

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202207206F01

TEST Report

Applicant: Mambate us inc

Address of Applicant: 18 Bycknell Dr. East brunswick, NJ, USA 08816

Manufacturer: Shenzhen Ruizu Digital Technology Co., Ltd

Address of 6/F, Building D, KeShang Mei park, Chongqing Road, Fuyong,

Manufacturer: Bao' an District, shenzhen, China

Equipment Under Test (EUT)

Product Name: MP3 Player

Model No.: A09X

Series model: A61, A30X, A31X, A32X, A33X, A34X, A35X, A36X, A37X,

A38X, A39X, A40X, A41, A42, A43, A44, A45, A46, A47, A48, A49, A51PL, A52PL, A53PL, A54PL, A55PL, A57PL, A59PL, A60PL, A61, A62, A69, A80, A81, A82, A85, A86, A89, A90,

A91, A92

Trade Mark: AGPTEK

FCC ID: 2A48J-A09X

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jul.14,2022

Date of Test: Jul.14,2022~Jul.20,2022

Date of report issued: Jul.20,2022

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Jul.20,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Jul.20,2022
	Project Engineer		
Check By:	Bruce Zhu	Date:	Jul.20,2022
	Reviewer		
Approved By :	Kevin Yang	Date:	Jul.20,2022
	Authorized Signature		

2. Contents

			Page
1.	. VEF	RSION	2
2.		NTENTS	
3.	. TES	ST SUMMARY	4
4.	GEN	NERAL INFORMATION	5
	4.1.	GENERAL DESCRIPTION OF EUT	5
	4.2.	Test mode	
	4.3.	DESCRIPTION OF SUPPORT UNITS	7
	4.4.	DEVIATION FROM STANDARDS	
	4.5.	ABNORMALITIES FROM STANDARD CONDITIONS	
	4.6.	TEST FACILITY	
	4.7.	TEST LOCATION	
	4.8.	ADDITIONAL INSTRUCTIONS	7
5.	TES	ST INSTRUMENTS LIST	8
6.	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1.	CONDUCTED EMISSIONS	9
	6.2.	CONDUCTED PEAK OUTPUT POWER	12
	6.3.	20DB EMISSION BANDWIDTH	
	6.4.	FREQUENCIES SEPARATION	
	6.5.	HOPPING CHANNEL NUMBER	19
	6.6.	DWELL TIME	21
	6.7.	BAND EDGE	
	6.7.		
	6.7.	2. Radiated Emission Method	
	6.8.	Spurious Emission	
		Conducted Emission Method	
	6.8.	2. Radiated Emission Method	37
7.	TES	ST SETUP PHOTO	45
8.	. EUT	CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30~1000MHz	3.45 dB	(1)	
Radiated Emission	1~6GHz	3.54 dB	(1)	
Radiated Emission	6~40GHz	5.38 dB	(1)	
Conducted Disturbance 0.15~30MHz 2.66 dB				
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.	

4. General Information

4.1. General Description of EUT

Product Name:	MP3 Player
Model No.:	A09X
Series model:	A61, A30X, A31X, A32X, A33X, A34X, A35X, A36X, A37X, A38X, A39X, A40X, A41, A42, A43, A44, A45, A46, A47, A48, A49, A51PL, A52PL, A53PL, A54PL, A55PL, A57PL, A59PL, A60PL, A61, A62, A69, A80, A81, A82, A85, A86, A89, A90, A91, A92
Test sample(s) ID:	HTT202207206-1(Engineer sample) HTT202207206-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Ceramic Antenna
Antenna gain:	1.75 dBi
Power Supply:	DC 3.7V/500mAh Form Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: CD122 Input: AC100-240V, 50/60Hz, 500mA Output: DC 5V, 2A

Operation	Frequency eacl	h of channel	<u> </u>				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
0	2410MHz	29 2430M	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

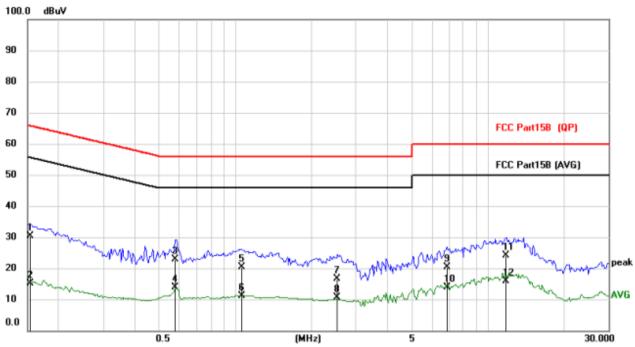
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

<u>J.</u>	1631 III31I UIII6					1
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
		O		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier		8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply Shenzhen Anbiao Instrument Co., Ltd		ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter Shenzhen Anbiao Instrument Co., Ltd		TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

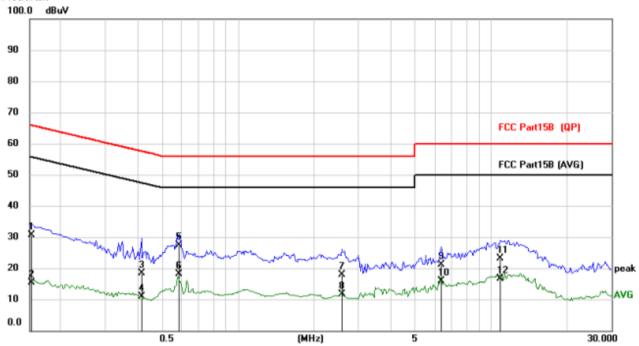
6. Test results and Measurement Data

6.1. Conducted Emissions

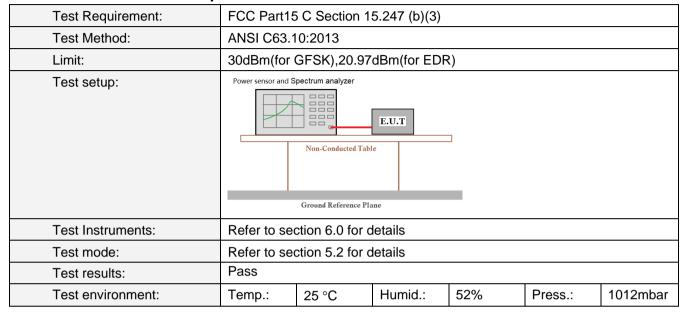

	1. Odnadeta Emissions							
٦	Test Requirement:	FCC Part15	C Section 15.	.207				
	Test Method:	ANSI C63.1	0:2013					
7	Test Frequency Range:	150KHz to 3	B0MHz					
(Class / Severity:	Class B						
F	Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto						
L	_imit:	Frequency range (MHz) Limit (dBuV)						
		•	Quasi-peak Average					
			0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50					
		* Docroscos	5-30 with the loga	rithm of the	frequency	50	0	
-	Test setup:	Decreases	Reference P		nequency.			
7	Test procedure:	Remark EUT Equipment LISN: Line Impede Test table height=0 1. The E.U. line impede 50ohm/50 2. The perip LISN that	Insulation plane Under Test nce Stabilization Netwo 2 8m T and simulated dance stabilization on the coupling in the coupling	EMI Receive ors are conr ation netwo impedance are also co ohm/50uH	nected to the rk (L.I.S.N.). for the measure the the coupling imp	main power this provides uring equipm the main power edance with	s a ent. er through a 50ohm	
		termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.						
٦	Test Instruments:	Refer to sec	tion 6.0 for de	tails				
٦	Test mode:	Refer to sec	tion 5.2 for de	tails				
٦	Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
٦	Test voltage:	AC 120V, 60	OHz					
7	Test results:	Pass						

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



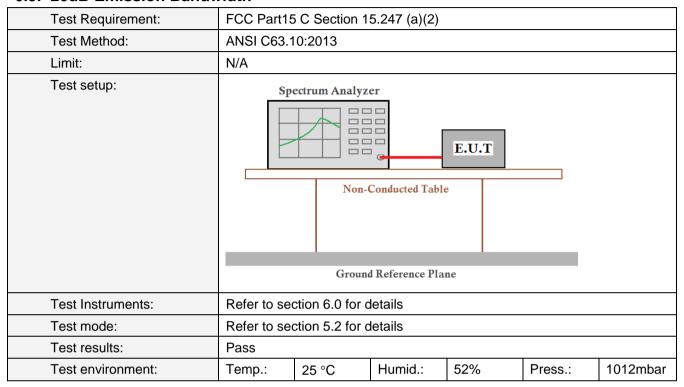
		Reading	Correct	Measure-			
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1539	19.98	10.37	30.35	65.79	-35.44	QP
2	0.1539	4.67	10.37	15.04	55.79	-40.75	AVG
3	0.5790	12.40	10.57	22.97	56.00	-33.03	QP
4 *	0.5790	3.37	10.57	13.94	46.00	-32.06	AVG
5	1.0548	9.53	10.89	20.42	56.00	-35.58	QP
6	1.0548	0.30	10.89	11.19	46.00	-34.81	AVG
7	2.5329	5.89	10.83	16.72	56.00	-39.28	QP
8	2.5329	-0.25	10.83	10.58	46.00	-35.42	AVG
9	6.8883	8.92	11.41	20.33	60.00	-39.67	QP
10	6.8883	2.41	11.41	13.82	50.00	-36.18	AVG
11	11.7944	12.45	11.71	24.16	60.00	-35.84	QP
12	11.7944	4.24	11.71	15.95	50.00	-34.05	AVG


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1524	20.38	10.27	30.65	65.87	-35.22	QP
2		0.1524	5.23	10.27	15.50	55.87	-40.37	AVG
3		0.4152	8.13	10.30	18.43	57.54	-39.11	QP
4		0.4152	0.51	10.30	10.81	47.54	-36.73	AVG
5		0.5829	17.00	10.47	27.47	56.00	-28.53	QP
6	*	0.5829	7.54	10.47	18.01	46.00	-27.99	AVG
7		2.5679	7.15	10.83	17.98	56.00	-38.02	QP
8		2.5679	0.84	10.83	11.67	46.00	-34.33	AVG
9		6.3657	10.25	10.92	21.17	60.00	-38.83	QP
10		6.3657	4.98	10.92	15.90	50.00	-34.10	AVG
11		10.9092	11.47	11.63	23.10	60.00	-36.90	QP
12		10.9092	5.02	11.63	16.65	50.00	-33.35	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

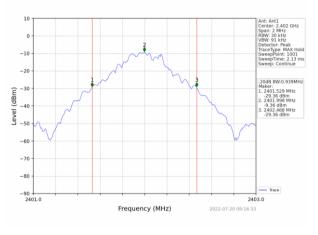
6.2. Conducted Peak Output Power



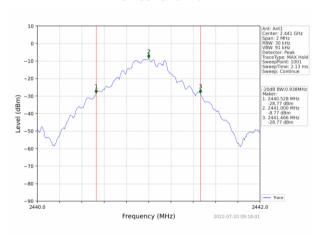
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-6.78		
GFSK	Middle	-6.38	30.00	Pass
	Highest	-6.12		
	Lowest	-4.58		
π/4-DQPSK	Middle	-4.32	20.97	Pass
	Highest	-3.79		
	Lowest	-4.20		
8-DPSK	Middle	-3.93	20.97	Pass
	Highest	-3.43		

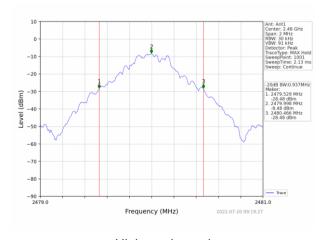
6.3. 20dB Emission Bandwidth


Measurement Data

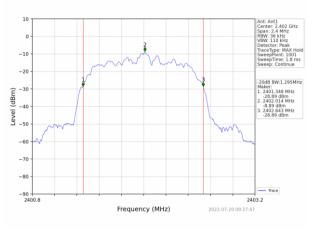
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.939	
GFSK	Middle	0.938	Pass
	Lowest Middle Highest Lowest	0.937	
	Lowest	1.295	
π/4-DQPSK	Middle	1.292	Pass
	Highest	1.332	
	Lowest	1.307	
8-DPSK	Middle	1.308	Pass
	Highest	1.306	

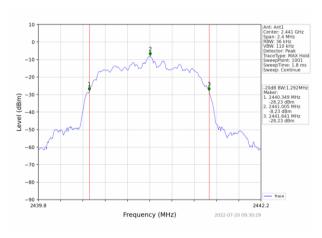


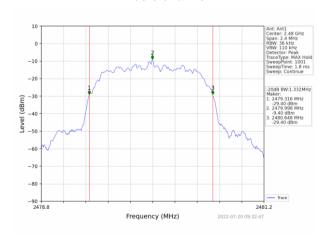
Test plot as follows:


Test mode: GFSK mode

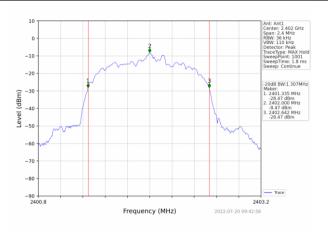
Lowest channel

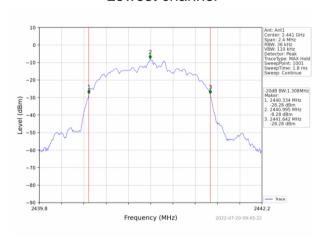

Middle channel

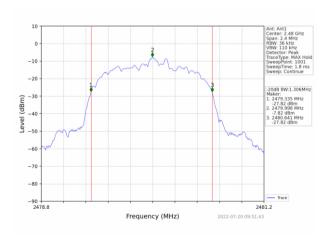

Highest channel


Test mode: π/4-DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

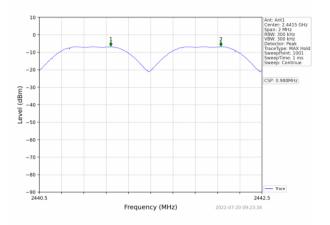
Middle channel

Highest channel

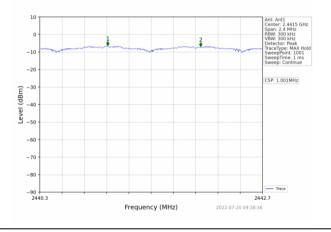
6.4. Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)								
Test Method:		ANSI C63.10:2013							
Receiver setup:	RBW=100I	RBW=100KHz, VBW=300KHz, detector=Peak							
Limit:		GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:	Sp								
Test Instruments:	Refer to se	ection 6.0 for o	details						
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

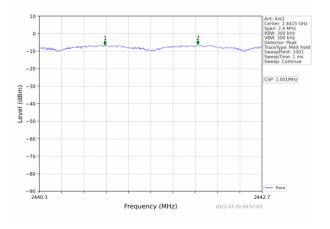
Measurement Data


weasurement Data	<u>a</u>			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	0.988	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.001	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	1.001	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

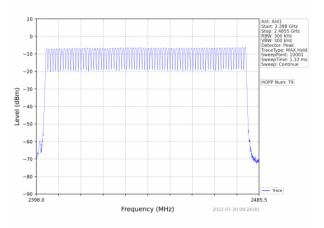

Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

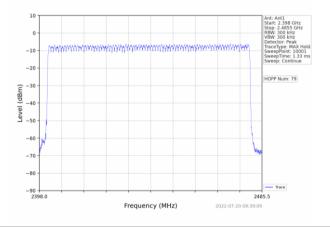
Modulation mode: 8-DPSK

6.5. Hopping Channel Number

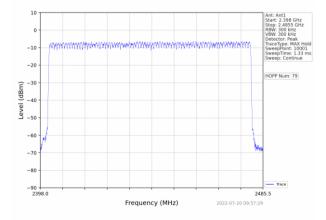
Test Requirement:	FCC Part18	FCC Part15 C Section 15.247 (a)(1)(iii)								
Test Method:	ANSI C63.	ANSI C63.10:2013								
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak								
Limit:	15 channel	S								
Test setup:	Spe	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to se	ction 6.0 for c	letails							
Test mode:	Refer to section 5.2 for details									
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: π/4-DQPSK

Test mode: 8-DPSK

6.6. Dwell Time

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.	ANSI C63.10:2013							
Receiver setup:	RBW=1MH	lz, VBW=1MH	lz, Span=0H	z, Detector=F	Peak				
Limit:	0.4 Second	I							
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.384	122.880	400	Pass
Hopping	DH3	1.640	252.560	400	Pass
Hopping	DH5	2.888	291.688	400	Pass

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

$\pi/4$ -DQPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.396	126.720	400	Pass
Hopping	2DH3	1.650	273.900	400	Pass
Hopping	2DH5	2.896	315.664	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

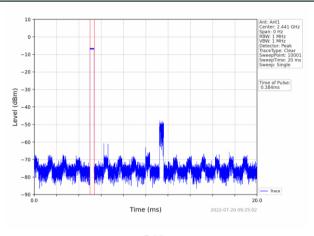
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

8-DPSK mode:

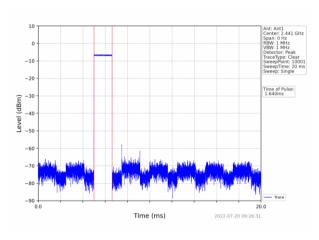
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.398	126.962	400	Pass
Hopping	3DH3	1.648	265.328	400	Pass
Hopping	3DH5	2.900	301.600	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

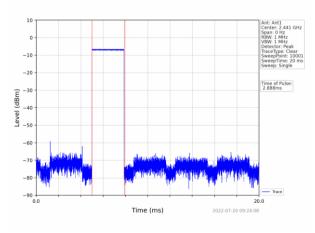
Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

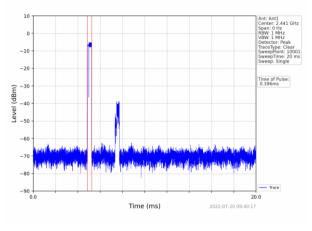

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

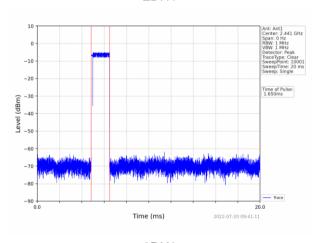


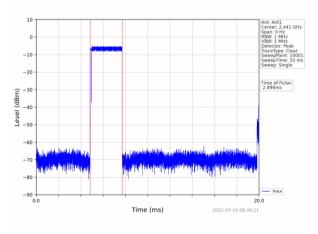
Test plot as follows:


GFSK mode

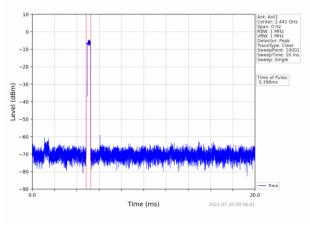


DH3

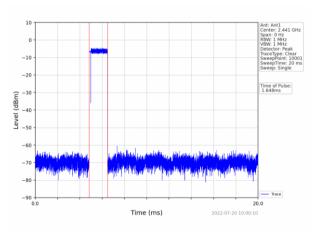


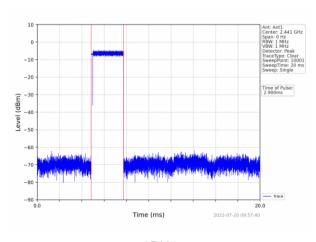

π/4-DQPSK mode

2DH1



2DH3

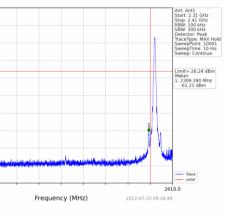


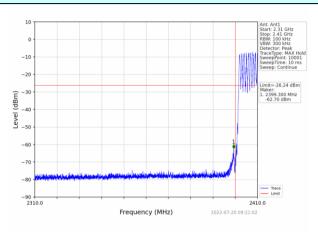

8-DPSK mode

3DH3

6.7. Band Edge

6.7.1. Conducted Emission Method

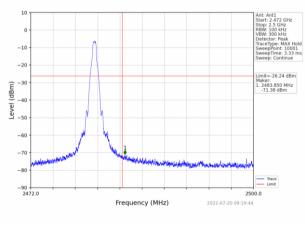

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013								
Receiver setup:	RBW=100k	RBW=100kHz, VBW=300kHz, Detector=Peak							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spec	Spectrum Analyzer E.U.T Non-Conducted Table							
Test Instruments:	Refer to se	ction 6.0 for c	details						
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

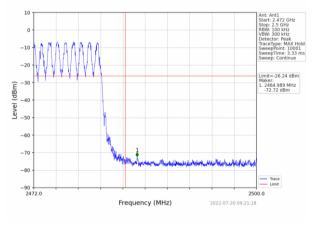


Test plot as follows: GFSK Mode:

Lowest channel

No-hopping mode

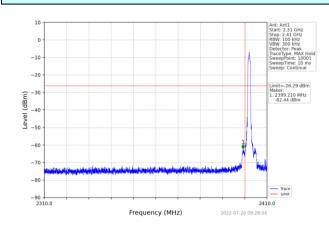

Hopping mode

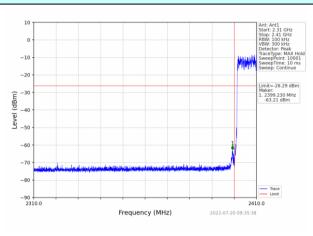

Test channel:

−90 2310.0

(dBm)

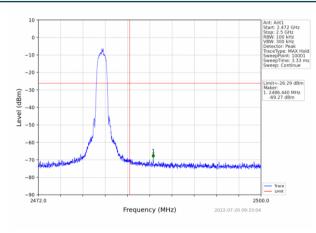
Highest channel

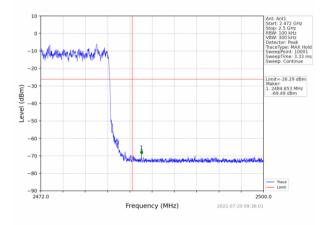

No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel

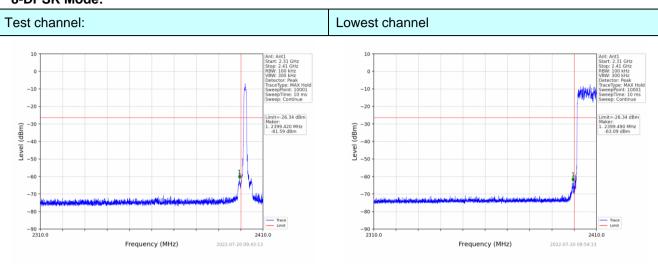



No-hopping mode

Hopping mode

Test channel:

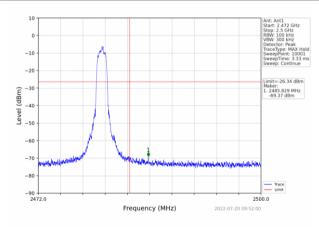
Highest channel



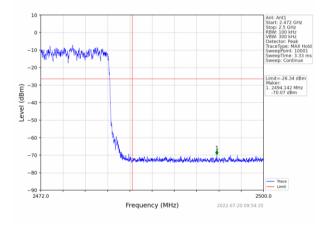
No-hopping mode

Hopping mode

8-DPSK Mode:



No-hopping mode


Hopping mode

Test channel:

Highest channel

Hopping mode

6.7.2. Radiated Emission Method

6.7.2.	Radiated Ei	mission ivie	tnoa										
7	Test Requirement:	FCC Part15	C Secti	on 15.20	9 and 15	5.205							
٦	Test Method:	ANSI C63.1	ANSI C63.10:2013 All of the restrict bands were tested, only the worst band's (2310MHz to										
٦	Test Frequency Range:	All of the re 2500MHz) of				l, only	the wo	rst band	d's (2	2310MHz to			
-	Test site:	Measureme	nt Dista	nce: 3m									
F	Receiver setup:	Frequenc	су [etector	RE	3W	VBW	1	Re	mark			
	·	Above 1GI	Hz	Peak		1Hz	3MH:			k Value			
				Peak		1Hz	10Hz			ge Value			
L	_imit:	Fre	equency		Limit (m @3m	,		mark			
		Abo	ve 1GHz	-		54.0 74.0		A		ge Value k Value			
_	Test setup:					74.0	U		reai	Value			
	rest setup.	Turn Table	? _			Antenna-	eamplifier.						
_	Test Procedure:	1. The EUT	· waa ala	and on the				lo 1 E m	20101	a abaya tha			
		ground a determin 2. The EUT antenna, tower. 3. The ante ground to horizonta measure 4. For each and then and then and the rest-specified 6. If the em limit spece EUT wood	t a 3 me e the po was set which we man heigh and verment. It is suspected the anterior at table in reading receiver d Bandwinission lecified, the land be rejurgin wou	ter cambesition of the assemble as mour that is various the notical policed emissions was turned by the context of the context	er. The sche higher hig	table west race from the top one many value as of the EUT to height to Peak peak pe stope the event by	vas rotadiation. The interface of a value of the eanter was arragrees to be decided Model of the eanter was arragrees to be decided Model of the eanter was arragrees to be decided Model of the eanter was arragrees to be decided Model of the eanter was arragrees to be decided Model of the eanter was arragrees to be decided Model of the eanter was arragrees to be decided model of the earter was arragreed and the earter was arranged and the earter was arragreed and the earter was arragreed and the earter was arranged and the earter was arrang	erence-iriable-her four me field strenna are stanged to a 360 de extrement of the pens that dang peak	degrees on an alloweak vidence.	ving antenna above the above asi-peak or			
	Test Instruments:	Refer to sec	ction 6.0	for detai	ls								
	Test mode:	Refer to sec	ction 5.2	for detai	ls								
	Test results:	Pass								·			
	Test environment:	Temp.:	25 °C	Hu	mid.:	52%)	Press.:	:	1012mbar			

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

	(,						
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	59.03	26.20	5.72	33.30	57.65	74.00	-16.35	peak
2390	45.11	26.20	5.72	33.30	43.73	54.00	-10.27	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	57.84	26.20	5.72	33.30	56.46	74.00	-17.54	peak
2390	44.96	26.20	5.72	33.30	43.58	54.00	-10.42	AVG

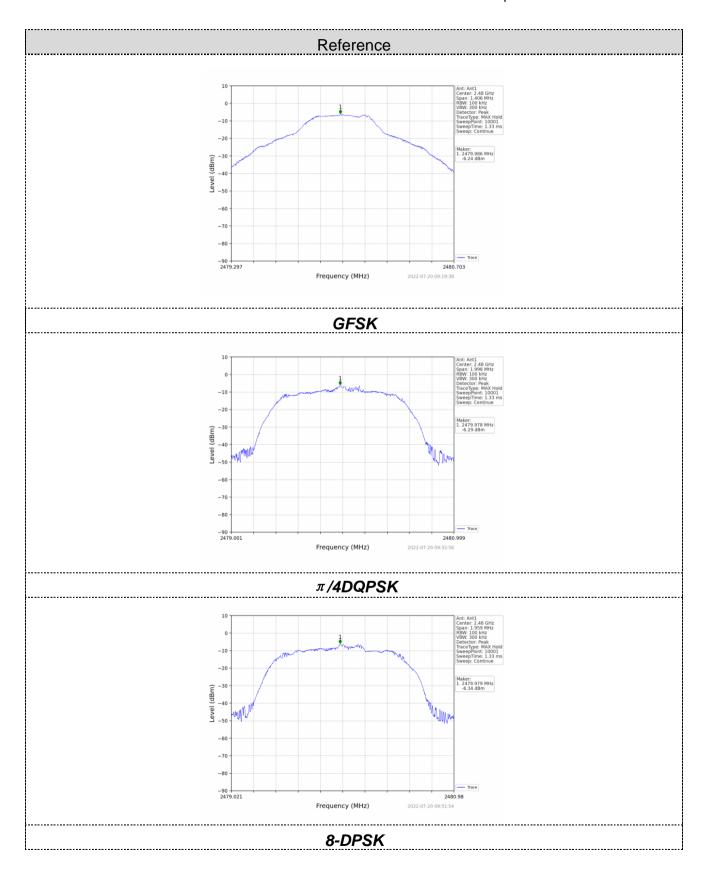
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

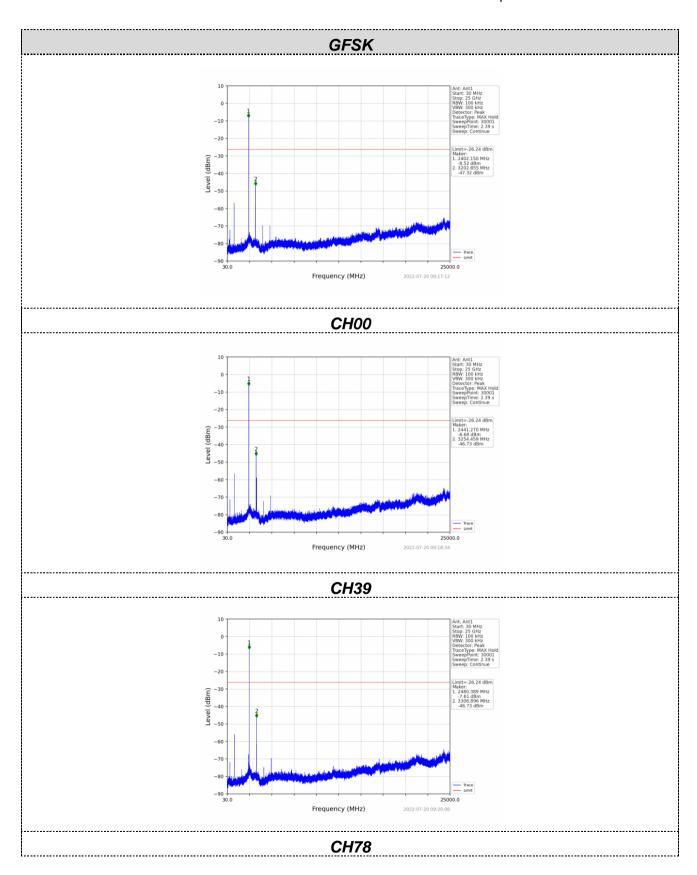
		,						
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	55.36	28.60	6.97	32.70	58.23	74.00	-15.77	peak
2483.5	41.28	28.60	6.97	32.70	44.15	54.00	-9.85	AVG

Vertical:

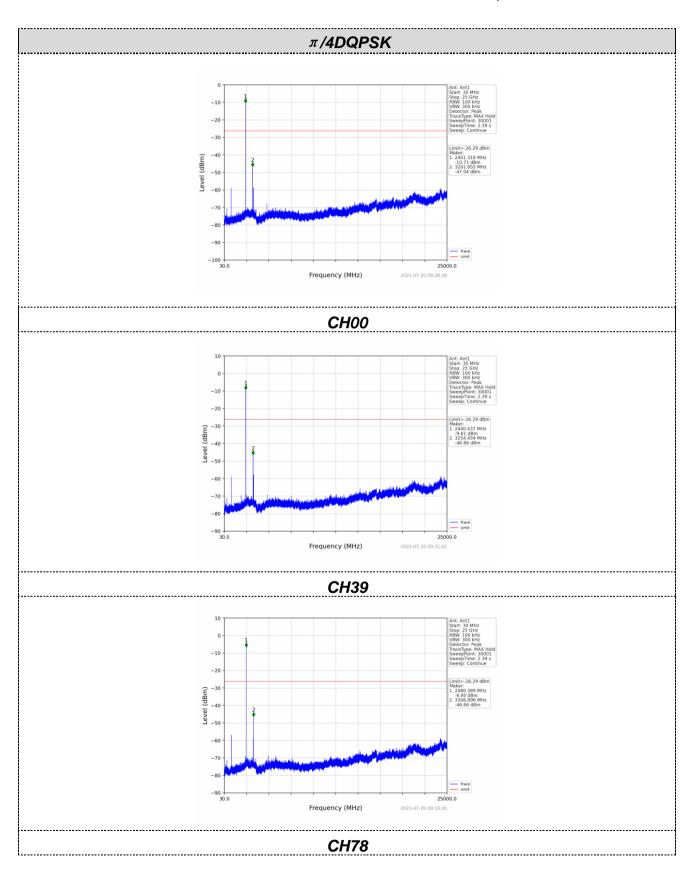
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.37	28.60	6.97	32.70	59.24	74.00	-14.76	peak
2483.5	42.69	28.60	6.97	32.70	45.56	54.00	-8.44	AVG

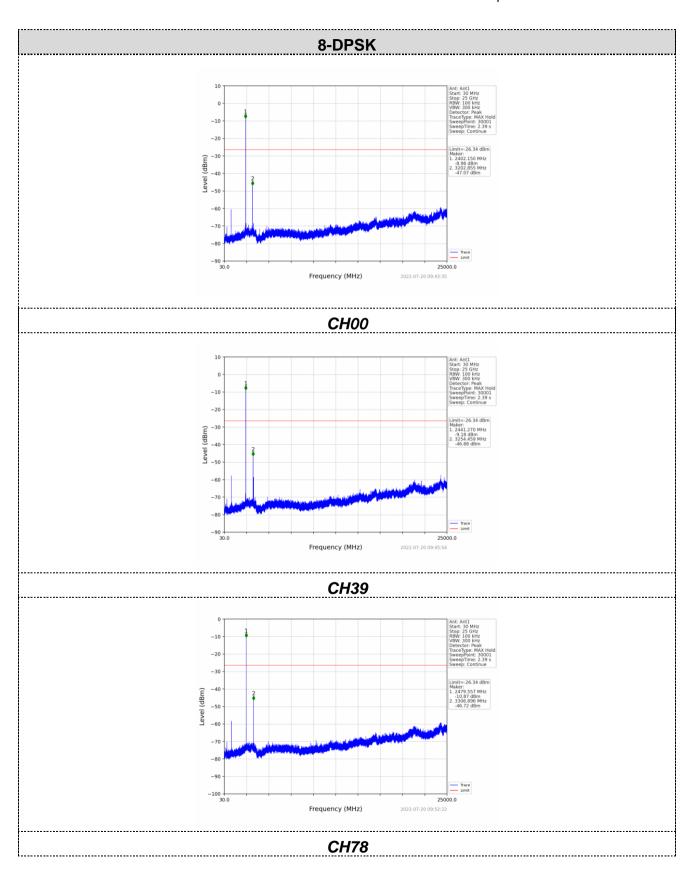


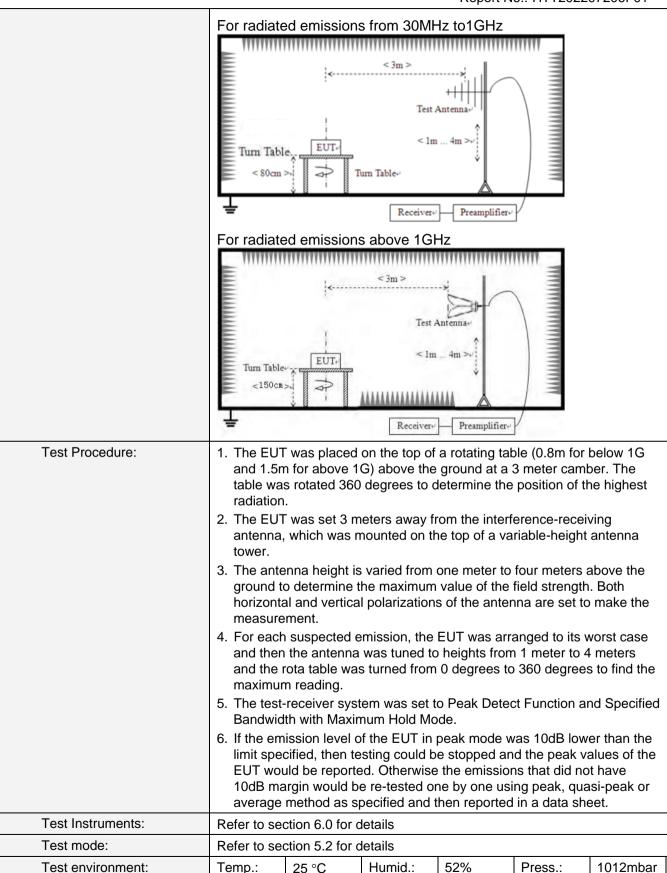
6.8. Spurious Emission


6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						







6.8.2. Radiated Emission Method

0.0.2. Nadiated L	FCC Port15 C Section 15 200										
Test Requirement:	FCC Part15 C Section	on 15	5.209								
Test Method:	ANSI C63.10:2013										
Test Frequency Range:	9kHz to 25GHz										
Test site:	Measurement Distar	nce: 3	3m								
Receiver setup:	Frequency		Detector RB\		Ν	VBW	′	Value			
	9KHz-150KHz	Qı	ıasi-peak	200H	Ηz	600Hz	z	Quasi-peak			
	150KHz-30MHz	Qı	ıasi-peak	9KH	lz	30KH:	z	Quasi-peak			
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	łz	Quasi-peak			
	Above 1GHz		Peak	1MF	Ιz	3MHz	Z	Peak			
	Above 1G112		Peak	1MF	łz	10Hz	<u>'</u>	Average			
Limit:	Frequency		Limit (u\	//m)	٧	'alue	N	Measurement Distance			
	0.009MHz-0.490M	0.009MHz-0.490MHz 2400/F(KHz) QP									
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP	30m				
	1.705MHz-30MH	lz	30			QP		30m			
	30MHz-88MHz	100				QP					
	88MHz-216MHz	<u>z</u>	150			QP					
	216MHz-960MH	Z	200			QP		3m			
	960MHz-1GHz		500 500		QP Average			5111			
	Above 1GHz										
	7.5575 15112		5000		F	Peak					
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH:	Z					
	***************************************	****	**********	*****	77777	******					
	Turn Table Socm > Turn Table Im Receiver										

Shenzhen HTT Technology Co.,Ltd.

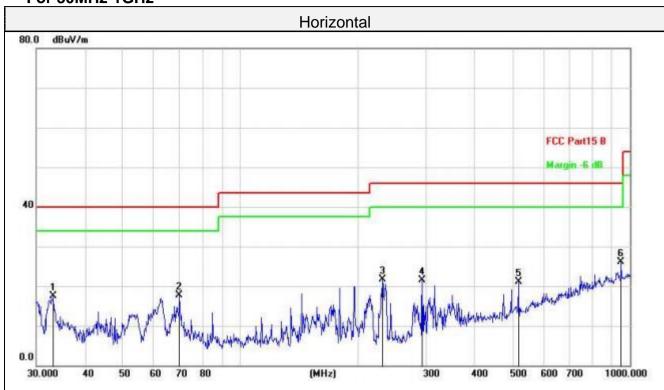
Tel: 0755-23595200 Fax: 0755-23595201

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Test voltage:	AC 120V, 60Hz
Test results:	Pass

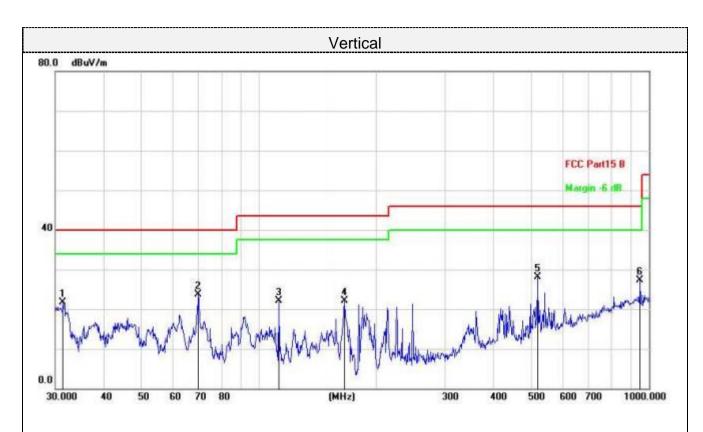
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		33.2112	35.67	-18.26	17.41	40.00	-22.59	QP
2		69.8450	37.55	-19.94	17.61	40.00	-22.39	QP
3		231.7179	40.90	-19.26	21.64	46.00	-24.36	QP
4		293.0842	38.88	-17.33	21.55	46.00	-24.45	QP
5		517.2480	33.99	-12.98	21.01	46.00	-24.99	QP
6	*	948.7610	30.66	-4.65	26.01	46.00	-19.99	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		31.3992	40.23	-18.44	21.79	40.00	-18.21	QP
2	*	69.8450	43.55	-19.94	23.61	40.00	-16.39	QP
3		112.5244	42.57	-20.43	22.14	43.50	-21.36	QP
4		165.4866	40.74	-18.66	22.08	43.50	-21.42	QP
5		519.0649	40.06	-12.04	28.02	46.00	-17.98	QP
6		948.7610	32.36	-5.08	27.28	46.00	-18.72	QP

Final Level = Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

	nizoritai.							
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	51.34	31.40	8.18	31.50	59.42	74.00	-14.58	peak
4804	37.45	31.40	8.18	31.50	45.53	54.00	-8.47	AVG
7206	45.63	35.80	10.83	31.40	60.86	74.00	-13.14	peak
7206	28.75	35.80	10.83	31.40	43.98	54.00	-10.02	AVG
Remark: Facto	or = Antenna Fact	tor + Cable Los	s – Pre-amplifier					

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	51.36	31.40	8.18	31.50	59.44	74.00	-14.56	peak
4804	37.45	31.40	8.18	31.50	45.53	54.00	-8.47	AVG
7206	44.26	35.80	10.83	31.40	59.49	74.00	-14.51	peak
7206	28.75	35.80	10.83	31.40	43.98	54.00	-10.02	AVG

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	
Frequency	Reading	Facioi	Cable Loss	Facioi	EIIIISSIOII LEVEI	LIIIIIIS	iviargiri	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4882	51.55	31.40	9.17	32.10	60.02	74.00	-13.98	peak
4882	37.45	31.40	9.17	32.10	45.92	54.00	-8.08	AVG
7323	42.63	35.80	10.83	31.40	57.86	74.00	-16.14	peak
7323	28.99	35.80	10.83	31.40	44.22	54.00	-9.78	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Datastas
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	51.27	31.40	9.17	32.10	59.74	74.00	-14.26	peak
4882	36.57	31.40	9.17	32.10	45.04	54.00	-8.96	AVG
7323	42.11	35.80	10.83	31.40	57.34	74.00	-16.66	peak
7323	28.08	35.80	10.83	31.40	43.31	54.00	-10.69	AVG

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	51.22	31.40	9.17	32.10	59.69	74.00	-14.31	peak
4960	37.42	31.40	9.17	32.10	45.89	54.00	-8.11	AVG
7440	44.36	35.80	10.83	31.40	59.59	74.00	-14.41	peak
7440	27.45	35.80	10.83	31.40	42.68	54.00	-11.32	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	50.87	31.40	9.17	32.10	59.34	74.00	-14.66	peak
4960	37.44	31.40	9.17	32.10	45.91	54.00	-8.09	AVG
7440	43.55	35.80	10.83	31.40	58.78	74.00	-15.22	peak
7440	29.37	35.80	10.83	31.40	44.60	54.00	-9.40	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

