

Test Report

Report No.:	MTi240426007-03E1	
Date of issue:	2024-06-07	
Applicant:	Hong Kong Etech Groups Ltd.	
Product:	3 in 1 Wireless Charger	
Model(s):	EWL-22111-B, H-11501	
FCC ID:	2A3ZO-11501	

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gen	eral Description	
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sum	nmary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List	of test equipment	10
5	Eval	uation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radi	io Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4	Conducted Emission at AC power line 20dB Occupied Bandwidth Emissions in frequency bands (below 30MHz) Emissions in frequency bands (30MHz - 1GHz)	15 21
Ph	otogr	aphs of the test setup	29
Ph	otogr	aphs of the EUT	

Test Result Certification		
Applicant: Hong Kong Etech Groups Ltd.		
Address: 16/F, Block C, 2nd Phase of Central Avenue, Haihong Industrial Area, Xixiang Road, Baoan District, Shenzhen,518102 China		
Manufacturer:	Hong Kong Etech Groups Ltd.	
Address:	16/F, Block C, 2nd Phase of Central Avenue, Haihong Industrial Area, Xixiang Road, Baoan District, Shenzhen,518102 China	
Product description		
Product name:	3 in 1 Wireless Charger	
Trade mark:	N/A	
Model name:	EWL-22111-B	
Series Model(s):	H-11501	
Standards:	47 CFR Part 15C	
Test Method:	ANSI C63.10-2013	
Date of Test		
Date of test:	2024-04-30 to 2024-06-04	
Test result:	Pass	

Test Engineer	•	Monleen Lang	
		(Maleah Deng)	
Reviewed By	:	Dowid. Cee	
		(David Lee)	
Approved By	• •	(cov chen	
		(Leon Chen)	

1 General Description

1.1 Description of the EUT

Product name:	3 in 1 Wireless Charger		
Model name:	EWL-22111-B		
Series Model(s):	H-11501		
Model difference:	All the models are the same circuit and module, except the model name.		
Electrical rating:	Input: DC 9V 3A Output: USB-A: DC 5V1A Wireless Output: Phone: 5W,7.5W,10W,15W; Watch: 2.5W, Earphone: 3W		
Accessories:	Cable: USB-C to USB-C cable 100cm		
Hardware version:	V1.0		
Software version:	V1.0		
Test sample(s) number:	MTi240426007-03S1001		
RF specification			
Operating frequency range:	Transmitter1 (Phone): 115-205KHz(5W,7.5W,10W); 360kHz(15W) Transmitter2 (Earphone): 115-205KHz Transmitter3 (Watch): 300-350KHz		
Modulation type:	ASK		
Antenna(s) type:	Coil Antenna		

1.2 Description of test modes

No.	Emission test modes	
Mode1	Wireless output(5W)+Earphone(5W)+Watch(2.5W)	
Mode2	Wireless output(7.5W)+Earphone(5W)+Watch(2.5W)	
Mode3	Wireless output(10W)+Earphone(5W)+Watch(2.5W)	
Mode4	Wireless output(15W)+Earphone(5W)+Watch(2.5W)	
Mode5	Wireless output(5W)+Earphone(5W)	
Mode6	Wireless output(7.5W)+Earphone(5W)	
Mode7	Wireless output(10W)+Earphone(5W)	
Mode8	Wireless output(15W)+Earphone(5W)	
Mode9	Wireless output(5W)+Watch(2.5W)	
Mode10	Wireless output(7.5W)+Watch(2.5W)	
Mode11	Wireless output(10W)+Watch(2.5W)	
Mode12	Wireless output(15W)+Watch(2.5W)	
Mode13	Earphone(5W)+Watch(2.5W)	
Mode14	Wireless output(5W)	
Mode15	Wireless output(7.5W)	
Mode16	Wireless output(10W)	
Mode17	Wireless output(15W)	

Mode18	Watch(2.5W)
Mode19	Earphone(5W)
Mode20	stand by

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list				
Description	Model	Serial No.	Manufacturer	
HUAWEI QUICK CHARGE(65W)	HW-200200ZP1	JN67LSN7N03451	HUAWEI	
wireless charging load	YBZ1.1	/	YBZ	
iwatch	iwatch S7	M0JVGQG1VP	Apple	
airpods	airpods 3	/	apple	
Watch wireless charging load	YBZ1.0.4	/	YBZ	
Support cable list				
Description	Length (m)	From	То	
/	/	/	/	

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15C	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15C	47 CFR Part 15.207(a)	Pass
3	20dB Occupied Bandwidth	47 CFR Part 15C	47 CFR Part 15.215(c)	Pass
4	Emissions in frequency bands (below 30MHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass
5	Emissions in frequency bands (30MHz - 1GHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.	
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China	
Telephone:	(86-755)88850135	
Fax:	(86-755)88850136	
CNAS Registration No.:	CNAS L5868	
FCC Registration No.:	448573	
IC Registration No.:	21760	
CABID:	CN0093	

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
		Conducted En	nission at AC po	wer line		
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19
		20dB Oc	cupied Bandwid	th		
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20
		Emissions in frequ	iency bands (bel	ow 30MHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19
		Emissions in freque	ency bands (30N	/Hz - 1GHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19
5	Multi-device Controller	TuoPu	TPMDC	/	2024-03-20	2025-03-19

5 Evaluation Results (Evaluation)

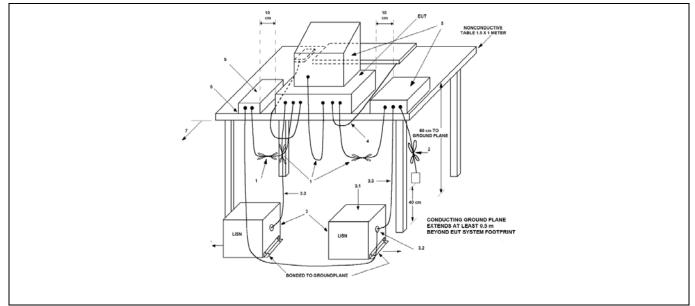
5.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

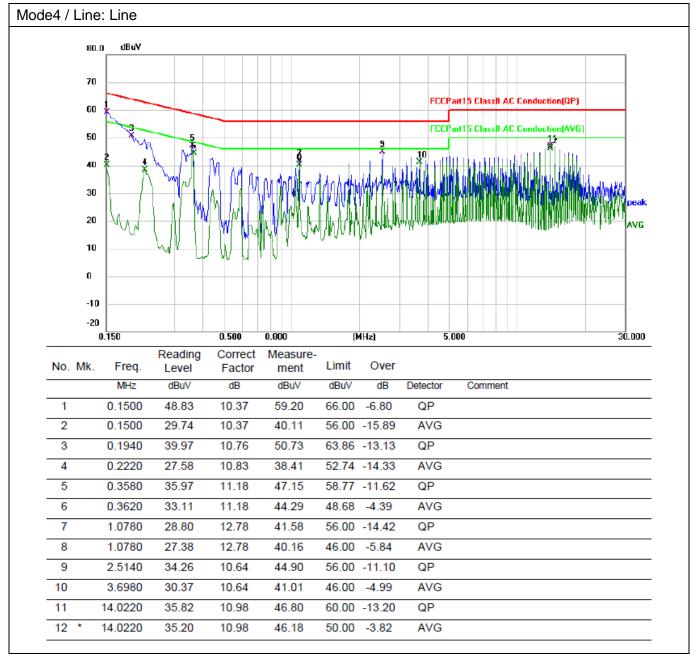
The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

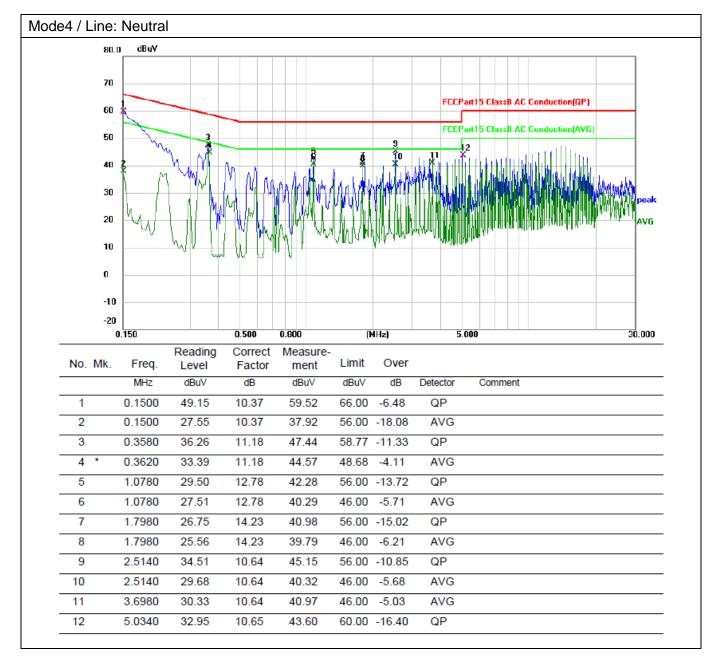

6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).									
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)								
		Quasi-peak	Average							
	0.15-0.5	66 to 56*	56 to 46*							
	0.5-5	56	46							
	5-30	60	50							
	*Decreases with the logarithm of	the frequency.	·							
Test Method:	ANSI C63.10-2013 section 6.2									
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power- line conducted emissions from unlicensed wireless devices									

6.1.1 E.U.T. Operation:

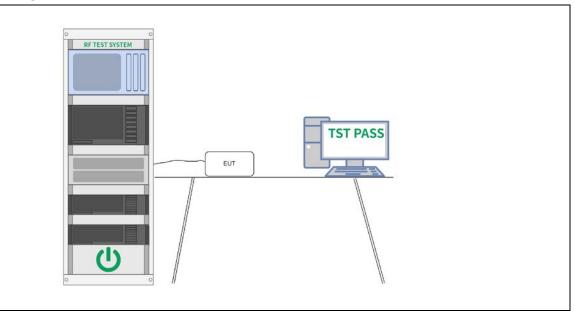

Operating Envi	Operating Environment:									
Temperature:	24.4 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa				
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode11, Mode12, Mode13, Mode14, Mode15, Mode16, Mode17 Mode18, Mode19, Mode20										
Final test mode	е:			ore-test mode w ded in the repo	vere tested, only the data	of the worst mode				

6.1.2 Test Setup Diagram:



6.1.3 Test Data:

6.2 20dB Occupied Bandwidth


altern 15.2 ensu other opera secti Test Method: ANS	r to 47 CFR 15.215(c), intentional radiators operating under the native provisions to the general emission limits, as contained in §§ 17 through 15.257 and in subpart E of this part, must be designed to re that the 20 dB bandwidth of the emission, or whatever bandwidth may wise be specified in the specific rule section under which the equipment ates, is contained within the frequency band designated in the rule on under which the equipment is operated. C63.10-2013, section 6.9.2 e spectrum analyzer center frequency is set to the nominal EUT channel er frequency. The span range for the EMI receiver or spectrum analyzer
	e spectrum analyzer center frequency is set to the nominal EUT channel
center shall b) Th 5% co times c) Se from gener (OBV d) St tolera e) Th than requi at the refer f) Se g) De carrie spec the re h) De Alter of the i) If th the E trace Othe j) Pla frequ or sli mark as po betw of the below delta ampl emiss k) Th meas	be between two times and five times the OBW. e nominal IF filter bandwidth (3 B RBW) shall be in the range of 1% to f the OBW and video bandwidth (VBW) shall be approximately three RBW, unless otherwise specified by the applicable requirement. t the reference level of the instrument as required, keeping the signal exceeding the maximum input mixer level for linear operation. In ral, the peak of the spectral envelope shall be more than [10 log V/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. eps a) through c) might require iteration to adjust within the specified ances. e dynamic range of the instrument at the selected RBW shall be more 10 dB below the target "-xx dB down" requirement; that is, if the rement calls for measuring the -20 dB OBW, the instrument noise floor e selected RBW shall be at least 30 dB below the ence value. a detection mode to peak and trace mode to max hold. termine the reference value: Set the EUT to transmit an unmodulated er or modulated signal, as applicable. Allow the trace to stabilize. Set the trum analyzer marker to the highest level of the displayed trace (this is aference value). termine the "-xx dB down amplitude" using [(reference value) - xx], natively, this calculation may be made by using the marker-delta function a instrument. The reference value is determined by an unmodulated carrier, then turn UT modulation ON, and either clear the existing trace or start a new on the spectrum analyzer and allow the new trace to stabilize. Twise, the trace from step g) shall be used for step j). ce two markers, one at the lowest frequency and the other at the highest ency of the envelope of the spectral display, such that each marker is at ghtly below the "-xx dB down amplitude" value, then it shall be as close usible to this value. The occupied bandwidth is the frequency difference en the two markers. Alternatively, set a marker at the lowest frequency of the espectral display, such that the marker is at or slightly v th "-xx dB

6.2.1 E.U.T. Operation:

Operating Environment:									
Temperature:	20.5 °C	F	lumidity:	65.5 %	100 kPa				
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode11, Mode12, Mode13, Mode14, Mode15, Mode16, Mode1 Mode18, Mode19, Mode20									
Final test mode		All of the listed pre-test mode were tested, only the data of the worst mode (Mode16, Mode17, Mode18, Mode19) is recorded in the report							

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Frequency kHz	20 dB	occupied band Hz	99% oc	9% occupied bandwidt Hz		
130.380		814			709	
Agilent Spectrum Analyzer - Occupied BW X RL RF 50 Ω ▲ DC Center Freq 130.380 kHz #II	Cente	INSE:PULSE r Freq: 130.380 kHz iree Run Avg Hol : 10 dB	Radio S d: 10/10	1 PM May 05, 2024 itd: None Pevice: BTS	Frequency	
10 dB/div Ref 10.00 dBm Log						
-80.0 Center 130.4 kHz #Res BW 300 Hz	#	VBW 1 kHz		Span 5 kHz p 68.07 ms	500 Hz	
Occupied Bandwidth	709 Hz	Total Power	-13.4 dBm		Auto Man Freq Offset	
Transmit Freq Error x dB Bandwidth	1 Hz 814 Hz	OBW Power x dB	99.00 % -20.00 dB		0 Hz	

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Page 18 of 30

	m Analyzer - Occupied BV		811			700
Center Fre	RF 50 Ω ▲ DC eq 360.000 kHz	Cente	ENSE:PULSE r Freq: 360.000 kHz Free Run Avg Hol 1: 10 dB	Radio S Id: 10/10	5 PM May 05, 2024 td: None evice: BTS	Frequency
10 dB/div Log -10.0 -20.0	Ref 0.00 dBm					Center Freq 360.000 kHz
-30.0 -40.0 -50.0 -60.0 -70.0						
-80.0 -90.0 Center 360					Span 5 kHz	CF Step
#Res BW	300 Hz ied Bandwidtl		VBW 1 kHz Total Power	Sweep -24.2 dBm	o 68.07 ms	500 Hz Auto Man
	ied Bandwidti	700 Hz				Freq Offset
	it Freq Error Indwidth	1 Hz 811 Hz	OBW Power x dB	99.00 % -20.00 dB	-	460 Hz

Transmitter 1(Phone)

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Page 19 of 30

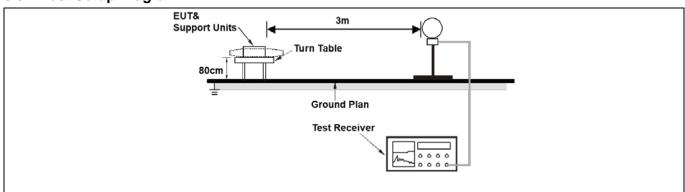
	.455 m Analyzer - Occi	upied BW			81 <i>′</i>	1				693
LXI RL	RF 50 Ω / eq 145.455	kHz	Tr	sense:pu enter Freq ig: Free Ru tten: 10 dB	: 145.458 Jn		Lalign off I: 10/10	02:28:14 P Radio Std Radio Dev		Frequency
10 dB/div Log -10.0	Ref 0.00	dBm								
-20.0				\frown						Center Freq 145.455 kHz
-40.0										
-60.0						\mathbb{N}		\square		
-80.0		\sim	V					1		
	Center 145.5 kHz #Res BW 300 Hz			1 kH:	z	Span 5 kHz Sweep 68.07 ms			CF Step 500 Hz	
Occup	ied Bandy			Т	otal P	ower	-15.5	dBm		<u>Auto</u> Man
Tranem	it Freq Erro		693 Hz о нz	•		ower	00	.00 %		Freq Offset 0 Hz
	andwidth		811 Hz		dB	ower		00 dB		

Transmitter 2(Earphone)

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

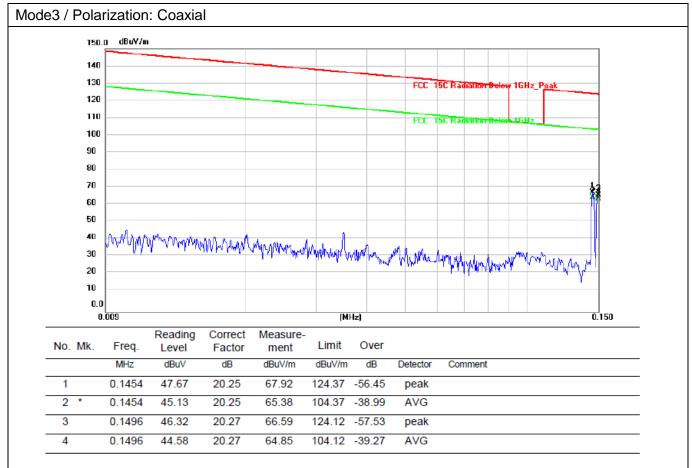
cupied bandwi Hz	99% oc	20 dB occupied bandwidth 99% Hz						Frequency kHz				
755					8			323.535				
100				5				unied DW	Malyzer - Occ		Anilant	
Frequency	07 PM May 05, 2024 Std: None Device: BTS	Radio S 0	ALIGM Hold: 10/10				ain:Low	<u>kHz</u>		F R	XI RL	
Careton Franc) dBm	Ref 10.0	3/div	10 dE Log	
Center Freq 323.535 kHz						+					-10.0	
											-20.0 - -30.0 -	
									-40.0			
		\sim						{			-50.0 -60.0	
										/	-70.0 ; -80.0 -	
CF Step 500 Hz	Span 5 kHz ep 68.07 ms	Span 5 kHz Sweep 68.07 ms			BW 1k	⊥#VI			Center 323.5 kHz #Res BW 300 Hz			
<u>Auto</u> Man		-29.2 dBm		ower	Total			width	d Band	ccupie	0	
Freq Offset						Z	755 H					
0 Hz		99.00 %			13 Hz OBW Power			or	Transmit Freq Error			
		-20.00 dB			x dB	łz	819 H		dwidth	dB Bano	X	

Page 20 of 30


6.3 Emissions in frequency bands (below 30MHz)

Test Requirement:	47 CFR Part 15.209					
Test Limit:	Frequency (MHz)	Field strength	Measuremen			
		(microvolts/meter)	t distance			
			(meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
Test Method: Procedure:	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a)and (b)of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB und any condition of modulation. For point-to-point operation under paragraph (b)of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth. 					

6.3.1 E.U.T. Operation:


Operating Envi	Operating Environment:									
Temperature:	22.5 °C		Humidity:	43 %	Atmospheric Pressure:	101 kPa				
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode11, Mode12, Mode13, Mode14, Mode15, Mode16, Mode17 Mode18, Mode19, Mode20										
Final test mode	e:	All of the listed pre-test mode were tested, only the data of the worst mode (Mode3, Mode 4) is recorded in the report								

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

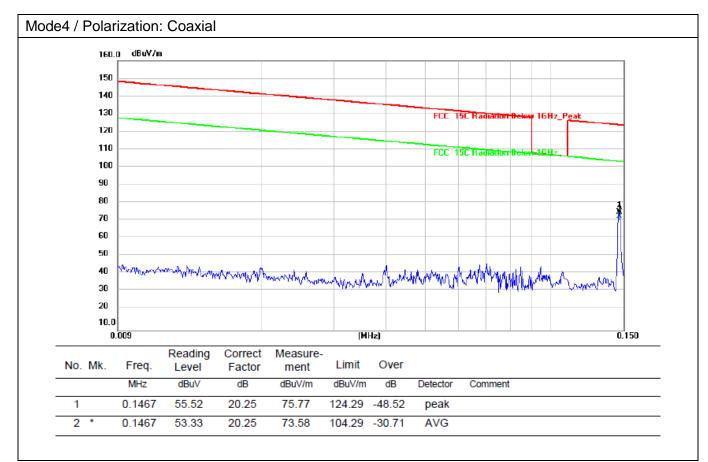
0.7236

10

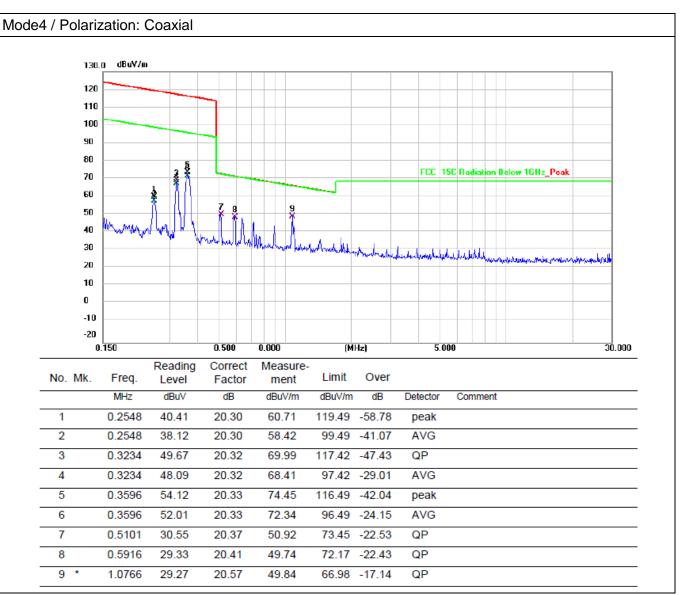
25.32

20.46

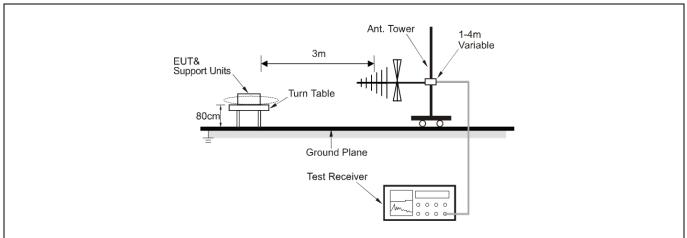
45.78


70.42 -24.64

QP

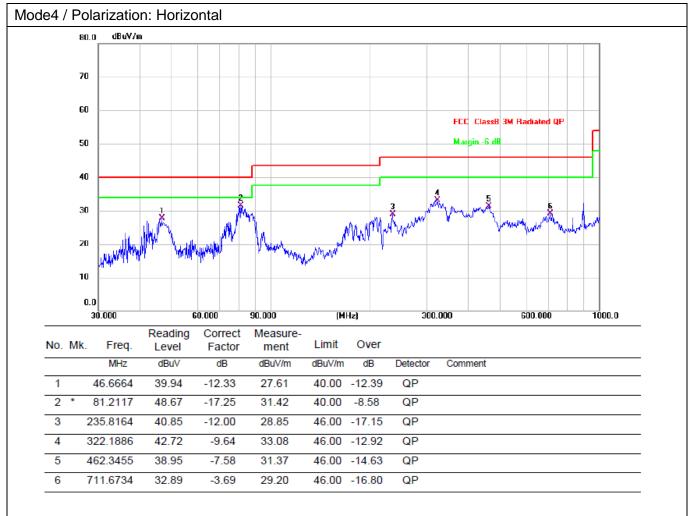

Page 23 of 30

Mode3 / Polarization: Coaxial dBu¥/m 130.0 120 110 100 90 80 FCC 15C Radiation Below 1GHz_Peak 70 튷 60 50 10 40 MMAL 30 Adentificans MANAN 20 a how have a stranger of the second s 10 0 -10 -20 0.150 0.500 0.800 (MHz) 5.000 30.000 Correct Reading Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 78.34 1 0.1500 58.07 20.27 124.10 -45.76 peak 2 0.1500 56.26 20.27 76.53 104.10 -27.57 AVG 3 0.2971 38.34 20.31 58.65 118.15 -59.50 peak 4 0.2971 35.37 20.31 55.68 98.15 -42.47 AVG 5 0.3234 47.46 20.32 67.78 117.42 -49.64 peak 0.3234 45.13 20.32 65.45 97.42 -31.97 6 AVG 7 0.4351 35.22 20.35 55.57 114.83 -59.26 peak 0.4351 20.35 94.83 -41.22 8 33.26 53.61 AVG 20.41 9 0.5979 29.39 49.80 72.08 -22.28 QP

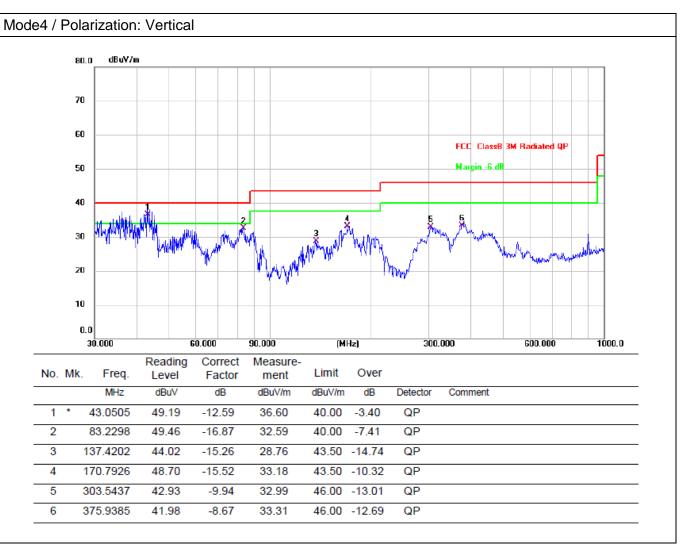

6.4 Emissions in frequency bands (30MHz - 1GHz)

Test Requirement:	47 CFR Part 15.209							
Test Limit:	Frequency (MHz)	Field strength	Measuremen					
		(microvolts/meter)	t distance					
			(meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
Test Method:	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a)and (b)of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b)of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth. 							
Procedure:	ANSI C63.10-2013 section	on 6.5						

6.4.1 E.U.T. Operation:


Operating Environment:								
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa		
Pre test mode:		Mode	Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode11, Mode12, Mode13, Mode14, Mode15, Mode16, Mode17, Mode18, Mode19, Mode20					
			I of the listed pre-test mode were tested, only the data of the worst mode lode4) is recorded in the report					

6.4.2 Test Setup Diagram:



6.4.3 Test Data:

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----