

TEST REPORT

Report No.:	BCTC2204632804-2E
Applicant:	L FORWARD INC.
Product Name:	10.1 inch tablet PC
Model/Type Ref.:	SGIN_C10/SGIN_E10P
Tested Date:	2022-04-11 to 2022-05-12
Issued Date:	2022-05-12
She	enzhen Edition: A.4

FCC ID:2A3YZSGIN-C10

Product Name:	10.1 inch tablet PC
Trademark:	N/A
Model/Type Ref.:	SGIN_C10/SGIN_E10P M1041A
Prepared For:	L FORWARD INC.
Address:	1908 Thomes Ave Cheyenne, Laramie, WY 82001, US
Manufacturer:	Shenzhen NST Industry and Trade Co.,Ltd.
Address:	3/F, Bldg 1, Hongbang Technology Park, No.30 Cuibao Road, Baolong Street, Longgang District, Shenzhen, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2022-04-11
Sample tested Date:	2022-04-11 to 2022-05-12
Issue Date:	2022-05-12
Report No.:	BCTC2204632804-2E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is Bluetooth BLE radio test report.

Tested by:

Jeff.Fu/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

	Test Report Declaration	Page
1.	Version	5
2.	Test Summary	
3.	Measurement Uncertainty	
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	
4.4	Channel List	10
4.5	Test Mode	10
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	11
5.2	Test Instrument Used	11
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	13
6.2	Limit	13
6.3	Test Procedure	
6.4	EUT Operating Conditions	14
6.5	Test Result	
7.	Radiated Emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test Procedure	the second s
7.4	EUT Operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of C	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3 8.4	Test Procedure EUT operating Conditions	20 26
0.4 8.5	Test Result	∠0 27
o.5 9.	Power Spectral Density Test	
9. 9.1	Plack Diagram Of Tast Satur	20 29
9.1	Power Spectral Density Test Block Diagram Of Test Setup Limit Test Procedure	20 28
9.2 9.3	Lillin Test Procedure	
9.4	FUT Operating Conditions	28
9.5	EUT Operating Conditions Test Result	20
10.	Bandwidth Test Block Diagram Of Test Setup Limit	23 31
10.1	Block Diagram Of Test Setup	31
10.2	P Limit	31
10.3	3 Test Procedure	31
10.4		31
10.5	5 Test Result	32
11.		34
SCIC/	RF-EMC-005 Page: 3 of 46 Edit	on: A.4

11.1 Block Diagram Of Test Setup	34
11.2 Limit	
11.3 Test Procedure	34
11.4 EUT Operating Conditions	34
11.5 Test Result	35
12. 100 KHz Bandwidth Of Frequency Band Edge	36
12.1 Block Diagram Of Test Setup	36
12.2 Limit	36
12.3 Test Procedure	36
12.4 EUT Operating Conditions	36
12.5 Test Result	37
13. Antenna Requirement	42
13.1 Limit	42
13.2 Test Result	42
14. EUT Photographs	43
15. EUT Test Setup Photographs	44

(Note: N/A Means Not Applicable)

Page: 4 of 46

1. Version

Report No.	Issue Date	Description	Approved
BCTC2204632804-2E	2022-05-12	Original	Valid

Edition: A.4

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d), 15.205	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247(d)	PASS
8	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
2	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission(150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59℃

4. Product Information And Test Setup

4.1 Product Information

Model/Type Ref.:	SGIN_C10/SGIN_E10P M1041A
Model differences:	All the model are the same circuit and RF module, except model names.
Bluetooth Version:	5.0
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK
Number Of Channel	40CH
Antenna installation:	FPCB antenna
Antenna Gain:	0 dBi
Ratings:	DC 5V From adapter, DC 3.7V From Battery
Adapter:	Manufacture: MANUFACTRURER SHENZHEN JUKE ELECTRONIES CO., LTD Model No.: JK050200-S86USU Input: AC100-240V 50/60Hz 0.5A Output:DC 5V 2A

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	10.1 inch tablet PC	N/A	SGIN_C10/SGIN_E10P	N/A	EUT
E-2	Adapter	JUKE	JK050200-S86USU	N/A	EUT
				توغية فيترجع بالمعصور فلتعصف فتعصف والمعصور	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

	Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2402	11	2422	21	2442
02	2404	12	2424	22	2444
03	2406	13	2426	23	2446
~	~	~	~	~	~
09	2418	19	2438	39	2478
10	2420	20	2440	40	2480

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type	
Mode 1	CH01		
Mode 2	CH20	GFSK	
Mode 3	CH40		
Mode 4	Charging (Conducted emission)		
Mode 5	Link mode (Radiated emission)		

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version		BT RF-Test tool
Frequency	2402 MHz	2440 MHz 2480 MHz
Parameters	DEF	DEF

Page:

			· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	*

				*
			1971 - 1971 - 1971	
			the second second	
			1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	
			1	
	and the second			
and the second				
				(たいどう) たいもうもう
	1. S.			ノート ノート・ト・トート
	·			
		1		
				* 7 * 7 7 1 1
				and the second second
	10 A A A A A A A A A A A A A A A A A A A		1 1 1	and the second second
			4 1 1 1 1 1 1	(注) キーオー・・・・・
				2 - E - E - E - E
			· ·	
			2	
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		·		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	1			
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				· · · · · ·
		- A - A - A - A - A - A - A - A - A - A		
			2	1
10 -1 //			E al M	i dia 1 At 1
111 OT 46			- C 1 F1	
10 of 46			- LUN	ion: A.4
			- 1 - L -	
	1			

5. Test Facility And Test Instrument Used

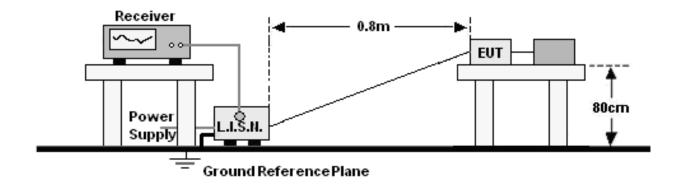
5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Conducted emissions Test								
Equipment	Manufacturer Model# Serial# Last Cal. Nex							
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022			
LISN	R&S	ENV216	101375	May 28, 2021	May 27, 2022			
Software	Frad	EZ-EMC	EMC-CON 3A1	/	/			
Attenuator	1	10dB DC-6GHz	1650	May 28, 2021	May 27, 2022			

RF Conducted Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Power Metter	Keysight	E4419	/	May 28, 2021	May 27, 2022		
Power Sensor (AV)	Keysight	E9300A	/	May 28, 2021	May 27, 2022		
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 28, 2021	May 27, 2022		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40		May 28, 2021	May 27, 2022		



Radiated emissions Test (966 chamber)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023		
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022		
Receiver	R&S	ESRP	101154	May 28, 2021	May 27, 2022		
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 28, 2021	May 27, 2022		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 28, 2021	May 27, 2022		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	Jun. 01, 2021	May 31, 2022		
Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 02, 2021	Jun. 01, 2022		
Horn Antenn(18GHz -40GHz)	Schwarzbeck	BBHA9170	00822	Jun. 15, 2021	Jun. 14, 2022		
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 28, 2021	May 27, 2022		
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	Jun. 02, 2021	Jun. 01, 2022		
RF cables1(9kHz- 30MHz)	Huber+Suhnar	9kHz-30MHz	B1702988-00 08	May 28, 2021	May 27, 2022		
RF cables2(30MH z-1GHz)	Huber+Suhnar	30MHz-1GH z	1486150	May 28, 2021	May 27, 2022		
RF cables3(1GHz- 40GHz)	Huber+Suhnar	1GHz-40GHz	1607106	May 28, 2021	May 27, 2022		
Power Metter	Keysight	E4419	/	May 28, 2021	May 27, 2022		
Power Sensor (AV)	Keysight	E9300A	I and	May 28, 2021	May 27, 2022		
Signal Analyzer20kHz -26.5GHz	Keysight	N9020A	MY49100060	May 28, 2021	May 27, 2022		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40		May 28, 2021	May 27, 2022		
Software	Frad	EZ-EMC	FA-03A2 RE	<u> </u>	1		

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

FREQUENCY (MHz)	Limit (dBuV)		
FREQUENCE (MHZ)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	
Nadaas			

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test Procedure

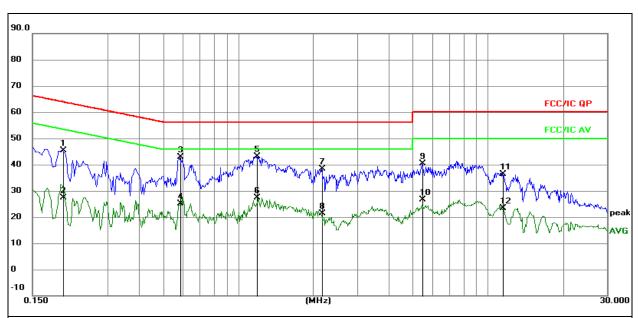
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 EUT Operating Conditions

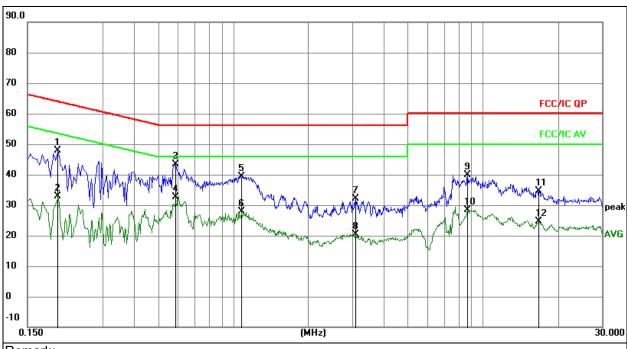

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Line
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.
- 3. Measurement=Reading Level+ Correct Factor
- 4. Over=Measurement-Limit


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1995	25.76	19.60	45.36	63.63	-18.27	QP
2		0.1995	7.88	19.60	27.48	53.63	-26.15	AVG
3		0.5864	23.38	19.61	42.99	56.00	-13.01	QP
4		0.5864	5.54	19.61	25.15	46.00	-20.85	AVG
5	*	1.1894	23.61	19.62	43.23	56.00	-12.77	QP
6		1.1894	7.73	19.62	27.35	46.00	-18.65	AVG
7		2.1614	18.68	19.62	38.30	56.00	-17.70	QP
8		2.1614	1.77	19.62	21.39	46.00	-24.61	AVG
9		5.4555	20.58	19.71	40.29	60.00	-19.71	QP
10		5.4555	6.83	19.71	26.54	50.00	-23.46	AVG
11		11.4584	16.51	19.78	36.29	60.00	-23.71	QP
12		11.4584	3.69	19.78	23.47	50.00	-26.53	AVG

No.: BCTC/RF-EMC-005

Page: 15 of 46

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Neutral
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

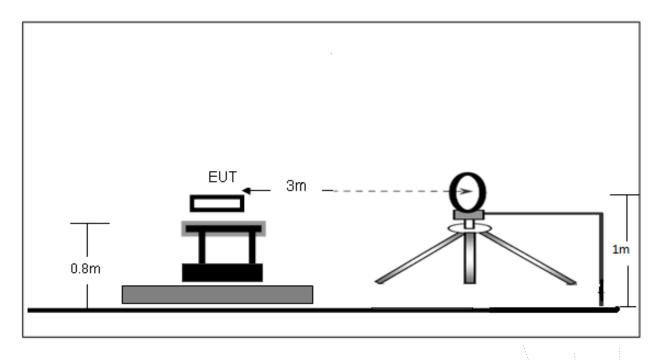
Remark:

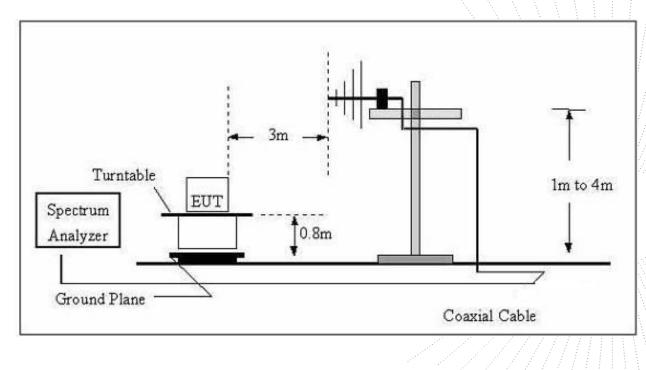
All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.
Measurement=Reading Level+ Correct Factor

4. Over=Measurement-Limit

No. M	1k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1986	28.40	19.60	48.00	63.67	-15.67	QP
2	0.1986	13.20	19.60	32.80	53.67	-20.87	AVG
3 *	0.5885	23.73	19.61	43.34	56.00	-12.66	QP
4	0.5885	13.06	19.61	32.67	46.00	-13.33	AVG
5	1.0710	19.82	19.62	39.44	56.00	-16.56	QP
6	1.0710	8.24	19.62	27.86	46.00	-18.14	AVG
7	3.0901	12.56	19.65	32.21	56.00	-23.79	QP
8	3.0901	0.69	19.65	20.34	46.00	-25.66	AVG
9	8.6832	20.06	19.76	39.82	60.00	-20.18	QP
10	8.6832	8.59	19.76	28.35	50.00	-21.65	AVG
11	16.7497	14.90	19.76	34.66	60.00	-25.34	QP
12	16.7497	4.99	19.76	24.75	50.00	-25.25	AVG

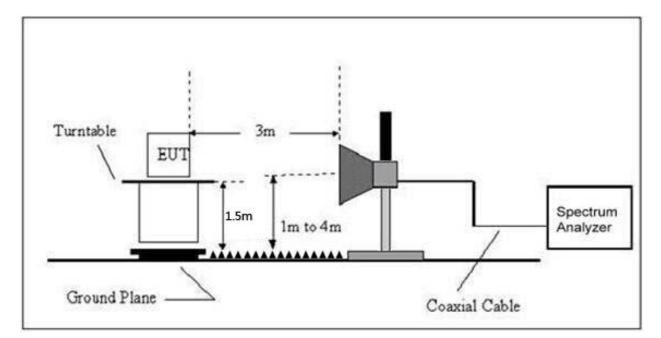
No.: BCTC/RF-EMC-005


Page: 16 of 46


7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3		20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Edition: A.4

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)		
(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

7.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

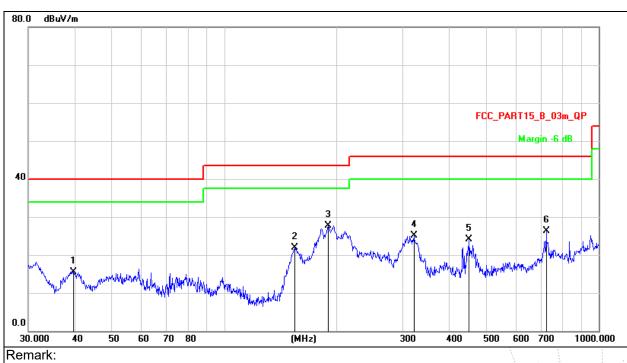
7.5 Test Result

Below 30MHz

Temperature:	26° ℃	Relative Humidity:	24%
Pressure:	101 kPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 2	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz – 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 5	Remark:	N/A

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
Measurement=Reading Level+ Correct Factor
Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		39.5757	31.09	-15.49	15.60	40.00	-24.40	QP
2	15	54.2786	41.14	-19.23	21.91	43.50	-21.59	QP
3	* 18	39.7385	44.57	-16.96	27.61	43.50	-15.89	QP
4	32	21.0608	38.08	-13.02	25.06	46.00	-20.94	QP
5	45	51.1350	34.08	-9.95	24.13	46.00	-21.87	QP
6	72	24.2611	31.05	-4.75	26.30	46.00	-19.70	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 5	Remark:	N/A

Remark:

1.Factor = Antenna Factor + Cable Loss – Pre-amplifier.
2. Measurement=Reading Level+ Correct Factor

3. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	30.0000	53.84	-17.28	36.56	40.00	-3.44	QP
2		38.2120	42.91	-15.74	27.17	40.00	-12.83	QP
3		58.8185	38.60	-15.78	22.82	40.00	-17.18	QP
4		103.0800	41.22	-16.48	24.74	43.50	-18.76	QP
5		196.5098	45.77	-16.52	29.25	43.50	-14.25	QP
6	!	578.6699	27.92	-7.01	20.91	46.00	-25.09	QP
-								

Between 1GHz – 25GHz

GFSK							
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
	Low channel						
V	4804.00	52.32	-0.43	51.89	74.00	-22.11	PK
V	4804.00	41.74	-0.43	41.31	54.00	-12.69	AV
V	7206.00	45.25	8.31	53.56	74.00	-20.44	PK
V	7206.00	36.14	8.31	44.45	54.00	-9.55	AV
Н	4804.00	47.36	-0.43	46.93	74.00	-27.07	PK
Н	4804.00	37.07	-0.43	36.64	54.00	-17.36	AV
Н	7206.00	42.46	8.31	50.77	74.00	-23.23	PK
Н	7206.00	35.12	8.31	43.43	54.00	-10.57	AV
	•	•	Middle char	nnel	•		-
V	4880.00	50.49	-0.38	50.11	74.00	-23.89	PK
V	4880.00	43.71	-0.38	43.33	54.00	-10.67	AV
V	7320.00	41.29	8.83	50.12	74.00	-23.88	PK
V	7320.00	32.31	8.83	41.14	54.00	-12.86	AV
Н	4880.00	47.43	-0.38	47.05	74.00	-26.95	PK
Н	4880.00	38.37	-0.38	37.99	54.00	-16.01	AV
Н	7320.00	39.27	8.83	48.10	74.00	-25.90	PK
Н	7320.00	31.36	8.83	40.19	54.00	-13.81	AV
			High chan	nel	-		
V	4960.00	51.65	-0.32	51.33	74.00	-22.67	PK
V	4960.00	42.24	-0.32	41.92	54.00	-12.08	AV
V	7440.00	43.01	9.35	52.36	74.00	-21.64	PK
V	7440.00	33.02	9.35	42.37	54.00	-11.63	AV
Н	4960.00	50.20	-0.32	49.88	74.00	-24.12	PK
Н	4960.00	39.41	-0.32	39.09	54.00	-14.91	AV
Н	7440.00	41.89	9.35	51.24	74.00	-22.76	PK
Н	7440.00	33.81	9.35	43.16	54.00	-10.84	AV

Remark:

1.Emission Level = Meter Reading + Factor,

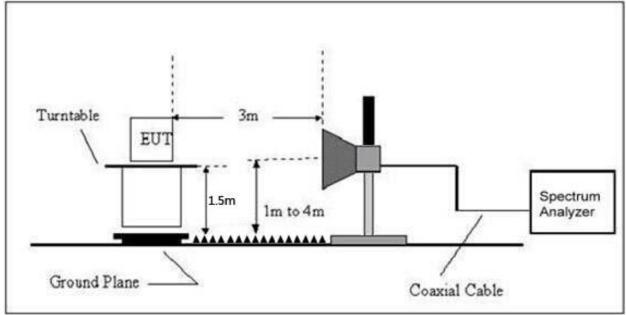
Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible

value has no need to be reported.


5. This report only shows the worst case test data.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)		
(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar	Frequency	Reading	Correct Factor	Measure- ment (dBuV/m)	Lim (dBu		Result
	(H/V)	(MHz)	Level (dBuV/m)	(dB)	РК	□PK	AV	
			Lov	v Channel 24	402MHz			
	Н	2390.00	53.39	-6.70	46.69	74.00	54.00	PASS
	Н	2400.00	56.62	-6.71	49.91	74.00	54.00	PASS
	V	2390.00	53.10	-6.70	46.40	74.00	54.00	PASS
GFSK	V	2400.00	56.73	-6.71	50.02	74.00	54.00	PASS
GFSK			Hig	h Channel 2	480MHz			
	Н	2483.50	57.26	-6.79	50.47	74.00	54.00	PASS
	Н	2500.00	50.41	-6.81	43.60	74.00	54.00	PASS
	V	2483.50	56.37	-6.79	49.58	74.00	54.00	PASS
	V	2500.00	51.49	-6.81	44.68	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5. This report only shows the worst case test data.

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

9.3 Test Procedure

1. Set analyzer center frequency to DTS channel center frequency.

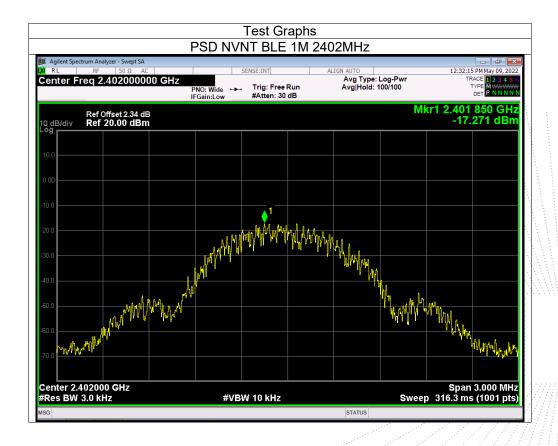
2. Set the span to 1.5 times the DTS bandwidth.

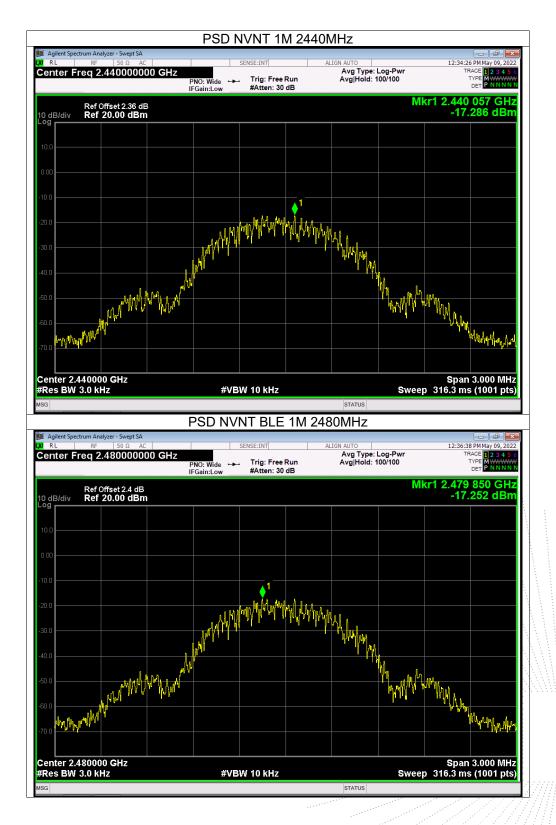
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

9. Use the peak marker function to determine the maximum amplitude level within the RBW.

10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.4 EUT Operating Conditions


The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss


9.5 Test Result

	Frequency	Power Spectral	Limit	Result
Test Mode :	GFSK	Test Voltage :	DC 3.7V	
Temperature :	26 ℃	Relative Humidity :	54%	

	Frequency	Density(dBm/3kHz)	(dBm/3kHz)	Result
	2402 MHz	-17.27	8	PASS
GFSK	2440 MHz	-17.29	8	PASS
	2480 MHz	-17.25	8	PASS

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

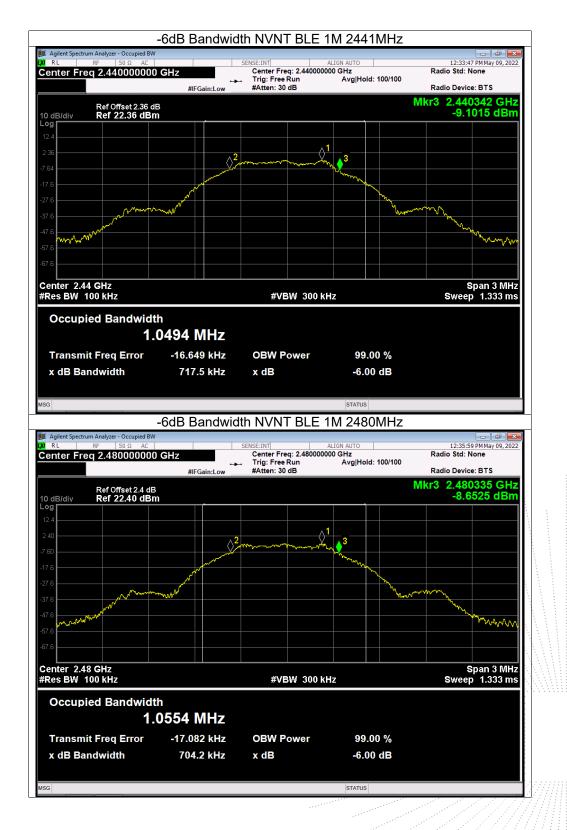
10.3 Test Procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss


10.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

	Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
	2402	0.728	500	Pass
GFSK	2440	0.717	500	Pass
	2480	0.704	500	Pass

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 34 of 46

11.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

	Frequency	Maximum Conducted Output Power(PK)	Conducted Output Power Limit
	(MHz)	(dBm)	dBm
	2402	-1.33	30
GFSK	2440	-1.34	30
	2480	-1.38	30

12. 100 KHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

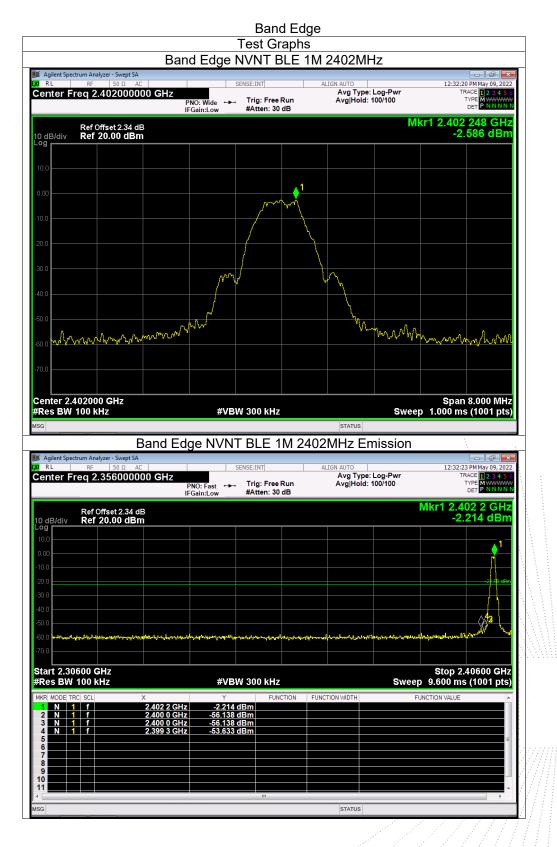
12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

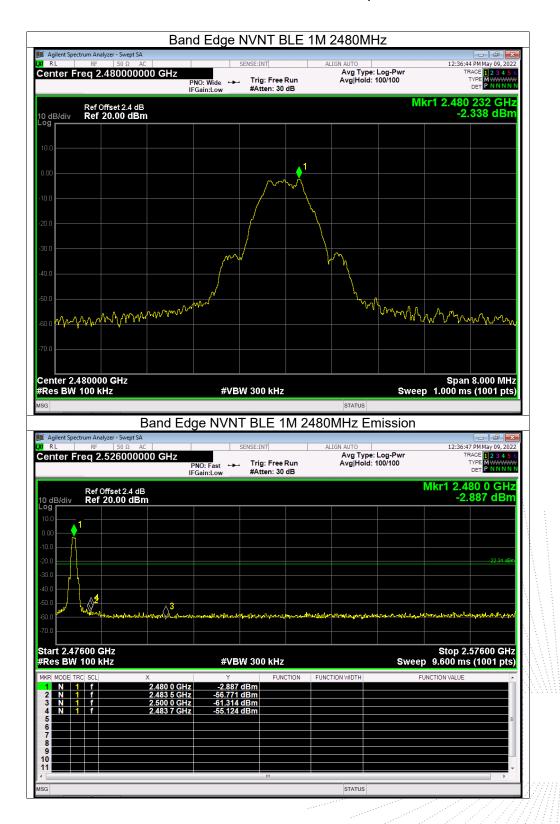
12.3 Test Procedure

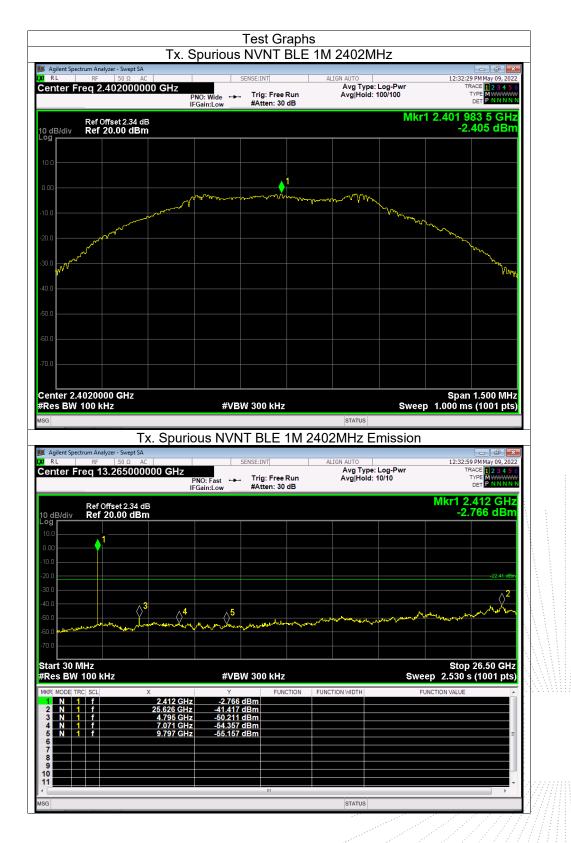
Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..


12.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss


Page: 36 of 46


12.5 Test Result

Agilent Spectrum Analyzer - Swept S				E 1M 2440M		
RL RF 50 Ω enter Freq 2.440000		SE	NSE:INT	ALIGN AUTO Avg Type:	Log-Pwr	12:34:31 PM May 09, 2022 TRACE 1 2 3 4 5 6
1109 21440000	PI	NO:Wide ↔ → Gain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:		TYPE MWWWW DET P NNNN
		Galliteow	in the total		Mkr1	2.439 979 0 GHz
Ref Offset 2.36 dB/div Ref 20.00 dE						-2.406 dBm
dB/div Ref 20.00 dE						
.0						
.0						
			•1			
		mon	m	mund have been been been been been been been be	h	
.0	m				" " "	
.0					1	
··· · · · · · · · · · · · · · · · · ·						and how
.0						
V						Star Star
.0						
.0						
.0						
.0						
nter 2.4400000 GHz		· · · ·				Span 1.500 MHz
es BW 100 kHz		#VBV	/ 300 kHz		Sweep	1.000 ms (1001 pts)
				STATUS		
-	Tx. Spurio	us NVN	T BLE 1M	2440MHz E	mission	
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω	AC AC		NSE:INT	ALIGN AUTO		12:35:01 PM May 09, 2022
	0000 GHz		Trig: Free Run	Avg Type: Avg Hold:	Log-Pwr	TRACE 1 2 3 4 5 6
nter Freq 13.26500						
enter Freq 13.26500		NO: Fast ↔→→ Gain:Low	#Atten: 30 dB	-		
	IF		#Atten: 30 dB			Mkr1 2.439 GHz
Ref Offset 2.36 dB/div Ref 20.00 dE	dB		#Atten: 30 dB			
Ref Offset 2.36 dB/div Ref 20.00 dE	dB		#Atten: 30 dB			Mkr1 2.439 GHz
Ref Offset 2.36	dB		#Atten: 30 dB			Mkr1 2.439 GHz
Ref Offset 2.36 dB/div Ref 20.00 dE	dB		#Atten: 30 dB			Mkr1 2.439 GHz
Ref Offset 2.36 dB/div Ref 20.00 dE	dB		#Atten: 30 dB			Mkr1 2.439 GHz
Ref Offset 2.36 dB/div Ref 20.00 dE	dB		#Atten: 30 dB			Mkr1 2.439 GHz
Ref Offset 2.36 dB/div Ref 20.00 dE	dB	Gain:Low	#Atten: 30 dB			Mkr1 2.439 GHz
Ref Offset 2.36 dB/div Ref 20.00 dE	dB		#Atten: 30 dB			Mkr1 2.439 GHz
Ref Offset 2.36 dB/div Ref 20.00 dE 1 0 0 0 0 0 0 0 0 0 0 0 0 0	dB	Gain:Low	#Atten: 30 dB			Mkr1 2.439 GHz
	dB	Gain:Low	#Atten: 30 dB			Mkr1 2.439 GHz
Ref Offset 2.36 dB/div Ref 20.00 dE 1 1 1 1 1 1 1 1 1 1 1 1 1	dB	Gain:Low	#Atten: 30 dB			Mkr1 2.439 GHz -2.877 dBm
Ref Offset 2.36 dB/div Ref 20.00 dE art 30 MHz	dB	Gain:Low	#Atten: 30 dB			Mkr1 2.439 GHz -2.877 dBm
Ref Offset 2.36 Ref 20.00 dE 1 1 1 1 1 1 1 1 1 1 1 1 1	IF₁ dB 3m 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Gain:Low	/ 300 kHz	FUNCTION WIDTH	Sweep	Mkr1 2.439 GHz -2.877 dBm
Ref Offset 2.36 Ref 20.00 dE 1 1 1 1 1 1 1 1 1 1 1 1 1	IF: dB 3m ↓ 4 ↓ 2.439 GHz 2.439 GHz	Gain:Low	/ 300 kHz Bm	مرد میرو سال می اور می اور میرو اور می اور میرو اور	Sweep	Mkr1 2.439 GHz -2.877 dBm
Ref Offset 2.36 Ref 20.00 dE 9 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0	IF: dB 3m 4 2.439 GHz 2.439 GHz 2.5.600 GHz 4.874 GHz 7.150 GHz	Gain:Low 5 	/ 300 kHz FUNCTION Bm Bm Bm Bm	مرد میرو سال می اور می اور میرو اور می اور میرو اور	Sweep	Mkr1 2.439 GHz -2.877 dBm
Ref Offset 2.36 dB/div Ref 20.00 dE 9 0 0 0 0 0 0 0 0 0 0 0 0 0	IF dB 3m 3m 3m 3m 4 3 4 4 5.600 GHz 25.600 GHz 25.600 GHz 4.874 GHz	Gain:Low 5 5 #VBM -2.877 d -51.271 d	/ 300 kHz FUNCTION Bm Bm Bm Bm	مرد میرو سال می اور می اور میرو اور می اور میرو اور	Sweep	Mkr1 2.439 GHz -2.877 dBm
Ref Offset 2.36 dB/div Ref 20.00 dE 1 1 1 1 1 1 1 1 1 1 1 1 1	IF: dB 3m 4 2.439 GHz 2.439 GHz 2.5.600 GHz 4.874 GHz 7.150 GHz	Gain:Low 5 	/ 300 kHz FUNCTION Bm Bm Bm Bm	مرد میرو سال می اور می اور میرو اور می اور میرو اور	Sweep	Mkr1 2.439 GHz -2.877 dBm
Ref Offset 2.36 Ref 20.00 dE 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0	IF: dB 3m 4 2.439 GHz 2.439 GHz 2.5.600 GHz 4.874 GHz 7.150 GHz	Gain:Low 5 	/ 300 kHz FUNCTION Bm Bm Bm Bm	مرد میرو سال می اور می اور میرو اور می اور میرو اور	Sweep	Mkr1 2.439 GHz -2.877 dBm
Ref Offset 2.36 dB/div Ref 20.00 dE 1 0 0 0 0 0 0 0 0 0 0 0 0 0	IF: dB 3m 4 2.439 GHz 2.439 GHz 2.5.600 GHz 4.874 GHz 7.150 GHz	Gain:Low 5 	/ 300 kHz FUNCTION Bm Bm Bm Bm	مرد میرو سال می اور می اور میرو اور می اور میرو اور	Sweep	Mkr1 2.439 GHz -2.877 dBm

Agilent Spectrum Analyzer - Swept SA							
RL RF 50Ω A enter Freq 2.4800000	000 GHz		Free Run	ALIGN AUTO Avg Type: Avg Hold: 1		12:36:53 PM May 09 TRACE 1 2 3 TYPE M WW DET P N N	4 5 6
		in:Low #Atte	en: 30 dB		Miced	2.480 231 0 G	
Ref Offset 2.4 dE dB/div Ref 20.00 dBr					WIKT	-2.443 d	
dB/div Ref 20.00 dBr							
0.0							
				4			
		10.00	- 000-0				_
).0	www.www.		a to a construction	more how	hand		
- Wromen	n.				www.	my -	
).0							
and the second sec						m	
M						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\mathcal{V}_{\mathcal{V}}$
.0							
).0							
enter 2.4800000 GHz Res BW 100 kHz		#VBW 300	kW7		Sween	Span 1.500 M 1.000 ms (1001	VIHz
					Uncep	1.000 1110 (1001	p,
				STATUS			
Т	x Spuriou	IS NVNT BI	F 1M 24		mission		
Agilent Spectrum Analyzer - Swept SA		IS NVNT BL		480MHz Ei	mission		
Agilent Spectrum Analyzer - Swept SA R L RF 50 Ω A	AC	SENSE:INT		480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3	, 2022 4 5 6
Agilent Spectrum Analyzer - Swept SA R L RF 50 Ω A	AC DOOO GHz PNC	SENSE:INT		480MHz Et	Log-Pwr	12:37:22 PM May 09	, 2022 4 5 6
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω A Senter Freq 13.265000	AC DOOOO GHZ PNC IFGa	SENSE:INT	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF S0Ω A enter Freq 13.265000 Ref Offset 2.4 dE α dB/div Ref 20.00 dB/	DOOOO GHz PNC IFGa	SENSE:INT	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P N N	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF S0Ω A enter Freq 13.265000 Ref Offset 2.4 dE Ref 20.00 dBr 29	DOOOO GHz PNC IFGa	SENSE:INT	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF S0Ω A enter Freq 13.265000 Ref Offset 2.4 dE dB/div Ref 20.00 dBr 9 0.0 ↓ 1	DOOOO GHz PNC IFGa	SENSE:INT	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF 50.0 A enter Freq 13.265000 Ref Offset 2.4 df P dB/div Ref 20.00 dBr 1 0 0 0 0 0 0 0 0 0 0 0 0 0	DOOOO GHz PNC IFGa	SENSE:INT	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF 50.0 A enter Freq 13.265000 Ref Offset2.4 dB dB/div Ref 20.00 dBr 1 0 0 0 0 0 0 0 0 0 0 0 0 0	DOOOO GHz PNC IFGa	SENSE:INT	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF 50.0 A enter Freq 13.265000 Ref Offset2.4 dB dB/div Ref 20.00 dBr 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0	DOOOO GHz PNC IFGa	SENSE:INT	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF 50.0 A enter Freq 13.265000 Ref Offset 2.4 dB dB/div Ref 20.00 dBr 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	DOOOO GHz PNC IFGa	SENSE:INT	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF 50.0 A enter Freq 13.265000 Ref Offset 2.4 dB dB/div Ref 20.00 dBr 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0	DOOOO GHz PNC IFGa	SENSE:INT D: Fast →→ Trig: in:Low #Atte	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF 50.0 A enter Freq 13.265000 Ref Offset 2.4 dB 00 00 00 00 00 00 00 00 00 0	DOOOO GHz PNC IFGa	SENSE:INT D: Fast →→ Trig: in:Low #Atte	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 N N N
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω A enter Freq 13.2650000 Ref Offset 2.4 dE dB/div Ref 20.00 dBr 00 01 01 02 02 03 04 04 04 04 04 04 04 04 04 04	DOOOO GHz PNC IFGa	SENSE:INT D: Fast →→ Trig: in:Low #Atte	Free Run	480MHz Et Align Auto Avg Type: 1	Log-Pwr	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN Mkr1 2.492 G -2.643 dl	, 2022 4 5 6 WWWW N N N HZ Bm 4 dBm
Agilent Spectrum Analyzer - Swept SA RL RF 50.0 A enter Freq 13.265000 dB/div Ref 20.00 dBr 00 00 00 00 00 00 00 00 00 0	DOOOO GHz PNC IFGa	SENSE:INT D: Fast →→ Trig: in:Low #Atte	Free Run n: 30 dB	480MHz Et Align Auto Avg Type: 1	Log-Pwr 0/10	12:37:22 PM May 09 TRACE 1 2 3 TYPE MWW DET P NN	, 2022 4 5 6 4 5 6 4 0 1 1 1 2 3 1 2 2 2 2 2 2 2 2 3 1 2 3 1 2 3 1 2
Agilent Spectrum Analyzer - Swept SA RL RF 50.0 A enter Freq 13.265000 Ref Offset 2.4 dE rdB/div Ref 20.00 dBr 9 0 0 0 0 0 0 0 0 0 0 0 0 0	XC PNC PNC IFGa B m 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT D: Fast Trig: in:Low #Atte	Free Run n: 30 dB	480MHz Et Align Auto Avg Type: 1	Log-Pwr 0/10	12:37:22 PM May 09 TRACE 1 2 3 TYPE MW DET P NN Mkr1 2.492 G -2.643 dl	, 2022 4 5 6 4 5 6 4 0 1 1 1 2 3 1 2 2 2 2 2 2 2 2 3 1 2 3 1 2 3 1 2
Agilent Spectrum Analyzer - Swept SA RL RF 50.0. A enter Freq 13.2650000 Ref Offset 2.4 dE Ref 20.00 dBJ 00 00 00 00 00 00 00 00 00 0	2.492 GHz 25.626 GHz	SENSE:INT SEast Trig: in:Low #Atte #VBW 300 -2.643 dBm -1.374 dBm	Free Run n: 30 dB	480MHz Er	Log-Pwr 0/10	12:37:22 PM May 09 TRACE 1 2 3 TYPE MW DET P NN Mkr1 2.492 G -2.643 dl -22 4 -22 4 -22 4 -22 4 -22 4 -22 4 -22 5 -23 0 5 (1001)	, 2022 4 5 6 4 5 6 4 0 1 1 1 2 3 1 2 2 2 2 2 2 2 2 3 1 2 3 1 2 3 1 2
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω A enter Freq 13.2650000 Ref Offset 2.4 dE dB/div Ref 20.00 dBr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X D0000 GHz PNC FGa B m 2492 GHz 25.626 GHz 4.953 GHz 4.953 GHz	SENSE:INT :Fast + Trig: in:Low #Atte #VBW 3000 Y -2.643 dBm -41.374 dBm -48.701 dBm	Free Run n: 30 dB	480MHz Er	Log-Pwr 0/10	12:37:22 PM May 09 TRACE 1 2 3 TYPE MW DET P NN Mkr1 2.492 G -2.643 dl -22 4 -22 4 -22 4 -22 4 -22 4 -22 4 -22 5 -23 0 5 (1001)	, 2022 4 5 6 NN N HZ Bm 4 400 2 3 Hz SHz SHz (SHz)
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω A enter Freq 13.2650000 Ref Offset 2.4 dE Ref Offset 2.4 dE Ref 20.00 dBr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.492 GHz 25.626 GHz 4.953 GHz	SENSE:INT D: Fast →→ Trig: in:Low → #Atte #VBW 300 Y -2.643 dBm -41.71 4Bm -41.71 dBm	Free Run n: 30 dB	480MHz Er	Log-Pwr 0/10	12:37:22 PM May 09 TRACE 1 2 3 TYPE MW DET P NN Mkr1 2.492 G -2.643 dl -22 4 -22 4 -22 4 -22 4 -22 4 -22 4 -22 5 -23 0 5 (1001)	, 2022 4 5 6 4 5 6 4 0 1 1 1 2 3 1 2 2 2 2 2 2 2 2 3 1 2 3 1 2 3 1 2
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω A enter Freq 13.2650000 Ref Offset 2.4 dE Ref Offset 2.4 dE Ref 20.00 dB/ 0 dB/div Ref 20.00 dB 0 dB/div	X D0000 GHz PNC FGa B m 2492 GHz 25.626 GHz 4.953 GHz 4.953 GHz	SENSE:INT :Fast + Trig: in:Low #Atte #VBW 3000 Y -2.643 dBm -41.374 dBm -48.701 dBm	Free Run n: 30 dB	480MHz Er	Log-Pwr 0/10	12:37:22 PM May 09 TRACE 1 2 3 TYPE MW DET P NN Mkr1 2.492 G -2.643 dl -22 4 -22 4 -22 4 -22 4 -22 4 -22 4 -22 5 -23 0 5 (1001)	, 2022 4 5 6 NN N HZ Bm 4 400 2 3 Hz SHz SHz (SHz)
Agilent Spectrum Analyzer - Swept SA RL RF 50.0. A enter Freq 13.2650000 Ref Offset 2.4 dE dB/div Ref 20.00 dBr 000 000 000 000 000 000 000 0	X D0000 GHz PNC FGa B m 2492 GHz 25.626 GHz 4.953 GHz 4.953 GHz	SENSE:INT :Fast + Trig: in:Low #Atte #VBW 3000 Y -2.643 dBm -41.374 dBm -48.701 dBm	Free Run n: 30 dB	480MHz Er	Log-Pwr 0/10	12:37:22 PM May 09 TRACE 1 2 3 TYPE MW DET P NN Mkr1 2.492 G -2.643 dl -22 4 -22 4 -22 4 -22 4 -22 4 -22 4 -22 5 -23 0 5 (1001)	, 2022 4 5 6 NN N HZ Bm 4 400 2 3 Hz SHz SHz (SHz)

13. Antenna Requirement

13.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

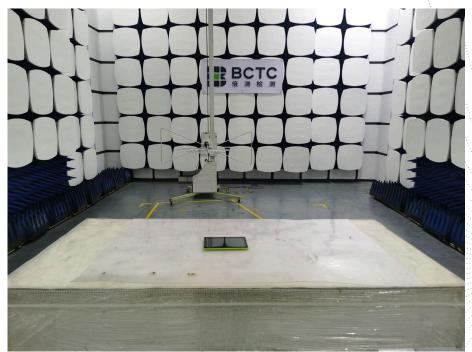
13.2 Test Result

The EUT antenna is FPCB antenna, Antenna Gain is 0dBi, fulfill the requirement of this section.

14. EUT Photographs

EUT Photo 1

EUT Photo 2



15. EUT Test Setup Photographs

Conducted Measurement Photo

Radiated Measurement Photos

No.: BCTC/RF-EMC-005

Page: 45 of 46

Edition: A.4

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6.The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

******** END *******

No.: BCTC/RF-EMC-005

Page: 46 of 46