

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com

Report Template Version: V05
Report Template Revision Date: 2021-11-03

RF Exposure Evaluation Report

Report No.: CQASZ20230701283E-03

Applicant: Shenzhen Baseus Technology Co., Ltd.

Address of Applicant: 2nd Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou

Community, Bantian Street, Longgang District, Shenzhen.

Equipment Under Test (EUT):

EUT Name: Baseus Wireless Headphones

Model No.:

Baseus Bowie H1 Pro

Test Model No.:

Baseus Bowie H1 Pro

Brand Name: **boseus**

FCC ID: 2A482-H1PRO

Standards: 47 CFR Part 1.1307

47 CFR Part 2.1093

KDB447498 D04 Interim General RF Exposure Guidance v01

Date of Receipt: 2023-07-17

Date of Test: 2023-07-17 to 2023-07-28

Date of Issue: 2023-08-14

Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:

(Lewis Zhou)

Reviewed By:

(Timo Lei)

Approved By:

(Jack Ai)

Report No.: CQASZ20230701283E-03

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date	
CQASZ20230701283E-03	Rev.01	Initial report	2023-08-14	

Report No.: CQASZ20230701283E-03

2 Contents

	Page
1 VERSION	2
2 CONTENTS	
3 GENERAL INFORMATION	
3.1 CLIENT INFORMATION	4
3.2 GENERAL DESCRIPTION OF EUT	4
3.3 GENERAL DESCRIPTION OF BLE	4
3.4 GENERAL DESCRIPTION OF BT	4
4 RF EXPOSURE EVALUATION	5
4.1 SAR EVALUATION FOR PORTABLE CONDITION	
4.1.1 Standard Requirement	5
4.1.2 Limits	5 5
4.1.3 SAR Exclusion Evaluation Result	

Report No.: CQASZ20230701283E-03

3 General Information

3.1 Client Information

Applicant:	Shenzhen Baseus Technology Co., Ltd.
Address of Applicant:	2 nd Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen.
Manufacturer:	Shenzhen Baseus Technology Co., Ltd.
Address of Manufacturer:	2 nd Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen.
Factory:	GuangDong Shuoqiang Electronics Co., Ltd.
Address of Factory:	NO. 9 Lianxin Road, Shangjiao Community, Chang'an Town, Dongguan City, Guangdong Province.

3.2 General Description of EUT

Product Name:	Baseus Wireless Headphones
Model No.:	Baseus Bowie H1 Pro
Test Model No.:	Baseus Bowie H1 Pro
Trade Mark:	baseus
Software Version:	V1.0
Hardware Version:	V1.0
Power Supply:	2*Li-ion battery: DC 3.7V 400mAh, Charge by DC 5V for adapter
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.
	⊠ Simultaneous TX is not supported.

3.3 General Description of BLE

Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK
Transfer Rate:	1Mbps/2Mbps
Number of Channel:	40
Product Type:	☐ Mobile ☐ Portable
Antenna Type:	PCB antenna
Antenna Gain:	1.5dBi

3.4 General Description of BT

Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Transfer Rate:	1Mbps/2Mbps/3Mbps
Number of Channel:	79
Product Type:	☐ Mobile ☐ Portable
Antenna Type:	PCB antenna
Antenna Gain:	1.5dBi

Report No.: CQASZ20230701283E-03

4 RF Exposure Evaluation

4.1 SAR Evaluation for Portable condition

4.1.1 Standard Requirement

447498 D04 Interim General RF Exposure Guidance v01

3.2. SAR Test Reduction Guidance

SAR test reduction procedures [Glossary] allow using a particular set of test data as representative of other, similar, test conditions. This may be applied for data within different test positions (e.g. body, head, extremity), wireless modes (e.g. Wi-Fi, cellular), and frequency bands. This test reduction process provides for the use of test data for one specific channel, while referencing to those data for demonstrating compliance in other required channels for each test position of an exposure condition, within the operating mode of a frequency band. This is limited specifically to when the reported 1-g or 10-g SAR for the midband or highest output power channel meets any of the following conditions.

4.1.2 Limits

SAR-based thresholds are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum timeaveraged power or maximum time-averaged ERP, whichever is greater.

If the ERP of a device is not easily determined, such as for a portable device with a small form factor, the applicant may use the available maximum time-averaged power exclusively if the device antenna or radiating structure does not exceed an electrical length of $\lambda/4$.

As for devices with antennas of length greater than λ /4 where the gain is not well defined, but always less than that of a half-wave dipole (length λ /2), the available maximum time-averaged power generated by the device may be used in place of the maximum time-averaged ERP, where that value is not known.

The separation distance is the smallest distance from any part of the antenna or radiating structure for all persons, during operation at the applicable ERP. In the case of mobile or portable devices, the separation distance is from the outer housing of the device where it is closest to the antenna.

The SAR-based exemption formula of § 1.1307(b)(3)(i)(B), repeated here as Formula (B.2), applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold Pth (mW).

This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by Formula (B.2).

Report No.: CQASZ20230701283E-03

$$P_{\text{th (mW)}} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$
(B. 2)

where

$$\chi = -\log_{10}\left(\frac{60}{ERP_{20} \text{ cm}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

Table B.2—Example Power Thresholds (mW)

	Distance (mm)										
		5	10	15	20	25	30	35	40	45	50
(Z	300	39	65	88	110	129	148	166	184	201	217
(MHz)	450	22	44	67	89	112	135	158	180	203	226
	835	9	25	44	66	90	116	145	175	207	240
Frequency	1900	3	12	26	44	66	92	122	157	195	236
nba	2450	3	10	22	38	59	83	111	143	179	219
Fr	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	25	40	58	80	106	136	169

Report No.: CQASZ20230701283E-03

4.1.3 SAR Exclusion Evaluation Result

1) For BLE

ANT1

Measurement Data

Wiedsurement Dai					
Channel	Conducted Peak Output Power (dBm)	EIRP (dBm)	ERP (dBm)	Maximum tune-up Power (mW)	Exclusion threshold (mW)
Lowest (2402MHz)	-1.48	0.02	-2.13	0.61	
Middle (2440MHz)	-0.42	1.08	-1.07	0.78	3.0
Highest (2480MHz)	-0.6	0.9	-1.25	0.75	

ANT2

Measurement Data

Micasurement ba	<u> </u>				
Channel	Conducted Peak Output Power (dBm)	EIRP (dBm)	ERP (dBm)	Maximum tune-up Power (mW)	Exclusion threshold (mW)
Lowest (2402MHz)	-1.59	-0.09	-2.24	0.60	
Middle (2440MHz)	-0.54	0.96	-1.19	0.76	3.0
Highest (2480MHz)	-0.82	0.68	-1.47	0.71	

Remark: The Max Conducted Peak Output Power data refer to report Report No.: CQASZ20230701283E-02

Report No.: CQASZ20230701283E-03

2) For BT

ANT1

Measurement Data

Weasurement Da	<u>.</u> u				
Channel	Conducted Peak Output Power (dBm)	EIRP (dBm)	ERP (dBm)	Maximum tune-up Power (mW)	Exclusion threshold (mW)
Lowest (2402MHz)	1.15	2.65	0.5	1.12	
Middle (2441MHz)	2.45	3.95	1.8	1.51	3.0
Highest (2480MHz)	2.07	3.57	1.42	1.39	

ANT2

Measurement Data

Channel	Conducted Peak Output Power (dBm)	EIRP (dBm)	ERP (dBm)	Maximum tune-up Power (mW)	Exclusion threshold (mW)
Lowest (2402MHz)	1.1	2.6	0.45	1.11	
Middle (2441MHz)	2.32	3.82	1.67	1.47	3.0
Highest (2480MHz)	1.87	3.37	1.22	1.32	

Remark: The Max Conducted Peak Output Power data refer to report Report No.: CQASZ20230701283E-01

Result:

Since EUT has two transmit antennas, the worst mode is when both antennas transmit simultaneously. BT(ANT1) + BT(ANT2)=1.51+1.47=2.98<3(mW)

*** END OF REPORT ***