

Test Report

Report No.: MTi240509008-08E2

Date of issue: 2024-06-03

Applicant: Shenzhen Baseus Technology Co., Ltd.

Product: Baseus SafeJourney Series Wireless CarPlay Adapter

Model(s): BS-CG027

FCC ID: 2A482-BSCG027

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.cn E-mail: mti@51mti.com

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sum	nmary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List	of test equipment	10
5	Eval	luation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radi	io Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Duty Cycle Maximum conducted output power Power spectral density Emission bandwidth and occupied bandwidth Band edge emissions (Radiated) Undesirable emission limits (below 1GHz) Undesirable emission limits (above 1GHz).	
Ph	otogr	raphs of the test setup	35
Ph	otogr	raphs of the EUT	36
Αp	pendi	ix A1: Emission bandwidth (26dB bandwidth)	38
	Appe	endix A2: Occupied channel bandwidth	42
Αp	pendi	ix B: Duty Cycle	46
Αp	pendi	ix C: Maximum conducted output power	50
Αn	pendi	ix D: Maximum power spectral density	54

Test Result Certification			
Applicant:	Shenzhen Baseus Technology Co., Ltd.		
Address:	2nd Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen, China.		
Manufacturer:	Shenzhen Baseus Technology Co., Ltd.		
Address:	2nd Floor, Building B, Baseus Intelligence Park, No.2008, Xuegang Rd, Gangtou Community, Bantian Street, Longgang District, Shenzhen, China.		
Factory:	Shenzhen Anaijia Electronics Co. , Ltd.		
Address:	Shenzhen Longhua district, Dalong Street, Hua Fan road, Quanxinyuan industrial zone, building 3		
Product description			
Product name:	Baseus SafeJourney Series Wireless CarPlay Adapter		
Trademark:	baseus		
Model name:	BS-CG027		
Series Model(s):	N/A		
Standards:	47 CFR Part 15E		
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01 ANSI C63.10-2013		
Date of Test			
Date of test:	2024-05-21 to 2024-05-31		
Test result:	Pass		

Test Engineer :	:	Yanice Xie
		(Yanice.Xie)
Reviewed By :	:	David. Cee
		(David Lee)
Approved By :		leon chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

•	
Product name:	Baseus SafeJourney Series Wireless CarPlay Adapter
Model name:	BS-CG027
Series Model(s):	N/A
Model difference:	N/A
Electrical rating:	Input:5V 1A(Max)
Accessories:	N/A
Hardware version:	2705-240416
Software version:	BS-CG027-V01 20240401
Test sample(s) number:	MTi240509008-08S1001
RF specification	
Operating frequency range:	802.11a/n(HT20): U-NII Band 1: 5180MHz to 5240MHz; 802.11n(HT40): U-NII Band 1: 5190MHz to 5230MHz;
Channel number:	802.11a/n(HT20): U-NII Band 1: 4; 802.11n(HT40): U-NII Band 1: 2;
Modulation type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);
Antenna(s) type:	PCB Antenna
Antenna(s) gain:	2.27 dBi

1.2 Description of test modes

No.	No. Emission test modes	
Mode1	802.11a mode	
Mode2	802.11n20 mode	
Mode3	802.11n40 mode	

1.2.1 Operation channel list

U-NII Band 1

- ···· - ··· - · · · · · · · · · · · ·					
Bandwidth:	20MHz	Bandwidth:	40MHz		
Channel	Frequency (MHz)	Channel	Frequency (MHz)		
36	5180	38	5190		
40	5200	46	5230		
44	5220	1	1		
48	5240	1	1		

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.cn E-mail: mti@51mti.com

Test Channel List

Operation Band: 5150-5250 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)	(MHz)
20	5180	5200	5240
40	5190	/	5230

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Mode	LCH	MCH	HCH
802.11a	105	105	105
802.11n(HT20)	105	105	105
802.11n(HT40)	105	105	105

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list					
Description	Model	Serial No.	Manufacturer		
HUAWEI CHARGE(10W)	HW-050200C02	K95212KA103561	HUAWEI		
Support cable list					
Description	Length (m)	From	То		
1	1	1	/		

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Time	±1 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.207(a)	N/A
3	Duty Cycle		Pass
4	Maximum conducted output power	47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv)	Pass
5	Power spectral density	47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv)	Pass
6	Emission bandwidth and occupied bandwidth	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.	Pass
7	Band edge emissions (Radiated)	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)	Pass
8	Undesirable emission limits (below 1GHz)	47 CFR Part 15.407(b)(9)	Pass
9	Undesirable emission limits (above 1GHz)	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)	Pass

Notes:

- 1.N/A means not applicable.
- 2. Since the EUT power by DC supply, therefore AC power line conducted emissions test is not required.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due				
		Conducted En	nission at AC po	wer line	<u> </u>					
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19				
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20				
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19				
	Duty Cycle Maximum conducted output power Power spectral density Emission bandwidth and occupied bandwidth									
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19				
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20				
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20				
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20				
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20				
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20				
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20				
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19				
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20				
		Band edge Undesirable emi	emissions (Radi ssion limits (abo							
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19				
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16				
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19				
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20				
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20				
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16				
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20				
	Undesirable emission limits (below 1GHz)									
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19				
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10				
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22				
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19				

5 Evaluation Results (Evaluation)

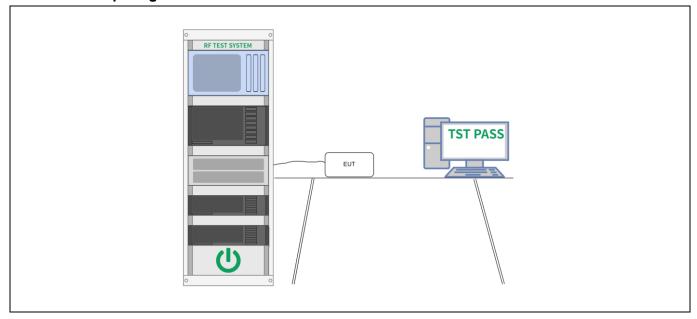
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)


6.1 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

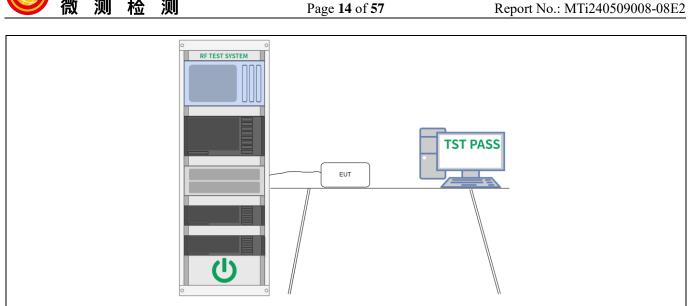
6.1.1 E.U.T. Operation:

Operating Envi	Operating Environment:								
Temperature:	28 °C		Humidity:	35.5 %		Atmospheric Pressure:	100 kPa		
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3								
Final test mode	Final test mode: Mode1, Mode2, Mode3								

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

Please Refer to Appendix for Details.


6.2 Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.
	For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that
Toot Mothed:	the directional gain of the antenna exceeds 6 dBi. ANSI C63.10-2013, section 12.3.2.2
Test Method: Procedure:	Refer to ANSI C63.10-2013 section 12.3.2.2

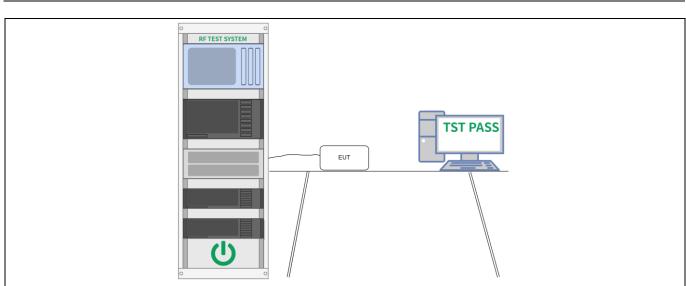
6.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	28 °C		Humidity:	35.5 %	A.	tmospheric Pressure:	100 kPa	
Pre test mode:			e1, Mode2,	Mode3				
Final test mode	Mode	e1, Mode2,	Mode3					

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.


6.3 Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii)						
•	47 CFR Part 15.407(a)(1)(iv)						
Test Limit:	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.						
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.						
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.						
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.						
Test Method:	ANSI C63.10-2013, section 12.5						
Procedure:	Refer to ANSI C63.10-2013, section 12.5						

6.3.1 E.U.T. Operation:

Operating Environment:									
Temperature:	Temperature: 28 °C Humidity: 35.5 % Atmospheric Pressure: 100 kPa								
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3								
Final test mode	Final test mode: Mode1, Mode2, Mode3								

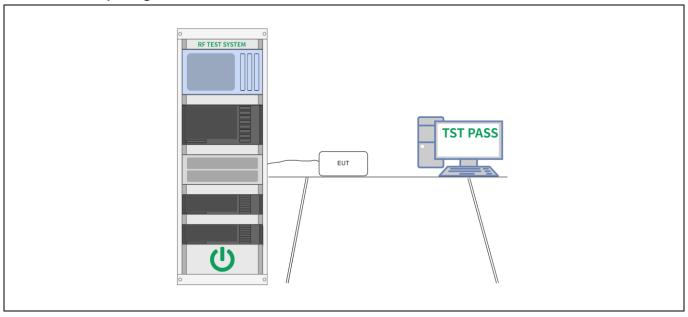
6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

6.4 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Method:	ANSI C63.10-2013, section 6.9 & 12.4
Procedure:	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
	5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the
	applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the
	spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given
	in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be
	used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered
	amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99%
	power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled.



Tabular data may be reported in addition to the plot(s).
be reported in addition to the plot(s).

6.4.1 E.U.T. Operation:

Operating Environment:									
Temperature:	28 °C		Humidity:	35.5 %		Atmospheric Pressure:	100 kPa		
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3								
Final test mode	Final test mode: Mode1, Mode2, Mode3								

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

6.5 Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)
_ ,	

Test Limit:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

Report No.: MTi240509008-08E2

of the 5.15-5.55 Of 12 band shall not exceed an e.i.i.p. of 27 dbm/milz.						
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46			
	16.69525					
2.1735-2.1905	16.80425-	960-1240	7.25-7.75			
	16.80475					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5			
		1646.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4			
		1722.2				
6.31175-6.31225	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4			
	156.52525					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-	240-285	3345.8-3358	36.43-36.5			
12.52025						
12.57675-	322-335.4	3600-4400	(2)			
12.57725						
13.36-13.41						
· · · · · · · · · · · · · · · · · · ·	·	·	·			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength	Measuremen
	(microvolts/meter)	t distance
		(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3

²Above 38.6

			•	
	Above 960	500	3	
	** Except as provintentional radiate frequency bands However, operatisections of this part in the emission to the emission lime employing a CISI kHz, 110–490 kHz	ided in paragraph (g), fur ors operating under this s 54-72 MHz, 76-88 MHz, on within these frequency art, e.g., §§ 15.231 and 1 able above, the tighter limits its shown in the above ta PR quasi-peak detector e z and above 1000 MHz.	ndamental emissions from ection shall not be located in t 174-216 MHz or 470-806 MHz bands is permitted under oth	er ets 9–90 ese
Test Method:	ANSI C63.10-20	3, section 12.7.4, 12.7.6	, 12.7.7	
Procedure:	Above 1GHz: a. For above 1GH meters above the rotated 360 degre b. The EUT was which was mount c. The antenna h ground to determ and vertical polar d. For each susp then the antenna frequency of belo the rotatable tabl maximum reading e. The test-receiv Bandwidth with N f. If the emission specified, then te would be re-teste and then reporte g. Test the EUT in channel. h. The radiation r Transmitting mod case. i. Repeat above p Remark: 1. Level= Read L 2. Scan from 180 The points marke when testing, so spurious emissio below the limit ne 3. As shown in th limits are based of emission shall no above by more th emissions whose measurement is 4. The disturbance	Itz, the EUT was placed of ground at a 3 meter fully sees to determine the positive on the top of a variable eight is varied from one mine the maximum value of izations of the antenna a sected emission, the EUT was tuned to heights from 30MHz, the antenna we was turned from 0 degres. The was turned from 0 degres is set to Pealaximum Hold Mode. Hevel of the EUT in peak is sting could be stopped and Otherwise the emission of one by one using peak in a data sheet. In the lowest channel, the measurements are performed, and found the X axis performed by the control of the reduction	on the top of a rotating table 1./ -anechoic chamber. The table tion of the highest radiation. ne interference-receiving anter	e was nna, ontal ent. e and test ind ed e limit gin ed for e. low. und f dB th yed k e the

6.5.1 E.U.T. Operation:

Operating Environment:							
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa	
Pre test mode: M			Mode1, Mode2, Mode3				
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report					of the worst mode		

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Mode2 / Polarization: Horizontal / BW: 20 / CH: L

Reading Correct Measure-

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4500.000	49.02	-8.74	40.28	74.00	-33.72	peak
2		4500.000	39.19	-8.74	30.45	54.00	-23.55	AVG
3		5150.000	70.95	-6.13	64.82	74.00	-9.18	peak
4	*	5150.000	55.88	-6.13	49.75	54.00	-4.25	AVG

Mode2 / Polarization: Vertical / BW: 20 / CH: L

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	4500.000	49.34	-8.74	40.60	74.00	-33.40	peak
	4500.000	39.17	-8.74	30.43	54.00	-23.57	AVG
	5150.000	65.51	-6.13	59.38	74.00	-14.62	peak
*	5150.000	50.29	-6.13	44.16	54.00	-9.84	AVG
		MHz 4500.000 4500.000 5150.000	Mk. Freq. Level MHz dBuV 4500.000 49.34 4500.000 39.17 5150.000 65.51	Mk. Freq. Level Factor MHz dBuV dB 4500.000 49.34 -8.74 4500.000 39.17 -8.74 5150.000 65.51 -6.13	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 4500.000 49.34 -8.74 40.60 4500.000 39.17 -8.74 30.43 5150.000 65.51 -6.13 59.38	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 4500.000 49.34 -8.74 40.60 74.00 4500.000 39.17 -8.74 30.43 54.00 5150.000 65.51 -6.13 59.38 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB 4500.000 49.34 -8.74 40.60 74.00 -33.40 4500.000 39.17 -8.74 30.43 54.00 -23.57 5150.000 65.51 -6.13 59.38 74.00 -14.62

Mode2 / Polarization: Horizontal / BW: 20 / CH: H Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dBuV/m MHz dB dBuV/m dB Detector -30.72 5350.000 48.91 -5.6343.28 74.00 1 peak 2 5350.000 39.01 -5.6333.38 54.00 -20.62 AVG 3 5460.000 49.51 -5.6343.88 74.00 -30.12peak 4 5460.000 39.28 -5.6333.65 54.00 -20.35AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		5350.000	49.49	-5.63	43.86	74.00	-30.14	peak
2		5350.000	39.28	-5.63	33.65	54.00	-20.35	AVG
3		5460.000	49.17	-5.63	43.54	74.00	-30.46	peak
4	*	5460.000	39.43	-5.63	33.80	54.00	-20.20	AVG

6.6 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)	(9)						
Test Limit:	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.							
	intentional radiator sha	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the						
	following table:	Terri d						
	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
		n paragraph (g), fundamenta						
	frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	erating under this section she MHz, 76-88 MHz, 174-216 hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are basi-peak detector except for above 1000 MHz. Radiated on measurements employin	MHz or 470-806 MHz. s permitted under other sat the band edges. ased on measurements the frequency bands 9–90 emission limits in these					
Test Method:	ANSI C63.10-2013, se	<u>.</u>	<u> </u>					
Procedure:	Below 1GHz:							
	a. For below 1GHz, the meters above the grouwas rotated 360 degrees. The EUT was set 30 antenna, which was more. The antenna height ground to determine the and vertical polarization d. For each suspected then the antenna was the frequency of below 300 the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of specified, then testing would be reported. Othe would be re-tested one then reported in a data g. Test the EUT in the I channel. h. The radiation measurements.	of the EUT in peak mode wan could be stopped and the pe perwise the emissions that di to by one using quasi-peak mo	oic chamber. The table of the highest radiation. Interference-receiving ble-height antenna tower. Our meters above the distrength. Both horizontal make the measurement. Inged to its worst case and or to 4 meters (for the test to heights 1 meter) and so degrees to find the distribution and Specified is 10dB lower than the limit tak values of the EUT dinot have 10dB marginethod as specified and thannel, the Highest of the Hi					
	h. The radiation measurements from the radiation measurements	•	g which it is the worst					

Remark:

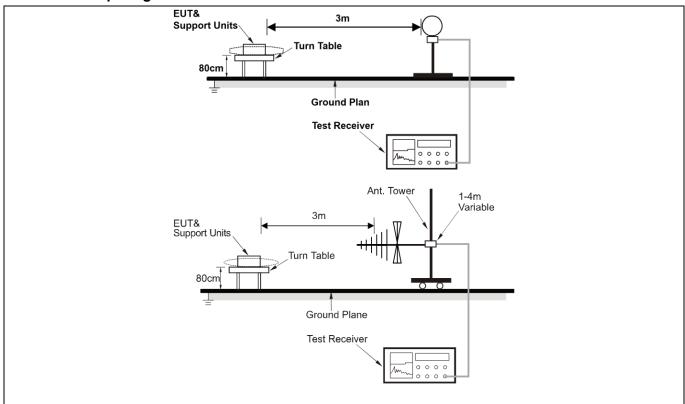
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: MTi240509008-08E2

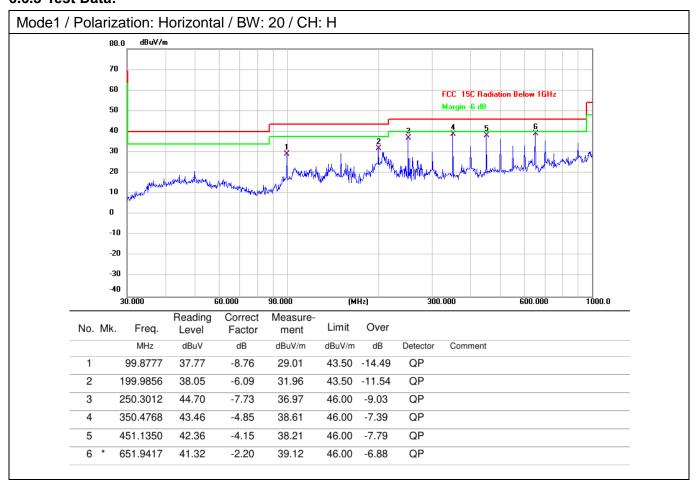
3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


6.6.1 E.U.T. Operation:

Operating Environment:



Temperature: 24 °C	Humidity: 54 % Atm	nospheric Pressure:	101 kPa
Pre test mode:	Mode1, Mode2, Mode3		
Final test mode: All of the listed pre-test mode were tested, only the data of the worst m (Mode1) is recorded in the report			

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

4 5

6

501.1790

550.9480

41.01

42.16

-3.42

-2.53

37.59

39.63

46.00

46.00

-8.41

-6.37

QP

QP

Report No.: MTi240509008-08E2 Mode1 / Polarization: Vertical / BW: 20 / CH: H dBuV/m 80.0 70 60 FCC 15C Radi Margin -6 dB 50 40 30 20 10 0 -10 -20 -30 -40 (MHz) 600.000 1000.0 30.000 60.000 90.000 300.000 Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 99.8777 46.29 -8.76 37.53 43.50 -5.97 2 199.9856 37.26 -6.09 31.17 43.50 -12.33 QP QP 3 350.4768 42.71 -4.85 37.86 46.00 -8.14 451.1350 39.76 -4.15 35.61 46.00 -10.39 QP

6.7 Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)

Test Limit:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Report No.: MTi240509008-08E2

That I	I NALL	L NALL	011
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
	16.69525		
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
	16.80475		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
		1646.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
		1722.2	
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
	156.52525		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-	240-285	3345.8-3358	36.43-36.5
12.52025			
12.57675-	322-335.4	3600-4400	(2)
12.57725			, ,
13.36-13.41			
	•	•	

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength	Measuremen
	(microvolts/meter)	t distance
	, ,	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.cn E-mail: mti@51mti.com

²Above 38.6

	Above 960	500	3		
	** Except as provious intentional radiator frequency bands 5 However, operation sections of this part In the emission limits employing a CISPF kHz, 110–490 kHz	ded in paragraph (g), fusion paragraph (g), fusion per this 4-72 MHz, 76-88 MHz within these frequency, §§ 15.231 and ple above, the tighter lines shown in the above to and above 1000 MHz. ased on measurements	undamental emission section shall not be lead to 174-216 MHz or 47 by bands is permitted 15.241. The properties of the bare able are based on mexcept for the frequent Radiated emission I	located in the '0-806 MHz. d under other and edges. easurements ency bands 9-limits in these	-90
Test Method:	ANSI C63.10-2013	3, section 12.7.4, 12.7.	6, 12.7.7		
Test Method: Procedure:	Above 1GHz: a. For above 1GHz meters above the grotated 360 degree b. The EUT was se which was mounte c. The antenna hei ground to determin and vertical polariz d. For each suspect then the antenna w frequency of below the rotatable table maximum reading. e. The test-receive Bandwidth with Ma f. If the emission le specified, then test would be re-tested and then reported. would be re-tested and then reported g. Test the EUT in channel. h. The radiation me Transmitting mode case. i. Repeat above pr Remark: 1. Level= Read Le 2. Scan from 18Gh The points marked when testing, so or spurious emissions below the limit nee 3. As shown in this limits are based or emission shall not above by more tha emissions whose p measurement is sh 4. The disturbance highest point could	z, the EUT was placed ground at a 3 meter fulles to determine the poset 3 meters away from d on the top of a varial ght is varied from one at the maximum value rations of the antenna at the demission, the EUT was tuned to heights from 30MHz, the antenna was turned from 0 degressions at the EUT in peaking could be stopped at the lowest channel, the easurements are performed and found the X axis occedures until all frequency above points had be from the radiator which are the high above points had be from the reported. The exceeding the maximum of the exceeding the exceeding the maximum of the exceeding the exceeding the maximum of the exceeding t	on the top of a rotaticly-anechoic chambers ition of the highest rathe interference-receive-height antenna to meter to four meters of the field strength. The are set to make the rather was arranged to its own 1 meter to 4 meters are to 360 degrees and the peak values are at the did not have and the peak values are an arranged to its own 1 meters to 360 degrees are at the peak values are an arranged to its own 1 meters arranged to its own 1 meters arranged to its own 1 meters arranged to its own 2 mode was 10dB lowers and the peak values are at did not have are average method are middle channel, the positioning which it is the period of the area attenuated mode and the peak field strong the peak field strong the peak field strong the area attenuated mode are attenuated mode and the average limit, of the average limit, or are power and the harman areas and the harman areas are attenuated mode and the average limit, or are period and the harman areas are attenuated mode and the average limit, or areas and the harman areas are attenuated mode and the average limit, or areas areas are attenuated mode and the average limit, or areas areas areas are attenuated mode and the average limit, or areas are	r. The table was adiation. Eving antenna ower. Sabove the Both horizon measurement worst case a ers (for the test of the EUT of the EUT of the EUT of the EUT of the Sabove the worst as specified to the worst as complete. Factor was very low could be found amplitude of ore than 20dB field strength of any mits specified. For the nly the peak nonics were the sadover than the peak nonics were the sadover the sadover than the peak nonics were the sadover the sado	a, Ital t. and est d imit n l
			•		

6.7.1 E.U.T. Operation:

Operating Envi	ronment					
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2, I	Mode3		
Final test mode	e:			re-test mode w	vere tested, only the data ort	of the worst mode

6.7.2 Test Data:

Mode1 /	Polari	zat	ion: Horizont	al / BW: 20	/ CH: L				
	No.	М	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		10360.000	55.21	3.46	58.67	74.00	-15.33	peak
	2	*	10360.000	45.11	3.46	48.57	54.00	-5.43	AVG
	3		15540.000	7.87	47.26	55.13	74.00	-18.87	peak
	4		15540.000	-1.90	47.26	45.36	54.00	-8.64	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	10	360.000	55.53	3.46	58.99	74.00	-15.01	peak
2	10	360.000	45.19	3.46	48.65	54.00	-5.35	AVG
3	15	540.000	12.15	47.26	59.41	74.00	-14.59	peak
4	* 15	540.000	2.36	47.26	49.62	54.00	-4.38	AVG

lode1 / I	Polari	zat	ion: Horizont	al / BW: 20	/ CH: M				
	No.	М	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		10400.000	54.32	3.13	57.45	74.00	-16.55	peak
_	2	*	10400.000	44.49	3.13	47.62	54.00	-6.38	AVG
	3		15600.000	8.60	46.52	55.12	74.00	-18.88	peak
	4		15600.000	-1.26	46.52	45.26	54.00	-8.74	AVG

No	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10400.000	56.03	3.13	59.16	74.00	-14.84	peak
2	*	10400.000	46.49	3.13	49.62	54.00	-4.38	AVG
3		15600.000	12.73	46.52	59.25	74.00	-14.75	peak
4		15600.000	2.69	46.52	49.21	54.00	-4.79	AVG

I / Pola	ızaı	lion:	Horizonta	al / BW: 20 /					
No	. M	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10	480.000	53.60	3.56	57.16	74.00	-16.84	peak
2	*	10	480.000	44.09	3.56	47.65	54.00	-6.35	AVG
3		15	720.000	6.79	46.46	53.25	74.00	-20.75	peak
4		15	720.000	-3.10	46.46	43.36	54.00	-10.64	AVG

No	. N	۱k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10	480.000	56.04	3.56	59.60	74.00	-14.40	peak
2	*	10	480.000	46.06	3.56	49.62	54.00	-4.38	AVG
3		15	720.000	8.67	46.46	55.13	74.00	-18.87	peak
4		15	720.000	-0.81	46.46	45.65	54.00	-8.35	AVG

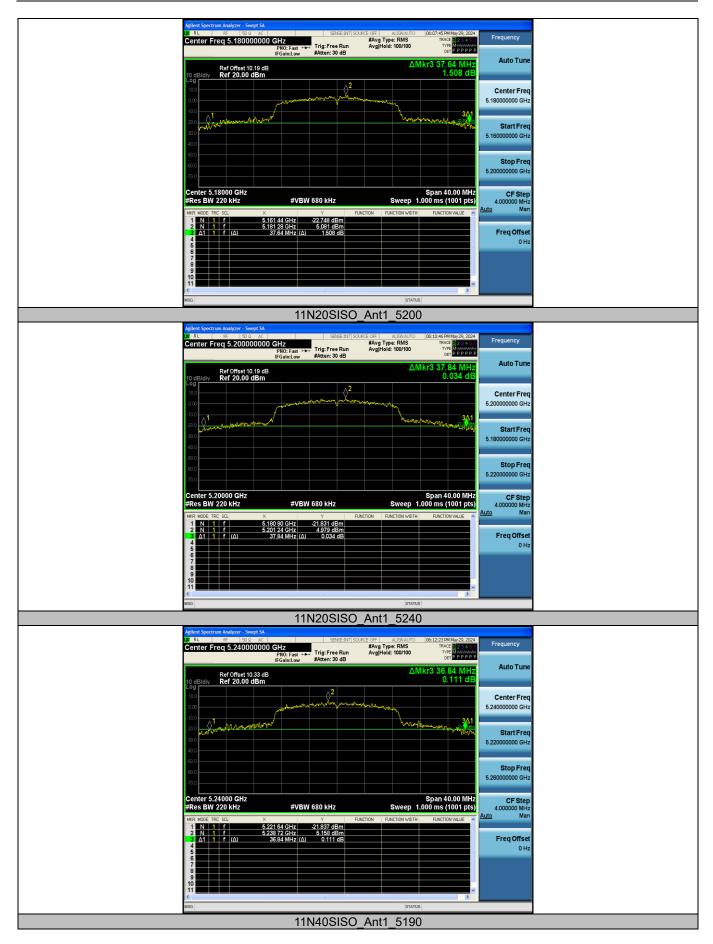
Photographs of the test setup

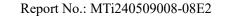
Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

Appendix


Appendix A1: Emission bandwidth (26dB bandwidth)


Test Result


Test Mode	Antenna	Frequency [MHz]	26db EBW [MHz]
		5180	35.200
11A	Ant1	5200	36.080
		5240	34.920
	Ant1	5180	37.640
11N20SISO		5200	37.840
		5240	36.840
11N40SISO	Ant1	5190	75.040
	Anti	5230	76.160

Page 39 of 57 Report No.: MTi240509008-08E2

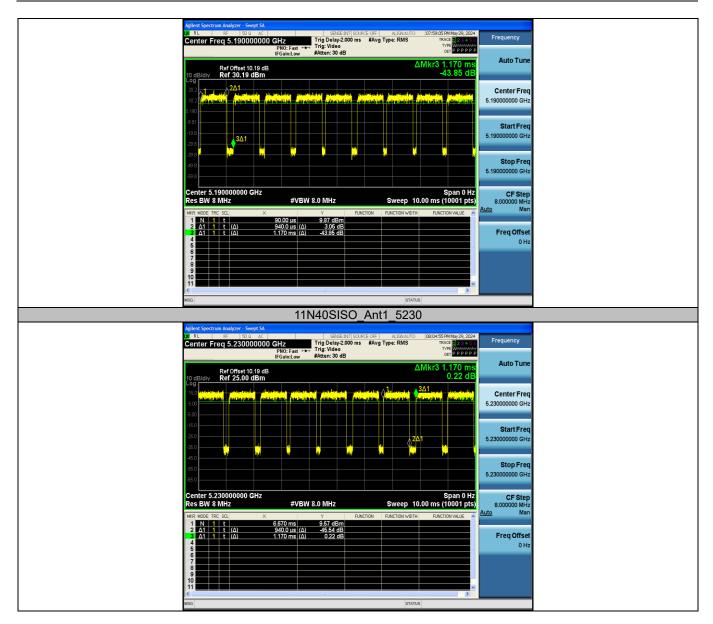


Appendix A2: Occupied channel bandwidth

Test Result

TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]
11A	Ant1	5180	22.053	5169.4163	5191.4693
		5200	21.178	5190.5448	5211.7228
		5240	22.224	5229.3993	5251.6233
11N20SISO	Ant1	5180	23.953	5168.5846	5192.5376
		5200	22.884	5189.3854	5212.2694
		5240	22.091	5229.3075	5251.3985
11N40SISO	Ant1	5190	43.214	5170.8300	5214.0440
		5230	41.169	5211.2815	5252.4505

Appendix B: Duty Cycle


Test Result

Test Mode	Antenna	Frequency [MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	
		5180	2.07	2.30	90.00	
11A	Ant1	5200	2.07	2.25	92.00	
		5240	2.07	2.25	92.00	
		5180	1.92	2.14	89.72	
11N20SISO	Ant1	5200	1.92	2.09	91.87	
		5240	1.92	2.13	90.14	
11N40SISO	Ant1	5190	0.94	1.17	80.34	
		5230	0.94	1.17	80.34	

Page 47 of 57 Report No.: MTi240509008-08E2

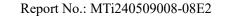

Appendix C: Maximum conducted output power

Test Result Channel Power

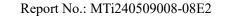
Test Mode	Antenna	Frequency [MHz]	Channel Power [dBm]	Duty Cycle [%]	DC Factor [dBm]	Result [dBm]	Limit [dBm]	EIRP [dBm]	Verdict
		5180	13.43	90.00	0.46	13.89	≤23.98	16.16	PASS
11A	Ant1	5200	13.70	92.58	0.33	14.03	≤23.98	16.30	PASS
		5240	13.63	90.24	0.45	14.08	≤23.98	16.35	PASS
11N20SIS Ant1		5180	13.45	90.50	0.43	13.88	≤23.98	16.15	PASS
	Ant1	5200	13.50	92.71	0.33	13.83	≤23.98	16.10	PASS
		5240	13.72	88.83	0.51	14.23	≤23.98	16.50	PASS
11N40SIS Ant1	Ant1	5190	13.09	88.67	0.52	13.61	≤23.98	15.87	PASS
	5230	13.03	85.48	0.68	13.71	≤23.98	15.98	PASS	

Note: The Duty Cycle Factor is compensated in the graph.


Appendix D: Maximum power spectral density


Test Result


Test Mode	Antenna	Frequency [MHz]	Result [dBm/MHz]	Limit [dBm/MHz]	Verdict
	Ant1	5180	5.10	≤11.00	PASS
11A		5200	4.24	≤11.00	PASS
		5240	4.10	≤11.00	PASS
11N20SISO	Ant1	5180	3.77	≤11.00	PASS
		5200	3.54	≤11.00	PASS
		5240	3.76	≤11.00	PASS
11N40SISO	Ant1	5190	0.81	≤11.00	PASS
		5230	1.65	≤11.00	PASS


Note: 1.The Duty Cycle Factor is compensated in the graph.

Page 55 of 57 Report No.: MTi240509008-08E2

