

CFR 47 FCC PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

WLAN Model

MODEL NUMBER: WM101

FCC ID: 2A46G-WM101

REPORT NUMBER: 4790254511-3

ISSUE DATE: April 24, 2022

Prepared for

Guangzhou Xaircraft Technology CO.,LTD Block C, 115 Gaopu Rd, Tianhe Dist, Guangzhou, Guang-dong,China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	04/24/2022	Initial Issue	

Summary of Test Results						
Clause	Test Items	FCC Rules	Test Results			
1	6dB Bandwidth	FCC Part 15.247 (a) (2)	Pass			
2	Conducted Output Power	FCC Part 15.247 (b) (3)	Pass			
3	Power Spectral Density	FCC Part 15.247 (e)	Pass			
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass			
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass			
6	Conducted Emission Test for AC Power Port	FCC Part 15.207	Pass			
7	Antenna Requirement	FCC Part 15.203	Pass			
Note:	1		1			

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	ΑΤΤ	ESTATION OF TEST RESULTS	6
2.	TES	T METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAL	IBRATION AND UNCERTAINTY	
4	.1.	MEASURING INSTRUMENT CALIBRATION	8
4	.2.	MEASUREMENT UNCERTAINTY	8
5.	EQI	JIPMENT UNDER TEST	9
5	.1.	DESCRIPTION OF EUT	
5	.2.	CHANNEL LIST	
5	.3.	MAXIMUM OUTPUT POWER	10
5	.4.	TEST CHANNEL CONFIGURATION	10
5	.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5	.6.	THE WORSE CASE CONFIGURATIONS	11
5	.7.	DESCRIPTION OF AVAILABLE ANTENNAS	
5	.8.	DESCRIPTION OF TEST SETUP	13
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	14
0.			
7.		ENNA PORT TEST RESULTS	
7.			16
7 .	AN	TENNA PORT TEST RESULTS	16 16
7 . 7 7	AN 7 . 1.	ON TIME AND DUTY CYCLE	16 16 17
7 . 7 7 7 7	AN 7.1. 7.2.	T <mark>ENNA PORT TEST RESULTS</mark> ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	16 16 17 19
7 . 7 7 7 7 7	AN 7.1. 7.2. 7.3.	ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER	16 16 17 19 20
7 . 7 7 7 7 7	AN .1. .2. .3. .4. .5.	ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY	16
7. 7 7 7 7 7 8.	AN <i>1.</i> <i>2.</i> <i>3.</i> <i>4.</i> <i>5.</i> RAI <i>2.1.</i>	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE	
7. 7 7 7 7 7 8.	AN <i>2.1.</i> <i>2.2.</i> <i>3.3.</i> <i>2.4.</i> <i>3.5.</i> RAI <i>8.1.</i>	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE	
7. 7 7 7 7 7 8.	AN <i>1.</i> <i>2.</i> <i>3.</i> <i>4.</i> <i>5.</i> RAI <i>2.1.</i>	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE	
7. 7 7 7 7 7 8.	AN <i>(.1.)</i> <i>(.2.)</i> <i>(.3.)</i> <i>(.4.)</i> <i>(.4.)</i> <i>(.4.)</i> <i>(.4.)</i> <i>(.4.)</i> <i>(.4.)</i> <i>(.4.)</i> <i>(.4.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i>	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1 802.11b SISO MODE 2 802.11g SISO MODE 3 802.11n HT20 MIMO MODE 4 802.11n HT40 MIMO MODE	16
7. 7 7 7 7 7 7 8. 8	AN <i>(.1.)</i> <i>(.2.)</i> <i>(.3.)</i> <i>(.4.)</i> <i>(.5.)</i> RAI <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i>	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1 802.11b SISO MODE 2 802.11g SISO MODE 3 802.11n HT20 MIMO MODE 4 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)	
7. 7 7 7 7 7 7 8. 8	ANT .1. .2. .3. .4. .5. RAI 8.1. 8.1. 8.1. 8.1. 8.1. 8.1. 8.1. 8.1. 8.1. 8.1. 8.1. 8.1. 8.1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11b SISO MODE	16
7. 7 7 7 7 7 7 8. 8	AN <i>(.1.)</i> <i>(.2.)</i> <i>(.3.)</i> <i>(.4.)</i> <i>(.5.)</i> RAI <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i> <i>(.1.)</i>	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11b SISO MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b SISO MODE	16
7. 7 7 7 7 7 7 8. 8	ANT .1. .2. .3. .4. .5. RAI 8.1. 8.3. 8.3. 8.3.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11b SISO MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b SISO MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b SISO MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b SISO MODE 2. 802.11g SISO MODE	16 16 17 19 20 22 22 24 30 30 30 30 34 40 40 47 55 55 61 61 61 61
7. 7 7 7 7 7 7 8. 8	AN <i>7.1.</i> <i>7.2.</i> <i>7.3.</i> <i>7.4.</i> <i>7.5.</i> RAI <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.1.</i> <i>8.3.</i> <i>8.3.</i>	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11b SISO MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b SISO MODE 2. 802.11g SISO MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE	16

8	8.4. SP0 8.4.1.	URIOUS EMISSIONS (18 GHz ~ 26 GHz) 802.11n HT20 MODE	
8	8.5. SPI 8.5.1.	URIOUS EMISSIONS (30 MHz ~ 1 GHz) 802.11n HT20 MODE	87
8	8.6. SP0 8.6.1.	URIOUS EMISSIONS BELOW 30 MHz 802.11n HT20 MODE	
9.		VER LINE CONDUCTED EMISSIONS	92
	9.1.1.	802.11n HT20 MODE	93
10.	ANTE	INNA REQUIREMENTS	95
11.	Арре	ndix	96
1	<i>1.1.</i> A 11.1.1. 11.1.2.	ppendix A: DTS Bandwidth Test Result Test Graphs	96
1	1.2. A 11.2.1. 11.2.2.		105
1	<i>1.3. A</i> 11.3.1.	ppendix C: Maximum conducted output power Test Result	
1	<i>1.4. A</i> 11.4.1. 11.4.2.	<i>ppendix D: Maximum power spectral density</i> Test Result Test Graphs	115
1	<i>1.5. A</i> 11.5.1. 11.5.2.	ppendix E: Band edge measurements Test Result Test Graphs	124
1	<i>1.6. A</i> 11.6.1. 11.6.2.	ppendix F: Conducted Spurious Emission Test Result Test Graphs	131
1	<i>1.7.</i> A 11.7.1. 11.7.2.	<i>ppendix G: Duty Cycle</i> Test Result Test Graphs	157

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Guangzhou Xaircraft Technology CO.,LTD
Address:	Block C, 115 Gaopu Rd, Tianhe Dist, Guangzhou, Guang-
	dong,China

Manufacturer Information

Company Name:	Guangzhou Xaircraft Technology CO.,LTD
Address:	Block C, 115 Gaopu Rd, Tianhe Dist, Guangzhou, Guang-
	dong,China

EUT Information

EUT Name:	WLAN Model
Model:	WM101
Sample Received Date:	Feb 16, 2022
Sample Status:	Normal
Sample ID:	4675027
Date of Tested:	Feb 16,2022 ~ Apr 24, 2022

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART C

PASS

Tested By:

Kebo. zhe

Kebo Zhang Project Engineer

Approved By:

Sephent

Stephen Guo Laboratory Manager

Checked By:

len

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Contificate No. (402.04))
	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB		
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)		
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)		
Duty Cycle	±0.028%		
DTS and 99% Occupied Bandwidth	±0.0196%		
Maximum Conducted Output Power	±0.686 dB		
Maximum Power Spectral Density Level	±0.743 dB		
Conducted Band-edge Compliance	±1.328 dB		
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)		
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	WLAN Model
Model Name	WM101
Radio Technology	IEEE802.11b/g/n HT20/n HT40
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Rated Input	DC 5 V

5.2. CHANNEL LIST

Channel List for 802.11b/g/n (20 MHz)								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2412	4	2427	7	2442	10	2457	
2	2417	5	2432	8	2447	11	2462	
3	2422	6	2437	9	2452	/	/	

Channel List for 802.11n (40 MHz)								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
3	2422	5	2432	7	2442	9	2452	
4	2427	6	2437	8	2447	/	/	

5.3. MAXIMUM OUTPUT POWER

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)
b	2412 ~ 2462	1-11[11]	17.39
g	2412 ~ 2462	1-11[11]	17.13
n HT20	2412 ~ 2462	1-11[11]	19.51
n HT40	2422 ~ 2452	3-9[7]	18.87

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT40)	CH 3, CH 6, CH 9/ Low, Middle, High	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The V	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Softv	vare		AR93			2_ART		
	Transmit			Test C	Channel			
Modulation Mode	Antenna	١	NCB: 20M⊦	lz	٩	NCB: 40MHz		
Mode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	10	10	11.5	/			
002.110	2	10	10.5	11.5				
902 11a	1	9	9	10				
802.11g	2	9	10	11				
000 11n UT00	1	9	9	10				
802.11n HT20	2	9	9	10				
000 44 - 11740	1		/		7.5	8.5	9	
802.11n HT40	2		/		7.5	8.5	9	

5.6. THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

802.11b/g only support SISO mode. 802.11 n HT20/HT40 support SISO and MIMO mode.

802.11a SISO mode, Antenna 0 and Antenna 1 has the same power setting, so only Antenna 0 worst case test data were recorded in the report.

SISO mode and MIMO mode have the same power setting, so only the worst case power mode(MIMO) will be record in the report.

The EUT has 2 separate antennas which correspond to 2 separate antenna ports. Core 0 and Core 1 correspond to antenna 0 and antenna 1 respectively.

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Conducted output power, power spectral density tests separately on each port with all supported SISO & MIMO port combinations.

The EUT support Cyclic Shift Diversity(CDD), Space Time Coding(STBC), Spartial Division Multiplexing(SDM) modes. They use the same conducted power per chain in any given mode, CDD mode have the maximum power setting, so we only chose the worst case mode CDD for final testing.

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Model	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2472	030268FWFA	FPC	2
2	2412-2472	030291FWFA	FPC	1.5

Antenna	Frequency (MHz)	Model	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2472	030266FWFA	FPC	2
2	2412-2472	030289FWFA	FPC	1.8

Note: The product has two groups of antennas, they have the same antenna type, so only the maximum gain antennas test data will recorded in this report.

The EUT support Cyclic Shift Diversity(CDD) mode.

MIMO output power port and MIMO PSD port summing was performed in accordance with KDB 662911 D01. For the CDD results the Directional Gain was calculated in accordance with the following mothed.

For output power measurements: Directional gain= G_{ANT} + Array Gain = 2 dBi G_{ANT} : equal to the gain of the antenna having the highest gain Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$

For power spectral density (PSD) measurements:

Directional gain= GANT + Array Gain = 5 dBi

Array Gain = 10 log(NANT/Nss) dB.

N_{ANT} : number of transmit antennas

Nss : number of spatial streams, The worst case directional gain will occur when Nss = 1

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

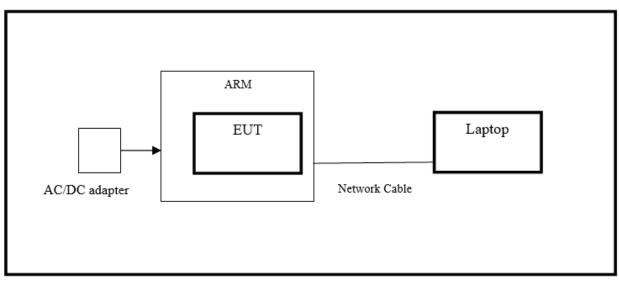
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	E42-80	R303U5AG
2	AC/DC adapter	/	/	Input: AC 100-240 V, 50/60 Hz, 0.5A Output: DC 12.0 V, 2A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/
2	Network Cable	/	/	1.5	/


ACCESSORIES

Ite	m Accessory	Brand Name	Model Name	Description
1	/	/	/	

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Oct.30, 2021	Oct.29, 2022
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.30, 2021	Oct.29, 2022
		So	ftware		
Description			Manufacturer	Name	Version
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1

		Radiated	Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.30, 2021	Oct.29, 2022
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.30, 2021	Oct.29, 2022
EMI Measurement Receiver	R&S	ESR26	101377	Oct.30, 2021	Oct.29, 2022
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.30, 2021	Oct.29, 2022
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.31, 2021	Oct.30, 2022
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.31, 2021	Oct.30, 2022
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13,2022
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.31, 2021	Oct.30, 2022
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Oct.31, 2021	Oct.30, 2022
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.31, 2021	Oct.30, 2022
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	Oct.31, 2021	Oct.30, 2022
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.31, 2021	Oct.30, 2022

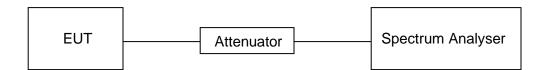
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Software				
Description Manufacturer Name Version				
Test Software for Radiated Emissions	Farad	EZ-EMC	Ver. UL-3A1	

	Other instruments				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	R&S	FSV40	101117	Oct.31, 2021	Oct.30, 2022
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Oct.30, 2021	Oct.29, 2022
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Oct.30, 2021	Oct.29, 2022

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.2°C	Relative Humidity	49.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

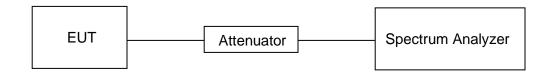
Please refer to appendix G.

7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	For reporting purposes only.	2400-2483.5

TEST PROCEDURE


Center Frequency	The center frequency of the channel under test
Frequency Span	Between 1.5 times and 5.0 times the OBW
Detector	Peak
BBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
IVBW/	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Connect the EUT to the spectrum analyser and use the following settings:

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

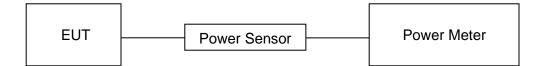
Temperature	21.2°C	Relative Humidity	49.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

<u>RESULTS</u>

Please refer to appendix A & B.

7.3. CONDUCTED OUTPUT POWER

<u>LIMITS</u>


CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247(b)(3)	AVG Output Power	1 watt or 30 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the average output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.2°C	Relative Humidity	49.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Please refer to appendix C.

7.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	$3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.2°C	Relative Humidity	49.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Please refer to appendix D.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

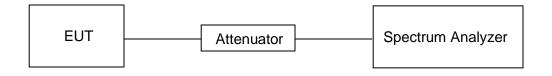
Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


enange are cealinge for enheelen feren medearen enhena					
Span	Set the center frequency and span to encompass frequency range to be measured				
Detector	Peak				
RBW	100 kHz				
VBW	≥3 × RBW				
measurement points	≥span/RBW				
Trace	Max hold				
Sweep time	Auto couple.				

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

Temperature	21.2°C	Relative Humidity	49.9 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Please refer to appendix E & F.

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz							
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m					
		Quasi-l	Peak				
30 - 88	100	40					
88 - 216	150	43.5					
216 - 960	200	46					
Above 960	500	54					
Above 1000	500	Peak	Average				
	500	74	54				

FCC Emissions radiated outside of the specified frequency bands below 30 MHz								
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)								
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30.0	30	30						

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

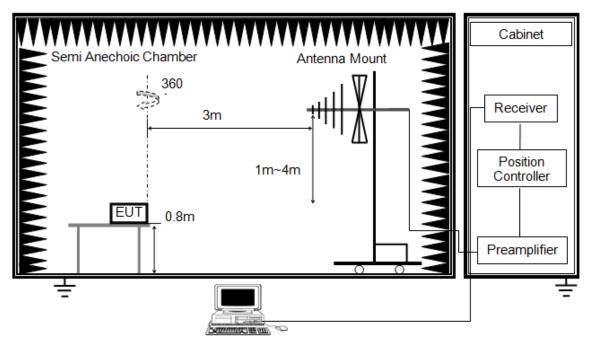
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.


7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

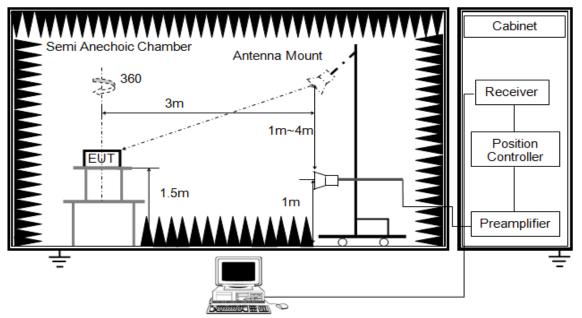
Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyser

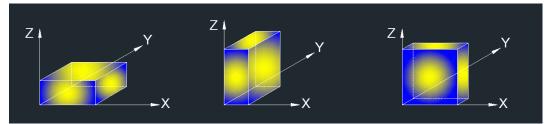
RBW	1 MHz
IV BW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

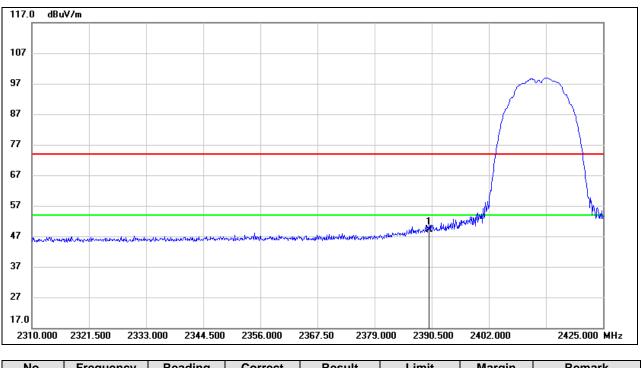
X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	20.1 °C	Relative Humidity	57.3 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS


8.1. RESTRICTED BANDEDGE

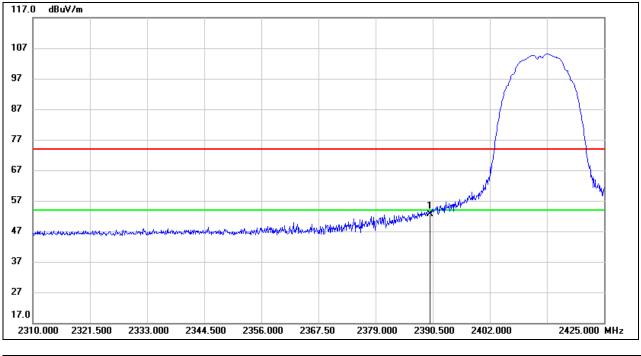
8.1.1. 802.11b SISO MODE

ANTENNA 0 TEST RESULTS (WORST CASE)

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	16.48	32.66	49.14	74.00	-24.86	peak

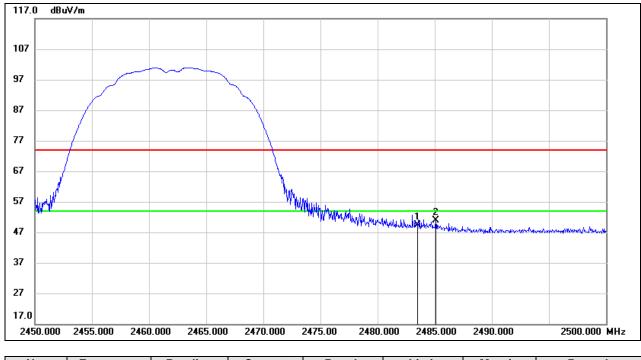

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	20.09	32.66	52.75	74.00	-21.25	peak

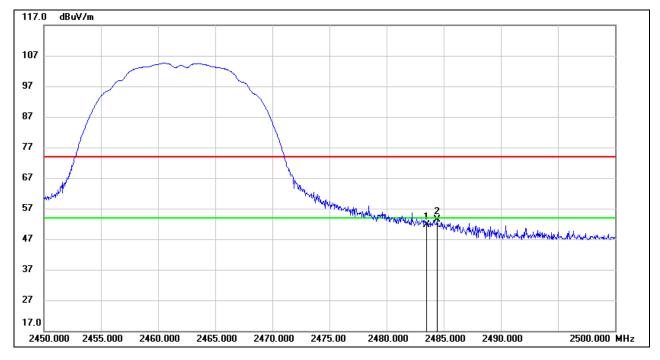

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.27	33.10	49.37	74.00	-24.63	peak
2	2485.100	17.79	33.10	50.89	74.00	-23.11	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

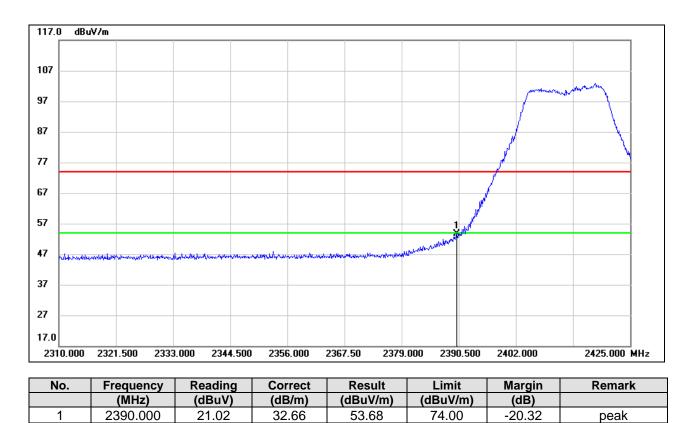
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.42	33.10	51.52	74.00	-22.48	peak
2	2484.450	20.17	33.10	53.27	74.00	-20.73	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: Both antennas have been tested, only the worst data was recorded in the report.

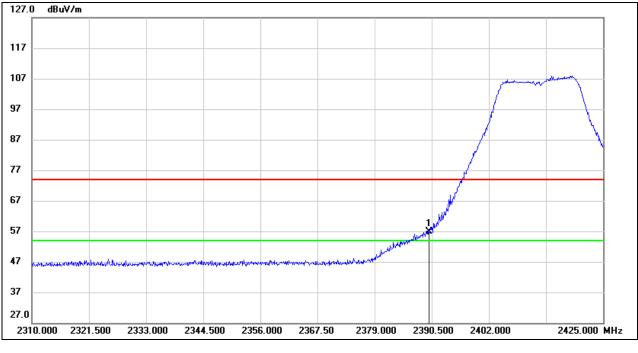


8.1.2. 802.11g SISO MODE

ANTENNA 0 TEST RESULTS (WORST CASE)

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

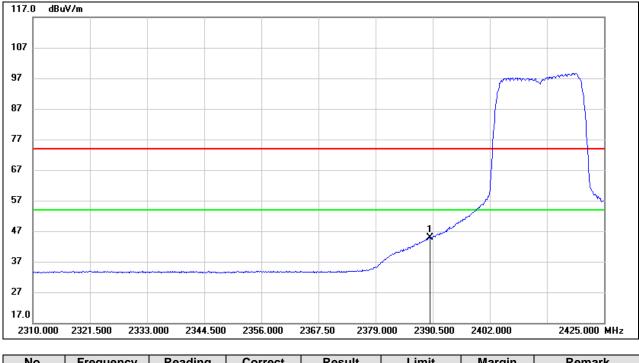
<u>PEAK</u>


Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	24.34	32.66	57.00	74.00	-17.00	peak

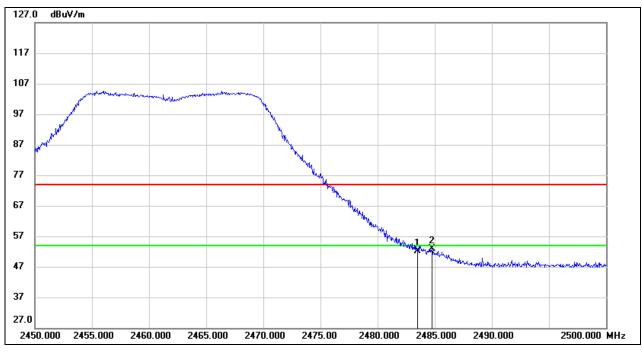
Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	12.10	32.66	44.76	54.00	-9.24	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

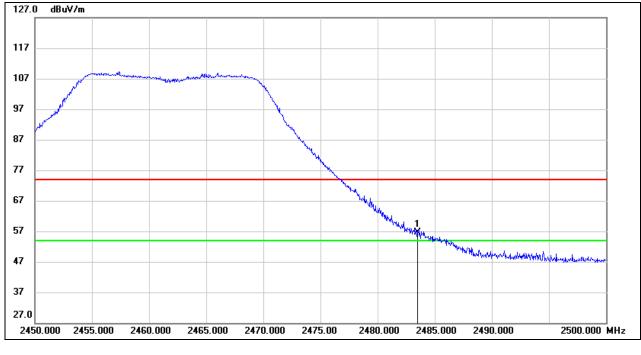

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>

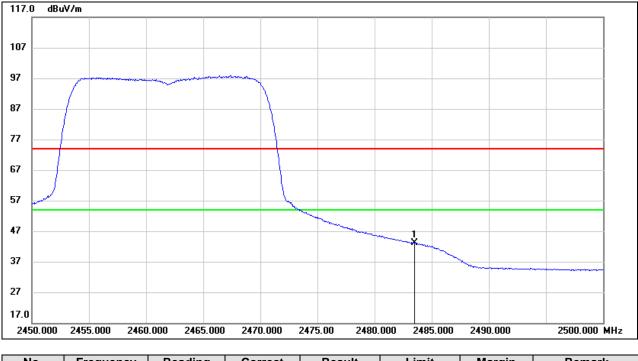
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	19.11	33.10	52.21	74.00	-21.79	peak
2	2484.750	19.68	33.10	52.78	74.00	-21.22	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	23.56	33.10	56.66	74.00	-17.34	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

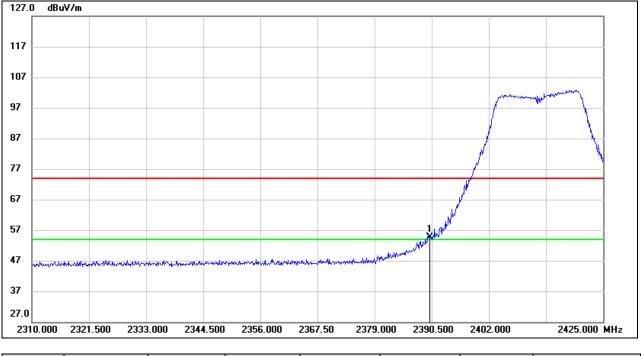
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	10.02	33.10	43.12	54.00	-10.88	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

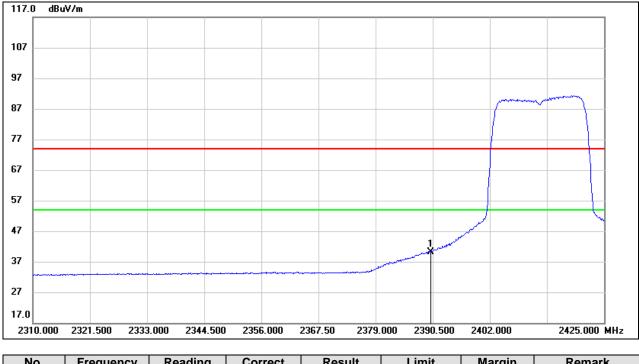
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: Both antennas have been tested, only the worst data was recorded in the report.

8.1.3. 802.11n HT20 MIMO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>



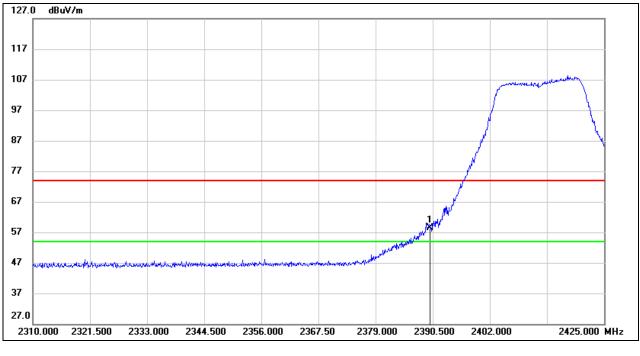
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	22.04	32.66	54.70	74.00	-19.30	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	7.54	32.66	40.20	54.00	-13.80	AVG

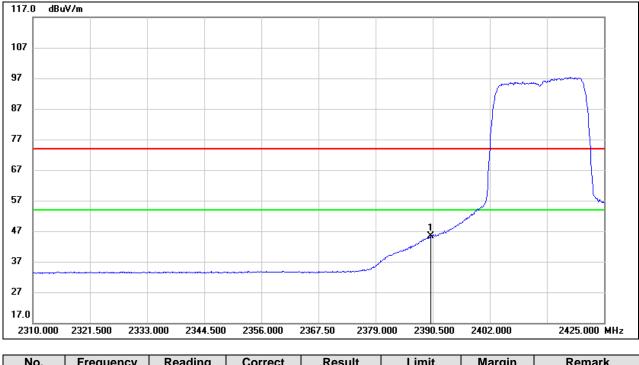
Note: 1. Measurement = Reading Level + Correct Factor.


2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>



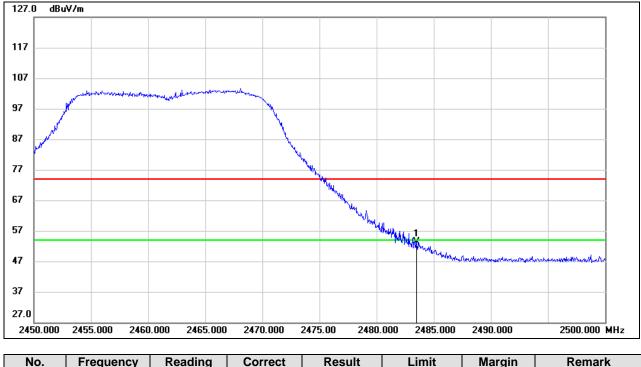
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	25.83	32.66	58.49	74.00	-15.51	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	12.61	32.66	45.27	54.00	-8.73	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

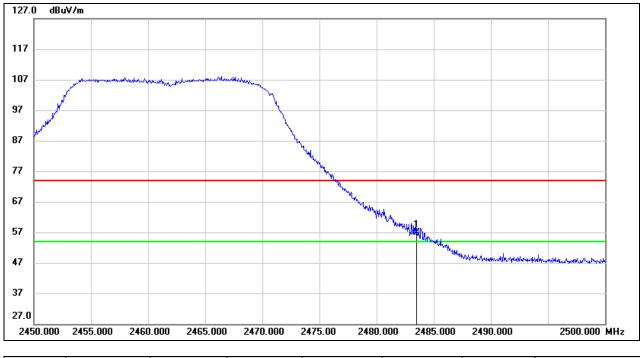

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>

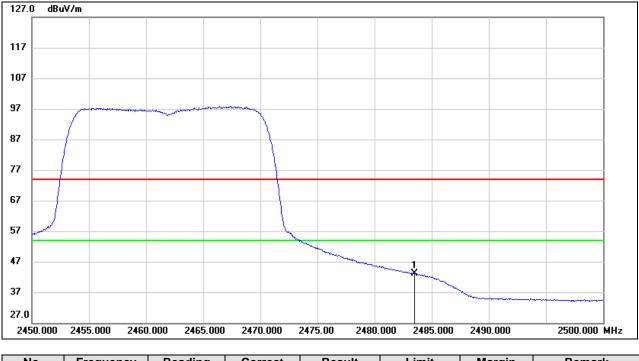
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.39	33.10	53.49	74.00	-20.51	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	23.77	33.10	56.87	74.00	-17.13	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

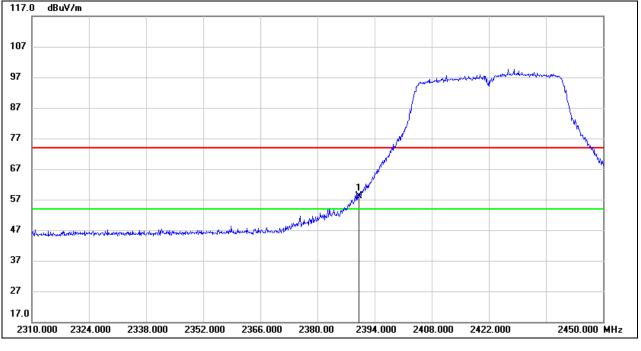
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	10.02	33.10	43.12	54.00	-10.88	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

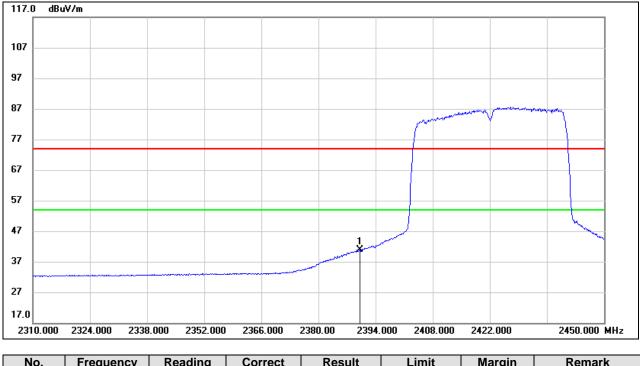
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: All modes have been tested, only the worst data was recorded in the report.

8.1.4. 802.11n HT40 MIMO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>



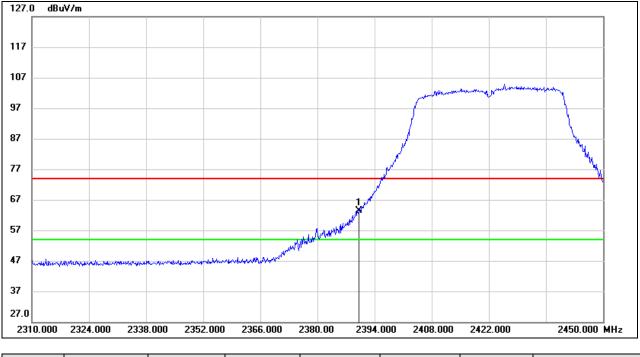
N	0.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2390.000	25.55	32.66	58.21	74.00	-15.79	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	8.33	32.66	40.99	54.00	-13.01	AVG

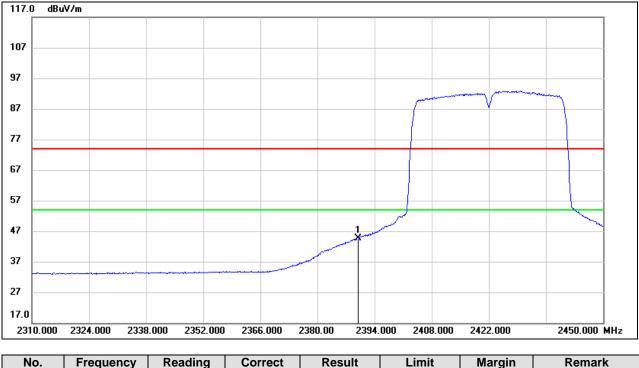
Note: 1. Measurement = Reading Level + Correct Factor.


2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>



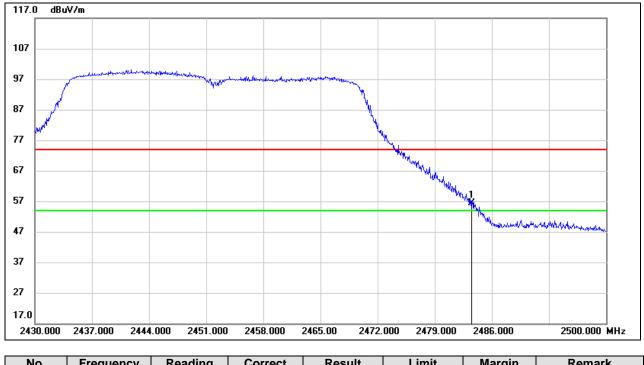
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	30.83	32.66	63.49	74.00	-10.51	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	12.00	32.66	44.66	54.00	-9.34	AVG

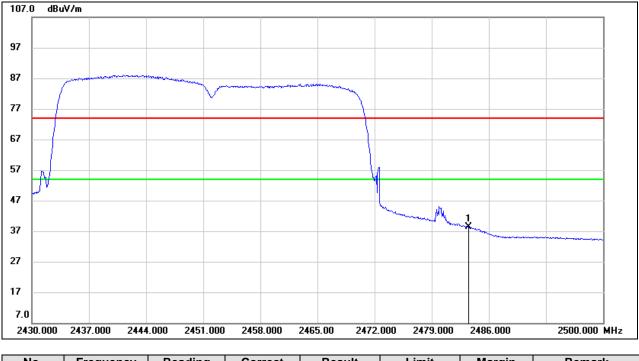
Note: 1. Measurement = Reading Level + Correct Factor.


2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>



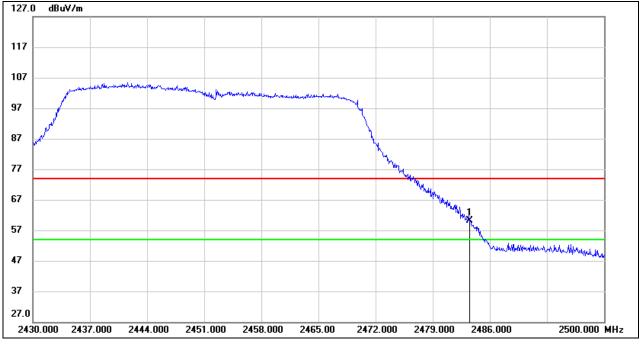
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	23.40	33.10	56.50	74.00	-17.50	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	5.23	33.10	38.33	54.00	-15.67	AVG

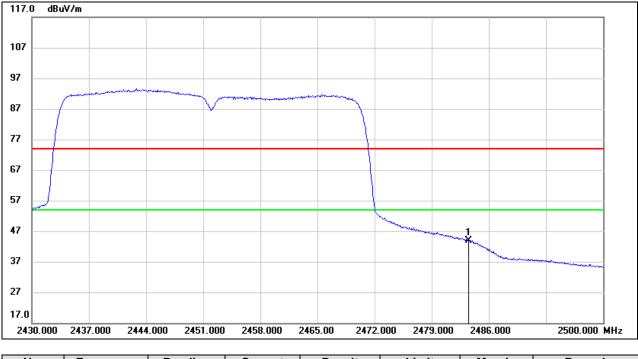
Note: 1. Measurement = Reading Level + Correct Factor.


2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	27.07	33.10	60.17	74.00	-13.83	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

No	ο.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1		2483.500	10.78	33.10	43.88	54.00	-10.12	AVG

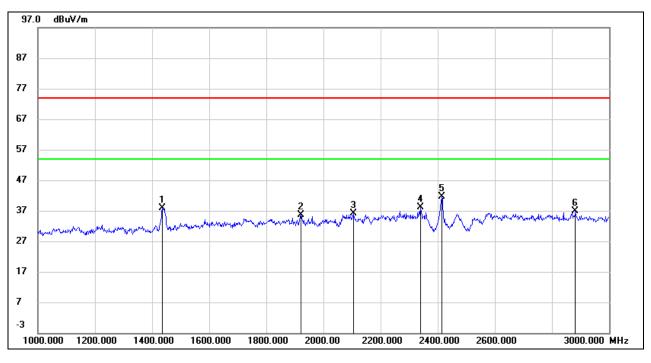
Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: All modes have been tested, only the worst data was recorded in the report.



8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

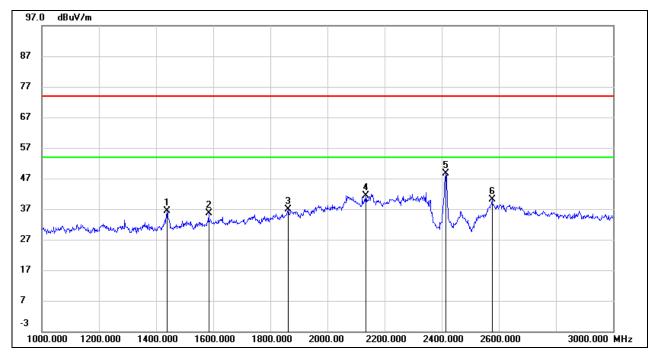
8.2.1. 802.11b SISO MODE

ANTENNA 0 TEST RESULTS (WORST CASE)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1436.000	50.82	-12.83	37.99	74.00	-36.01	peak
2	1922.000	46.42	-10.81	35.61	74.00	-38.39	peak
3	2104.000	46.51	-10.31	36.20	74.00	-37.80	peak
4	2340.000	47.19	-9.18	38.01	74.00	-35.99	peak
5	2414.000	50.54	-8.91	41.63	74.00	-32.37	peak
6	2882.000	44.35	-7.44	36.91	74.00	-37.09	peak

Note: 1. Measurement = Reading Level + Correct Factor.

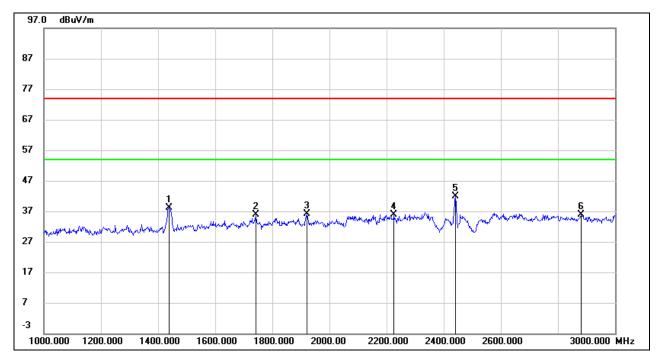

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1438.000	49.08	-12.81	36.27	74.00	-37.73	peak
2	1584.000	47.67	-11.94	35.73	74.00	-38.27	peak
3	1862.000	47.55	-10.70	36.85	74.00	-37.15	peak
4	2134.000	51.58	-10.12	41.46	74.00	-32.54	peak
5	2414.000	57.46	-8.91	48.55	74.00	-25.45	peak
6	2576.000	48.81	-8.61	40.20	74.00	-33.80	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

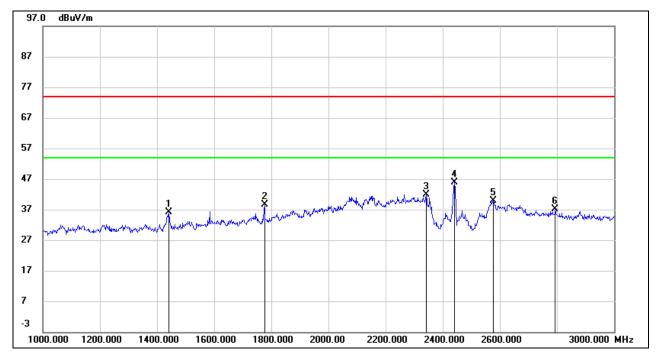
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1438.000	50.97	-12.81	38.16	74.00	-35.84	peak
2	1742.000	46.81	-10.95	35.86	74.00	-38.14	peak
3	1922.000	46.96	-10.81	36.15	74.00	-37.85	peak
4	2226.000	45.57	-9.61	35.96	74.00	-38.04	peak
5	2440.000	50.83	-8.86	41.97	74.00	-32.03	peak
6	2880.000	43.38	-7.45	35.93	74.00	-38.07	peak

Note: 1. Measurement = Reading Level + Correct Factor.

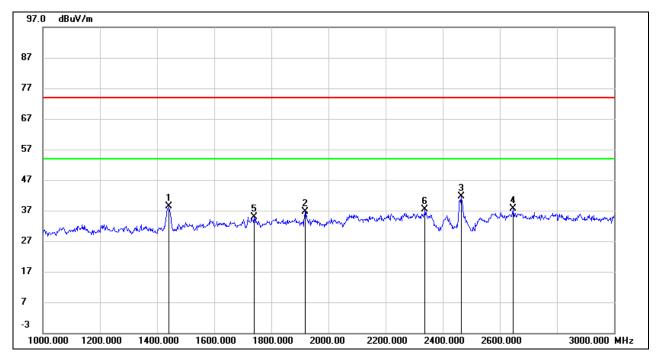

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1442.000	48.94	-12.79	36.15	74.00	-37.85	peak
2	1776.000	49.34	-10.73	38.61	74.00	-35.39	peak
3	2342.000	51.10	-9.17	41.93	74.00	-32.07	peak
4	2442.000	54.77	-8.85	45.92	74.00	-28.08	peak
5	2578.000	48.43	-8.61	39.82	74.00	-34.18	peak
6	2794.000	44.81	-7.69	37.12	74.00	-36.88	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

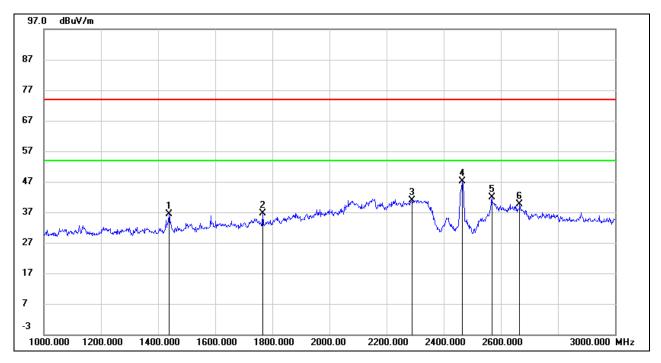
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1442.000	51.09	-12.79	38.30	74.00	-35.70	peak
2	1918.000	47.37	-10.81	36.56	74.00	-37.44	peak
3	2464.000	50.47	-8.80	41.67	74.00	-32.33	peak
4	2646.000	46.06	-8.37	37.69	74.00	-36.31	peak
5	1740.000	45.87	-10.96	34.91	74.00	-39.09	peak
6	2338.000	46.49	-9.18	37.31	74.00	-36.69	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1438.000	49.14	-12.81	36.33	74.00	-37.67	peak
2	1766.000	47.44	-10.79	36.65	74.00	-37.35	peak
3	2288.000	50.37	-9.38	40.99	74.00	-33.01	peak
4	2466.000	56.00	-8.80	47.20	74.00	-26.80	peak
5	2568.000	50.56	-8.62	41.94	74.00	-32.06	peak
6	2666.000	47.79	-8.27	39.52	74.00	-34.48	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

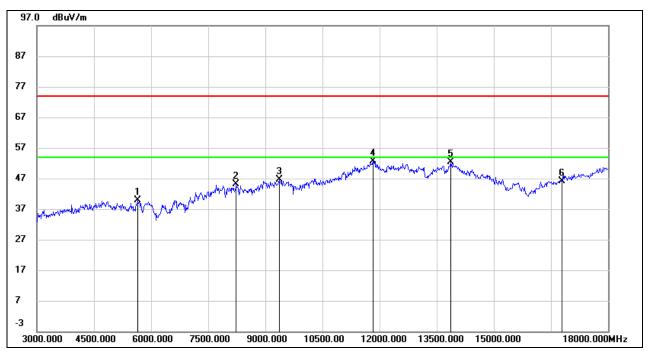
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: Both the two antennas had been tested, but only the worst data was recorded in the report.

Note: All modes and channels have been tested, only the worst data was recorded in the report.



8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

8.3.1. 802.11b SISO MODE

ANTENNA 0 TEST RESULTS (WORST CASE)

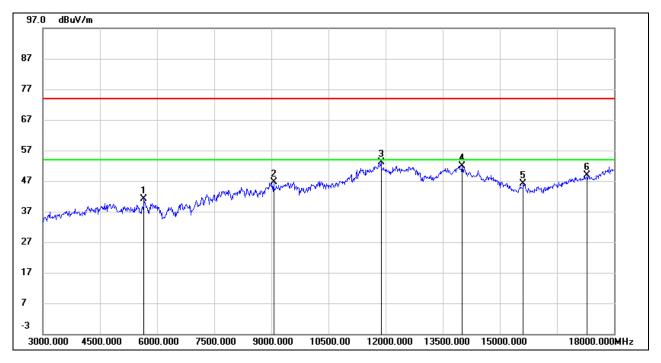
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.08	0.69	39.77	74.00	-34.23	peak
2	8235.000	38.06	7.13	45.19	74.00	-28.81	peak
3	9360.000	37.17	9.43	46.60	74.00	-27.40	peak
4	11835.000	35.47	17.20	52.67	74.00	-21.33	peak
5	13860.000	31.83	20.55	52.38	74.00	-21.62	peak
6	16785.000	28.01	18.24	46.25	74.00	-27.75	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	40.33	0.69	41.02	74.00	-32.98	peak
2	9060.000	37.38	9.20	46.58	74.00	-27.42	peak
3	11880.000	35.99	17.17	53.16	74.00	-20.84	peak
4	14010.000	31.30	20.60	51.90	74.00	-22.10	peak
5	15615.000	30.69	15.41	46.10	74.00	-27.90	peak
6	17295.000	28.65	20.18	48.83	74.00	-25.17	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

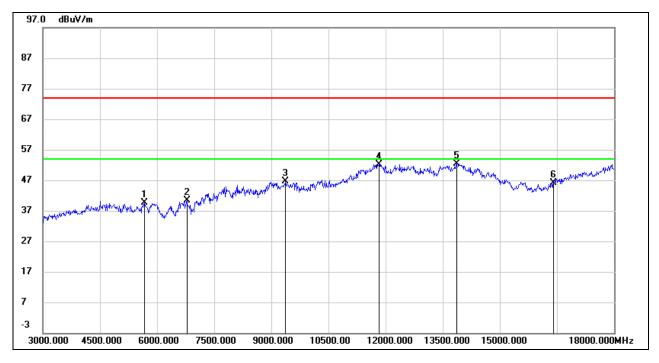
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4725.000	41.57	-1.46	40.11	74.00	-33.89	peak
2	7620.000	37.95	5.50	43.45	74.00	-30.55	peak
3	10245.000	36.26	11.03	47.29	74.00	-26.71	peak
4	11835.000	35.42	17.20	52.62	74.00	-21.38	peak
5	13920.000	31.99	20.58	52.57	74.00	-21.43	peak
6	16920.000	29.78	18.69	48.47	74.00	-25.53	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

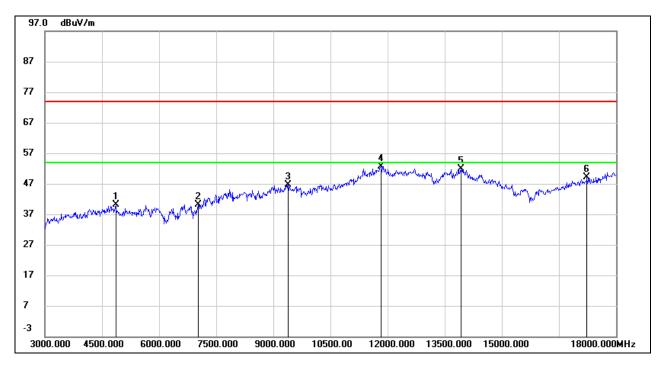

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5670.000	38.87	0.68	39.55	74.00	-34.45	peak
2	6780.000	36.57	3.75	40.32	74.00	-33.68	peak
3	9375.000	37.14	9.53	46.67	74.00	-27.33	peak
4	11820.000	34.98	17.21	52.19	74.00	-21.81	peak
5	13860.000	31.92	20.55	52.47	74.00	-21.53	peak
6	16410.000	29.25	16.97	46.22	74.00	-27.78	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

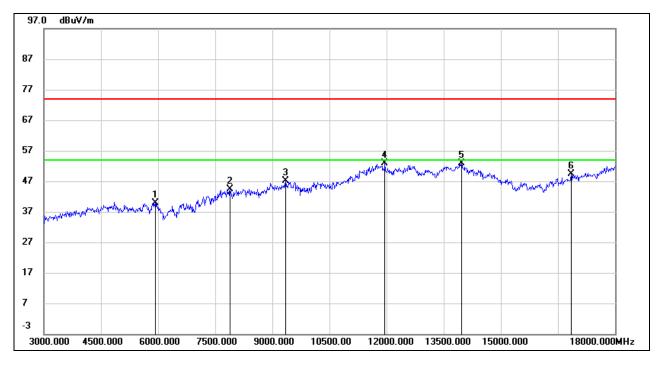
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	41.32	-1.14	40.18	74.00	-33.82	peak
2	7035.000	35.62	4.46	40.08	74.00	-33.92	peak
3	9390.000	36.99	9.61	46.60	74.00	-27.40	peak
4	11820.000	35.44	17.21	52.65	74.00	-21.35	peak
5	13920.000	31.21	20.58	51.79	74.00	-22.21	peak
6	17235.000	28.88	20.17	49.05	74.00	-24.95	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5925.000	38.70	1.11	39.81	74.00	-34.19	peak
2	7890.000	38.73	5.75	44.48	74.00	-29.52	peak
3	9345.000	37.87	9.34	47.21	74.00	-26.79	peak
4	11955.000	35.78	17.12	52.90	74.00	-21.10	peak
5	13965.000	32.15	20.61	52.76	74.00	-21.24	peak
6	16845.000	31.06	18.42	49.48	74.00	-24.52	peak

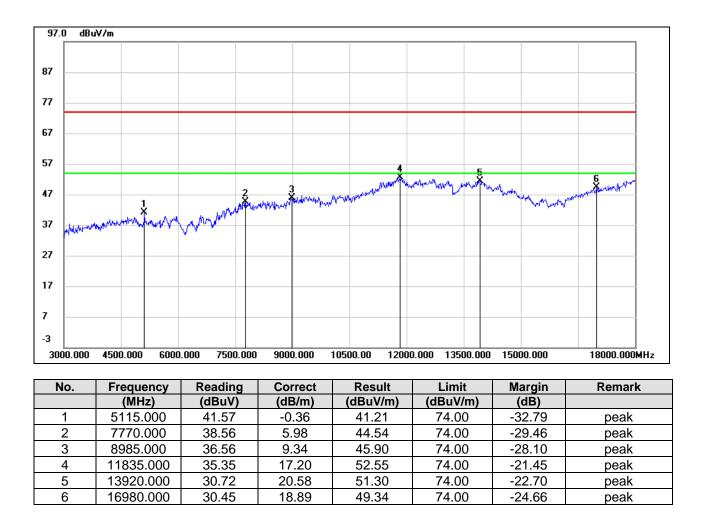
Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

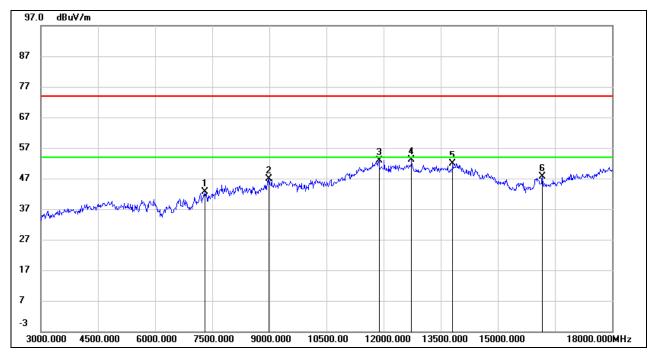
5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: Both the two antennas had been tested, but only the worst data was recorded in the report.

8.3.2. 802.11g SISO MODE

ANTENNA 0 TEST RESULTS (WORST CASE)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)


Note: 1. Peak Result = Reading Level + Correct Factor.

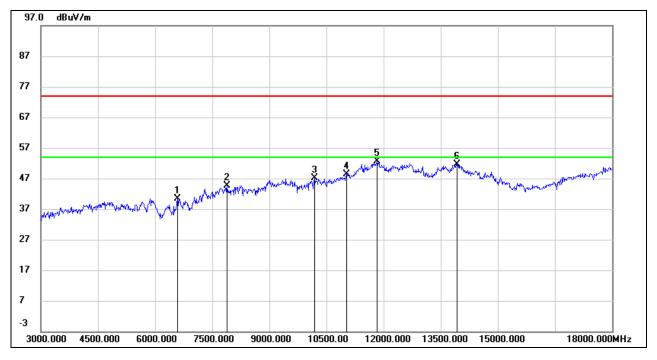
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7305.000	37.04	5.48	42.52	74.00	-31.48	peak
2	8985.000	37.57	9.34	46.91	74.00	-27.09	peak
3	11880.000	35.82	17.17	52.99	74.00	-21.01	peak
4	12735.000	35.94	17.13	53.07	74.00	-20.93	peak
5	13815.000	31.46	20.50	51.96	74.00	-22.04	peak
6	16170.000	31.76	15.94	47.70	74.00	-26.30	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

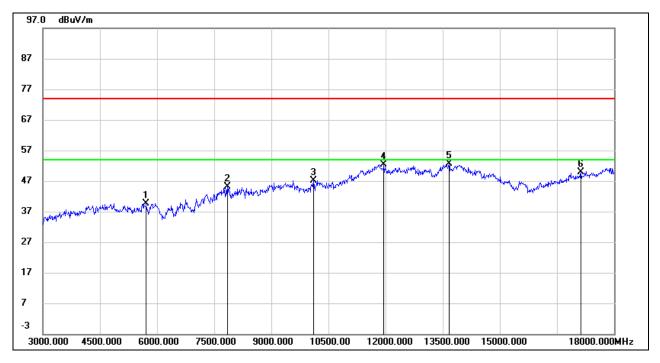
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6585.000	36.83	3.59	40.42	74.00	-33.58	peak
2	7890.000	38.81	5.75	44.56	74.00	-29.44	peak
3	10185.000	36.16	10.90	47.06	74.00	-26.94	peak
4	11025.000	35.14	13.29	48.43	74.00	-25.57	peak
5	11835.000	35.38	17.20	52.58	74.00	-21.42	peak
6	13920.000	31.08	20.58	51.66	74.00	-22.34	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

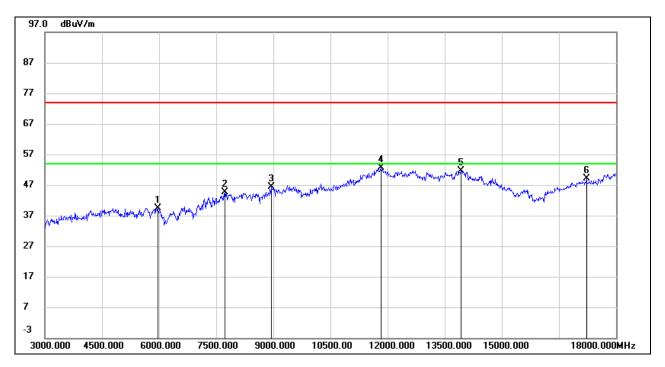

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5715.000	39.03	0.68	39.71	74.00	-34.29	peak
2	7845.000	39.21	5.92	45.13	74.00	-28.87	peak
3	10110.000	36.32	10.77	47.09	74.00	-26.91	peak
4	11955.000	35.35	17.12	52.47	74.00	-21.53	peak
5	13665.000	32.60	19.97	52.57	74.00	-21.43	peak
6	17130.000	30.09	19.73	49.82	74.00	-24.18	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

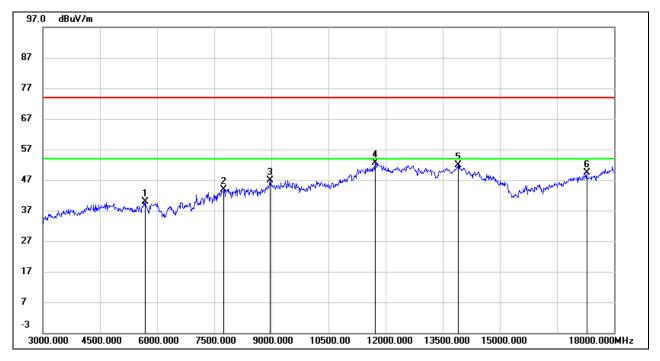
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5970.000	38.00	1.27	39.27	74.00	-34.73	peak
2	7725.000	38.78	5.84	44.62	74.00	-29.38	peak
3	8940.000	37.69	8.80	46.49	74.00	-27.51	peak
4	11835.000	35.34	17.20	52.54	74.00	-21.46	peak
5	13935.000	31.14	20.59	51.73	74.00	-22.27	peak
6	17220.000	29.01	20.16	49.17	74.00	-24.83	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5685.000	39.08	0.68	39.76	74.00	-34.24	peak
2	7755.000	38.05	5.93	43.98	74.00	-30.02	peak
3	8970.000	37.61	9.17	46.78	74.00	-27.22	peak
4	11730.000	35.93	16.77	52.70	74.00	-21.30	peak
5	13905.000	31.24	20.57	51.81	74.00	-22.19	peak
6	17280.000	29.15	20.17	49.32	74.00	-24.68	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

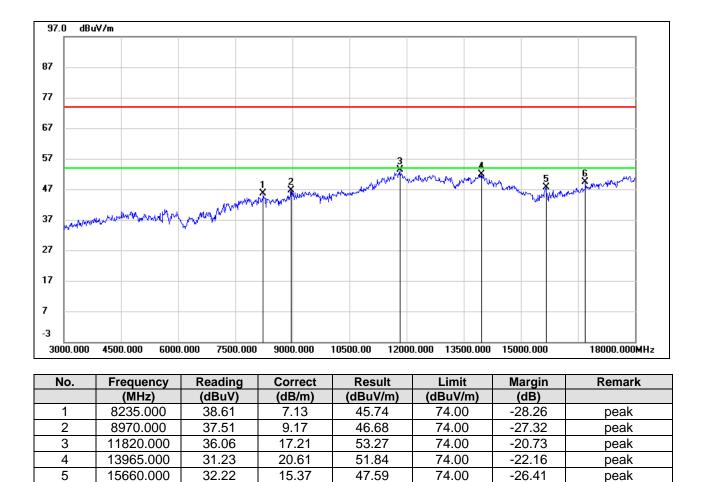
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.


7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: Both the two antennas had been tested, but only the worst data was recorded in the report.

8.3.3. 802.11n HT20 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

31.37

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

49.43

74.00

-24.57

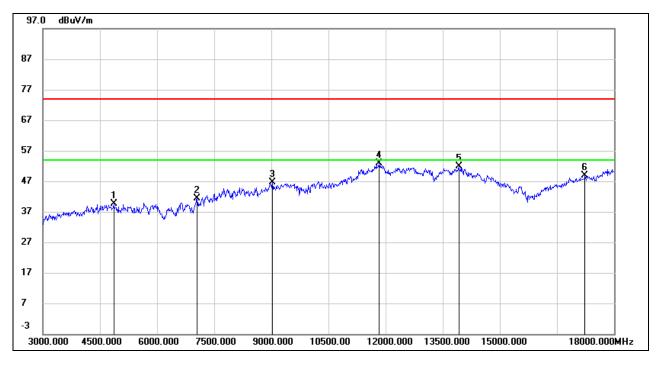
peak

3. Peak: Peak detector.

16695.000

6

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


18.06

5. For the transmitting duration, please refer to clause 7.1.

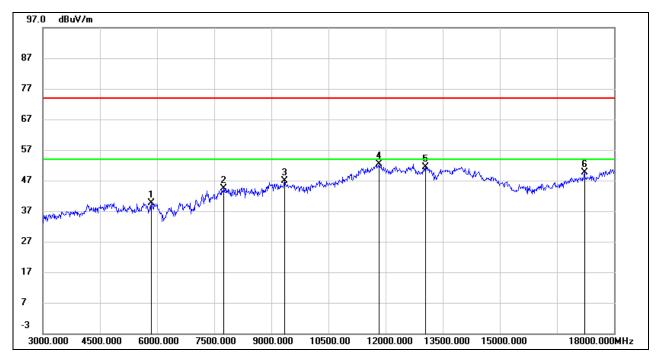
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	40.72	-1.14	39.58	74.00	-34.42	peak
2	7050.000	36.95	4.52	41.47	74.00	-32.53	peak
3	9030.000	37.23	9.37	46.60	74.00	-27.40	peak
4	11835.000	35.57	17.20	52.77	74.00	-21.23	peak
5	13920.000	31.24	20.58	51.82	74.00	-22.18	peak
6	17235.000	28.59	20.17	48.76	74.00	-25.24	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector.


4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

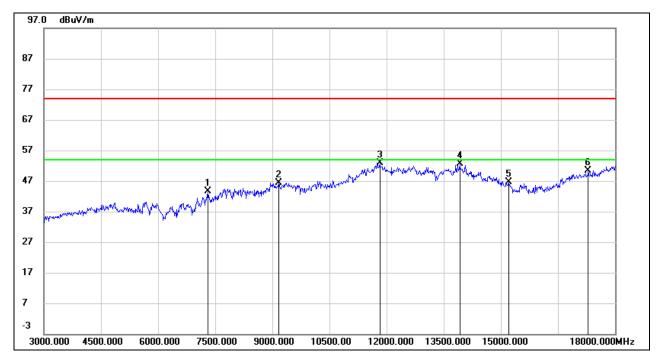
5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	38.81	0.83	39.64	74.00	-34.36	peak
2	7755.000	38.46	5.93	44.39	74.00	-29.61	peak
3	9345.000	37.58	9.34	46.92	74.00	-27.08	peak
4	11835.000	35.28	17.20	52.48	74.00	-21.52	peak
5	13050.000	33.97	17.34	51.31	74.00	-22.69	peak
6	17220.000	29.48	20.16	49.64	74.00	-24.36	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

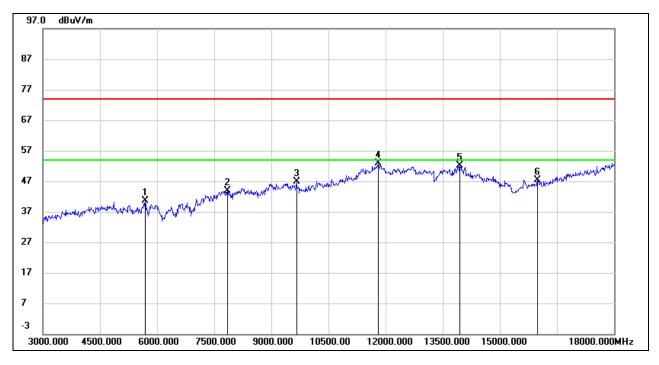

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7305.000	38.23	5.48	43.71	74.00	-30.29	peak
2	9165.000	37.76	8.62	46.38	74.00	-27.62	peak
3	11820.000	35.70	17.21	52.91	74.00	-21.09	peak
4	13920.000	31.96	20.58	52.54	74.00	-21.46	peak
5	15210.000	30.98	15.53	46.51	74.00	-27.49	peak
6	17295.000	30.14	20.18	50.32	74.00	-23.68	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

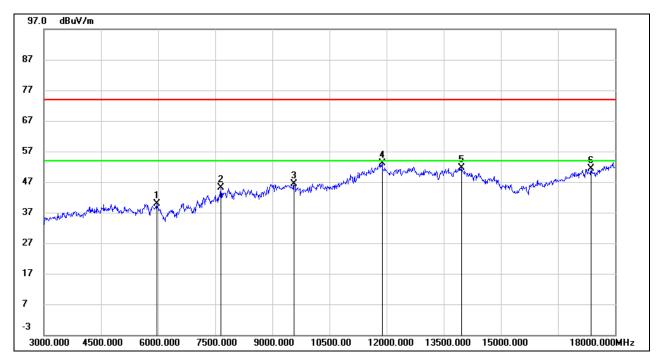
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5685.000	39.89	0.68	40.57	74.00	-33.43	peak
2	7845.000	37.95	5.92	43.87	74.00	-30.13	peak
3	9660.000	36.73	10.08	46.81	74.00	-27.19	peak
4	11805.000	35.58	17.21	52.79	74.00	-21.21	peak
5	13950.000	31.45	20.61	52.06	74.00	-21.94	peak
6	15990.000	32.03	15.37	47.40	74.00	-26.60	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

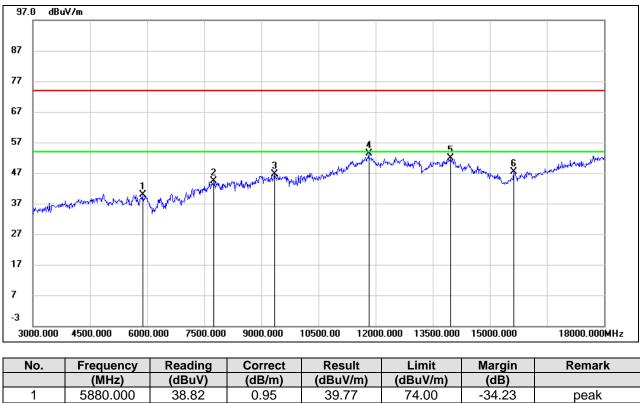
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5970.000	38.49	1.27	39.76	74.00	-34.24	peak
2	7650.000	39.54	5.60	45.14	74.00	-28.86	peak
3	9570.000	36.24	10.07	46.31	74.00	-27.69	peak
4	11880.000	35.85	17.17	53.02	74.00	-20.98	peak
5	13965.000	31.09	20.61	51.70	74.00	-22.30	peak
6	17370.000	31.09	20.20	51.29	74.00	-22.71	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.3.4. 802.11n HT40 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

	(111112)	(ubut)	(ab/m)	(aba min)			
1	5880.000	38.82	0.95	39.77	74.00	-34.23	peak
2	7755.000	38.48	5.93	44.41	74.00	-29.59	peak
3	9345.000	37.17	9.34	46.51	74.00	-27.49	peak
4	11820.000	36.05	17.21	53.26	74.00	-20.74	peak
5	13965.000	31.22	20.61	51.83	74.00	-22.17	peak
6	15630.000	32.10	15.40	47.50	74.00	-26.50	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

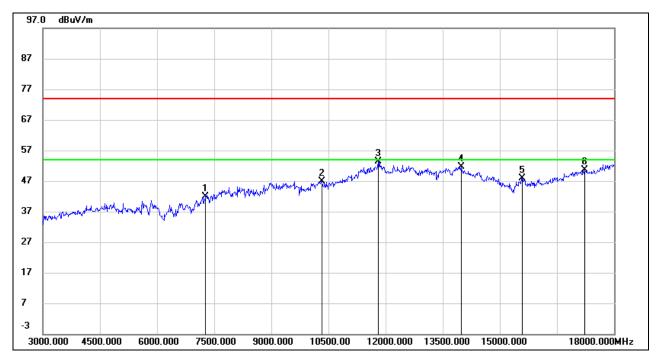
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5985.000	39.11	1.32	40.43	74.00	-33.57	peak
2	7875.000	39.05	5.80	44.85	74.00	-29.15	peak
3	9375.000	37.60	9.53	47.13	74.00	-26.87	peak
4	11730.000	36.09	16.77	52.86	74.00	-21.14	peak
5	13755.000	31.62	20.33	51.95	74.00	-22.05	peak
6	16425.000	30.47	17.03	47.50	74.00	-26.50	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

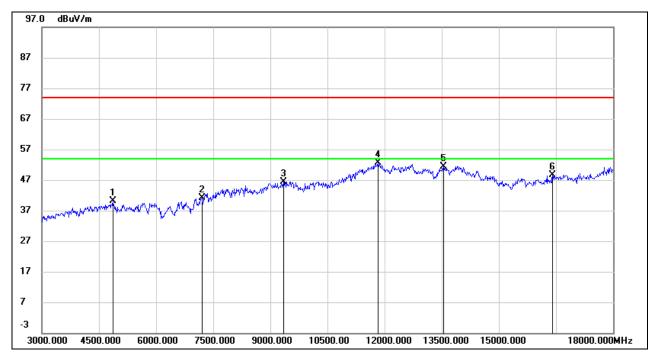
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7275.000	36.52	5.36	41.88	74.00	-32.12	peak
2	10320.000	35.74	11.24	46.98	74.00	-27.02	peak
3	11805.000	36.15	17.21	53.36	74.00	-20.64	peak
4	13980.000	30.97	20.63	51.60	74.00	-22.40	peak
5	15585.000	32.47	15.40	47.87	74.00	-26.13	peak
6	17220.000	30.49	20.16	50.65	74.00	-23.35	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

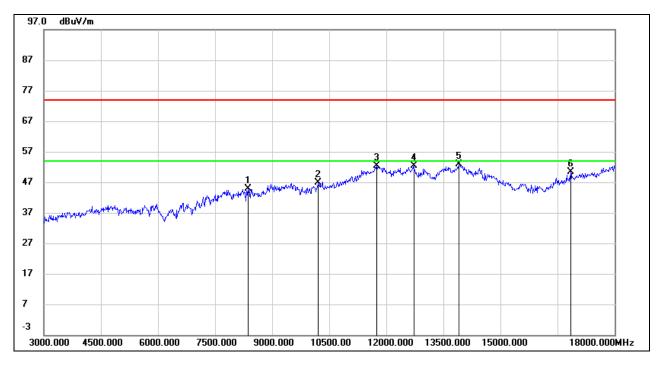

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	41.22	-1.14	40.08	74.00	-33.92	peak
2	7200.000	36.02	5.10	41.12	74.00	-32.88	peak
3	9345.000	37.07	9.34	46.41	74.00	-27.59	peak
4	11820.000	35.50	17.21	52.71	74.00	-21.29	peak
5	13545.000	31.83	19.64	51.47	74.00	-22.53	peak
6	16410.000	31.58	16.97	48.55	74.00	-25.45	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

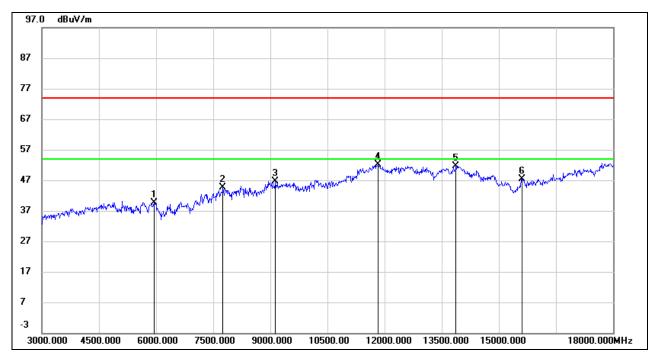
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8370.000	38.09	6.73	44.82	74.00	-29.18	peak
2	10215.000	35.86	10.95	46.81	74.00	-27.19	peak
3	11745.000	35.54	16.88	52.42	74.00	-21.58	peak
4	12720.000	35.41	17.09	52.50	74.00	-21.50	peak
5	13905.000	32.19	20.57	52.76	74.00	-21.24	peak
6	16845.000	31.86	18.42	50.28	74.00	-23.72	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

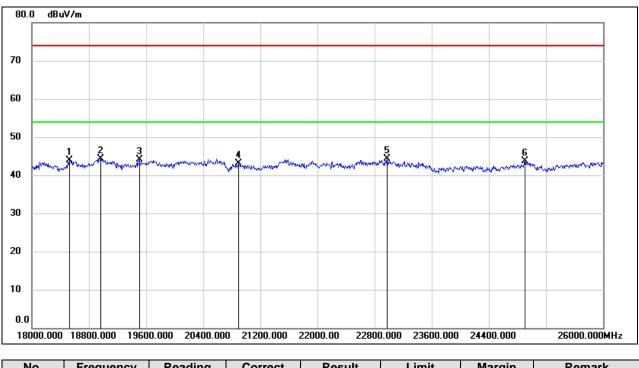
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5940.000	38.55	1.15	39.70	74.00	-34.30	peak
2	7755.000	38.74	5.93	44.67	74.00	-29.33	peak
3	9135.000	37.74	8.79	46.53	74.00	-27.47	peak
4	11835.000	34.99	17.20	52.19	74.00	-21.81	peak
5	13875.000	31.07	20.55	51.62	74.00	-22.38	peak
6	15615.000	32.07	15.41	47.48	74.00	-26.52	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

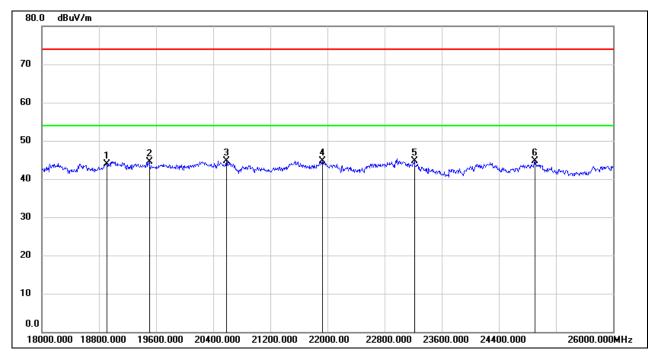

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

8.4.1. 802.11n HT20 MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18528.000	49.11	-5.26	43.85	74.00	-30.15	peak
2	18960.000	49.51	-5.25	44.26	74.00	-29.74	peak
3	19504.000	49.63	-5.54	44.09	74.00	-29.91	peak
4	20896.000	48.02	-4.98	43.04	74.00	-30.96	peak
5	22976.000	47.76	-3.46	44.30	74.00	-29.70	peak
6	24904.000	45.80	-2.19	43.61	74.00	-30.39	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

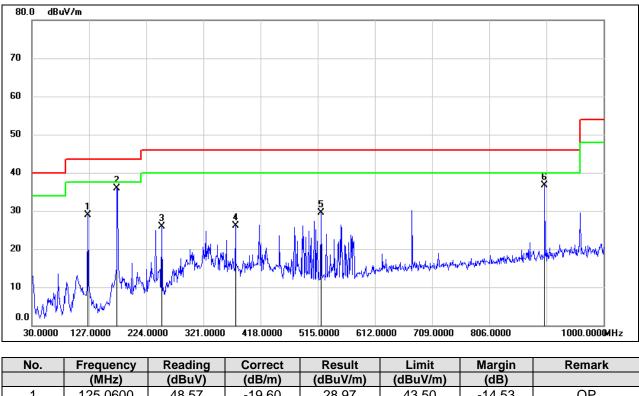
3. Peak: Peak detector.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18912.000	49.24	-5.30	43.94	74.00	-30.06	peak
2	19504.000	50.13	-5.54	44.59	74.00	-29.41	peak
3	20584.000	50.00	-5.27	44.73	74.00	-29.27	peak
4	21928.000	49.05	-4.43	44.62	74.00	-29.38	peak
5	23216.000	48.01	-3.38	44.63	74.00	-29.37	peak
6	24904.000	46.80	-2.19	44.61	74.00	-29.39	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

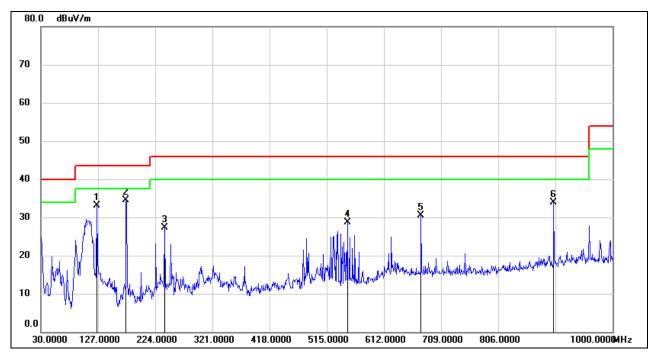

3. Peak: Peak detector.

Note: All the modes, channels and antennas had been tested, but only the worst data was recorded in the report.

8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.5.1. 802.11n HT20 MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	125.0600	48.57	-19.60	28.97	43.50	-14.53	QP
2	174.5300	53.09	-17.12	35.97	43.50	-7.53	QP
3	250.1900	44.87	-18.91	25.96	46.00	-20.04	QP
4	375.3200	39.86	-13.79	26.07	46.00	-19.93	QP
5	520.8200	40.60	-11.07	29.53	46.00	-16.47	QP
6	900.0900	41.90	-5.21	36.69	46.00	-9.31	QP

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

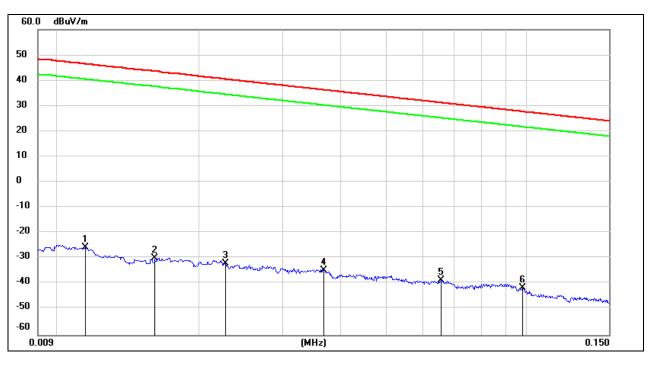
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	125.0600	52.66	-19.60	33.06	43.50	-10.44	QP
2	174.5300	51.66	-17.12	34.54	43.50	-8.96	QP
3	239.5200	46.44	-19.16	27.28	46.00	-18.72	QP
4	549.9200	39.11	-10.49	28.62	46.00	-17.38	QP
5	675.0500	39.06	-8.62	30.44	46.00	-15.56	QP
6	900.0900	39.12	-5.21	33.91	46.00	-12.09	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the modes, channels and antennas had been tested, but only the worst data was recorded in the report.



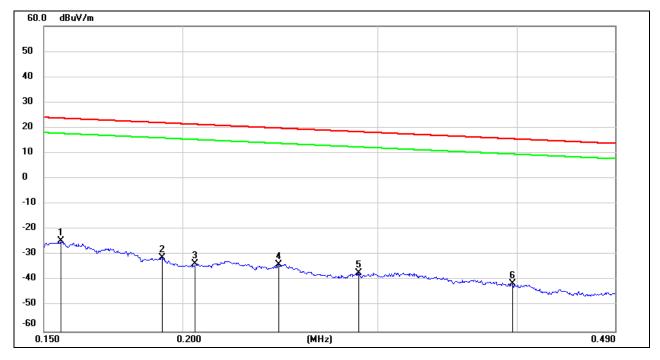
8.6. SPURIOUS EMISSIONS BELOW 30 MHz

8.6.1. 802.11n HT20 MODE

SPURIOUS EMISSIONS (LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9 kHz~ 150 kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0114	75.88	-101.40	-25.52	46.46	-71.98	peak
2	0.0160	71.47	-101.37	-29.90	43.52	-73.42	peak
3	0.0227	69.30	-101.36	-32.06	40.48	-72.54	peak
4	0.0367	66.75	-101.42	-34.67	36.31	-70.98	peak
5	0.0656	62.86	-101.55	-38.69	31.26	-69.95	peak
6	0.0981	60.27	-101.78	-41.51	27.77	-69.28	peak

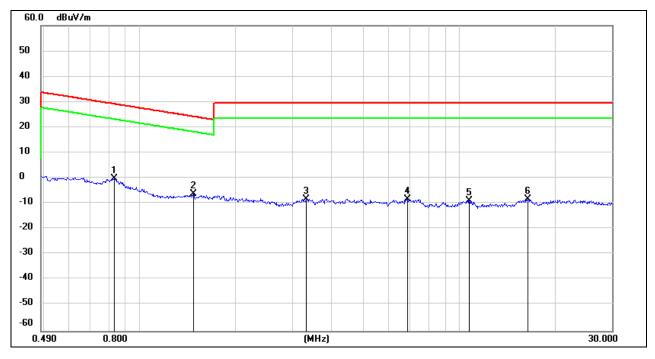

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150 kHz ~ 490 kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1554	77.27	-101.65	-24.38	23.77	-48.15	peak
2	0.1917	70.54	-101.70	-31.16	21.95	-53.11	peak
3	0.2053	68.29	-101.73	-33.44	21.35	-54.79	peak
4	0.2442	68.03	-101.79	-33.76	19.85	-53.61	peak
5	0.2878	64.72	-101.85	-37.13	18.42	-55.55	peak
6	0.3966	60.68	-101.96	-41.28	15.63	-56.91	peak


Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.8296	61.94	-62.17	-0.23	29.23	-29.46	peak
2	1.4700	55.89	-62.05	-6.16	24.26	-30.42	peak
3	3.3229	53.39	-61.50	-8.11	29.54	-37.65	peak
4	6.8936	53.09	-61.22	-8.13	29.54	-37.67	peak
5	10.7299	51.98	-60.83	-8.85	29.54	-38.39	peak
6	16.3959	52.67	-60.96	-8.29	29.54	-37.83	peak

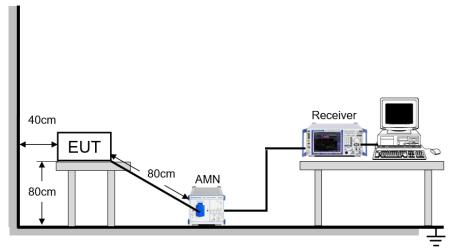
Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes, channels and antennas had been tested, but only the worst data was recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


<u>LIMITS</u>

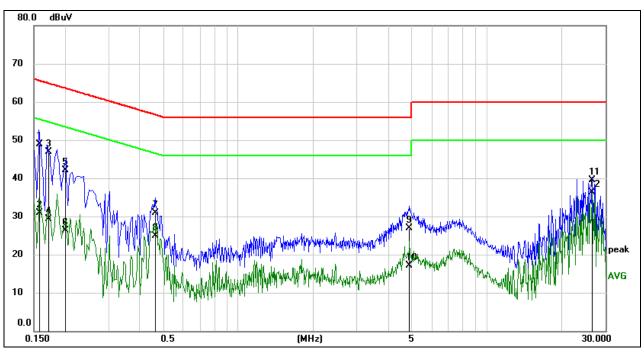
Please refer to CFR 47 FCC §15.207 (a).

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.


The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

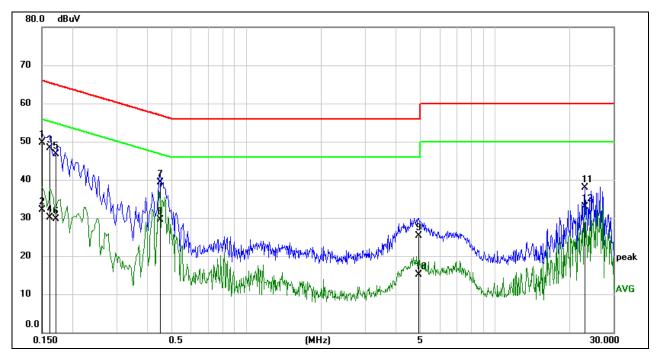
Temperature	20.5 °C	Relative Humidity	51.7 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V/60 Hz

9.1.1. 802.11n HT20 MODE LINE L RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1582	39.29	9.59	48.88	65.56	-16.68	QP
2	0.1582	21.28	9.59	30.87	55.56	-24.69	AVG
3	0.1727	37.28	9.59	46.87	64.83	-17.96	QP
4	0.1727	19.66	9.59	29.25	54.83	-25.58	AVG
5	0.1998	32.56	9.59	42.15	63.62	-21.47	QP
6	0.1998	16.72	9.59	26.31	53.62	-27.31	AVG
7	0.4614	21.66	9.34	31.00	56.67	-25.67	QP
8	0.4614	15.51	9.34	24.85	46.67	-21.82	AVG
9	4.8765	17.31	9.61	26.92	56.00	-29.08	QP
10	4.8765	7.45	9.61	17.06	46.00	-28.94	AVG
11	26.6091	29.87	9.70	39.57	60.00	-20.43	QP
12	26.6091	26.59	9.70	36.29	50.00	-13.71	AVG

Note: 1. Result = Reading +Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time:

auto.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1503	40.11	9.59	49.70	65.98	-16.28	QP
2	0.1503	22.49	9.59	32.08	55.98	-23.90	AVG
3	0.1619	38.68	9.59	48.27	65.37	-17.10	QP
4	0.1619	20.58	9.59	30.17	55.37	-25.20	AVG
5	0.1706	37.14	9.59	46.73	64.93	-18.20	QP
6	0.1706	20.12	9.59	29.71	54.93	-25.22	AVG
7	0.4498	29.99	9.35	39.34	56.88	-17.54	QP
8	0.4498	20.14	9.35	29.49	46.88	-17.39	AVG
9	4.9531	15.75	9.62	25.37	56.00	-30.63	QP
10	4.9531	5.41	9.62	15.03	46.00	-30.97	AVG
11	23.1285	28.08	9.73	37.81	60.00	-22.19	QP
12	23.1285	23.16	9.73	32.89	50.00	-17.11	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes and channels had been tested, but only the worst data was recorded in the report.

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

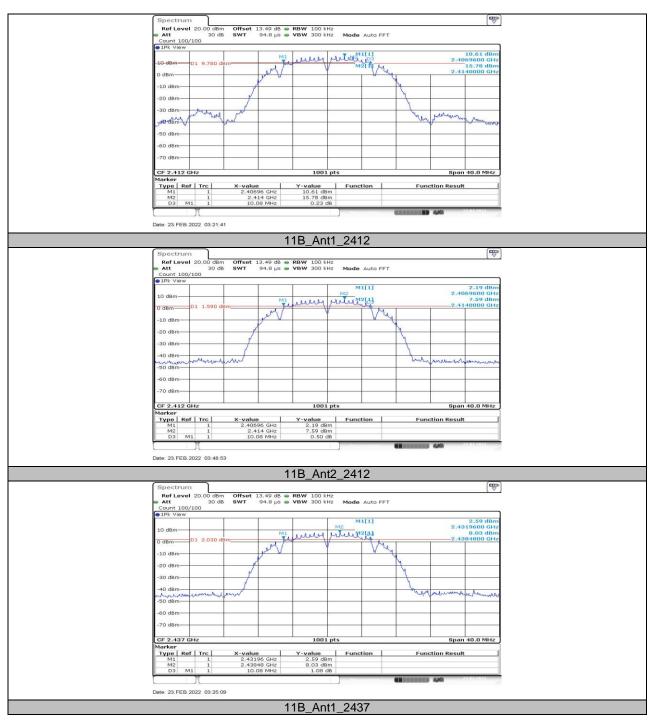
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

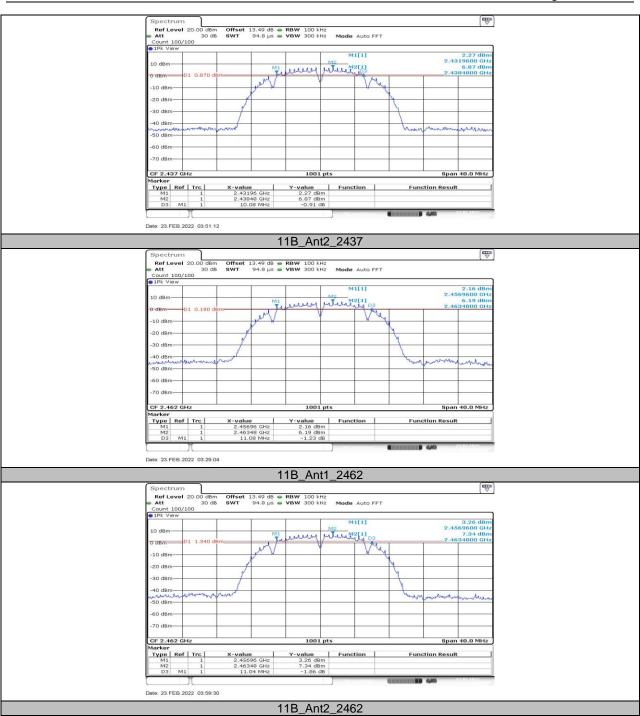
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

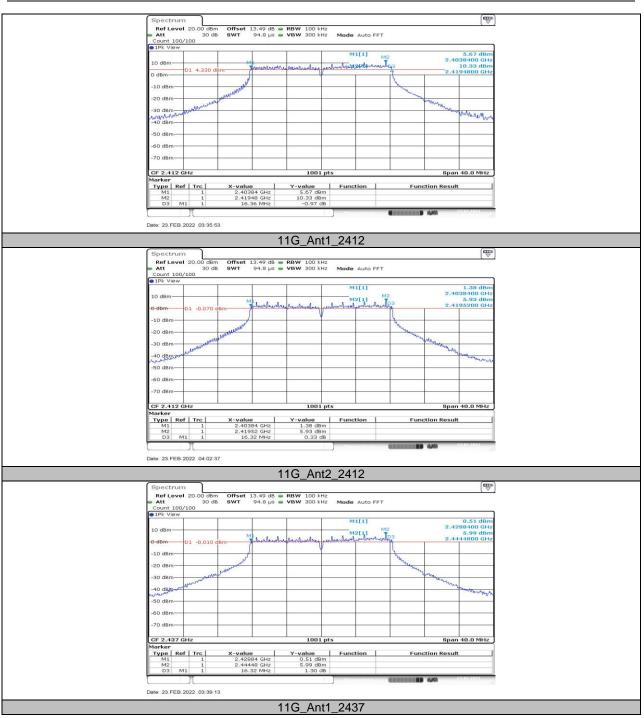
RESULTS

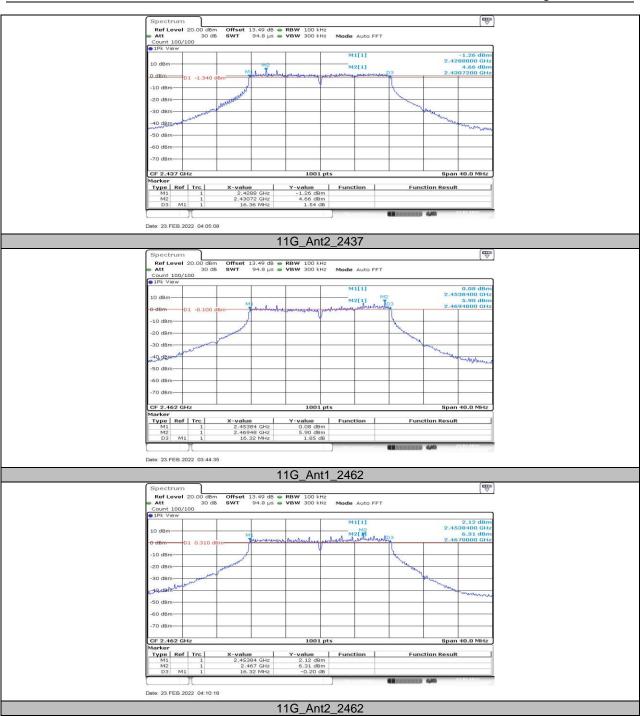
Complies

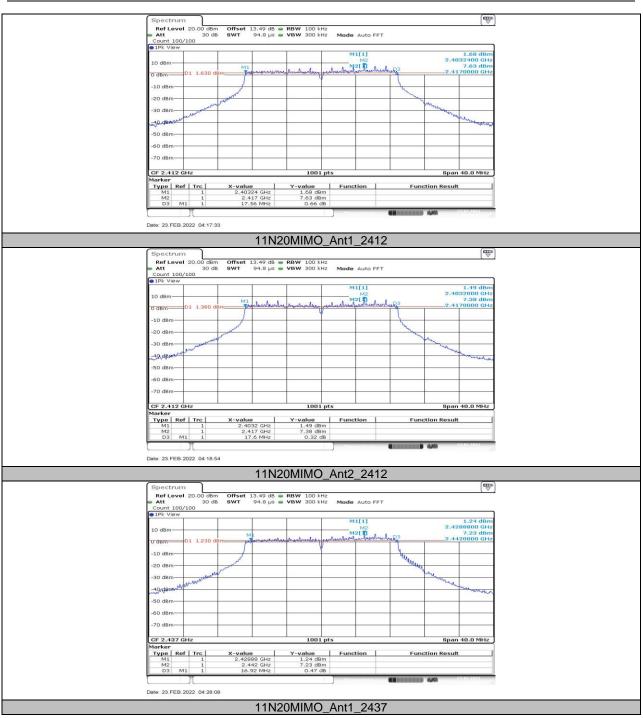

11. Appendix

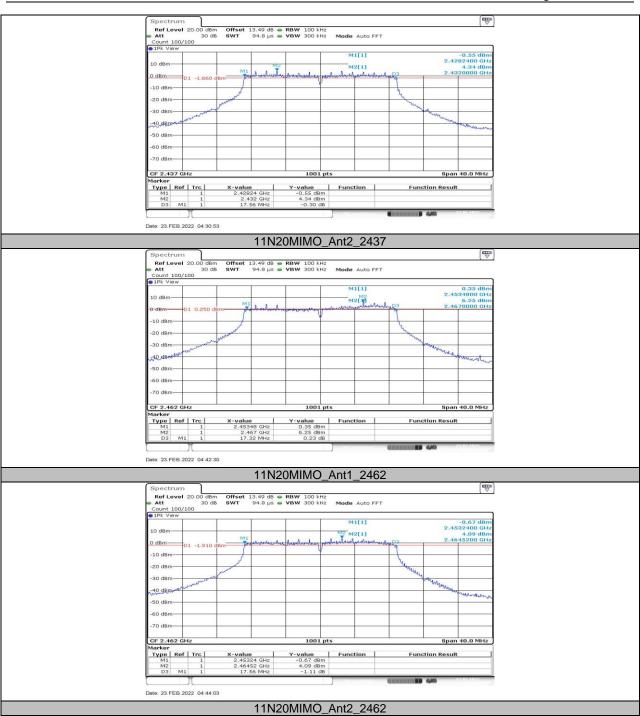
11.1. Appendix A: DTS Bandwidth 11.1.1. Test Result

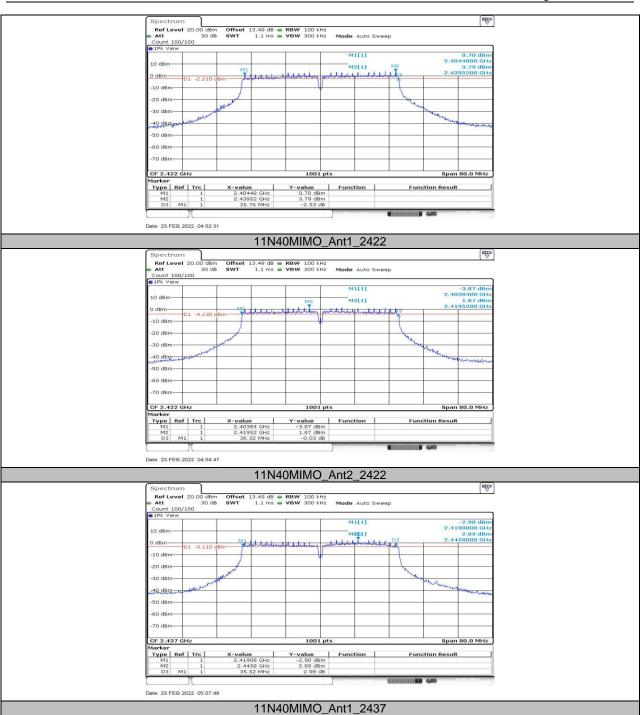

Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2412	10.08	2406.96	2417.04	0.5	PASS
	Ant2	2412	10.08	2406.96	2417.04	0.5	PASS
11B	Ant1	2437	10.08	2431.96	2442.04	0.5	PASS
IID	Ant2	2437	10.08	2431.96	2442.04	0.5	PASS
	Ant1	2462	11.08	2456.96	2468.04	0.5	PASS
	Ant2	2462	11.04	2456.96	2468.00	0.5	PASS
	Ant1	2412	16.36	2403.84	2420.20	0.5	PASS
110	Ant2	2412	16.32	2403.84	2420.16	0.5	PASS
	Ant1	2437	16.32	2428.84	2445.16	0.5	PASS
11G	Ant2	2437	16.36	2428.80	2445.16	0.5	PASS
	Ant1	2462	16.32	2453.84	2470.16	0.5	PASS
	Ant2	2462	16.32	2453.84	2470.16	0.5	PASS
	Ant1	2412	17.56	2403.24	2420.80	0.5	PASS
	Ant2	2412	17.60	2403.20	2420.80	0.5	PASS
11N20MIMO	Ant1	2437	16.92	2428.88	2445.80	0.5	PASS
	Ant2	2437	17.56	2428.24	2445.80	0.5	PASS
	Ant1	2462	17.32	2453.48	2470.80	0.5	PASS
	Ant2	2462	17.56	2453.24	2470.80	0.5	PASS
	Ant1	2422	35.76	2404.48	2440.24	0.5	PASS
	Ant2	2422	36.32	2403.84	2440.16	0.5	PASS
11N40MIMO	Ant1	2437	35.52	2419.08	2454.60	0.5	PASS
	Ant2	2437	35.76	2418.84	2454.60	0.5	PASS
	Ant1	2452	35.92	2434.24	2470.16	0.5	PASS
	Ant2	2452	35.76	2433.84	2469.60	0.5	PASS

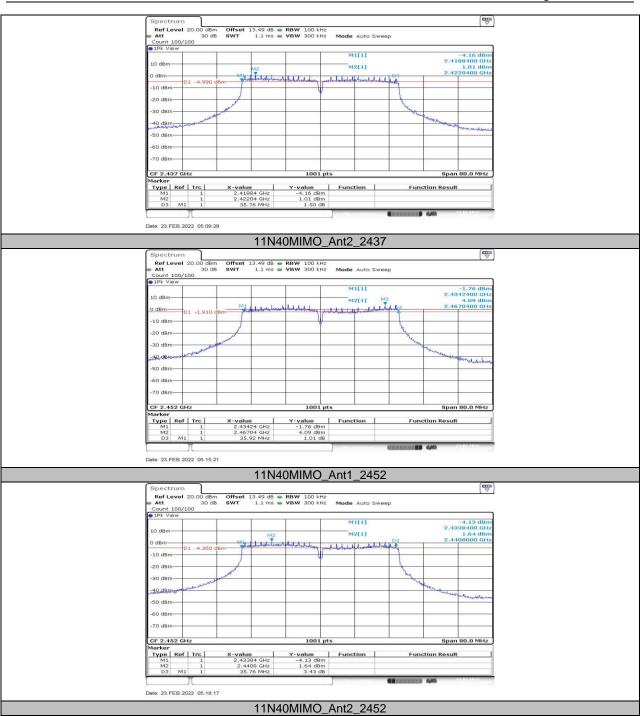

11.1.2. Test Graphs







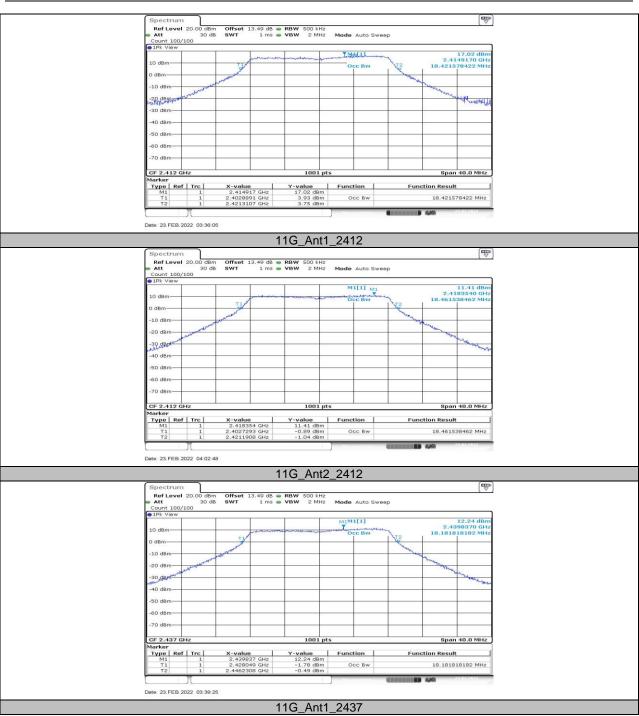






11.2.1.	lest	Result				
Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
	Ant1	2412	14.066	2405.087	2419.153	PASS
	Ant2	2412	14.066	2405.007	2419.073	PASS
11B	Ant1	2437	13.986	2430.127	2444.113	PASS
	Ant2	2437	13.986	2430.007	2443.993	PASS
	Ant1	2462	14.226	2455.007	2469.233	PASS
	Ant2	2462	14.066	2455.007	2469.073	PASS
	Ant1	2412	18.422	2402.889	2421.311	PASS
11G	Ant2	2412	18.462	2402.729	2421.191	PASS
	Ant1	2437	18.182	2428.049	2446.231	PASS
	Ant2	2437	18.262	2427.769	2446.031	PASS
	Ant1	2462	18.462	2452.769	2471.231	PASS
	Ant2	2462	18.222	2452.729	2470.951	PASS
	Ant1	2412	19.221	2402.529	2421.750	PASS
	Ant2	2412	18.901	2402.569	2421.471	PASS
11N20MIMO	Ant1	2437	18.981	2427.649	2446.630	PASS
	Ant2	2437	18.741	2427.569	2446.311	PASS
	Ant1	2462	18.901	2452.609	2471.510	PASS
	Ant2	2462	18.581	2452.609	2471.191	PASS
	Ant1	2422	38.681	2403.139	2441.820	PASS
	Ant2	2422	37.962	2403.059	2441.021	PASS
11N40MIMO	Ant1	2437	37.722	2418.139	2455.861	PASS
	Ant2	2437	37.642	2417.979	2455.621	PASS
	Ant1	2452	38.042	2433.059	2471.101	PASS
	Ant2	2452	37.722	2432.899	2470.621	PASS


11.2. Appendix B: Occupied Channel Bandwidth 11.2.1. Test Result


11.2.2. Test Graphs

