

FCC TEST REPORT

Test report On Behalf of Shenzhen Chengxian Optoelectronics Technology Co.,Limited led display

Model No.: P10, P2, P2.5, P3, P4, P5, P6, P8, P16, P20

FCC ID: 2A46A-CX16A

Prepared For: Shenzhen Chengxian Optoelectronics Technology Co.,Limited

2F,No.84,ZhouShi Road, ShiYan,Bao'an,shenzhen,guangdong,CN 518108

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Mar. 04, 2022 ~ Mar. 11, 2022

Date of Report: Mar. 11, 2022

HK2203010788-E **Report Number:**

TEST RESULT CERTIFICATION

Applicant's name	: Shenzhen Cheng	gxian Optoelectro	nics Technology C	o.,Limited
Address	2F,No.84,ZhouS	hi Road, ShiYan,I	Bao'an,shenzhen,g	juangdong.
(TESTING	CN 518108			

Manufacture's Name: Shenzhen Chengxian Optoelectronics Technology Co.,Limited 2F,No.84,ZhouShi Road, ShiYan,Bao'an,shenzhen,guangdong,

CN 518108

Product description

Trade Mark: CHENGXIANGUANGDIAN CX

Product nameled display

Model and/or type reference : P10, P2, P2.5, P3, P4, P5, P6, P8, P16, P20

Standards FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	HIAN TEL
Date (s) of performance of tests	of Mar. 04, 2022 ~ Mar. 11, 2022
Date of Issue	Mar. 11, 2022
Test Result	Pass

Testing Engineer : (Gary Qian)

Technical Manager : Zden Hw

(Eden Hu)

Authorized Signatory: Jason How

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	5
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	5
	1.3. MEASUREMENT UNCERTAINTY	
2.	EUT DESCRIPTION	
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. CARRIER FREQUENCY OF CHANNELS	8
	2.3. OPERATION OF EUT DURING TESTING	8
	2.4. DESCRIPTION OF TEST SETUP	
3.	GENERA INFORMATION	10
	3.1. TEST ENVIRONMENT AND MODE	
	3.2. DESCRIPTION OF SUPPORT UNITS	11
4.	TEST RESULTS AND MEASUREMENT DATA	12
	4.1. CONDUCTED EMISSION	
	4.2. TEST RESULT	
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4. EMISSION BANDWIDTH	18
	4.5. POWER SPECTRAL DENSITY	
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	28
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	
5.	PHOTOGRAPH OF TEST	57
6.	PHOTOGRAPH OF TEST	58
7	DUOTOS OF THE FUT	· ·

** Modified History **

Revision	Description	Issued Data	Remark	
Revision 1.0 Initial Test Report Release		e Mar. 11, 2022	Jason Zhou	
AKTESTI	AKTESTI	JAK TESTI	AKTESTI.	
Ho.	PRO PRO	SO III	Mr.	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247(b)(4)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247(b)(3)	PASS
6dB Emission Bandwidth	§15.247(a)(2)	PASS
Power Spectral Density	§15.247(e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

1L

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	ltem	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5 THE	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment:	led display	Die
Model Name:	P10	
Series Models	P2, P2.5, P3, P4, P5, P6, P8, P16, P20	
Model Difference:	All model's the function, software and electric circuit as same, only with a product color, appearance and mod named different. Test sample mode: P10	
FCC ID:	2A46A-CX16A	
Antenna Type:	PCB Antenna	
Antenna Gain:	6dBi Garage Manager Control of the C	AK TESTIN
Operation frequency:	802.11b/g/n 20: 2412~2462 MHz	
Number of Channels:	802.11b/g/n20: 11CH	NG
Modulation Type:	CCK/OFDM/DBPSK/DAPSK	
Power Source:	AC 100/220V	TESTING
Power Rating:	AC 100/220V	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

2.2. CARRIER FREQUENCY OF CHANNELS

	Channel List for 802.11b/802.11g/802.11n (HT20)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	^{AUP 10}	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	45MG	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below.

2.3. OPERATION OF EUT DURING TESTING

Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

GENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	G
Test Mode:		
Engineering mode:	Keep the EUT in continuous transmittin by select channel and modulations (The value of duty cycle is 98.46%)	

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	HUAKTES HUAKTES	Data rate	HUAK TES
802.11b		1Mbps	
802.11g	M. TESTING	6Mbps	-m ^C
802.11n(HT20)	AUAK TESS	6.5Mbps	W HUAK TES
Final Test Mode:	COS V	•	(A) (A) (A)

Operation mode:	Keep the EUT in c	continuous tra	ansmitting
Operation mode.	with modulation		

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2. According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	IG I HUANTESTI	I STING	I HUMA TESTIN	1 STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4. TEST RESULTS AND MEASUREMENT DATA

4.1. CONDUCTED EMISSION

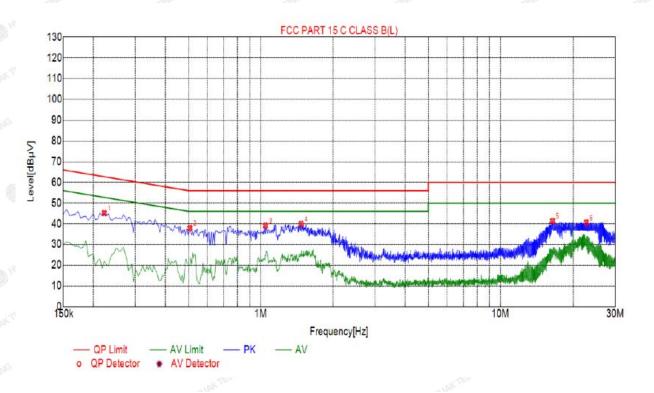
Test Specification

- All's	Testille	TEST	TESTIN		
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	MAKE	LAKTESTING		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time:	=auto		
	Frequency range	Limit (d	IBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	AK TESTING	IG AK TESTI	N TESTIN		
	Referen	ce Plane	7bm.		
	40cm	80cm LISN			
	AK TESTING	/	AC power		
	E.U.T AC pow		in position (in		
Test Setup:		EMI Receiver			
	Test table/Insulation plane				
	Remark:		STING		
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization i	Network	KTE		
	Test table height=0.8m				
Test Mode:	Charging + transmitting	Test.	NG TH		
	1. The E.U.T is connect	ACCOUNTS A STATE OF THE PARTY O	ACTUALITY AT THE PERSON OF THE		
	line impedance stat		,		
	provides a 50ohm/50uH coupling impedance for the measuring equipment.				
	2. The peripheral device		cted to the main		
	power through a LIS				
	coupling impedance				
Test Procedure:	refer to the block		`		
	photographs).	, ak T	ESTIN		
	3. Both sides of A.C.				
	conducted interferen				
	emission, the relative positions of equi				
	the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.				
Test Result:	PASS	on defined ince	.531 51110110		
Tool Nooull.	T TOUR	GMG			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

AFICATIO,

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

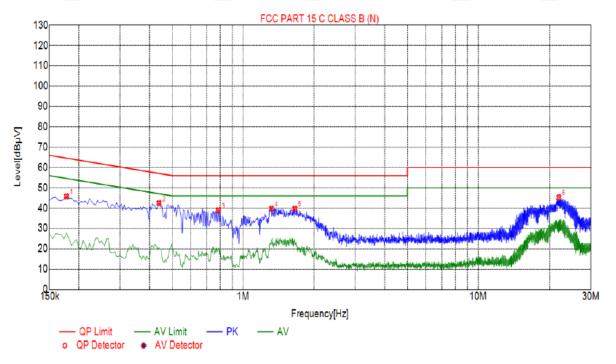

Test Instruments

ALIN ALL		ATTIME VICE	DECEMA *	Alle VI	Dictrick .		
Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Receiver	R&S	ESCI 7	HKE-010	Dec. 09, 2021	Dec. 08, 2022		
L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 09, 2021	Dec. 08, 2022		
LISN	R&S	ENV216	HKE-059	Dec. 09, 2021	Dec. 08, 2022		
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.2. TEST RESULT

Test Specification: Line



Sus	Suspected List									
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре		
1	0.2220	45.14	20.04	62.74	17.60	25.10	PK	L		
2	0.5055	37.86	20.04	56.00	18.14	17.82	PK	L		
3	1.0455	39.10	20.07	56.00	16.90	19.03	PK	L		
4	1.4730	39.97	20.10	56.00	16.03	19.87	PK	L		
5	16.4040	41.34	19.99	60.00	18.66	21.35	PK	L		
6	22.6680	40.56	20.18	60.00	19.44	20.38	PK	L		

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Test Specification: Neutral

Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре	
1	0.1770	45.82	20.05	64.63	18.81	25.77	PK	N	
2	0.4380	42.42	20.05	57.10	14.68	22.37	PK	N	
3	0.7845	38.98	20.05	56.00	17.02	18.93	PK	N	
4	1.3200	39.69	20.10	56.00	16.31	19.59	PK	N	
5	1.6575	39.65	20.12	56.00	16.35	19.53	PK	N	
6	21.8895	45.31	20.15	60.00	14.69	25.16	PK	N	

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

4.3. MAXIMUM CONDUCTED OUTPUT POWER

Test Specification

Test Requirement:	FCC Part15 C Section 15	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	KDB 558074	O HOM	HUM			
Limit:	30dBm	JAKTESTING	, nJG			
Test Setup:	Power meter	EUT	WAYTESTING			
Test Mode:	Transmitting mode with r	nodulation				
Test Procedure:	FCC KDB 558074 D0 v05r02. 2. The RF output of EUT meter by RF cable an	ed attenuator. The path lo esults for each measurer ower setting and enable to ously.	e ower ss was nent. the			
Test Result:	PASS	(a), (b)				

Test Instruments

100.001		22	100.002	0.03	NEAD I		
RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022		
Power meter	Agilent	E4419B	HKE-085	Dec. 09, 2021	Dec. 08, 2022		
Power Sensor	Agilent	E9300A	HKE-086	Dec. 09, 2021	Dec. 08, 2022		
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

		TX 802.11b Mode	
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	11.78	30
CH06	2437	13.89	30
CH11	2462	14.23	30
UAK TESTING	HUAKTESING	TX 802.11g Mode	WAK TESTING HUAK TESTING
CH01	2412	14.65	30
CH06	2437	13.79	30
CH11	2462	14.09	30 HUM TES
. G		TX 802.11n20 Mode	-16
CH01	2412	14.12	30
CH06	2437	14.03	30
CH11	2462	14.51	30

4.4. EMISSION BANDWIDTH

Test Specification

Test Requirement:	FCC Part15 C Section 1	FCC Part15 C Section 15.247 (a)(2)			
Test Method:	KDB 558074	(I) HUAN	(I) HUAN		
Limit:	>500kHz	AKTESTING.	.n)G		
Test Setup:	Spectrum Analyzer	EUT	MG HUAK TES ING		
Test Mode:	Transmitting mode with r	modulation			
Test Procedure:	1. The testing follows FC Meas Guidance v05rd 2. Set to the maximum position EUT transmit continums. Make the measureme resolution bandwidth Video bandwidth (VB an accurate measure be greater than 500 kd. Measure and record the suitable of the suitable	02. ower setting and ously. nt with the spectru (RBW) = 100 kHz W) = 300 kHz. In sement. The 6dB backHz.	enable the um analyzer's z. Set the order to make andwidth must		
Test Result:	PASS	O HUA	O HOW		

Test Instruments

ATTE: 431	VI AN	F 51.	A135 11	Allah VV	Alb. YV	
RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022	
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

AFICATION.

Test data

Toot shannel	6dB Emission Bandwidth (MHz)			
Test channel	802.11b	802.11g	802.11n(H20)	
Lowest	10.120	16.440	17.160	
Middle	10.120	16.320	17.520	
Highest	11.080	16.320	17.520	
Limit:	NG HUAKTEE	>500KHz	ALLY SIGN PROPERTY.	
Test Result:	"JAK TESTING	PASS	MANTESTING HUANTESTING	

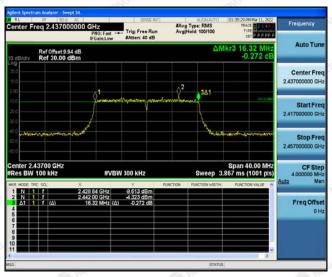
Test plots as follows:

802.11b Modulation

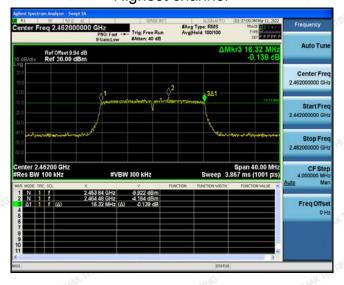
Lowest channel

Middle channel

Highest channel

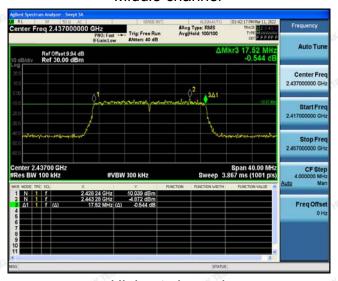


802.11g Modulation

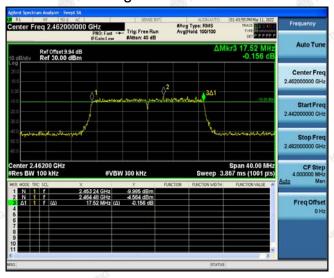

Lowest channel

Middle channel

Highest channel



802.11n (HT20) Modulation


Lowest channel

Middle channel

Highest channel

4.5. POWER SPECTRAL DENSITY

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUI
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 09, 2021	Dec. 08, 2022
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

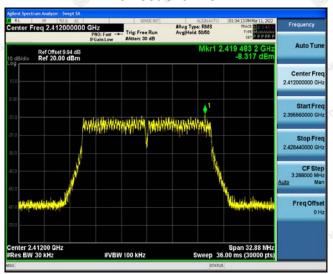
EUT Set Mode	Channel	Channel Result (dBm/30kHz) Result (dBm/3kHz)				
802.11b	Lowest	-5.09	-15.09			
	Middle	-2.52	-12.52			
	Highest	-4.83	-14.83			
802.11g	Lowest	-8.32	-18.32			
	Middle	-9.19	-19.19			
	Highest	-8.22	-18.22			
	Lowest	-8.83	-18.83			
802.11n(H20)	Middle	-9.88	-19.88			
	Highest	-9.5	-19.5			
PSD test result (dBm/3kHz)= PSD test result (dBm/30kHz)-10						
Limit: 8dBm/3kHz						
Test Result:	PASS					

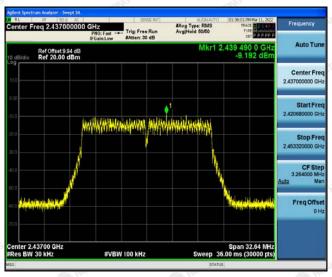
Test plots as follows:

802.11b Modulation

Lowest channel

Middle channel

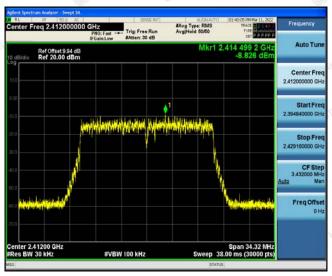

Highest channel

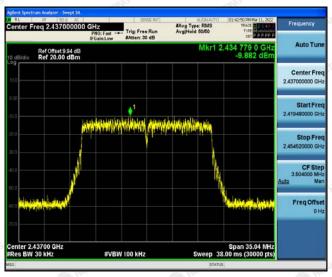


802.11g Modulation

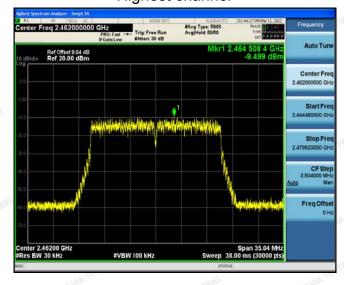
Lowest channel

Middle channel


Highest channel



802.11n (HT20) Modulation


Lowest channel

Middle channel

Highest channel

4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

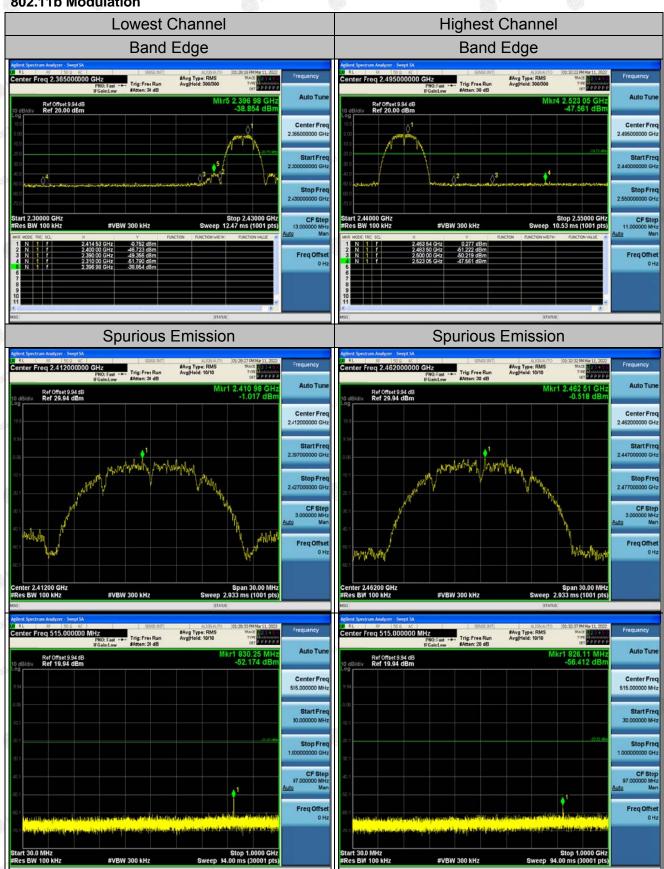
Test Specification

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / SRF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Test Setup: Test Mode: Transmitting mode with modulation 1. The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Set RBW = 100 kHz, VBW-300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 5. Measure and record the results in the test report. 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.	Test Requirement:	FCC Part15 C Section 15.247 (d)				
frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Test Setup: Test Mode: Transmitting mode with modulation 1. The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 5. Measure and record the results in the test report. 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.	Test Method:	KDB558074				
Test Mode: Transmitting mode with modulation 1. The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 5. Measure and record the results in the test report. 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.	Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
1. The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 5. Measure and record the results in the test report. 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.	Test Setup:					
Meas Guidance v05r02. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 5. Measure and record the results in the test report. 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.	Test Mode:	Transmitting mode with modulation				
Test Result: PASS	Test Procedure:	 The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded 				
	Test Result:	PASS				

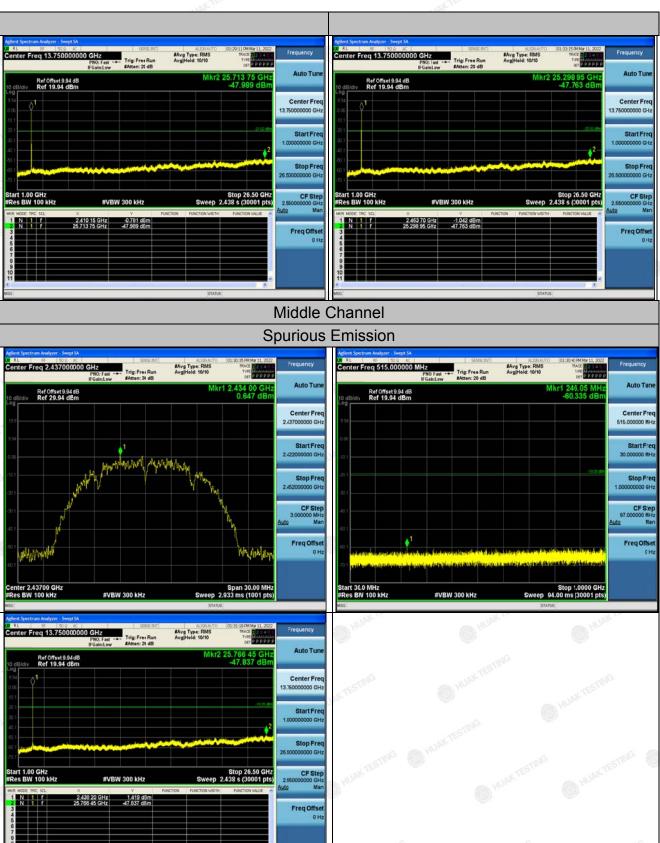
Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022	
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 09, 2021	Dec. 08, 2022	
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 09, 2021	Dec. 08, 2022	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022	
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A	

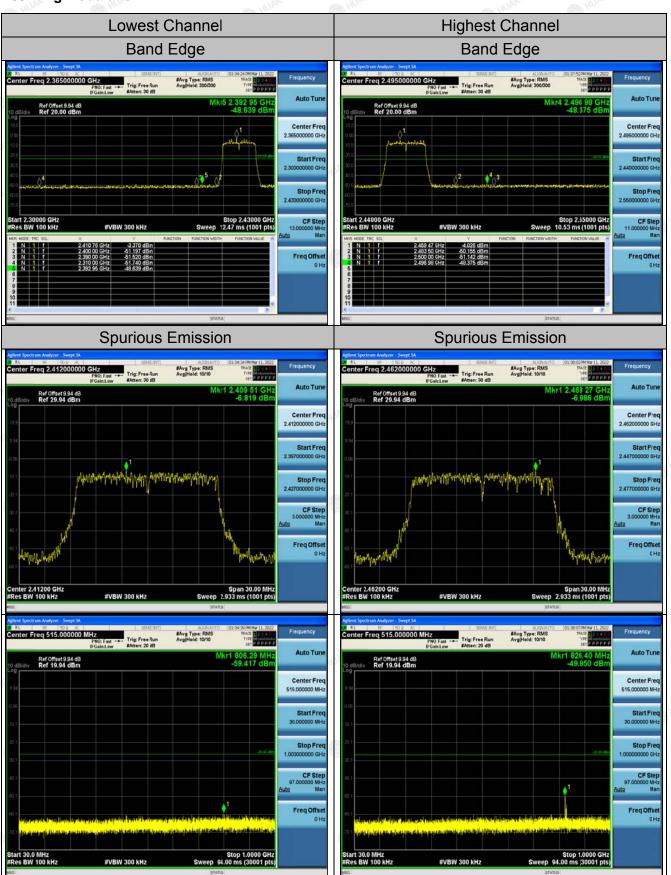
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

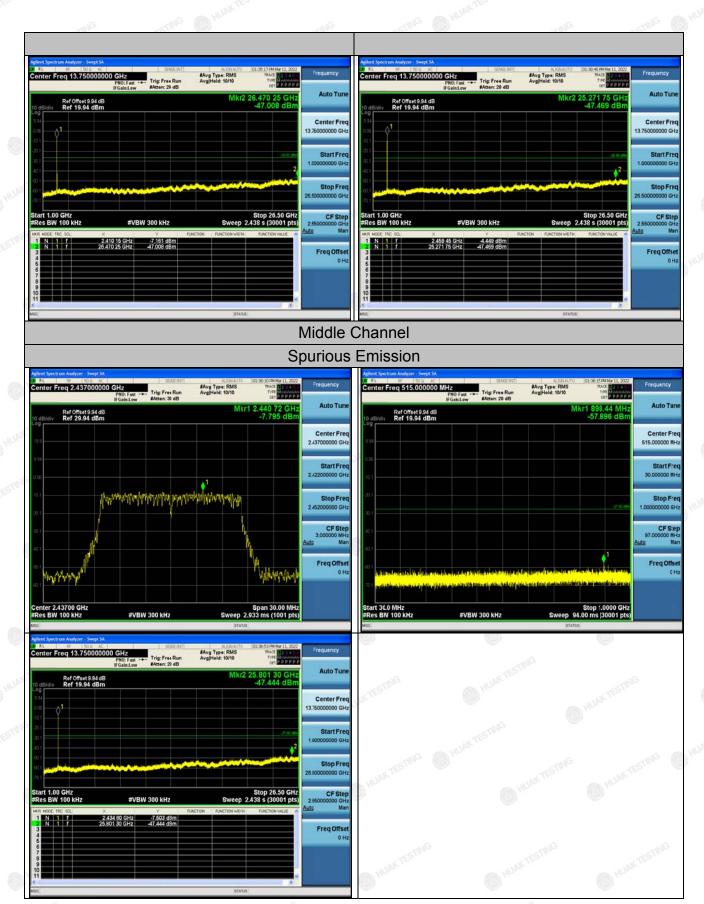

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

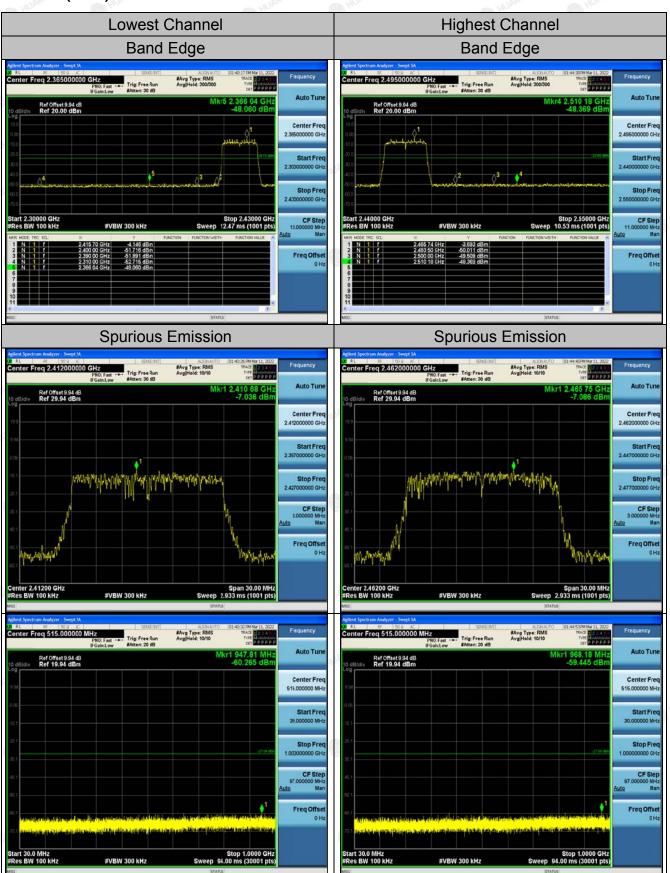
this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

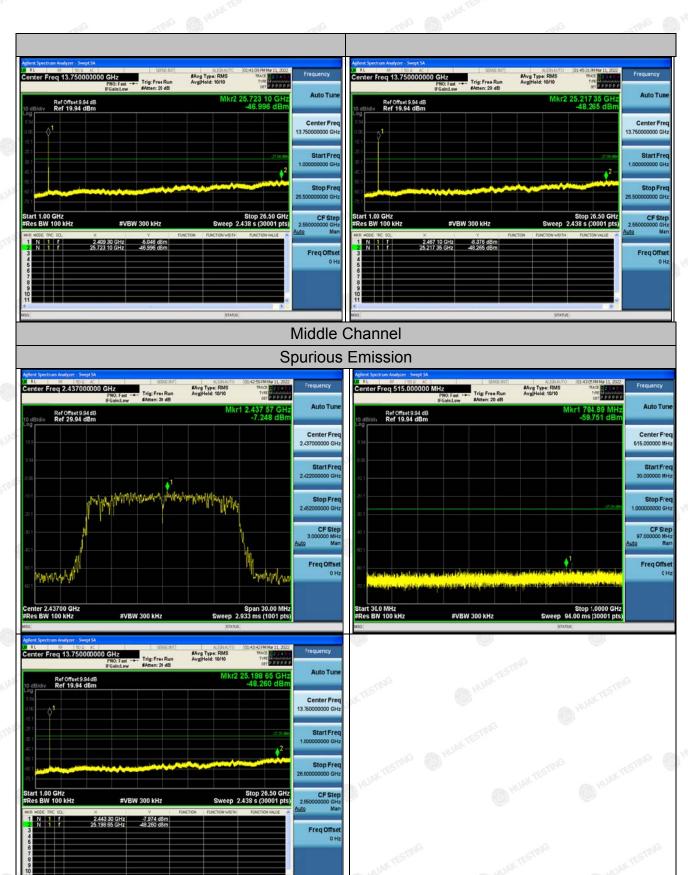

Test Data

802.11b Modulation



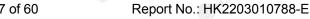

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

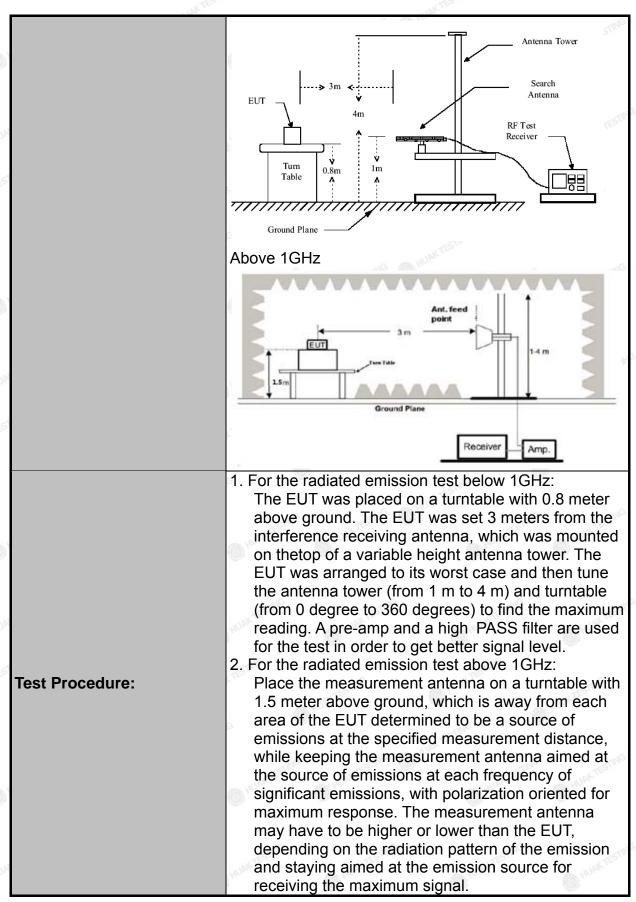



802.11g Modulation

802.11n (HT20) Modulation

4.7. RADIATED SPURIOUS EMISSION MEASUREMENT


Test Specification


_	_							
Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10: 2013						MI AN	
Frequency Range:	9 kHz to 25 GHz							
Measurement Distance:	3 m					TESTING		
Antenna Polarization:	Horizontal & Vertical					0	HOSE	
Operation mode:	Transmitting mode with modulation							
	Frequency Detector		or	RBW	VBW	Remark		
	9kHz- 150kHz	Quasi-pe		200Hz	- 4.75		Quasi-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-pe	eak	9kHz	30kHz	Quas	si-peak Value	
•	30MHz-1GHz	Quasi-pe	ak	120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	STING	1MHz	3MHz	P	eak Value	
	Above Toriz	Peak		1MHz	10Hz	Ave	erage Value	
	Frequency			Field Strength (microvolts/meter)		Measurement Distance (meters)		
	0.009-0.4	190		2400/F(KHz)			300	
	0.490-1.705			24000/F(KHz)		30		
	1.705-30			30		30		
	30-88			100 150		3		
Limit:	88-216 216-960		G	200		3		
	Above 960			500		3		
	7,0000 000 000							
	II Fredilency I		Field Strength (microvolts/meter)		Measuremer Distance (meters)		Detector	
	Above 1GHz		500		3 3		Average	
			5000		3		Peak	
Test setup:	For radiated O.8 m SOMHz to 10	Tu	n Table	below 30	RX Anto		ALLAN STR	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

9

ATION

Test Procedure:	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. 6. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

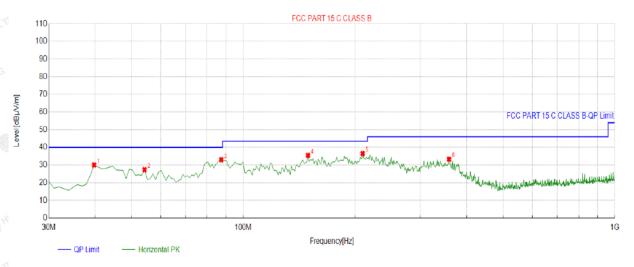
Test Instruments

	Radi	ated Emission	Test Site (9	66)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESCI-7	HKE-010	Dec. 09, 2021	Dec. 08, 2022
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022
Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 09, 2021	Dec. 08, 2022
High gain antenna	Schwarzbeck	LB-180400K F	HKE-054	Dec. 09, 2021	Dec. 08, 2022
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 09, 2021	Dec. 08, 2022
Preamplifier	EMCI	EMC051845 SE	HKE-015	Dec. 09, 2021	Dec. 08, 2022
Preamplifier	Agilent	83051A	HKE-016	Dec. 09, 2021	Dec. 08, 2022
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 09, 2021	Dec. 08, 2022
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 09, 2021	Dec. 08, 2022
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 09, 2021	Dec. 08, 2022
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 09, 2021	Dec. 08, 2022
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 09, 2021	Dec. 08, 2022
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable	Times	9kHz-1GHz	HKE-117	Dec. 09, 2021	Dec. 08, 2022
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Dec. 09, 2021	Dec. 08, 2022

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

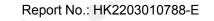
HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

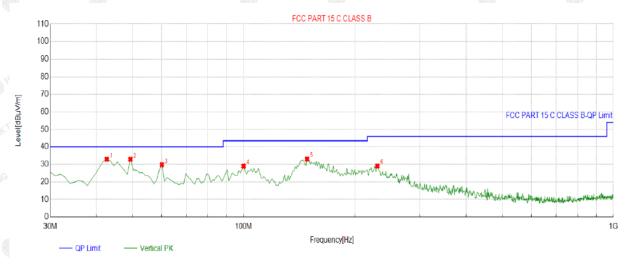


Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz


Horizontal


QP Detector

		-										
6.	Suspected List											
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevite		
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
	1	39.7097	-14.64	44.66	30.02	40.00	9.98	100	20	Horizontal		
9	2	54.2743	-14.30	41.63	27.33	40.00	12.67	100	359	Horizontal		
66	3	87.2873	-17.72	50.70	32.98	40.00	7.02	100	138	Horizontal		
	4	149.4294	-18.95	54.48	35.53	43.50	7.97	100	8	Horizontal		
	5	209.6296	-14.81	51.41	36.60	43.50	6.90	100	197	Horizontal		
	6	358.1882	-11.41	44.71	33.30	46.00	12.70	100	304	Horizontal		

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

QP Detecto

Suspe	Suspected List										
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity		
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	lolality		
1	42.6226	-14.07	46.99	32.92	40.00	7.08	100	155	Vertical		
2	49.4194	-13.65	46.55	32.90	40.00	7.10	100	143	Vertical		
3	60.1001	-15.19	45.01	29.82	40.00	10.18	100	72	Vertical		
4	99.9099	-15.42	44.42	29.00	43.50	14.50	100	222	Vertical		
5	148.4585	-18.98	52.02	33.04	43.50	10.46	100	321	Vertical		
6	230.0200	-14.32	43.35	29.03	46.00	16.97	100	36	Vertical		

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Lev	vel@3m (dBµV/m)	Limit@	3m (dBµV/m)
Ne 	CTING		CTING	
G Taylo	THAK TE	CTING	THUAK TE	-CTING
HUAKTE	9	TO HOUSE TE		HUAK TE
<u> </u>	a)G	(1)	-3 <i>G</i>	

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.11	-3.64	55.47	74	-18.53	peak
4824	45.21	-3.64	41.57	54	-12.43	AVG
7236	57.98	-0.95	57.03	74	-16.97	peak
7236	44.26	-0.95	43.31	54	-10.69	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.67	-3.64	55.03	74	-18.97	peak
4824	43.16	-3.64	39.52	54	-14.48	AVG
7236	55.02	-0.95	54.07	74	-19.93	peak
7236	43.35	-0.95	42.4	54	-11.6	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

AFIGATION.

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.63	-3.51	55.12	74	-18.88	peak
4874	45.78	-3.51	42.27	54	-11.73	AVG
7311	55.02	-0.82	54.2	74	-19.8	peak
7311	43.67	-0.82	42.85	54	-11.15	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss –	Pre-amplifier.		TESTING	X TEST

Vertical:

Reading Result	Factor	Emission Level	w Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
59.32	-3.51	55.81	74	-18.19	peak
44.08	-3.51	40.57	54	-13.43	AVG
57.36	-0.82	56.54	74	-17.46	peak
44.08	-0.82	43.26	54	-10.74	AVG
	(dBµV) 59.32 44.08 57.36	(dBµV) (dB) 59.32 -3.51 44.08 -3.51 57.36 -0.82	(dBμV) (dB) (dBμV/m) 59.32 -3.51 55.81 44.08 -3.51 40.57 57.36 -0.82 56.54	(dBμV) (dB) (dBμV/m) (dBμV/m) 59.32 -3.51 55.81 74 44.08 -3.51 40.57 54 57.36 -0.82 56.54 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 59.32 -3.51 55.81 74 -18.19 44.08 -3.51 40.57 54 -13.43 57.36 -0.82 56.54 74 -17.46

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	57.62	-3.43	54.19	74	-19.81	peak
4924	45.69	-3.43	42.26	54	-11.74	AVG
7386	56.28	-0.75	55.53	74 MAN	-18.47	peak
7386	42.07	-0.75	41.32	54	-12.68	AVG

Vertical:

		7000			7000	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.95	-3.43	56.52	74	-17.48	peak
4924	45.21	-3.43	41.78	54	-12.22	AVG
7386	56.56	-0.75	55.81	74	-18.19	peak
7386	44.72	-0.75	43.97	54	-10.03	AVG
		1000		70	lo lo	-

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4)The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

TESTING TESTING

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.37	-3.64	55.73	74	-18.27	peak
4824	43.65	-3.64	40.01	54	-13.99	AVG
7236	59.01	-0.95	58.06	74	-15.94	peak
7236	42.25	-0.95	41.3	54	-12.7	AVG
Remark: Factor	r = Antenna Factor -	Cable Loss -	- Pre-amplifier.		NY TESTING	"IAK TESTATE

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.46	-3.64	54.82	74	-19.18	peak
4824	45.02	-3.64	41.38	54	-12.62	AVG
7236	56.87	-0.95	55.92	74	-18.08	peak
7236	44.02	-0.95	43.07	54	-10.93	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11g Mode)/2437

Horizontal:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
58.61	-3.51	55.1	74	-18.9	peak
45.12	-3.51	41.61	54	-12.39	AVG
56.98	-0.82	56.16	74	-17.84	peak
43.78	-0.82	42.96	54	-11.04	AVG
	(dBμV) 58.61 45.12 56.98	(dBμV) (dB) 58.61 -3.51 45.12 -3.51 56.98 -0.82	(dBμV) (dB) (dBμV/m) 58.61 -3.51 55.1 45.12 -3.51 41.61 56.98 -0.82 56.16	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.61 -3.51 55.1 74 45.12 -3.51 41.61 54 56.98 -0.82 56.16 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.61 -3.51 55.1 74 -18.9 45.12 -3.51 41.61 54 -12.39 56.98 -0.82 56.16 74 -17.84

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.68	-3.51	55.17	74	-18.83	peak
4874	46.25	-3.51	42.74	54	-11.26	AVG
7311	56.98	-0.82	56.16	74	-17.84	peak
7311	43.17	-0.82	42.35	54	-11.65	AVG
-alG	-107G (100)		alG -TIP	- MEGIS	-NG	-71011

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.46	-3.43	56.03	74	-17.97	peak
4924	45.21	-3.43	41.78	54	-12.22	AVG
7386	55.28	-0.75	54.53	74	-19.47	peak
7386	42.08	-0.75	41.33	54	-12.67	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	59.67	-3.43	56.24	74	-17.76	peak
4924	46.32	-3.43	42.89	54	-11.11	AVG
7386	56.78	-0.75	56.03	74	-17.97	peak
7386	43.16	-0.75	42.41	54	-11.59	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.67	-3.64	55.03	74	-18.97	peak
4824	45.14	-3.64	41.5	54	-12.5	AVG
7236	56.33	-0.95	55.38	74	-18.62	peak
7236	44.82	-0.95	43.87	54	-10.13	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.99	-3.64	54.35	74	-19.65	peak
4824	45.32	-3.64	41.68	54	-12.32	AVG
7236	55.34	-0.95	54.39	74	-19.61	peak
7236	42.68	-0.95	41.73	54	-12.27	AVG
TING	-51m		TING		TING	CSTILL.

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.72	-3.51	55.21	74.00	-18.79	peak
4874	46.32	-3.51	42.81	54.00	-11.19	AVG
7311	56.38	-0.82	55.56	74.00	-18.44	peak
7311	44.62	-0.82	43.80	54.00	-10.20	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.62	-3.51	55.11	74.00	-18.89	peak
4874	44.16	-3.51	40.65	54.00	-13.35	AVG
7311	57.00	-0.82	56.18	74.00	-17.82	peak
7311	43.87	-0.82	43.05	54.00	-10.95	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	60.33	-3.43	56.9	74	-17.1	peak
4924	46.29	-3.43	42.86	54	-11.14	AVG
7386	56.38	-0.75	55.63	74	-18.37	peak
7386	43	-0.75	42.25	54	-11.75	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector Tune
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.96	-3.43	55.53	74	-18.47	peak
45.22	-3.43	41.79	54	-12.21	AVG
57.24	-0.75	56.49	74	-17.51	peak
43.09	-0.75	42.34	54 NKTES	-11.66	AVG
	(dBµV) 58.96 45.22 57.24	(dBµV) (dB) 58.96 -3.43 45.22 -3.43 57.24 -0.75	(dBμV) (dB) (dBμV/m) 58.96 -3.43 55.53 45.22 -3.43 41.79 57.24 -0.75 56.49	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.96 -3.43 55.53 74 45.22 -3.43 41.79 54 57.24 -0.75 56.49 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.96 -3.43 55.53 74 -18.47 45.22 -3.43 41.79 54 -12.21 57.24 -0.75 56.49 74 -17.51

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

Reading Result	Factor	Emission Level	Limits	Margin	Detector Ture
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
56.78	-5.81	50.97	74	-23.03	peak
HUAI	-5.81	C HUAR	54	HUAK	AVG
55.02	-5.84	49.18	74	-24.82	peak
Jang	-5.84	G /	54	ING	AVG
	(dBμV) 56.78 / 55.02	(dBμV) (dB) 56.78 -5.81 / -5.81 55.02 -5.84	(dBμV) (dB) (dBμV/m) 56.78 -5.81 50.97 / -5.81 / 55.02 -5.84 49.18	(dBμV) (dB) (dBμV/m) (dBμV/m) 56.78 -5.81 50.97 74 / -5.81 / 54 55.02 -5.84 49.18 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 56.78 -5.81 50.97 74 -23.03 / -5.81 / 54 / 55.02 -5.84 49.18 74 -24.82

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	55.71	-5.81	49.9	74	-24.1	peak
2310.00	1	-5.81	7	54	() HO /	AVG
2390.00	56.22	-5.84	50.38	74	-23.62	peak
2390.00	HAK TESTING	-5.84	I WANTE	54	TAK TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.01	-5.81	49.2	74 HUM	-24.8	peak
2483.50	1	-5.81	HUAN	54	1	AVG
2500.00	56.38	-6.06	50.32	74	-23.68	peak
2500.00	AK TESTING	-6.06	ING LAKTESTIN	54	V TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	(i) HUNG
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.34	-5.81	51.53	74	-22.47	peak
2483.50	1	-5.81	· /	54	1	AVG
2500.00	56.02	-6.06	49.96	74	-24.04	peak
2500.00	JAK I	-6.06	ALLAK IL	54	HUAKTES	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Databas Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	58.16	-5.81	52.35	74	-21.65	peak
2310.00	1	-5.81	HUAY	54	1	AVG
2390.00	54.32	-5.84	48.48	74	-25.52	peak
2390.00	ESTING OF HE	-5.84	ING I STIME	54	LING	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	55.09	-5.81	49.28	74 MAR	-24.72	peak
2310.00	1	-5.81	(Mar.)	54	1	AVG
2390.00	56.33	-5.84	50.49	74	-23.51	peak
2390.00	JAKTES! /	-5.84	HUAK TES IN	54	WAK TSTING	AVG
	•	(89)			(84)	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.55	-5.65	49.9	74	-24.1	peak
2483.50	ESTING /	-5.65	MAKIESTING	54	1	AVG
2500.00	56.17	-5.65	50.52	74	-23.48	peak
2500.00	THE HUR	-5.65	-G /	54	1	AVG

Vertical:

-MC	eller.		10	2/10	Olm.	Olm
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.38	-5.65	50.73	74	-23.27	peak
2483.50	1	-5.65	HUMYTES	54	1	AVG
2500.00	57.14	-5.65	51.49	74 TESTIN	-22.51	peak
2500.00	TESTING WHUR	-5.65	EMG / TESTA	54	/ TING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

AFICATION.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Reading Result	Factor	Emission Level	Limits	Margin	Data ataw Tura
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
57.28	-5.81	51.47	74	-22.53	peak
STING	-5.81	IK TESTING	54	1	AVG
58.16	-5.84	52.32	74	-21.68	peak
, HUA	-5.84	1	54	1	AVG
	(dBµV) 57.28	(dBμV) (dB) 57.28 -5.81 / -5.81 58.16 -5.84	(dBμV) (dB) (dBμV/m) 57.28 -5.81 51.47 / -5.81 / 58.16 -5.84 52.32	(dBμV) (dB) (dBμV/m) (dBμV/m) 57.28 -5.81 51.47 74 / -5.81 / 54 58.16 -5.84 52.32 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 57.28 -5.81 51.47 74 -22.53 / -5.81 / 54 / 58.16 -5.84 52.32 74 -21.68

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data at K TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	57.32	-5.81	51.51	74	-22.49	peak
2310.00	TESTING /	-5.81	WAY ESTING	54	1	AVG
2390.00	56.23	-5.84	50.39	74	-23.61	peak
2390.00	and MAR	-5.84	1	54	1	AVG

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.38	-5.65	50.73	74	-23.27	peak
2483.50	1	-5.65	MU HU AK .	54	1	AVG
2500.00	55.25	-5.65	49.6	74 TEST	-24.4	peak
2500.00	KIESTING (1)	-5.65	STING / KTEST	54	LESTING	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.89	-5.65	51.24	74	-22.76	peak
2483.50	1	-5.65	1	54	10 I	AVG
2500.00	57.24	-5.65	51.59	74	-22.41	peak
2500.00	HUAN	-5.65	NHIAM.	54	HUAKIE	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

5. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

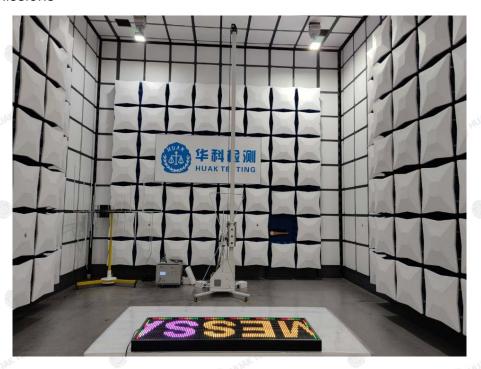
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 6dBi.

WIFI ANTENNA



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. PHOTOGRAPH OF TEST

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Conducted Emission

7. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.