tart 0.03 Res BW				#VB\	N 300 kHz				Sw	S eep 2.53	top 26.50 G 1 s (40001 p
KR MODE TI	RC SCL)		Y		CTION	FUNCTIO	ON WIDTH		FUNCTION VA	LUE
1 N	- 1		2.439 4 GHz 6.296 8 GHz								
3 N	1		5.071 9 GHz	-57.230	dBm						
4 N	f		7.285 4 GHz								
5 N 1	f		9.693 5 GHz	-57.087	dBm		-				
7											
8											
9											
1											
Ú.,					н						
3								STATUS			

#Avg Type: RMS Avg|Hold: 10/10

> Stop 26.50 C ep 2.531 s (40001

PNO: Fast ---- Trig: Free Run FGain:Low #Atten: 30 dB

#VBW 300 kHz

-12.250 dBm -43.383 dBm -57.698 dBm -56.606 dBm -56.123 dBm

2.416 3 GHz 5.953 4 GHz 4.735 7 GHz 7.286 8 GHz 9 690 9 GHz

Center Freq 13.265000000 GHz

Ref Offset 2.01 dB Ref 20.00 dBm

Highest channel

			0Ω AC		SE	NSE:PULS			AUTO				-
lenter	Fre	eq 13.26	5000000 G	PNC	:Fast		Free Run en: 30 dB		#Avg Type Avg Hold:	10/10		TYPE	1234 M PNNN
10 dB/di	v	Ref Offset Ref 20.0	2.03 dB 0 dBm								Mkr'	2.461	
10.0													
0.00		↓ ¹											
-20.0													
-30.0													-27.33 6
-40.0			.3	. 4	۸5							مر معرف	- The second
				-0					A second second				
60.0		and star	And Provident	the bloc	the second second	-	and the state	-		des adaption of the			
-60.0					ter Arte					dand in the			
-70.0					жи #VB	W 300	kHz				veep 2.5	Stop 26 531 s (40	6.50 Gł 0001 pi
-70.0 Start 0. #Res B	W 1	SCL SCL	×		Y		kHz FUNCTION	FUNCTION			veep 2.5	531 s (40	5.50 GH 0001 pt
-70.0 Start 0. #Res B MKR MODE	W 1	SCL	2.461	3 GHz	Y -10.523	dBm		FUNCTION				531 s (40	5.50 GF 0001 pt
-70.0 Start 0. #Res B NKR MODE 1 N 2 N 3 N	W 1 E TRC 1	90 kHz SCL f f	2.461 25.854 4.926	8 GHz 3 GHz	Y -10.523 -43.572 -56.996	dBm dBm dBm		FUNCTION				531 s (40	5.50 GI 0001 pt
-70.0 Start 0. #Res B MKR MODE 1 N 2 N 3 N 4 N	E TRC	SCL f f f f	2.461 25.854 4.926 7.219	8 GHz 3 GHz 3 GHz	Y -10.523 -43.572 -56.996 -57.026	dBm dBm dBm dBm		FUNCTION				531 s (40	5.50 GI 0001 pt
-70.0 Start 0. #Res B NKR MODE 1 N 2 N 3 N	W 1 E TRC 1	SCL f f f f	2.461 25.854 4.926 7.219	8 GHz 3 GHz	Y -10.523 -43.572 -56.996	dBm dBm dBm dBm		FUNCTION				531 s (40	5.50 GF 0001 pt
700 Start 0. #Res B NKR MODE 1 N 2 N 3 N 4 N 5 N 6 7 8	E TRC	SCL f f f f	2.461 25.854 4.926 7.219	8 GHz 3 GHz 3 GHz	Y -10.523 -43.572 -56.996 -57.026	dBm dBm dBm dBm		FUNCTION				531 s (40	5.50 GH
70.0 Start 0. #Res B NMR MODE 1 N 2 N 3 N 4 N 5 N 6 7	E TRC	SCL f f f f	2.461 25.854 4.926 7.219	8 GHz 3 GHz 3 GHz	Y -10.523 -43.572 -56.996 -57.026	dBm dBm dBm dBm		FUNCTION				531 s (40	5.50 Gł 0001 pi
-700 Start 0. #Res B MKR MODE 1 N 2 N 3 N 4 N 5 N 6 7 8 9	E TRC	SCL f f f f	2.461 25.854 4.926 7.219	8 GHz 3 GHz 3 GHz	Y -10.523 -43.572 -56.996 -57.026	dBm dBm dBm dBm		FUNCTION				531 s (40	5.50 Gł 0001 pi

Lowest channel

Middle channel

Keysight Spe		ter - Swept SA								
		265000000 GI	PNO: Fast		g: Free Run ten: 30 dB	A	IGN AUTO #Avg Typ Avg[Hold:	: RMS 10/10	r	RACE 234 TYPE M
0 dB/div		set 2.02 dB 1.00 dBm							Mkr1 2.4 -13	30 8 GI .165 dB
10.0 0.00										
0.0										
30.0										
50.0 60.0	-	3 	\$⁴	5				and finded		
70.0										
tart 0.03 Res BW		z		#VBW 30	0 kHz			Swe	Stop ep 2.531 s	26.50 G (40001 p
KR MODE TR	IC SCL	× 2.430 8	GHz -1	Y 3.165 dBm	FUNCTION	FUNC	TION WIDTH		FUNCTION VALUE	
2 N 1 3 N 1	1	26.387 5	GHz -4 GHz -5	3.231 dBm 5.385 dBm						
4 N 1 5 N 1 6	f	7.332 4 9.675 7		5.363 dBm 5.725 dBm						
7 8 9										
1					11					
3							STATUS			

#VBW 300 kHz

-13.572 dBm -42.020 dBm -56.137 dBm -55.494 dBm -57.051 dBm

 Keyleidi Spektrum weiger and W RL
 SF
 59.0 aC
 IStroke-volu-PNO: Fast
 Trig: Free Run #Atten: 30 dB

> 2.416 3 GHz 26.349 8 GHz 5.028 9 GHz 7.382 0 GHz 9.706 8 GHz

Ref Offset 2.02 dB Ref 20.00 dBm #Avg Type: RMS Avg|Hold: 10/10

> Stop 26.50 C ep 2.531 s (40001

Highest channel

Center Freq 13.26500			Free Run en: 30 dB	ALIGN AUTO #Avg Type: Ri Avg[Hold: 7/7	MS TRACE TYPE DET	234 NNN
Ref Offset 2.02 10 dB/div Ref 20.00 dE	dB Sm				Mkr1 2.439 4 -11.361	
10.0						
-10.0						
-20.0						-30.79 d
-40.0						-0
-50.0	3 4	♦5	المعادية والمناطقة	en el en	A CONTRACTOR OF THE OWNER OF THE	
-70.0						
Start 0.03 GHz #Res BW 82 kHz		#VBW 300	kHz		Stop 26.5 Sweep 3.717 s (400	0 GI 01 pi
NKR MODE TRC SCL	X 2.439 4 GHz	Y -11.361 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f	25.652 3 GHz	-43,740 dBm				
3 N 1 f 4 N 1 f 5 N 1 f	4.824 4 GHz 7.285 4 GHz 9.704 1 GHz	-57.511 dBm -57.505 dBm -57.807 dBm				
7 8 9 10						

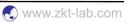
10. ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
15.203 requirement:	
be used with the device. The use of	ned to ensure that no antenna other than that furnished by the responsible party shal f a permanently attached antenna or of an antenna that uses a unique coupling to the r may design the unit so that a broken antenna can be replaced by the user, but the ectrical connector is prohibited.
15.247(c) (1)(i) requirement:	
employ transmitting antennas with di	83.5 MHz band that is used exclusively for fixed. Point-to-point operations may rectional gain greater than 6dBi provided the maximum conducted output power of 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.
EUT Antenna:	
The antennas are Integral antenna, t	he best case gain of the antennas are 2.5dBi, reference to the appendix II for details

Project No.:ZKT-240705L7755E Page 64 of 64

R

11. TEST SETUP PHOTO


Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

***** END OF REPORT ****

