

10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


10.4 Test Result

eft				
Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.855	Pass
NVNT	1-DH1	2441	0.866	Pass
NVNT	1-DH1	2480	0.905	Pass
NVNT	2-DH1	2402	1.202	Pass
NVNT	2-DH1	2441	1.192	Pass
NVNT	2-DH1	2480	1.177	Pass
NVNT	3-DH1	2402	1.2	Pass
NVNT	3-DH1	2441	1.211	Pass
NVNT	3-DH1	2480	1.209	Pass

No.: BCTC/RF-EMC-005

Page: 73 of 128

Page: 74 of 128

Page: 75 of 128

No.: BCTC/RF-EMC-005

Page: 76 of 128

Right

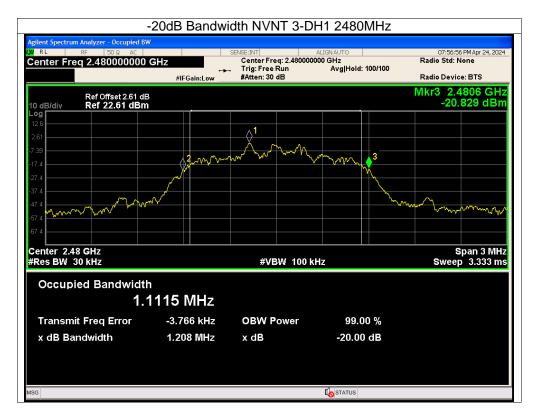
Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.935	Pass
NVNT	1-DH1	2441	0.865	Pass
NVNT	1-DH1	2480	0.913	Pass
NVNT	2-DH1	2402	1.201	Pass
NVNT	2-DH1	2441	1.197	Pass
NVNT	2-DH1	2480	1.23	Pass
NVNT	3-DH1	2402	1.213	Pass
NVNT	3-DH1	2441	1.205	Pass
NVNT	3-DH1	2480	1.208	Pass

No.: BCTC/RF-EMC-005

Page: 77 of 128

Page: 79 of 128

No.: BCTC/RF-EMC-005


Page: 80 of 128

Page: 81 of 128

No.: BCTC/RF-EMC-005

Page: 82 of 128

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

11.2 Limit

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS	

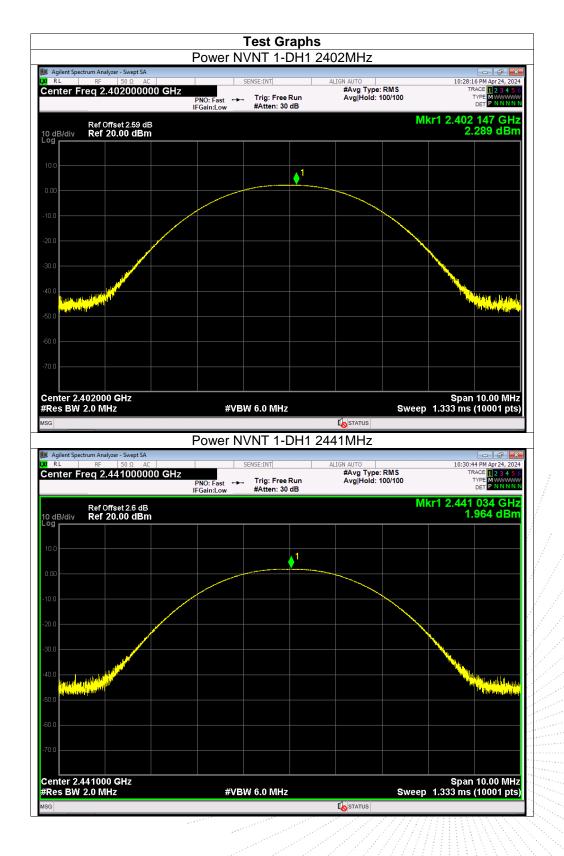
11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

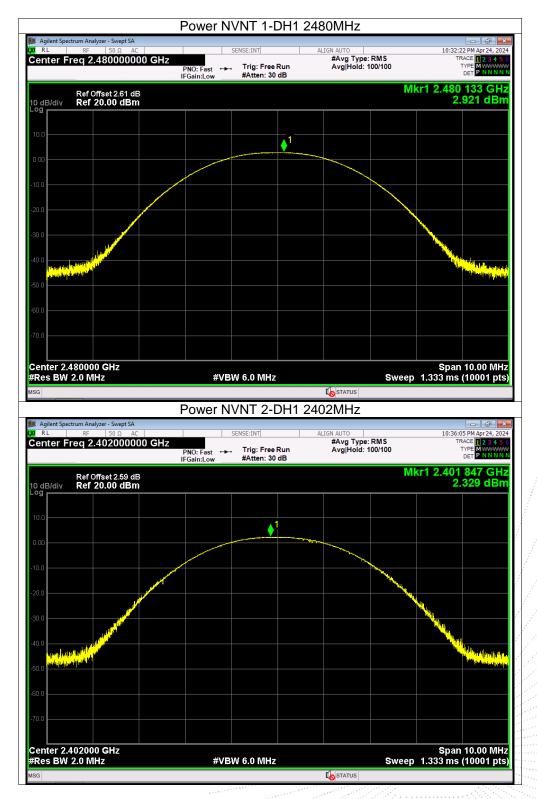
2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

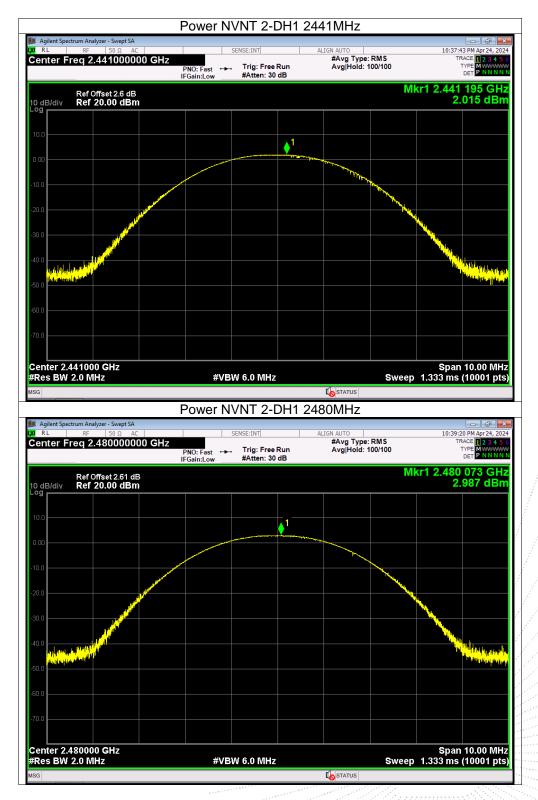
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

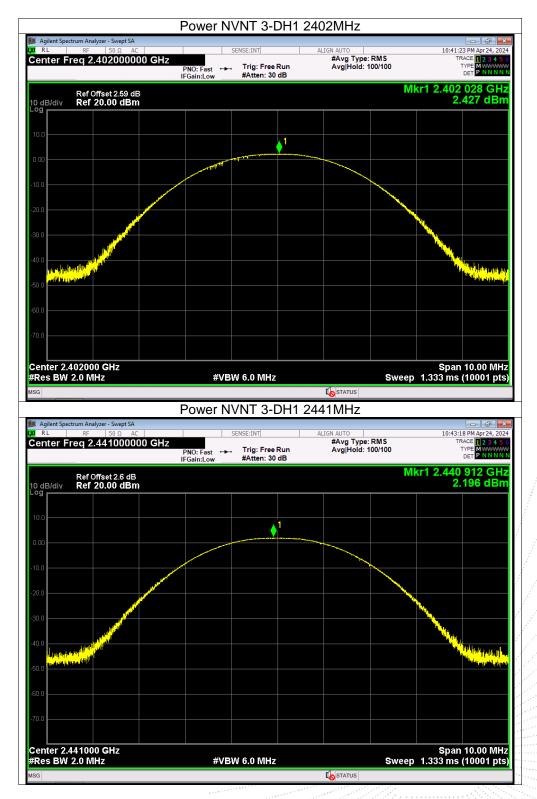
11.4 Test Result


Left

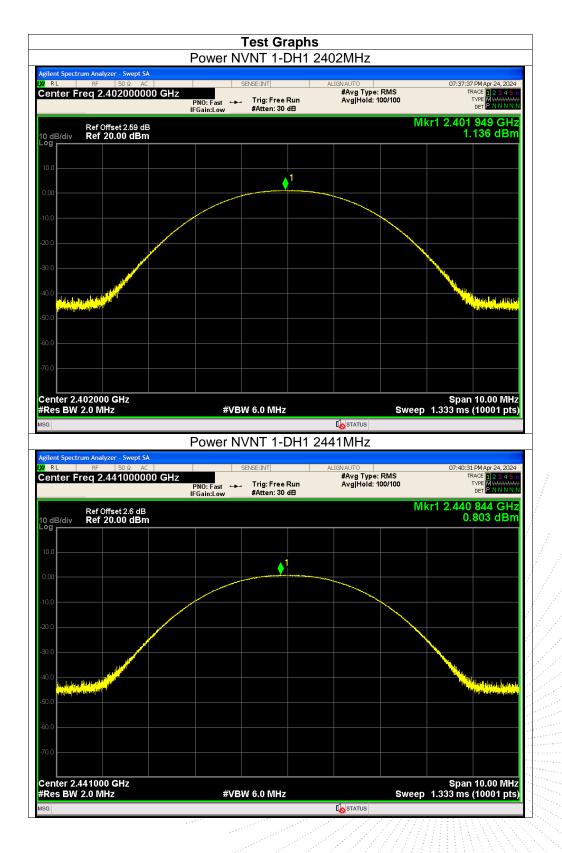
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	2.29	21	Pass
NVNT	1-DH1	2441	1.96	21	Pass
NVNT	1-DH1	2480	2.92	21	Pass
NVNT	2-DH1	2402	2.33	21	Pass
NVNT	2-DH1	2441	2.02	21	Pass
NVNT	2-DH1	2480	2.99	21	Pass
NVNT	3-DH1	2402	2.43	21	Pass
NVNT	3-DH1	2441	2.2	21	Pass
NVNT	3-DH1	2480	3.05	21	Pass


No.: BCTC/RF-EMC-005

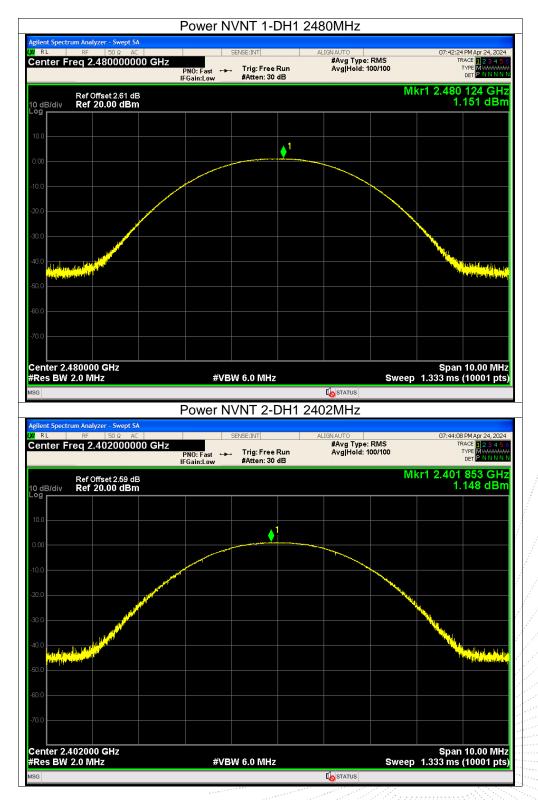




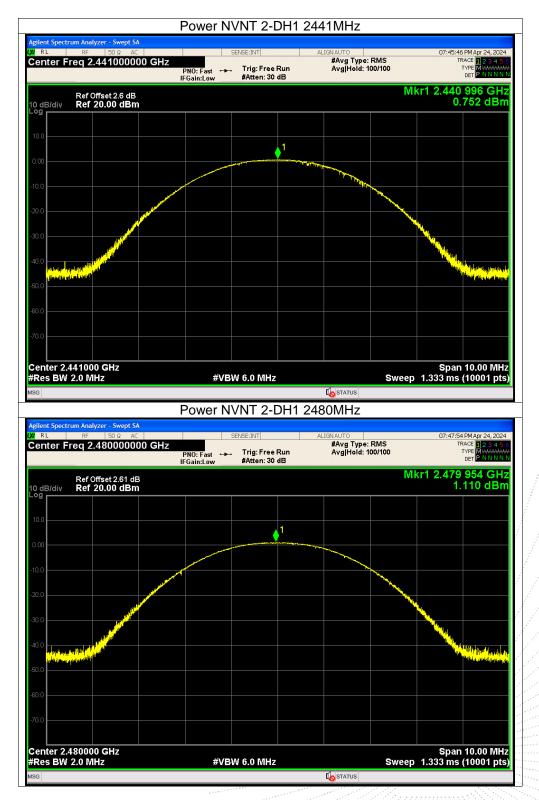
Page: 88 of 128

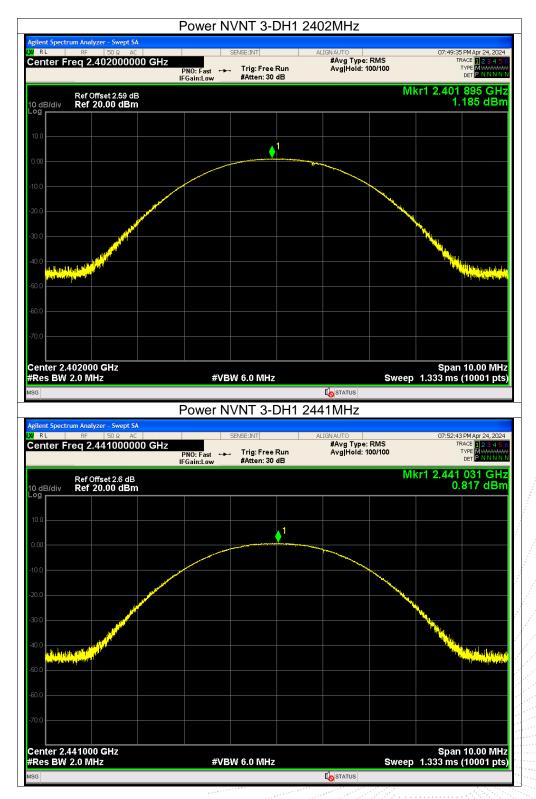


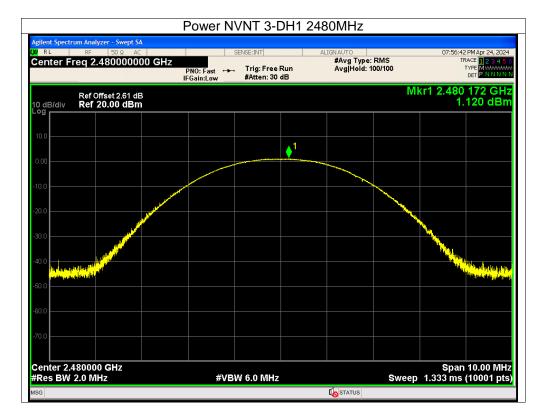
D:	1-1
RIA	nt
INU	111


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	1.14	21	Pass
NVNT	1-DH1	2441	0.8	21	Pass
NVNT	1-DH1	2480	1.15	21	Pass
NVNT	2-DH1	2402	1.15	21	Pass
NVNT	2-DH1	2441	0.75	21	Pass
NVNT	2-DH1	2480	1.11	21	Pass
NVNT	3-DH1	2402	1.19	21	Pass
NVNT	3-DH1	2441	0.82	21	Pass
NVNT	3-DH1	2480	1.12	21	Pass

Page: 89 of 128







No.: BCTC/RF-EMC-005

Page: 94 of 128

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

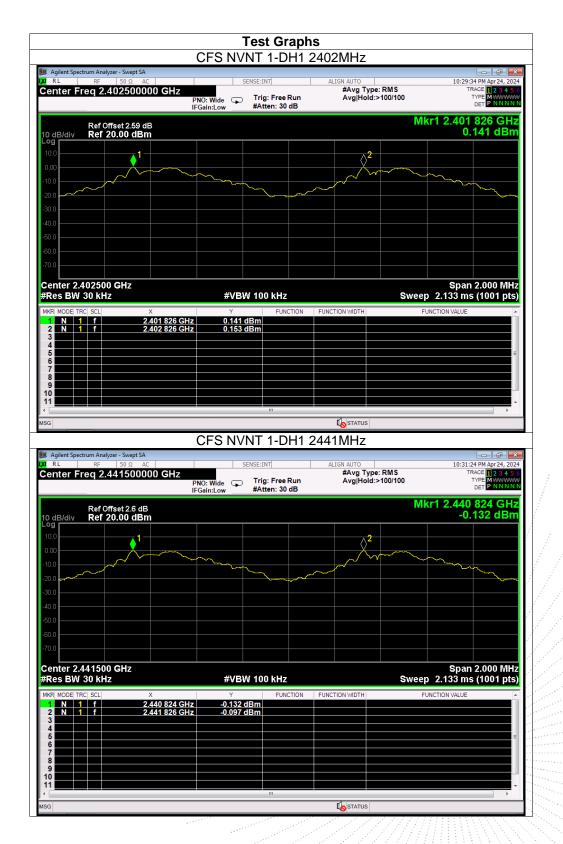
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.


12.4 Test Result

Left

_ent					그는 도도 도도 가지?	
Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.826	2402.826	1	0.57	Pass
NVNT	1-DH1	2440.824	2441.826	1.002	0.577	Pass
NVNT	1-DH1	2478.832	2479.828	0.996	0.603	Pass
NVNT	2-DH1	2401.83	2402.832	1.002	0.801	Pass
NVNT	2-DH1	2440.83	2441.83	1	0.795	Pass
NVNT	2-DH1	2478.832	2479.83	0.998	0.785	Pass
NVNT	3-DH1	2401.828	2402.832	1.004	0.8	Pass
NVNT	3-DH1	2440.828	2441.832	1.004	0.807	Pass
NVNT	3-DH1	2478.832	2479.828	0.996	0.806	Pass
I						

Agilent Spectrum Analyzer	- Swept SA	S NVNT 1-DH1		- 6 -
RL RF Center Freq 2.47		SENSE:INT Wide D Trig: Free Run	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/100	10:33:08 PM Apr 24, 202 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
	IFGai		Mk	r1 2.478 832 GH
Ref Offse 0 dB/div Ref 20.	et 2.61 dB 00 dBm			0.732 dBm
10.0	1		<mark>2</mark>	
0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>		~
20.0				
30.0				
50.0				
60.0				
70.0				
Center 2.479500 G Res BW 30 kHz	Hz	#VBW 100 kHz	Sween	Span 2.000 MH 2.133 ms (1001 pts
IKR MODE TRC SCL	X	Y FUNCTION	-	ICTION VALUE
1 N 1 f 2 N 1 f	2.478 832 GHz 2.479 828 GHz	0.732 dBm 0.790 dBm		
3 4				
5 6 7				
8				
10 11				
SG		m	STATUS	
	C	S NVNT 2-DH1	2402MHz	
Agilent Spectrum Analyzer		SENSE:INT	ALIGN AUTO	10:36:42 PM Apr 24, 202
enter Freq 2.40	2500000 GHz	Wide Trig: Free Run	#Avg Type: RMS Avg Hold:>100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
	IFGai			
0 dB/div Ref 20.	et 2.59 dB 00 dBm		MK	r1 2.401 830 GH: 0.182 dBm
.og 10.0	1		2 ²	
0.00				
		June		\sim
30.0				
40.0				
50.0				
70.0				
Center 2.402500 G				Span 2.000 MH;
Res BW 30 kHz	112	#VBW 100 kHz	Sweep	2.133 ms (1001 pts
MKR MODE TRC SCL	× 2.401 830 GHz	Y FUNCTION	FUNCTION WIDTH FUI	ICTION VALUE
2 N 1 f 3	2.402 832 GHz	0.230 dBm		
4 5				=
6				
7				
7 8 9 10				

Agilent Spectrum Analyzer - Sv				
RL RF 50 enter Freq 2.4415	Ω AC 500000 GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS	10:38:20 PM Apr 24, 20 TRACE 1 2 3 4 5
		Wide Trig: Free Run h:Low #Atten: 30 dB	Avg Hold:>100/100	DET PNNN
Ref Offset 2	6 dB			Mkr1 2.440 830 GH
) dB/div Ref 20.00	dBm			-0.087 dBn
0.0	1		2	
.00				
0.0				
0.0				
0.0				
0.0				
0.0				
enter 2.441500 GH	Z	40 (B) 44 4 6 6 1 4 1 -		Span 2.000 MH
Res BW 30 kHz	×	#VBW 100 kHz		weep 2.133 ms (1001 pts
KR MODE TRC SCL	× 2.440 830 GHz	Y FUNCTION -0.087 dBm	N FUNCTION WIDTH	FUNCTION VALUE
2 N 1 f	2.441 830 GHz	-0.050 dBm		
5				
6 7 7				
8 9 0				
1				
G		III	STATUS	•
	CE	S NVNT 2-DH	~	
Agilent Spectrum Analyzer - Sv				
RL RF 50 enter Freq 2.479		SENSE:INT	ALIGN AUTO #Avg Type: RMS	10:40:09 PM Apr 24, 20 TRACE 1 2 3 4 5
	PNO: IFGair	Wide Trig: Free Run n:Low #Atten: 30 dB	Avg Hold:>100/100	TRACE 12345 TYPE MWWWW DET P NNNN
Ref Offset 2				Mkr1 2.478 832 GH
odB/div Ref 20.00	dBm			0.735 dBn
• 9 10.0	1		2	
0.00				
0.0				
20.0				
10.0				
50.0				
60.0				
0.0				
enter 2.479500 GH	7			Span 2.000 MH
Res BW 30 kHz		#VBW 100 kHz	Sv	weep 2.133 ms (1001 pts
KR MODE TRC SCL	× 2.478 832 GHz	Y FUNCTION 0.735 dBm	N FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f 2 N 1 f 3	2.479 832 GHZ 2.479 830 GHz	0.821 dBm		
4				
5 6 7				
8				

Agilent Spectrum Analyzer - 1 RL RF 5	wept SA	SENSE:INT	ALIGN AUTO	10:42:12 PM Apr 24, 202
enter Freq 2.402	500000 GHz	Wide 😱 Trig: Free Run	#Avg Type: RMS Avg Hold:>100/100	TRACE 1 2 3 4 5 TYPE MWWW DET PNNN
Ref Offset 0 dB/div Ref 20.0	2.59 dB 0 dBm		Mk	r1 2.401 828 GH: -0.122 dBn
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
enter 2.402500 GI Res BW 30 kHz	Iz	#VBW 100 kHz	Sweep	Span 2.000 MH 2.133 ms (1001 pts
KR         MODE         TRC         SCL           1         N         1         f           2         N         1         f           3         -         -         -           4         -         -         -           5         -         -         -           6         -         -         -           7         -         -         -           8         -         -         -           9         -         -         -	X 2.401 828 GHz 2.402 832 GHz	Y FUNCTION -0.122 dBm -0.153 dBm	FUNCTION WIDTH FU	NCTION VALUE
0 1 G		m	<b>K</b> ostatus	•
Agilent Spectrum Analyzer -		S NVNT 3-DH1	2441MHz	
	ο Ω AC 500000 GHz	SENSE:INT Wide Trig: Free Run Stow #Atten: 30 dB	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/100	10:44:00 PM Apr 24, 20: TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
Ref Offset 0 dB/div Ref 20.0	2.6 dB		Mk	r1 2.440 828 GH -0.485 dBn
			2 ²	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10.0 10.0 10.0 10.0 10.0				
(0.0				
enter 2.441500 Gl Res BW 30 kHz	IZ	#VBW 100 kHz	Sweep	Span 2.000 MH 2.133 ms (1001 pts
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5 6 5 7 5 8 5 9 0	X 2.440 828 GHz 2.441 832 GHz	Y FUNCTION -0.485 dBm -0.374 dBm	FUNCTION WIDTH FU	ICTION VALUE
1				

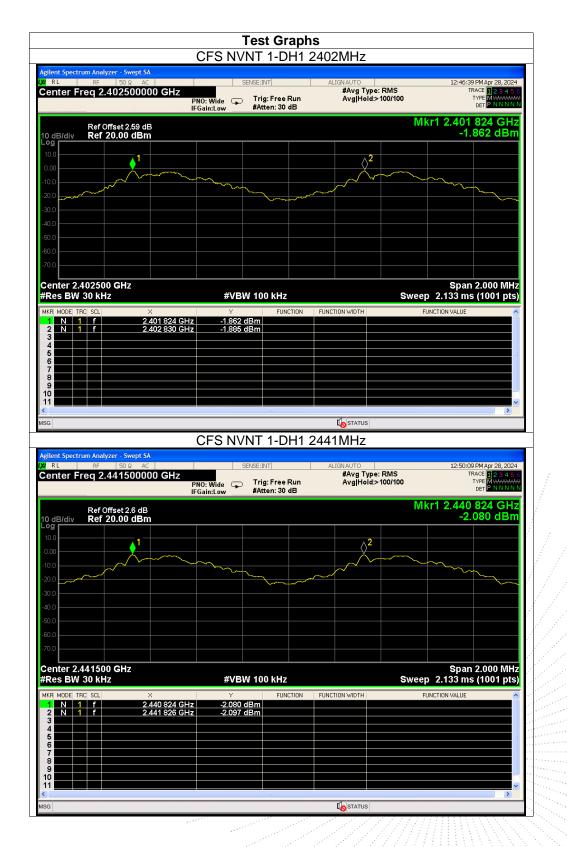


	CFS NVNT 3-DH	1 2480MHz	
Agilent Spectrum Analyzer - Swept SA     RL RF 50 Q AC     Center Freq 2.479500000 GHz	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/100	10:45:43 PM Apr24, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
Ref Offset 2.61 dB 10 dB/div Ref 20.00 dBm			Mkr1 2.478 832 GHz 0.415 dBn
Log 10.0 0.00 -10.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-20.0			
-50.0			
Center 2.479500 GHz #Res BW 30 kHz	#VBW 100 kHz	Sw	Span 2.000 MH eep 2.133 ms (1001 pts
MKR         MODE         TRC         SCL         X           1         N         1         f         2.478         832 G           2         N         1         f         2.479         828 G           3         4         4         4         4		N FUNCTION WIDTH	FUNCTION VALUE
5 6 7 8 9 9 10			
11 • ISG			

No.: BCTC/RF-EMC-005

Page: 100 of 128.




Right

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.824	2402.83	1.006	0.025	Pass
NVNT	1-DH1	2440.824	2441.826	1.002	0.025	Pass
NVNT	1-DH1	2478.828	2479.822	0.994	0.025	Pass
NVNT	2-DH1	2401.824	2402.826	1.002	0.025	Pass
NVNT	2-DH1	2440.83	2441.826	0.996	0.025	Pass
NVNT	2-DH1	2478.828	2479.824	0.996	0.025	Pass
NVNT	3-DH1	2401.824	2402.826	1.002	0.025	Pass
NVNT	3-DH1	2440.824	2441.824	1	0.025	Pass
NVNT	3-DH1	2478.826	2479.826	1	0.025	Pass

Page: 101 of 128







Edition: B.2



ilent Spectrum Analyzer R L RF	50 Ω AC	SENSE:INT	ALIGN AUTO	12:52:00 PM Apr 28, 2024
enter Freq 2.47	9500000 GHz	): Wide 😱 Trig: Free Run ain:Low #Atten: 30 dB	#Avg Type: RMS Avg Hold:>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
	et 2.61 dB .00 dBm			/lkr1 2.478 828 GH: -1.838 dBn
9g				
.00				~~
D.0				
0.0 0.0				
enter 2.479500 C				Span 2.000 MH
Res BW 30 kHz	962	#VBW 100 kHz	Swe	ep 2.133 ms (1001 pts
(R MODE TRC SCL	× 2.478 828 GHz	Y FUNCTION -1.838 dBm	FUNCTION WIDTH	FUNCTION VALUE
2 N 1 f 3 4	2.479 822 GHz	-1.823 dBm		
5 6				
7 B 9				
0				
3			<b>I</b> STATUS	>
	C	FS NVNT 2-DH1	2402MHz	
ilent Spectrum Analyzer R L RF	- Swept SA 50 Ω AC	SENSE:INT	ALIGN AUTO	12:54:40 PM Apr 28, 202
enter Freq 2.40	PNO	): Wide 😱 Trig: Free Run ain:Low #Atten: 30 dB	#Avg Type: RMS Avg Hold:>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
dB/div Ref 20.	et 2.59 dB .00 dBm			//kr1 2.401 824 GH -1.725 dBr
.00			$\wedge^2$	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
0.0				
D.0 D.0				
D.0 D.0				
1.0				
2.0	SHZ	#VBW 100 kHz	Swe	Span 2.000 MH ep 2.133 ms (1001 pts
enter 2.402500 C Res BW 30 kHz	X	Y FUNCTION	SW6	Span 2.000 MH ep 2.133 ms (1001 pts FUNCTION VALUE
00				ep 2.133 ms (1001 pts
00	× 2.401 824 GHz	Y FUNCTION -1.725 dBm		ep 2.133 ms (1001 pts
0.0	× 2.401 824 GHz	Y FUNCTION -1.725 dBm		Span 2.000 MH rep 2.133 ms (1001 pts FUNCTION VALUE
000 000 000 enter 2.4025000 (Res BW 30 kHz KR MODE TRC ScLI 2 N 1 f 2 N 1 f 3 4 5 5 6 - 7 - 8 - 9 - 0 - 1	× 2.401 824 GHz	Y FUNCTION -1.725 dBm		ep 2.133 ms (1001 pts

Edition: B.2

ilent Spectrum Analyzer -	Swept SA	S NVNT 2-DH1			
RL RF 5 enter Freq 2.441	500000 GHz	SENSE:INT Wide Trig: Free Run ::Low #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	12:57:04 PMA; TRACE TYPE DET	r 28, 202] 2 3 4 5 1 4 5 N N N N
Ref Offset dB/div Ref 20.0	2.6 dB 0 dBm			Mkr1 2.440 830 -2.678) GH dBr
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~
enter 2.441500 GI		#VBW 100 kHz		Span 2.00 weep 2.133 ms (10	
	× 2.440 830 GHz	Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
3 4 4 5 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 1 9 9 1 1			<b>L</b> STATUS		
lent Spectrum Analyzer -		S NVNT 2-DH1	2480MHz		
RL RF 5 enter Freq 2.479	ο Ω AC 1500000 GHz	SENSE:INT Wide Trig: Free Run ::Low #Atten: 30 dB	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/100	01:00:40 PM Ap TRACE TYPE DET	r 28, 202 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ref Offset dB/div Ref 20.0	:2.61 dB 0 dBm			Mkr1 2.478 828 -1.828	dBr
0.0			2 2		
					~
0.0 0.0 0.0					
0.0					
	1Z	#VBW 100 kHz	9	Span 2.00 weep 2.133 ms (10	01 pts
enter 2.479500 GI Res BW 30 kHz			FUNCTION WIDTH	FUNCTION VALUE	

Edition: B.2



01 05	Swept SA	05405.72		01.00.07.0114 02.000
RL RF 5 enter Freq 2.402	500000 GHz	Jense:INT Vide Trig: Free Run Low #Atten: 30 dB	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/100	01:02:35 PM Apr 28, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N
Ref Offset dB/div Ref 20.0	2.59 dB 0 dBm		N	1kr1 2.401 824 GH -2.062 dBn
0.0				
0.0				
0.0 0.0 0.0				
enter 2.402500 GI Res BW 30 kHz	łz	#VBW 100 kHz		Span 2.000 MH ep 2.133 ms (1001 pts
KR         MODE         TRC         SCL           1         N         1         f           2         N         1         f           3	× 2.401 824 GHz 2.402 826 GHz	Y FUNCTION -2.062 dBm -2.069 dBm	FUNCTION WIDTH	FUNCTION VALUE
B			<b>I</b> STATUS	<u>&gt;</u>
	CF	S NVNT 3-DH1 2	2441MHz	
ilent Spectrum Analyzer - RL RF 5 enter Freq 2.441	ο Ω AC 500000 GHz	SENSE:INT Vide - Trig: Free Run Low #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	01:04:58 PM Apr 28, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N
Ref Offset dB/div Ref 20.0	: 2.6 dB		N	1kr1 2.440 824 GH -2.507 dBr
.00				
0.0				
0.0 0.0 0.0				
and	Hz	#VBW 100 kHz	Swe	Span 2.000 MH ep 2.133 ms (1001 pts
CO CO CO CO CO CO CO CO CO CO	Hz 2.440 824 GHz 2.441 824 GHz	#VBW 100 kHz 2.507 dBm -2.462 dBm	Swe	Span 2.000 MH ep 2.133 ms (1001 pts FUNCTION VALUE

Edition: B.2



	CFS NVNT	3-DH1 2	480MHz			
Agilent Spectrum Analyzer - Swept SA						
X RL RF 50 Ω AC Center Freq 2.479500000 GHz	SENSE:II		ALIGNAUTO #Avg Type:		01:06:33 PM Apr 28, 2024 TRACE 1 2 3 4 5 6	
		g:FreeRun ten:30 dB	Avg Hold:>	100/100	TYPE MWWWWW DET P N N N N N	
Ref Offset 2.61 dB Mkr1 2.478 826 GHz 10 dB/div Ref 20.00 dBm -2.230 dBm						
10.0						
			2 ²			
-10.0					$\sim$	
-20.0						
-30.0						
-50.0						
-60.0						
-70.0						
Center 2.479500 GHz Span 2.000 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 2.133 ms (1001 pts)						
MKR MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FUNC	TION VALUE	
1         N         1         f         2.478         826         0           2         N         1         f         2.479         826         0	Hz -2.230 dBm Hz -2.322 dBm					
3						
56						
7 8						
9 10						
11 <					×	
MSG 🚺						

No.: BCTC/RF-EMC-005

Page: 106 of 128.



### 13. Number Of Hopping Frequency

### 13.1 Block Diagram Of Test Setup



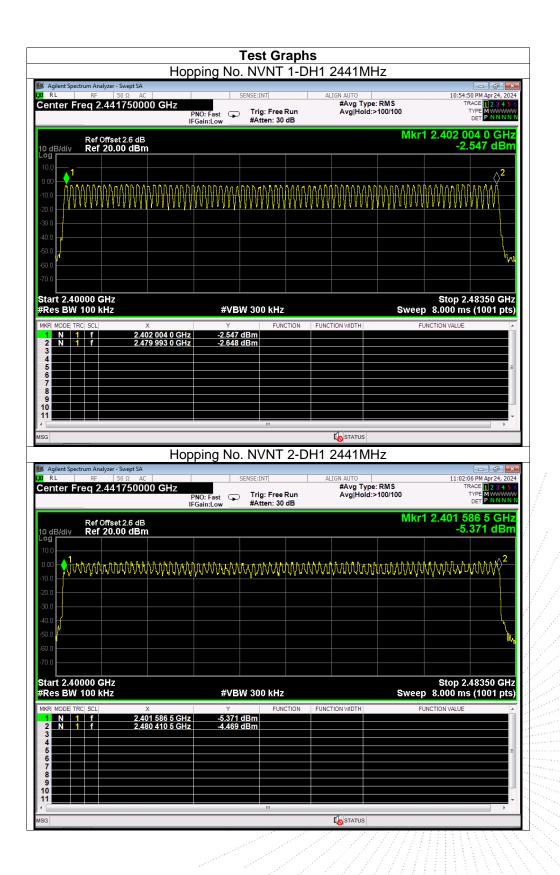
### 13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

### 13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.


3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

### 13.4 Test Result

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass



Left






Нор	ping No. NVNT	3-DH1 2441N	/Hz	
	SENSE:INT NO: Fast Trig: Free Gain:Low #Atten: 30	Run Avg Hol	/pe: RMS d:>100/100	11:06:10 PM Apr 24, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N
Ref Offset 2.6 dB           10 dB/div         Ref 20.00 dBm           10 0         1           0 00         1           -100         -           -200         -           -300         -           -40.0         -           -60.0         -           -70.0         -	MAMAMAMAA			.401 837 0 GHz 1.620 dBm
Start 2.40000 GHz #Res BW 100 kHz	#VBW 300 kHz	2	Sweep 8	Stop 2.48350 GHz .000 ms (1001 pts)
MKR         MODE[         TC[         SCI         X           1         N         1         f         2:401         837.0         GHz           2         N         1         f         2:401         837.0         GHz           3         4         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>Y FUI 1.620 dBm 2.707 dBm</td><td></td><td>FUNCT</td><td>ION VALUE</td></t<>	Y FUI 1.620 dBm 2.707 dBm		FUNCT	ION VALUE
MSG		<b>K</b> STATUS		

No.: BCTC/RF-EMC-005

Page: 109 of 128



#### Right





Нор	ping No. NVNT	3-DH1 2441M	Hz	
	SENSE:INT PNO: Fast Trig: Free I Gain:Low #Atten: 30			58 PM Apr 28, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P.N.N.N.N.
Ref Offset 2.6 dB           10 dB/div         Ref 20.00 dBm           10 0         1           000         1           000         1           -10.0         -10.0           -20.0         -10.0           -30.0         -10.0           -60.0         -10.0	บบงางกุญงาก	WWWWWWWWW		0.771 dBm
Million         Million <t< td=""><td>#VBW 300 kHz -0.771 dBm -6.674 dBm</td><td>CTION FUNCTION WIDTH</td><td>Stop : Sweep 8.000 n FUNCTION VALUE</td><td></td></t<>	#VBW 300 kHz -0.771 dBm -6.674 dBm	CTION FUNCTION WIDTH	Stop : Sweep 8.000 n FUNCTION VALUE	
4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				×

No.: BCTC/RF-EMC-005

Page: 111 of 128.



### 14. Dwell Time

### 14.1 Block Diagram Of Test Setup



### 14.2 Limit

≤0.4 Second

#### 14.3 Test procedure

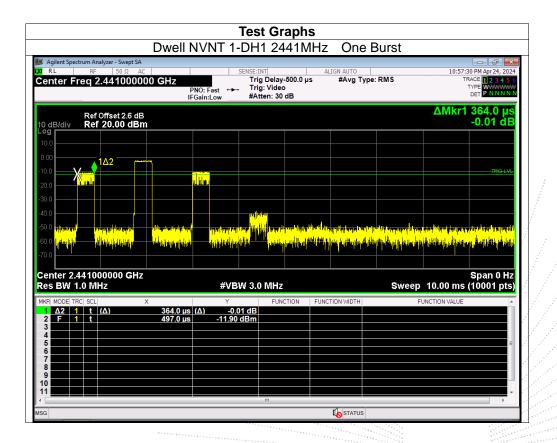
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

### 14.4 Test Result


DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX). DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX). DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows: DH5:1600/79/6*0.4*79*(MkrDelta)/1000 DH3:1600/79/2*0.4*79*(MkrDelta)/1000 DH1:1600/79/2*0.4*79*(MkrDelta)/1000 Remark: Mkr Delta is once pulse time.

No.: BCTC/RF-EMC-005

Page: 112 of 128



Left								
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.364	116.116	319	31600	400	Pass
NVNT	1-DH3	2441	1.621	257.739	159	31600	400	Pass
NVNT	1-DH5	2441	2.867	303.902	106	31600	400	Pass
NVNT	2-DH1	2441	0.373	119.36	320	31600	400	Pass
NVNT	2-DH3	2441	1.628	260.48	160	31600	400	Pass
NVNT	2-DH5	2441	2.879	305.174	106	31600	400	Pass
NVNT	3-DH1	2441	0.37	118.03	319	31600	400	Pass
NVNT	3-DH3	2441	1.631	259.329	159	31600	400	Pass
NVNT	3-DH5	2441	2.881	308.267	107	31600	400	Pass



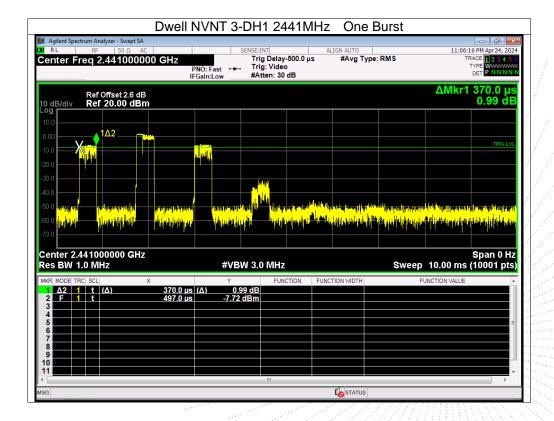
Edition: B.2

Page: 113 of 128



	Dwell N	NVNT 1-DH	13 24411	/IHZ ONE	Burst	
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω A enter Freq 2.4410000	000 GHz	NO East - T	rig Delay-500.0 µ rig: Video Atten: 30 dB	ALIGN AUTO µs #Avg Ty	/pe: RMS	11:08:13 PM Apr 24, 2 TRACE 1 2 3 4 TYPE WWWW DET P NNN
Ref Offset 2.6 dE 0 dB/div Ref 20.00 dB						ΔMkr1 1.621 m 4.74 d
	<u>1∆2</u>					
0.0 X2						TRIG L
80.0						
0.0						
0.0 <mark>Applyay</mark>	ra ny fijina na ili a f Ta Li na pita pita ili at	Anderska ander son ander son In <mark>de konstantig og son spælareter a</mark> t son son son son som	<mark>Malak</mark> ing temperatu Malaking temperatu Malaking temperatu	n dan ka si sa da ya da da da ya sa da Na maka ka da da da da ya da da ya ya da da ya ya da da da da da ya ya d		a sa ma ni sika ni kili na kila kila kila kila kila ka na sa k Angla kila na munana ka ni sa sila kila kila ma na sa Angla kila na munana ka ni sa sila kila kila ma na sa sa
enter 2.441000000 GHz	nt fer her here	collification and solid con-	¹⁴⁴ 19 ¹ 1919 Jin Alegaria, pilosofi Interneting		n a k - berl ₍₁₀ - berl ^k fin s k - der (1	
0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	z X	#VBW 3	.0 MHz		Sweep	Span 0 H
0.0         Αμμίαι           0.0         Αμμίαι           enter 2.441000000 GHz           es BW 1.0 MHz           KR MODE TRC SCL           1         Δ2           2         F           1         Δ2           3         -	z - ^{Intern} ikopinali z	#VBW 3	.0 MHz		Sweep	Span 0 H 10.00 ms (10001 pt
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	z 1.621 ms	#VBW 3	.0 MHz		Sweep	Span 0 H 10.00 ms (10001 pt
0.0 strain enter 2.441000000 GHz es BW 1.0 MHz RR MODE TRC SCI 1 Δ2 1 t (Δ) 2 F 1 t 3 4	z 1.621 ms	#VBW 3	.0 MHz		Sweep	Span 0 H 10.00 ms (10001 pt
0.0 strain enter 2.441000000 GHz es BW 1.0 MHz RR MODE TRCI SCI 1 Δ2 1 t (Δ) 2 F 1 t 3 4 5 6 6 7 8 9 9	z 1.621 ms	#VBW 3	.0 MHz		Sweep	Span 0 H 10.00 ms (10001 pt

	Dwell r	NVNT 1-DH	5 244 110		Burst		
Agilent Spectrum Analyzer - Swep RL RF 50 Ω		SENSE:I	NT	ALIGN AUTO		11:09:06 PM	Apr 24 2
enter Freq 2.44100	0000 GHz	NO: Fast ↔ Tri	g Delay-500.0 µs g: Video tten: 30 dB		pe: RMS	TRACE TYPE	1 2 3 4 WWWW P N N N
Ref Offset 2.6 D dB/div Ref 20.00 d						ΔMkr1 2.8 5	67 m .04 d
0.0							
.00		<u>_</u> 1∆2					TRIG L
							11001
0.0							
0.0							
0.0		and maked allow tables	ulling the latter to the second second	halte e least de plateire		the other the description of the second	and the day
0.0 <mark>titlent</mark>		land and an index of the second s Index and a second s	With the day of the strength o	hedd e bredd de bellad. <mark>1924 ac an </mark>		l barrel beginnerse beter i begen reg t tend om værget begen	or frank a p ^{il} egy (ka
enter 2.441000000 G	Hz		newigitaria and a state of a state	hed og en frem hede størtede I felse <mark>de skiper heder i beskiper</mark>	in the second	nang nang nang nang nang nang nang nang	an 0 I
enter 2.441000000 G es BW 1.0 MHz	X	#VBW 3.0	newigitaria and a state of a state	FUNCTION WIDTH	Sweep	sp	an 0 I
0.0 μμ. μμ. enter 2.4410000000 G es BW 1.0 MHz KR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t		#VBW 3.0	naiitan չվարեր ) MHz	<mark>i ta kina kina kenti saku s</mark>	Sweep	Sp 10.00 ms (10	an 0 H
$\begin{array}{c} 0.0 \\ \hline \\ 0.0 \\ \hline \\ enter 2.4410000000 \\ es BW 1.0 \\ MDE \\ TC  \\ SCL  \\ \hline \\ 1 \\ 2 \\ F \\ 1 \\ t \\ 3 \\ 4 \\ \hline \end{array}$	× 2.867 ms	#VBW 3.( (Δ) 5.04 dB	naiitan չվարեր ) MHz	<mark>i ta kina kina kenti saku s</mark>	Sweep	Sp 10.00 ms (10	an 0 I
0.0         μ         μ           0.0         μ         μ	× 2.867 ms	#VBW 3.( (Δ) 5.04 dB	naiitan չվարեր ) MHz	<mark>i ta kina kina kenti saku s</mark>	Sweep	Sp 10.00 ms (10	an 0 I
2 F 1 t 3 4 6 7 8	× 2.867 ms	#VBW 3.( (Δ) 5.04 dB	naiitan չվարեր ) MHz	<mark>i ta kina kina kenti saku s</mark>	Sweep	Sp 10.00 ms (10	an 0 H
0.0         μ         μ           enter 2.44 10000000 G         cs           BW 1.0 MHz         k           MODE TRC SCL         1           1         Δ2         1         t           3         4         5         5           6         -         -         7           7         -         -         8           9         -         -         -	× 2.867 ms	#VBW 3.( (Δ) 5.04 dB	naiitan չվարեր ) MHz	<mark>i ta kina kina kenti saku s</mark>	Sweep	Sp 10.00 ms (10	an 0 I
$ \begin{array}{c} 0.0 \\ \hline \\ 0.0 \\ \hline \\ enter 2.4410000000 \\ es BW 1.0 \\ MDGE TRC \\ SCL \\ \hline \\ 1 \\ 2 \\ F \\ 1 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ \hline \end{array} $	× 2.867 ms	#VBW 3.( (Δ) 5.04 dB	naiitan չվարեր ) MHz	<mark>i ta kina kina kenti saku s</mark>	Sweep	Sp 10.00 ms (10	an 0 H




	Dwell N	IVNT 2-DH	l1 2441N	1Hz One	Burst	
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 2.44100000	PN	IO:East ⊷⊷ Tri	INT ig Delay-500.0 μ ig: Video tten: 30 dB	ALIGN AUTO s #Avg Ty	/pe: RMS	11:02:12 PM Apr 24, 20 TRACE 12345 TYPE WWWWW DET P NN N
Ref Offset 2.6 dB 10 dB/div Ref 20.00 dBm						∆Mkr1 373.0 µ -0.38 dI
10.0 0.00 1Δ2						
10.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0						TRIG LV
40.0			ld pr			
50.0 Treating and the second s	States different to	n pieterinterinterinterinterinterinterinter	and a standard and		المراجع الخالي المانية	a di se da se di se d
so.o <mark>willela</mark>	nite and th	l <mark>linen kida pin</mark>			and and fight as a star parameter	the application of the state of
60.0 0000000000000000000000000000000000		#VBW 3.0		and the second	^{and} in () (164, 246, part) /	Span 0 H 10.00 ms (10001 pts
60.0 utility		#VBW 3.0	0 MHz	FUNCTION WIDTH	Sweep	Span 0 H
S0 0         with the second seco		#VBW 3.0	0 MHz		Sweep	Span 0 H 10.00 ms (10001 pt
S0 0         uitty         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ <thμ< th="">         μ         <thμ< <="" td=""><td>373.0 µs (</td><td>#VBW 3.</td><td>0 MHz</td><td></td><td>Sweep</td><td>Span 0 H 10.00 ms (10001 pt</td></thμ<></thμ<>	373.0 µs (	#VBW 3.	0 MHz		Sweep	Span 0 H 10.00 ms (10001 pt
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	373.0 µs (	#VBW 3.	0 MHz		Sweep	Span 0 H 10.00 ms (10001 pt
Constraint         Automatical and a straint           700         Automatical and a straint           Center 2.441000000 GHz           Res BW 1.0 MHz           WKR MODE TRC SCL           1 A2 1 t           2 F           1 t           3 A           4 S           5           6           7           8	373.0 µs (	#VBW 3.	0 MHz		Sweep	Span 0 H 10.00 ms (10001 pts
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	373.0 µs (	#VBW 3.	0 MHz		Sweep	Span 0 H 10.00 ms (10001 pt
BOD 0         Mitty of the second	373.0 µs (	#VBW 3.	0 MHz		Sweep	Span 0 H 10.00 ms (10001 pts

	Dwell I					Burst		
Agilent Spectrum Analyzer - Swept SA								- F
RL RF 50 Ω A enter Freq 2.4410000	000 GHz	PNO: Fast ↔→→	ISE:INT Trig Delay-50 Trig: Video #Atten: 30 dB	0.0 µs	GN AUTO #Avg Type	e: RMS		56 PM Apr 24, 2 RACE 1 2 3 4 TYPE WWWW DET P N N N
Ref Offset 2.6 dE dB/div Ref 20.00 dB							ΔMkr1	1.628 m -0.94 d
<b>9</b> 0.0								
	1Δ2							TRIG I
ուս <mark>Հագորդաների որվերի հան</mark> եր ուս	(r))							
0.0								
0.0 pastala				ntin gedi († 1910)		a a a a a a a a a a a a a a a a a a a		
0.0 <mark>untingi</mark>		leten der standels Den de der standels	()))) ()) Nept Constraints Nept Constraints	<mark>han na kana kana kana kana kana kana kan</mark>	digeren situsita Gili geren situsita Gili geren situ	in an a the second line of the second se		n an
0.0 kmstyle 0.0 villegyt 0.0	nt far funden	Mangalantan serieski <mark>Dagalantan serieski</mark>	( ¹ 1991) <mark>A berli Alaria a final ang basa A berli Alaria a final ang b</mark>	nin (stilling) Yr (stilling)	ala postera politica pleta Na kala postera politica pleta Na kala postera politica pleta	n an	in dan ini dan ini Ngana ngana ng Ngana ngana nga	<mark>d o pal (page), a</mark>
00 00 00 00 00 00 00 00 00 00 00 00 00	nt far funden	altındır. Anadıkan bi	1990 - Harden Alexandre Al	nta kati ta kati Na kati ta kati	d <mark>a na sana si kumukan</mark> Ng Kul _a A pikang bula		10.00 ms	Span 0 I
enter 2.441000000 GHz es BW 1.0 MHz	z	<mark>₽₩₩₩₽₩₩₽₩</mark> #VBW	3.0 MHz		สมัญญาราชายในรูปรัก ไม่ไป สุภูษิโลก ไปได้ ION WIDTH	Sweep	den de la companya d La companya de la comp	Span 0 I
0         μητιή           0.0         μητή           0.0         μητή           0.0         μητή           enter 2.441000000 GHz           es BW 1.0 MHz           R         MODE TRC  SCL            1         Δ2         1           1         Δ2         1	z 1.628 ms	<mark>μυψημία μ</mark> #VBW (Δ) -0.94 (	3.0 MHz		<mark>natul anatolina ad</mark> u	Sweep	10.00 ms	Span 0 I
enter 2.441000000 GHz es BW 1.0 MHz RR MODE TRC SCL 1 42 1 t (A) 2 F 1 t	z	<mark>μυψημία μ</mark> #VBW (Δ) -0.94 (	3.0 MHz		<mark>natul anatolina ad</mark> u	Sweep	10.00 ms	Span 0 I
enter 2.441000000 GHz es BW 1.0 MHz	z 1.628 ms	<mark>μυψημία μ</mark> #VBW (Δ) -0.94 (	3.0 MHz		<mark>natul anatolina ad</mark> u	Sweep	10.00 ms	Span 0 I
α         μη (μ)           α         μη (μ) <td>z 1.628 ms</td> <td><mark>μυψημία μ</mark> #VBW (Δ) -0.94 (</td> <td>3.0 MHz</td> <td></td> <td><mark>natul anatolina ad</mark>u</td> <td>Sweep</td> <td>10.00 ms</td> <td>Span 0 I</td>	z 1.628 ms	<mark>μυψημία μ</mark> #VBW (Δ) -0.94 (	3.0 MHz		<mark>natul anatolina ad</mark> u	Sweep	10.00 ms	Span 0 I
0     Implify       0.0	z 1.628 ms	<mark>μυψημία μ</mark> #VBW (Δ) -0.94 (	3.0 MHz		<mark>natul anatolina ad</mark> u	Sweep	10.00 ms	Span 0 I
Amount         Amount           Amount	z 1.628 ms	<mark>μυψημία μ</mark> #VBW (Δ) -0.94 (	3.0 MHz		<mark>natul anatolina ad</mark> u	Sweep	10.00 ms	Span 0 I
α     μητής       α     μητής       α     α       α     μητής       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α       α     α	z 1.628 ms	<mark>μυψημία μ</mark> #VBW (Δ) -0.94 (	3.0 MHz		<mark>natul anatolina ad</mark> u	Sweep	10.00 ms	Span 0 I
0         Image: Arrow of the second sec	z 1.628 ms	<mark>μυψημία μ</mark> #VBW (Δ) -0.94 (	3.0 MHz		<mark>natul anatolina ad</mark> u	Sweep	10.00 ms	Span 0 I



	Dwell NVNT 2-DH	H5 2441MHz	One Burst	
Agilent Spectrum Analyzer - Swept SA       RL     RF       So Ω     AC       Center Freq 2.44100000	DO GHZ T	rig Delay-500.0 µs rig: Video Atten: 30 dB	IGN AUTO #Avg Type: RMS	11:10:48 PM Apr 24, 20 TRACE 1234 S TYPE WWWWW DET PNNN
Ref Offset 2.6 dB I0 dB/div Ref 20.00 dBm	1			ΔMkr1 2.879 m -0.67 d
- <b>og</b> 10.0				
				TRIG L1
20.0				
40.0		an di shi ya shi ya da di ya 19 ki ya k	n kon an al a santa a	
	and the second		and the state of the second	لمحتابه بلبال عراب بالشابلة بالشعدة وغبانا بالش
		an i sa waan i na araa ahaa ahaa ahaa ahaa ahaa ahaa a	n de la califación de la c A participada en la califación de la califa A califación de la califac	
50.0	#VBW 3	ali fan verei de fan ste fan s Eine ste fan st Eine ste fan st	, periode produced in the second s	Span 0 H
20.0 Control C	#VBW 3	.0 MHz	Sweep	Span 0 H
30.0         Δ           enter 2.441000000 GHz           ees BW 1.0 MHz           KR MODE TRC SCL           Δ2         1           Δ2         F           2         F           4         t	#vBW 3	.0 MHz	Sweep	Span 0 H 10.00 ms (10001 pt
30.0         Automatic           enter 2.44 1000000 GHz           ees BW 1.0 MHz           KRI MODE TRC SCL           2         F           2         F           3           4	#VBW 3	.0 MHz	Sweep	Span 0 H 10.00 ms (10001 pt
30 0         0           initial         0           icenter 2.44 10000000 GHz           icenter 2.44 100000000 GHz           icenter 2.44 100000000 GHz           icenter 2.44 100000000 GHz           icenter 2.44 100000000 GHz           icenter 2.44 1000000000000 GHz           icenter 2.44 100000000000000000000000000000000000	#VBW 3	.0 MHz	Sweep	Span 0 H 10.00 ms (10001 pt
30.0         Image: Constraint of the second se	#VBW 3	.0 MHz	Sweep	Span 0 H 10.00 ms (10001 pt
30.0         μ           Contraction         μ           Contreaction	#VBW 3	.0 MHz	Sweep	Span 0 H 10.00 ms (10001 pt



Edition: B.2

Page: 116 of 128



	Dwell N	VNT 3-DH	13 24411	/IHz One	Burst	
I Agilent Spectrum Analyzer - Swept SA RL RF 50 Q AC enter Freq 2.44100000	00 GHz	NO East +++ T	ig Delay-500.0 j rig Delay-500.0 j rig: Video Atten: 30 dB	ALIGN AUTO µs #Avg Ty	pe: RMS	11:11:55 PM Apr 24, 20 TRACE 1 2 3 4 TYPE WWWWM DET P NNN
Ref Offset 2.6 dB 0 dB/div Ref 20.00 dBm	1					ΔMkr1 1.631 m 1.60 d
	<u>_</u> 1∆2					
0.0 X2						TRIG L
0.0						
0.0 <mark>(1999)(199)</mark> 0.0 <mark>8-4[104]₍4]</mark>		n hannya i taina na filana anna in ^{Inn} a ang ing ing ing ing ing ing ing ing ing i	and a link a link at the state of the	n the support of a little sectors a the support of a support of the sectors of the support of the support of the support of the support of the sup	a <mark>diterrational de la deservada de Esta de la deservada de la deserv</mark>	and temperature conditions are with the left to The left of the state
0.0	and the second s			athan pan baya baratan Bitu yaka ya baalihaas Bitu yaka ya baalihaas	<mark>dinantan katika</mark>	Span 0 H
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		^{Ind} patric (Red)by million of #VBW 3	.0 MHz		Sweep	Span 0 H
0.0 μημη 0.0 μημη enter 2.441000000 GHz es BW 1.0 MHz KR MODE TRC SCL > 1 Δ2 1 t (Δ) 2 F 1 t	in a second provide a second sec	^{hel} ne, k (e _s t)d _{ale} , ktore #VBW 3	O MHZ	ini ada <u>a</u> da dilas	Sweep	Span 0 F 10.00 ms (10001 pt
0.0 μημη 0.0 μημη enter 2.441000000 GHz es BW 1.0 MHz KR MODE TRC SCL > 1 Δ2 1 t (Δ) 2 F 1 t	× 1.631 ms	^α γρ <u>η η βαμλημα αίλη η α</u> #VBW 3 (Δ) 1.60 de	O MHZ	ini ada <u>a</u> da dilas	Sweep	Span 0 F 10.00 ms (10001 pt
0.0         μημή           0.0         μ μμ           enter 2.441000000 GHz           es BW 1.0 MHz           KRI MODE TRC: SCL           2         F           1         A2           4         -           5         -           6         -	× 1.631 ms	^α γρ <u>η η βαμλημα αίλη η α</u> #VBW 3 (Δ) 1.60 de	O MHZ	ini ada <u>a</u> da dilas	Sweep	обрановской расси така Span 0 Н 10.00 ms (10001 pt инстіон Value
0.0       μη μη         0.0       μη μη         enter 2.44 1000000 GHz         es BW 1.0 MHz         MODE TRC SCL         1       Δ2         2       Γ         3         4         5         6         7         8         9	× 1.631 ms	^α μετατιματά ματά ματά ματά ματά ματά ματά ματά	O MHZ	ini ada <u>a</u> da dilas	Sweep	Span 0 F 10.00 ms (10001 pt
0.0         untripin           0.0         untripin <td>× 1.631 ms</td> <td>^αμετατιματά ματά ματά ματά ματά ματά ματά ματά</td> <td>O MHZ</td> <td>ini ada <u>a</u>da dilas</td> <td>Sweep</td> <td><mark>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1</mark></td>	× 1.631 ms	^α μετατιματά ματά ματά ματά ματά ματά ματά ματά	O MHZ	ini ada <u>a</u> da dilas	Sweep	<mark>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1</mark>

	Dwell N	VNT 3-D	H5 24	441MHz	One E	Burst		
Agilent Spectrum Analyzer - Swe	1							- ¢
RL RF 50 S enter Freq 2.4410	Р	NO: Fast ++++	SE:INT Trig Delay Trig: Video #Atten: 30	-500.0 µs o	IGN AUTO #Avg Type	RMS	TI	11 PM Apr 24, 2 RACE 1 2 3 4 TYPE WWWW DET PNNN
Ref Offset 2 dB/div Ref 20.00							∆Mkr1	2.881 m 1.65 d
		1Δ2						
.00 X2								TRIG L
0.0								
0.0								
0.0 <mark>(1994)00</mark> 0.0 <mark>(1994)00</mark>		en der en teldige Under standstande	ali (kati Karika <mark>ali (ki ka astro</mark>	n shi ka ke ng Bah Main La ka sa sa sa sa sa sa sa k	dala (stylepoperaties di angli (stylepoperaties		en de la de la politie y La bandas de la como d	nerre literet dester Als solo allantes e
		والبياب الملقي	J		dian a luc	י יון איירף י	Just all M. 4.	i. Ultration
enter 2.441000000 es BW 1.0 MHz	GHz	#VBW	3.0 MHz			Sweep	10.00 ms	Span 0 I (10001 pt
KR MODE TRC SCL	Х	Y		CTION FUNC	TION WIDTH	FI	JNCTION VALUE	
1 Δ2 1 t (Δ) 2 F 1 t	2.881 ms 497.0 µs	(Δ) 1.65 c -3.96 dB	m B					
3								
5								
7								
8								
0								
								•

No.: BCTC/RF-EMC-005

Page: 117 of 128.



Right								
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.373	118.987	319	31600	400	Pass
NVNT	1-DH3	2441	1.621	259.36	160	31600	400	Pass
NVNT	1-DH5	2441	2.869	306.983	107	31600	400	Pass
NVNT	2-DH1	2441	0.38	121.22	319	31600	400	Pass
NVNT	2-DH3	2441	1.633	261.28	160	31600	400	Pass
NVNT	2-DH5	2441	2.842	301.252	106	31600	400	Pass
NVNT	3-DH1	2441	0.381	121.539	319	31600	400	Pass
NVNT	3-DH3	2441	1.63	259.17	159	31600	400	Pass
NVNT	3-DH5	2441	2.881	305.386	106	31600	400	Pass

		Dwell I	NVNT 1-	<b>Test Gr</b> a DH1 24		One	Burst		
(RL	Analyzer - Swept S RF 50 Ω A0 2.4410000	00 GHz	PNO: Fast ↔ Gain:Low	GENSE:INT Trig Delay- Trig: Video #Atten: 30 d	500.0 µs	IGNAUTO #Avg Typ	e: RMS		7 PM Apr 28, 2024 RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N
0 dB/div	ef Offset 2.6 dB ef 20.00 dBn							∆Mkr1	373.0 μs -3.98 dB
.og 10.0 0.00	- 142								
10.0 <b>X2</b> 20.0									TRIG LVL
30.0 40.0 50.0 <mark>/ 4009/10</mark> 50.0 <mark>/ 4009/10</mark>	- Alder Josef States of a group of And a grow, takes of a group of	a konga na kong kang kang kang kang kang kang kang ka	a lasta <mark>           </mark>  ayadablyat	le din se station and a second			bill bi and to only and a big.		
70.0							ing the second second	a la ni 'r sin hand raft I	
enter 2.441 les BW 1.0	1000000 GHz MHz		#VB	W 3.0 MHz			Sweep	10.00 ms	Span 0 Hz (10001 pts)
ikr mode trc s	t (Δ)	× 373.0 µs 498.0 µs		FUNC 8 dB dBm	TION FUNC	TION WIDTH	FL	JNCTION VALUE	<u>^</u>
2 F 1 4		498.0 µs							
3 4 5 6 7 8 9		498.0 µs							
3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		498.0 µs							

Edition: B.2

Page: 118 of 128



	Dwell I	VNT 1-	DH3 24	41MHz	One	Burst		
Agilent Spectrum Analyzer - Swept SA Contended RE 50 Ω AC Center Freq 2.44100000	F	NO: Fast ↔ Gain:Low	ENSE:INT Trig Delay Trig: Video #Atten: 30	-500.0 µs	LIGNAUTO #Avg Typ	e: RMS	TR	PM Apr 28, 2024 ACE <b>1 2 3 4 5</b> YPE WWWWWW DET <mark>P N N N N I</mark>
Ref Offset 2.6 dB 10 dB/div Ref 20.00 dBm Log							ΔMkr1 1	.621 ms 0.78 dB
0.00	•1∆2							TRIG LVL
-10.0 2								
-40.0 -50.0 44.450	til tenter stelle Til fregtigen det	illindelidelinder Nyrophiliten feltete		u da sin di bilan da La sin da sin da bilan da	den file som dette	la di tang mang bayan Miti pang mang bayan na sa	ana ang kang ang kang kang kang kang kan	teredisinded (inte ¹ 161 - ₁ 174 - 1174 - 1174 - 1174 - 1174 - 1174 - 1174 - 1174 - 1174 - 1174 - 1174 - 1174 - 1174 - 1174 - 1174
-70.0 Center 2.441000000 GHz Res BW 1.0 MHz		#VB1	N 3.0 MHz			Sweep	10.00 ms (	Span 0 Hz 10001 pts
MKR MODE TRC SCL X		Y		CTION FUNC	TION WIDTH	FI	JNCTION VALUE	<u></u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>1.621 ms</u> 498.0 μs	<u>(Δ) 0.7</u> -7.90	8 dB dBm					
9								

Dwell N	VNT 1-DH5 2441M	Hz One Burst	
	NO: Fast	ALIGNAUTO #Avg Type: RMS	01:21:58 PMApr 28, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P.N.N.N.N
Ref Offset 2.6 dB 10 dB/div Ref 20.00 dBm Log			ΔMkr1 2.869 ms 3.62 dB
	<b>1</b> ∆2		
-10.0 22			TRIG LVL
-30.0 -40.0 -50.0	di na jela na la kon jela kon statistik na na kon kon statistik se	a the log of the state of the s	aka kata waka sigiliki yaki kata kiya kiki asawa yar
-60.0 44/444	the first first of the state of the first first first first	energia ang ing mang nang mang mang mang mang mang nang mang m	<mark>a propaga in provid hyperted de marches al ve</mark>
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Swee	Span 0 Hz 0 10.00 ms (10001 pts)
MKR         MODE         TRC         SCL         ×           1         Δ2         1         t         (Δ)         2.869 ms.           2         F         1         t         497.0 μs.		FUNCTION WIDTH	FUNCTION VALUE
4 5 6 7			3
9 10 11			~
MSG		STATUS	

05

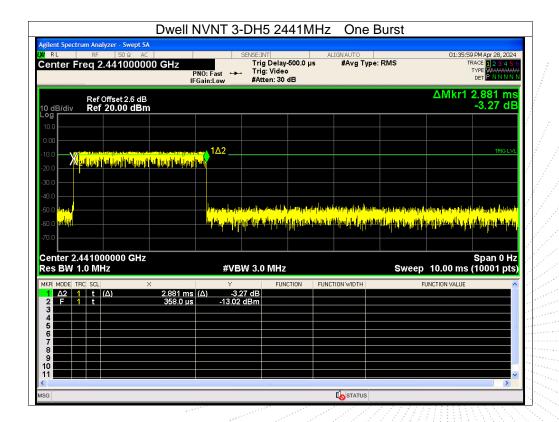


	Dwell N	VNT 2-DH	1 2441M	Hz One	Burst	
gilent Spectrum Analyzer - Swept SA ( RL RF 50Ω AC Center Freq 2.44100000	00 GHz	0:East →→ Tri	NT g Delay-500.0 μs g: Video ten: 30 dB	ALIGN AUTO #Avg Ty	pe: RMS	01:13:51 PM Apr 28, 202 TRACE 12 3 4 5 TYPE WAAAAAA DET P.N.N.N.N
Ref Offset 2.6 dB 10 dB/div Ref 20.00 dBm						ΔMkr1 380.0 μ 3.03 dE
						TRIG LV
20.0		Lats.				
40.0						
50.0 <mark>det wheth with the ball</mark>			^{and} a ang ang ang ang ang ang ang ang ang an	and the production of the second s Second second s	alla de la dia de activita alla se la presenta de la compositione alla se la presenta de la compositione	and a short of the state of the
500         40 mm/h and a straight for the straight for straight for the straight for the straight for the str	- <mark>174 - borgester se de de de 1747 - - 1₇₆ 184 <u>  1.00   1.90 de de s</u>e j</mark>	#VBW 3.0		norden de service Anna <u>de la service</u> Anna <u>de service</u> Anna <u>de service</u>		Span 0 H
Arr Los         <		Y			Sweep	Span 0 H 10.00 ms (10001 pt
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<ul> <li>380.0 µs (2</li> </ul>	Υ Δ) 3.03 dB	) MHz		Sweep	Span 0 H 10.00 ms (10001 pts

	Dwell NVNT 2	2-DH3 2441N	1Hz One E	Burst	
Agilent Spectrum Analyzer - Swept SA           M         RL         RF         50 Ω         AC           Center Freq 2.44100000	0 GHz PNO: Fast ↔ IFGain:Low	SENSE:INT Trig Delay-500.0 µ ⊶ Trig: Video #Atten: 30 dB	ALIGN AUTO Is #Avg Type		23:02 PM Apr 28, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N
Ref Offset 2.6 dB 10 dB/div Ref 20.00 dBm Log				ΔMk	r1 1.633 ms 1.09 dB
10.0 0.00 .10.0	1∆2				TRIG LVL
-10.0 X2 -20.0					
-40.0 -50.0 449-04 -60.0 444-141	And provide a property of the state of the state in the state of the st	an fan skal (fan falska), en fan de fan fan fan steren. Yn flen wei falska falskal yn steren fan steren yn	an lain la bhliann an Sinn Cina 20 Lini La Statann an Linn an Linn	, dag bergapan kinang babiga basarbar Ipan, agan <mark>kinangan kina t</mark> egan baga	ng ng Alan kan ng sang ang lang ng ng Alan ng Ing ng n
-70.0	Allower of the				Span 0 Hz
Res BW 1.0 MHz	#VI	BW 3.0 MHz		Sweep 10.00 r	ns (10001 pts)
MKRi MODE         TRC         SCL         ×           1         Δ2         1         t         (Δ)           2         F         1         t           3         -         -         -           4         -         -         -	1.633 ms (Δ) 1	FUNCTION I.09 dB 3 dBm	FUNCTION WIDTH	FUNCTION VAL	UE
5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
10 11 K			<b>STATUS</b>		>

Page: 120 of 128




		Dwell I	NVNT 2-	-DH5 24	141MHz	One	Burst		
(RL	um Analyzer - Swept S RF 50Ω A req 2.4410000	c I00 GHz	PNO: Fast 🔸	SENSE:INT Trig Delay Trig: Video #Atten: 30	-500.0 μs o	LIGNAUTO #Avg Typ	e: RMS		1 PM Apr 28, 2024 RACE 1 2 3 4 5 TYPE WWWWWW DET P N N N N
I0 dB/div	Ref Offset 2.6 dE Ref 20.00 dBi							ΔMkr1	2.842 ms -2.77 dE
10.0 0.00 10.0			Δ2						TRIG LVL
-20.0									
-30.0									
-40.0 -50.0 -60.0			dal et des des des des se Na stande <mark>n estadores des</mark> Na standen estadores des se	VİLL OLUŞUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNU	y daga di Arrika ta da Masega det at estat		an ^{ll v} atio ^{til} by the state of the state		a da a d
-50.0 -60.0 -70.0	441000000 GHz .0 MHz			W 3.0 MHz		alden di kan biyan di <mark>Manipan di kan biyan di kana di Manipan di kana /mark>			Span 0 Hi
40.0 50.0 60.0 70.0 Center 2.4 Res BW 1. MKR MODE TRI 1 A2 1 2 F 1 3 U	.0 MHz		#VB (Δ) -2.7	W 3.0 MHz			Sweep		Span 0 H: (10001 pts
40.0 50.0 50.0 70.0 Center 2.4 Res BW 1. MKR MODE TRI 1 Δ2 1 2 F 1	.0 MHz	2 × 2.842 ms	#VB (Δ) -2.7	W 3.0 MHz			Sweep	10.00 ms	Span 0 H; (10001 pts
40.0 50.0 50.0 Center 2.4 Ces BW 1. MKR MODE TR 1 Δ2 1 2 F 1 3 4 5 6 6 7 7	.0 MHz	2 × 2.842 ms	#VB (Δ) -2.7	W 3.0 MHz			Sweep	10.00 ms	Span 0 Hz (10001 pts

	Dwell N	NVNT 3-DH	11 2441MI	Hz One	Burst	
gilent Spectrum Analyzer - Swept						
RL RF 50 Ω A	DOO GHz	NO:East ++ Tri	ɪмт ig Delay-500.0 μs ig: Video tten: 30 dB	ALIGNAUTO #Avg Typ	e: RMS	01:19:04 PM Apr 28, 3 TRACE 1 2 3 TYPE V V V DET P N N
Ref Offset 2.6 dl						ΔMkr1 381.0 1.65
0.0 						
	u la					TRK
0.0		land.				
0.0						
	a far far an far an far a A far	a <mark>llandar and an </mark>	h ^{ild} harachter professer ab d	leda de com esta homente Martina presidentes das	<mark>de la desta de presidente de service de la presidente de la presidente de la presidente de la presidente de la p Internación de la presidente /mark>	anisteheteidensi parantisteratustansettisi parantysikayangan pinyantispana (japana
0.0 40-00 (16)00 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10		#VBW 3.	a fin i fi sa kina sa k Na kina sa kina	10420/00030041000000000000000000000000000000	a <u>and a la la constant</u> a a <mark>la constant a</mark>	<b>10.00 ms (1000</b>
0.0 (41.00) (2.0 (41.00) 0.0 (41.00) (41.00) 0.0 (41.00) (41.00) enter 2.441000000 GH2 es BW 1.0 MH2 КА модеј тасј sci.	z X	#VBW 3.	O MHz		Sweep	<mark>(19) (6) eta jaro (19) (19) (19) (19) (19) (19) (19) (19)</mark>
0.0 (41, 44) 0.0 (41, 44) enter 2.441000000 GH2 es BW 1.0 MHz KR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t	, <mark>∦∛}},∬</mark>  }, ₀ 144 Z	#VBW 3.	O MHz	intenti (kon portugali intensi da portugali intensi da portugali intensi da portugali intensi da portugali inte Intensi da portugali intensi	Sweep	<mark>المعلم المعلم br/>Span 0 10.00 ms (10001</mark>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	× 381.0 µs	<mark>И (Цри), ради</mark> #VBW 3. (Δ) ^У	O MHz	intenti (kon portugali intensi da portugali intensi da portugali intensi da portugali intensi da portugali inte Intensi da portugali intensi	Sweep	<mark>المعلم المعلم br/>Span 0 10.00 ms (10001</mark>
50.0         Δ(μμ)         Δ(μμ) <td< td=""><td>× 381.0 µs</td><td><mark>И (Цри), ради</mark> #VBW 3. (Δ) ^У</td><td>O MHz</td><td>intenti (kon portugali intensi da portugali intensi da portugali intensi da portugali intensi da portugali inte Intensi da portugali intensi da portugali intensi da portugali intensi da portugali intensi da portugali intensi</td><td>Sweep</td><td><mark>المعلم المعلم br/>Span 0 10.00 ms (10001</mark></td></td<>	× 381.0 µs	<mark>И (Цри), ради</mark> #VBW 3. (Δ) ^У	O MHz	intenti (kon portugali intensi da portugali intensi da portugali intensi da portugali intensi da portugali inte Intensi da portugali intensi	Sweep	<mark>المعلم المعلم br/>Span 0 10.00 ms (10001</mark>
So 0         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ         μ          μ         μ         μ <td>× 381.0 µs</td> <td><mark>И (Цри), ради</mark> #VBW 3. (Δ) ^У</td> <td>O MHz</td> <td>intenti (kon portugali intensi da portugali intensi da portugali intensi da portugali intensi da portugali inte Intensi da portugali intensi da portugali intensi da portugali intensi da portugali intensi da portugali intensi</td> <td>Sweep</td> <td><mark>المعلم المعلم br/>Span 0 10.00 ms (10001</mark></td>	× 381.0 µs	<mark>И (Цри), ради</mark> #VBW 3. (Δ) ^У	O MHz	intenti (kon portugali intensi da portugali intensi da portugali intensi da portugali intensi da portugali inte Intensi da portugali intensi	Sweep	<mark>المعلم المعلم br/>Span 0 10.00 ms (10001</mark>

Page: 121 of 128



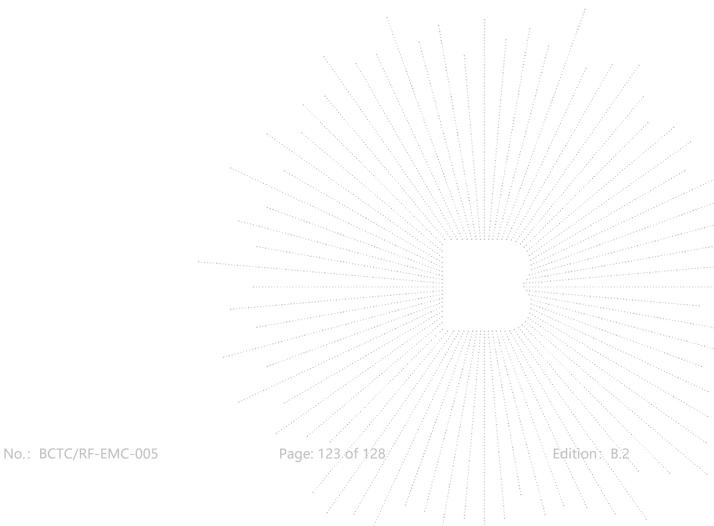
	Dwell N	NVNT 3-	-DH3 24	41MHz	One	Burst		
Agilent Spectrum Analyzer - Swept SA N RL RF 50 Ω AC Center Freq 2.44100000	0 GHz	PNO: Fast +++ Gain:Low	SENSE:INT Trig Delay Trig: Video #Atten: 30	-500.0 µs	IGNAUTO #Avg Type	e: RMS		7 PM Apr 28, 2024 RACE 1 2 3 4 5 TYPE WWWWWW DET P N N N N
Ref Offset 2.6 dB 10 dB/div Ref 20.00 dBm							∆Mkr1	1.630 ms 1.31 dE
10.0 0.00 	1∆2							TRIG LVI
-20.0 <b>X2141-0 1-4010 11-1411</b>								
40.0 -50.0 - <mark>61.0</mark>	latin kinderer Rider der som die	tere de ligent frans. <mark>, platet (1996) (1997)</mark>	al institu ^l the south of an <mark>January Instance party al y</mark>	aldu oot teluk taal Natio Vikeetia ja _n si	in holest le die d på Lipsen i kin he	<mark>den producer (new producer Recent francé (new producer (</mark>	dette et settitette Repetitionen	andra brailtea <mark>1997 - Artan Artan</mark>
Center 2.441000000 GHz Res BW 1.0 MHz		#VB	W 3.0 MHz			0	40.00	Span 0 H
						Sweep	10.00 ms	(10001 pts
1         Δ2         1         t         (Δ)           2         F         1         t         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td>1.630 ms 358.0 μs</td> <td>Υ (Δ) 1.3</td> <td>FUN 31 dB</td> <td></td> <td>FION WIDTH</td> <td></td> <td>INCTION VALUE</td> <td></td>	1.630 ms 358.0 μs	Υ (Δ) 1.3	FUN 31 dB		FION WIDTH		INCTION VALUE	
1 Δ2 1 t (Δ) 2 F 1 t 3	1.630 ms	Υ (Δ) 1.3	FUN 31 dB		rion width			



Page: 122 of 128

No.: BCTC/RF-EMC-005




### 15. Antenna Requirement

#### 15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

### 15.2 Test Result

The EUT antenna is Internal antenna, fulfill the requirement of this section.





### 16. EUT Photographs

#### **EUT Photo 1**



#### **EUT Photo 2**





#### EUT Photo 3



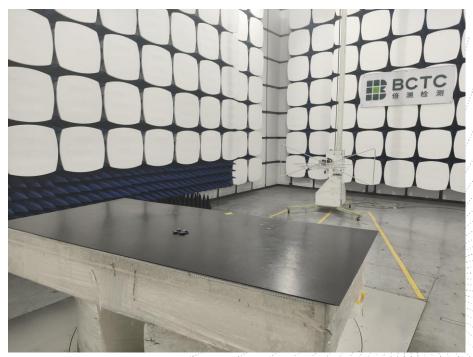
#### **EUT Photo 4**



NOTE: Appendix-Photographs Of EUT Constructional Details.

No.: BCTC/RF-EMC-005

Page: 125 of 128




## 17. EUT Test Setup Photographs

### **Conducted Measurement Photo**



#### **Radiated Measurement Photos**



No.: BCTC/RF-EMC-005

Page: 126 of 128



Left



# Right



No.: BCTC/RF-EMC-005

Page: 127 of 128



### STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn.

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005

Page: 128 of 128