

Report No.: 18220WC30176101 Page 1 of 82

SAR Test Report

Client Name : Keefe Group

Address : 10880 Linpage PI, St. Louis, MO 63132, United States

Product Name : SCORE Tablets

FCC ID : 2A3XN-SCORE810

Date : Aug. 31, 2023

Report No.: 18220WC30176101

Page 2 of 82

Contents

1. 8	State	ement of Compliance	ote ^k pol	oor p	<u></u>	Kipo _{ter}	6
2. (Gene	eral Information			Par		
2	2. 1pm	Client Information					
otek 2	2. 2	Description of Equipment Under Test (EUT)	Pr. Makel	nobot	Ant	7
2	2. 3	Device Category and SAR Limits	hupo _{te} .	Anv	,	otek l	8
200	2. 4	Applied Standard	k khote	k Anbo		-watek	3
202	2. 5	Environment of Test Site		otek M	porc	bu. Glok	8
2	2.6	Test Configuration	O. Div.	Love/-	Popoler.	Anb	8
3. 8	Spec	Test Configuration	nboter 1	Yun Yek	ubotek	Anboy	<u>C</u>
	3. 1	Introduction		And		¹ / ₂	9
	3. 2	SAR Definition	- Dotek	Anbore	P. D		,mo ^{tel} 9
4. 5	SAR	Measurement System		k			10
	1. 1	E-Field Probe	Vien		potek	Hupo.	11
4	1. 2	Data Acquisition Electronics (DAE)	tek Aup	o. b.	glek	Anbore	11
4	1. 3	Robot	totek p	nbore	VII.	upoten.	12
4	1.4	Measurement Server				6Ω	
itel ^k 4	1.5	Phantom	Anv	botek	Anbo.		13
bote4	1. 6	Device Holder	Anbo		dna 4s	Ole VI	15
4	1.7	Data Storage and Evaluation	Anbore	Plus		photok	16
5 . 7	Test	Data Storage and Evaluation Equipment List Je Simulating Liquids	sek sobo	iten Ani		,botek	18
6. 🖂	Tissu	ue Simulating Liquids		/potek	Aupo,	Watek	19
7. 8	Syste	em Verification Procedures			Anbo		20
8. E	EUT	Testing Position	Anbor	bu. Hek	, aboter	Anto	22
	3. 1	Body Worn Position	Mapoles	Anto-	×	yek an	22
9. 1	Meas	surement Procedures					
Aupol	9. 1	Spatial Peak SAR Evaluation					23
9	9.2	Power Reference Measurement		- Yayo	aboten.	AUD	24
9	9. 3	Area Scan Procedures	poter An		tootek	Anbor	24
9	9. 4	Zoom Scan Procedures	Vilpo _{te K}	Anbo.	Motek	- hilboh	25
9	9. 5	Volume Scan Procedures	otek	Mpore	b.u.,	(d)	26
oter 9	9.6	Volume Scan Procedures Power Drift Monitoring ducted Power	bu. Polek	Anbote	A/nD=		26
10.0	Cond	ducted Power	Viur.	اوپ _{ایی} ظو	itek Ar	(po),	27
11 /	Anter	nna Location					31
12.5	SAR	Test Results Summaryltaneous Transmission Analysis	otek An	DOLE D		unbotek.	32
13.5	Simu	Iltaneous Transmission Analysis		hopoter	Ambr		33
S	Simulta	aneous TX SAR Considerations	Anb	, neotek	Aupor	7K	
otek E	Evalua	aneous TX SAR Considerationstion of Simultaneous SARement Uncertainty	Vupo,	h.	popoł	AITE	33
Mea	sure	ement Uncertainty	Anbore	V. V.	(e ₁₁ ,	ooten P	34

Report No.: 1	8220WC30176101	Page 3 of 82	
Appendix A.	EUT Photos and Test Setup Photos		35
Appendix B.	Plots of SAR System Check	by, make topoles,	36
Appendix C.	Plots of SAR Test Data	Mun Wak Who	38
Appendix D.	DASY System Calibration Certificate	lek Wupp	41

Report No.: 18220WC30176101 Page 4 of 82

TEST REPORT

Applicant : Keefe Group

Manufacturer : Central Tech International Limited

Product Name : SCORE Tablets

Model No. : SCORE 810

Trade Mark : SCORE

Rating(s) : DC 5V from Type-C or DC 3.7V from battery

Test Standard(s) : IEC-IEEE 62209-1528-2020; FCC 47 CFR Part 2.1093; IEEE Std C95.1:2019

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEC-IEEE 62209-1528-2020; FCC 47 CFR Part 2.1093; IEEE Std C95.1:2019 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt	Aug. 14, 2023
Date of Test	Aug. 14, 2023~ Aug. 31, 2023
	King Kong Jin
Prepared By	anbores J J Const. Anbores.
nbotek Anbotek Anbotek Anbotek	(Engineer / Kingkong Jin)
	ek Anbotek Anbo
	this thong
Reviewer	abotek Anbore And Lek Anborek Anb
stek Anbo nek Anbotek Anbo	(Supervisor / Bibo Zhang)
	Ton chan
Approved & Authorized Signer	otek Anbotek Anbotek Anbor
Anbor An Lotek Anbore An	(Manager / Tom Chen)

Report No.: 18220WC30176101 Page 5 of 82

Version

	Version No.		Date	Description
£	01 ^k	Aupo	Aug. 31, 2023	Original
otek.	Anbotek	K Pi	hotek Anbotek	Anbores And Anborek Anborek Anbor
nboke	Anbore Anbore	*ek	Anbotek Anbot	ak hotek Anbotek Anbotek Anbotek
Ant	jotek Anb	hotek	Anbotek An	cotek Anbotek Anbotek Anbotek Anbot
	Anbore A	vupo,	lek Aupotek	Anbotek Anbotek Anbote Anbotek An
1/0	Anbotek	P.C.	potek Anborratek	Anbotek Anbotek Anbotek Anbotek

Report No.: 18220WC30176101 Page 6 of 82

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Evenuency Bond	Highest Reported 1g-SAR(W/Kg)	SAR Test Limit (W/Kg)	
Frequency Band	Body-worn(0mm)		
WIFI 2.4GHz	0.295	Anbotek Anbo	
WIFI 5.2GHz	0.285	nbotek Ant	
WIFI 5.8GHz	0.249	A. 1.6	
hotek Anbo BT hot	0.167	ok hotek	
Test Result	PASS	Die Vin	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in KDB 447498 D01 v06, 2015 and IEEE Std C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEC-IEEE 62209-1528-2020.

Report No.: 18220WC30176101 Page 7 of 82

2. General Information

2.1 Client Information

Applicant	:	Keefe Group
Address	:	10880 Linpage PI, St. Louis, MO 63132, United States
Manufacturer	:	Central Tech International Limited
Address	:	Room 608, Zhuguang Innovation Park, Taoyuan Road, Nanshan District, Shenzhen, China

2. 2 Description of Equipment Under Test (EUT)

Product Name	:	SCORE Tablets	Anbotek Anbotek Anbotek Ambotek
Model No.	:	SCORE 810	ek Anbotek Anbot Anbotek Anbot
Trade Mark	:	SCORE	hotek Anbotek Anbo tek Anbotek An
Test Power Supply	:	DC 5V from Type-C or DC	3.7V from battery
Product		Operation Frequency:	5.2GWiFi:5180MHz~5240MHz 5.8GWiFi: 5745MHz~5850MHz BT: 2402MHz ~ 2480MHz 802.11b/ g/ n: 2412-2462MHz
Description	:	Modulation Type:	OFDM with BPSK/QPSK/16QAM/64QAM/ 256QAM for 802.11ac GFSK, π/4DQPSK, 8DPSK
		Antenna Type:	5.8GWiFi: 5745MHz~5850MHz BT: 2402MHz ~ 2480MHz 802.11b/ g/ n: 2412-2462MHz OFDM with BPSK/QPSK/16QAM/64QAM/ 256QAM for 802.11ac

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC30176101 Page 8 of 82

2. 3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2. 4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- · IEC-IEEE 62209-1528-2020
- FCC 47 CFR Part 2.1093
- IEEE Std C95.1:2019
- · KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- · KDB248227 D01 802 11 Wi-Fi SAR v02r02
- KDB941225 D01 3G SAR Procedures v03r01
- · KDB 941225 D05 SAR for LTE Devicesv02r05
- · KDB 941225 D06 Hotspot SARv02r01
- · KDB648474 D04 Handset SAR v01r03

2. 5 Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2. 6 Test Configuration

For WIFI SAR testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Report No.: 18220WC30176101 Page 9 of 82

3. Specific Absorption Rate (SAR)

3. 1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3. 2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

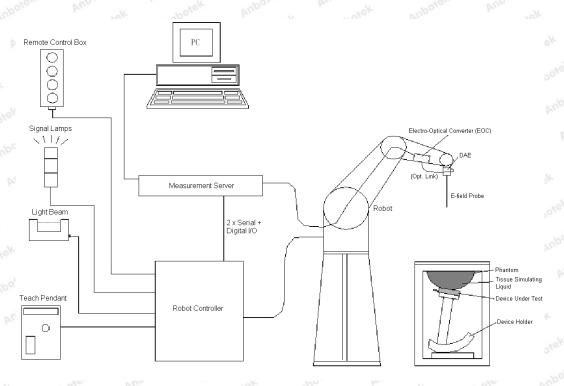
SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt isthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Report No.: 18220WC30176101 Page 10 of 82

4. SAR Measurement System

DASY System Configurations

The DASYsystem for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- > A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid

Report No.: 18220WC30176101

Page 11 of 82

Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4. 1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

E-Field Probe Specification

<EX3DV4 Probe>

	Construction	Symmetrical design with triangular				
		core				
K		Built-in shielding against static charges				
		PEEK enclosure material (resistant to				
0		organic solvents, e.g., DGBE)				
10	Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB				
	Directivity	± 0.3 dB in HSL (rotation around probe				
		axis)				
1		± 0.5 dB in tissue material (rotation				
3		normal to probe axis)				
24	Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2				
n		dB (noise: typically < 1 μW/g)				
	Dimensions	Overall length: 330 mm (Tip: 20 mm)				
		Tip diameter: 2.5 mm (Body: 12 mm)				
		Typical distance from probe tip to				
		dipole centers: 1 mm				

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4. 2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is

Report No.: 18220WC30176101

Page 12 of 82

accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

4. 3 **Robot**

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- ➤ High reliability (industrial design)
- > Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

Report No.: 18220WC30176101 Page 13 of 82

4. 4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4. 5 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	
Measurement	Left Hand, Right Hand, Flat	
Areas	Phantom	
	inbotes And stek anbotek Ar	-
	Anbotek Anbo. Ak abotek	
	Anbotek Anboro Anbotek	Photo of S

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Report No.: 18220WC30176101 Page 14 of 82

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)
Filling Volume	Approx. 30 liters
Dimensions	Major ellipse axis: 600 mm
	Minor axis:400 mm
	Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Report No.: 18220WC30176101 Page 15 of 82

4. 6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ϵ = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

Report No.: 18220WC30176101 Page 16 of 82

4. 7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor ConvF_i

Diode compression point dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity o

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

Report No.: 18220WC30176101 Page 17 of 82

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i = x, y, z)

Norm_i= sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

a_{ii}= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel i in V/m

H_i= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

E_{tot}= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.: 18220WC30176101 Page 18 of 82

5. Test Equipment List

Manufacturer	Name of Favrings and	Type/Model Sorial Number		Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun. 15,2021	Jun. 14,2024	
SPEAG	5GHz System Validation Kit	D5GHzV2	1160	Oct. 02, 2021	Oct. 01, 2024	
SPEAG	Data Acquisition Electronics	DAE4	387	Sept. 06, 2022	Sept. 05, 2023	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May. 06, 2023	May. 05, 2024	
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct. 22, 2022	Oct. 21, 2023	
SPEAG	DAK	DAK-3.5	1226	NCR	NCR	
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR	
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR	
Agilent	Power Meter	N1914A	MY50001102	NCR	NCR	
Agilent	Power Sensor	N8481H	MY51240001	Oct. 22, 2022	Oct. 21, 2023	
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct. 22, 2022	Oct. 21, 2023	
Agilent	Signal Generation	N5182A	MY48180656	Oct. 22, 2022	Oct. 21, 2023	
Worken	Directional Coupler	0110A05601O- 10	COM5BNW1A2	Oct. 22, 2022	Oct. 21, 2023	

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Report No.: 18220WC30176101 Page 19 of 82

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

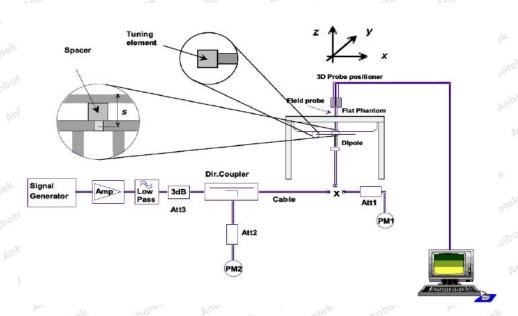
Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Prevento I (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				For Boo	dy			
2450	68.6	Ar0otek	0	. 0	otek O Anl	31.4	1.95	52.7
5000	78.6	Q _{nbo*}	10.7	o ver	10.7	hporo	6.00	48.2

The following table shows the measuring results for simulating liquid.

	Measured	Target Tissue		Measured Tissue				Liquid	
Tissue Type		ε _r	σ	٤ _r	Dev. (%)	σ	Dev. (%)	Temp.(℃	Test Date
2450	2450	52.7	1.95	52.12	-1.10	1.93	-1.03	22.1	2023-08-16
5000	5200	48.20	6.00	46.74	-3.03	6.14	2.33	21.8	2023-08-17

Report No.: 18220WC30176101 Page 20 of 82

7. System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Report No.: 18220WC30176101 Page 21 of 82

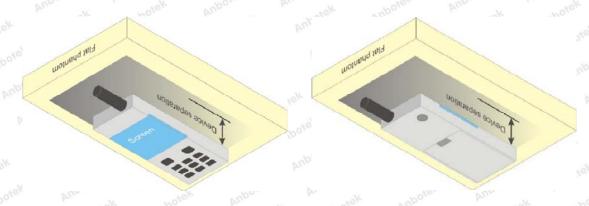
Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

70	Frequency (MHz)	Liquid Type	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviatio n (%)	Test Date
	2450	Body	250	51.8	12.74	50.96	-1.62	2023-08-16
	5000	Body	100	77.8 mbox	7.89	78.90	1.41	2023-08-17

Target and Measurement SAR after Normalized


Report No.: 18220WC30176101 Page 22 of 82

8. EUT Testing Position

8. 1 Body Worn Position

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per KDB 648474 D04, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 v06, 2015 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body Worn Position

Report No.: 18220WC30176101 Page 23 of 82

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9. 1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid

Report No.: 18220WC30176101 Page 24 of 82

- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9. 2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9. 3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6

ATT ATT		211	
	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

GHz.

Report No.: 18220WC30176101 Page 25 of 82

9. 4 Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6

< 3 GHz > 3 GHz ≤ 2 GHz: ≤ 8 mm 3 4 GHz: ≤ 5 mm^{*} Maximum zoom scan spatial resolution: Δx_{Zoom}, Δy_{Zoom} $2 - 3 \text{ GHz} \le 5 \text{ mm}^*$ 4 – 6 GHz: ≤ 4 mm^{*} 3 – 4 GHz: ≤ 4 mm uniform grid: Δz_{Zoom}(n) ≤ 5 mm 4 – 5 GHz: ≤3 mm 5-6 GHz: ≤ 2 mm 3-4 GHz: ≤ 3 mm Maximum zoom scan $\Delta z_{Z_{oom}}(1)$: between spatial resolution. 1st two points closest 4 - 5 GHz: < 2.5 mm < 4 mm normal to phantom to phantom surface 5-6 GHz: ≤ 2 mm surface graded grid $\Delta z_{Zoom}(n>1)$: between subsequent $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$ points 3 - 4 GHz: > 28 mmMinimum zoom scan \geq 30 mm 4 – 5 GHz: ≥ 25 mm X, Y, Zvolume 5 - 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: 18220WC30176101 Page 26 of 82

9. 5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9. 6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report No.: 18220WC30176101 Page 27 of 82

10. Conducted Power

<WLAN 2.4GHz Conducted Power>

Mode	Test	Frequency	Maximum Peak Conducted Output Power (dBm)
	Channel	(MHz)	
Anbo	CH01	2412	13.02
802.11b	CH06	2437	14.10
	CH11	2462	14.03
Anbores A	CH01	2412	12.47
802.11g	CH06	2437	12.04
	CH11	2462	12.45
ek Anbow	CH01	2412	11.28
802.11n(20 MHz)	CH06	2437	13.00
Ambolili IZ)	CH11	2462	12.81
802.11n40	CH03	2422	12.03
Mode	CH06	2437	11.92
	CH09	2452	12.90

<WIFI 5.2GHz Conducted Power>

Mode	Test channel	Maximum Conducted Output Power (dBm)
11a	CH36	10.47
11a	CH40	9.39
11a	CH48	10.58
11n(HT20)	CH36	8.99
11n(HT20)	CH40	9.24
11n(HT20)	CH48	9.31
11n(HT40)	CH38	8.69
11n(HT40)	CH46	9.41 Anbour

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: <u>18220WC30176101</u> Page 28 of 82

11ac(HT20)	CH36	10.17
11ac(HT20)	CH40	10.50
11ac(HT20)	CH48	10.32
11ac(HT40)	CH38	10.27
11ac(HT40)	CH46	10.38
11ac(HT80)	CH42	10.47

<WIFI 5.8GHz Conducted Power>

	1/21/	Maximum Conducted			
Mode	Test channel	Output Power (dBm)			
11a	CH149	9.63			
11a	CH157	9.91			
11a	CH165	10.72			
11n(HT20)	CH149	9.16			
11n(HT20)	CH157	9.68			
11n(HT20)	CH165	10.48			
11n(HT40)	CH151	9.69			
11n(HT40)	CH159	10.16			
11ac(HT20)	CH149	9.16			
11ac(HT20)	CH157	9.59			
11ac(HT20)	CH165	10.52			
11ac(HT40)	CH151	9.95			
11ac(HT40)	CH159	10.10 MA			
11ac(HT80)	CH155	10.20			

Report No.: 18220WC30176101 Page 29 of 82

Note:

1. Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

ie ie	Mode	Mode Frequency (GHz) Market Cooperation (GHz) Market Cooperation (GHz)		Max. Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR	
162	802.11b	2437	14.10	14.5	28.18	hipoter 5 An	8.80	3.0	
Ī	802.11a	5240	10.58	11.0	12.59	anbot 5	5.76	3.0	
	802.11a	5825	10.72	11.0	12.59	5	6.08	3.0	

Base on the result of note1, RF exposure evaluation of 2.4GWIFI, 5.2G/5.8WIFI mode is required.

- 3. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 4. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions:
 - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
 - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

DSSS SAR value* (OFDM power/DSSS power)

2.4GWIFI ANT.1:0.354 W/kg *(74.13 mW/35.65 mW)= 0. 736W/kg

5.2GWIFI ANT.1:0.275 W/kg *(24.66 mW/23.77 mW)= 0.285W/kg

5.8GWIFI ANT.1:0.242 W/kg *(31.77 mW/31.70 mW)= 0.243W/kg

All the results≤ 1.2 W/kg, so the ratio of OFDM is not required RF exposure evaluation

Report No.: 18220WC30176101 Page 30 of 82

<Bluetooth Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Power (dBm)	Max. Tune-up power(dBm)
	00	2402	4.27	4.5
GFSK	19	2440	5.41	5.5
	39	2480	5.62	6.0
	00	2402	3.68	4.0
π/4DQPSK	39	2441	4.71	5.0
	78	2480	4.89	5.0
	00	2402	3.65	4.0
8DPSK	39	2441	4.77	5.0
	78	2480	4.9	5.0

Note:

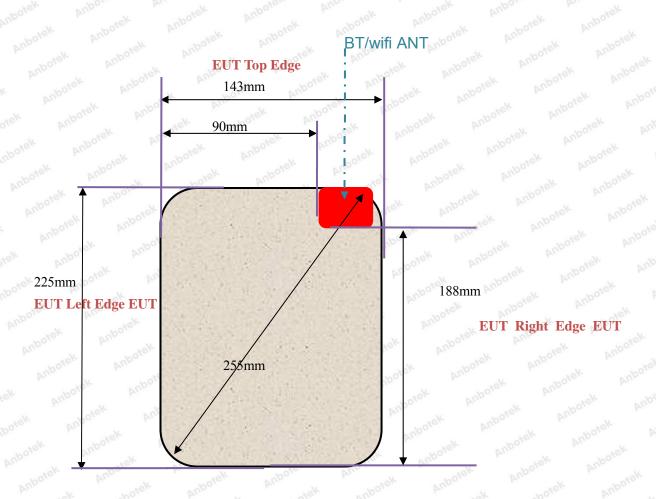
Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison


0	Bluetooth Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds	
10	6.0	Anborek 5 Anbores Ar	2.480	1.25	

Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.25 which is <= 3, SAR testing is not required.

Report No.: 18220WC30176101 Page 31 of 82

11. Antenna Location

EUT Bottom Edge

EUT BACK VIEW

Distance of The Antenna to the EUT surface and edge							
	Antennas	Front	Bottom Side	Left Side	Right Side		
N.	WLAN1	<25mm	<25mm	<25mm	>25mm	>25mm	<25mm

Positions for SAR tests; Hotspot mode							
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side	
WLAN1	Yes	Yes	Yes	No	No Amb	Yes	

General Note: Referring to KDB 941225 D06, When the overall device length and width are ≥9cm*5cm, the test distance is 0mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC30176101 Page 32 of 82

12. SAR Test Results Summary

General Note:

 Per KDB 447498 D01 v06, 2015, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

- 2. Per KDB 447498 D01 v06, 2015, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary
- 3. Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- 4. When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was

NOT activated, to ensure the SAR measurements were evaluated for a single transmissionfrequency RF signal.

					Freq.	Averag	Tune-U	Scalin	Powe	Measure	Reporte
Plot	Band	Mada	Test Position	Gap (cm)	(MHz	е	р	g	r	d	d
No.		Mode				Power	Limit		Drift	SAR _{1g}	SAR _{1g}
					'	(dBm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
V.	WIFI 2.4GHz	b	Front	0	2437	14.10	14.5	1.028	0.05	0.231	0.238
#1	WIFI 2.4GHz	p b	Back	0	2437	14.10	14.5	1.028	0.10	0.287	0.295
otek	WIFI 2.4GHz	bote	Top Side	0	2462	14.10	14.5	1.028	0.10	0.226	0.232
abote	WIFI 2.4GHz	b	Right Side	0	2437	14.10	14.5	1.028	0.06	0.184	0.718
70	WIFI 5.2GHz	a	Front	000	5240	10.58	11.0	1.040	0.07	0.210	0.218
#2	WIFI 5.2GHz	а	Back	0	5240	10.58	11.0	1.040	0.15	0.274	0.285
P	WIFI 5.2GHz	a	Top Side	0	5240	10.58	11.0	1.040	-0.08	0.182	0.189
4	WIFI 5.2GHz	a	Right Side	0	5240	10.58	11.0	1.040	0.03	0.157	0.163
otek	WIFI 5.8GHz	а	Front	0	5825	10.72	11.0	1.026	-0.05	0.197	0.202
#3	WIFI 5.8GHz	a	Back	0	5825	10.72	11.0	1.026	012	0.243	0.249
The same of	WIFI 5.8GHz	a ^{nb}	Top Side	0,10	5825	10.72	11.0	1.026	0.12	0.151	0.155
PUD.	WIFI 5.8GHz	а	Right Side	0	5825	10.72	11.0	1.026	0.08	0.123	0.126

Report No.: 18220WC30176101 Page 33 of 82

13. Simultaneous Transmission Analysis

Simultaneous TX SAR Considerations

No.	Applicable	Applicable Simultaneous Transmission									
1.	N/A	Anbotek	Anbo.	No.	abotek.	Anbore	Aur				

Note:

1. WIFI 2.4GHz, WIFI 5GHz and Bluetooth share the same antenna, and cannot transmit simultaneously.

Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2.2), the following equation must be used to estimate the standalone 1g SAR and 10g extremity SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR =
$$\frac{\sqrt{f(GHz)}}{7.5(18.75)} \cdot \frac{\text{Max. power of channel, mW}}{\text{Min. Separation Distance, mm}}$$

-01	~00	V	-C.		
Mode	Max. tune-up	Exposure Position	Body -worn		
Mode	Power (dBm)	Test Distance (mm)	5		
atek BT inboten	6.0	Estimated SAR (W/kg)	0.167		

Note:

- 1. When the minimum *test separation distance* is < 5 mm, a distance of 5 mm according is applied to determine estimated SAR.
- (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Next to the mouth exposure requires 1-g SAR, and the wrist-worn condition requires 10-g extremity SAR.

Evaluation of Simultaneous SAR

N/A

Report No.: 18220WC30176101 Page 34 of 82

Measurement Uncertainty

PerKDB865664D01 SAR Measurement 100MHz to 6GHz, when the highest measured 1-gSAR within a frequency band is<1.5W/Kg, the extensive SAR measurement uncertain tyanalys is described in IEC-IEEE 62209-1528-2020 is not required in SAR reports submitted for equipment approval.

Report No.: 18220WC30176101 Page 35 of 82

Appendix A. EUT Photos and Test Setup Photos

Body Frant (0mm)

Body Back(0mm)

Body Top (0mm)

Body Right (0mm)

Report No.: 18220WC30176101 Page 36 of 82

Appendix B. Plots of SAR System Check

System Performance Check at 2450 MHz

Date: 2023-08-16

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 910

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.93 \text{S/m}$; $\epsilon r = 52.12$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: 05,06.2023;

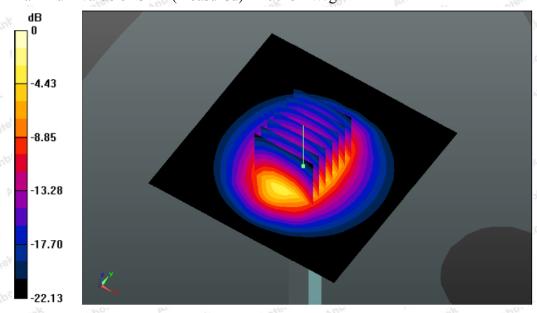
Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: 09.06.2022

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1): Measurement grid: dx=10.00 mm, dy=10.00 mm

Maximum value of SAR (interpolated) = 19.225 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.153 V/m; Power Drift = 0.05dB

Peak SAR (extrapolated) = 26.125 W/kg

SAR(1 g) = 12.74 mW/g; SAR(10 g) = 5.69 mW/g

Maximum value of SAR (measured) = 19.18 mW/g

Report No.: 18220WC30176101 Page 37 of 82

5200MHz System Check

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160

Communication System: UID 0, CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 6.14 \text{ S/m}$; $\varepsilon_r = 46.74$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

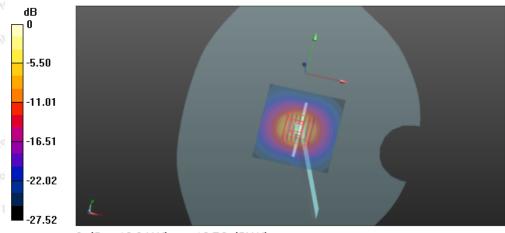
DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: 05.06.2023;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2022
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 49.124 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 7.89 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Configuration/Pin=100mW/Area Scan (71x71x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Report No.: 18220WC30176101 Page 38 of 82

Appendix C. Plots of SAR Test Data

#1

Date: 2023-08-16

WIFI 2.4G _802.11b_Body Back _Ch11

Communication System: UID 0, wifi (fcc) (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.97$ S/m; $\varepsilon_r = 51.89$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: 05,06.2023;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

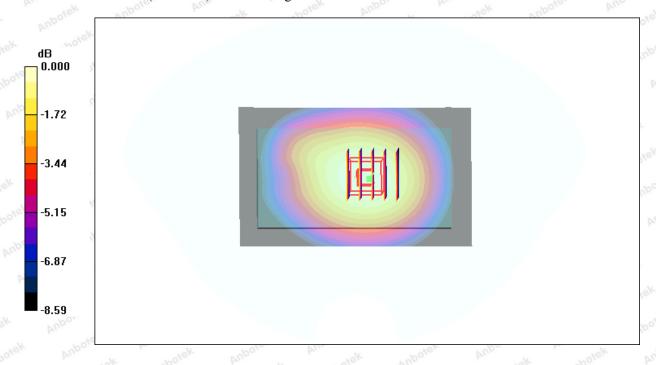
•Electronics: DAE4 Sn387; Calibrated: 09.06.2022

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/BACK/Area Scan (33x17x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.365 W/kg


Configuration/BACK/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.352 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.335 W/kg

SAR(1 g) = 0.287 W/kg; SAR(10 g) = 0.182 W/kg

Maximum value of SAR (measured) = 0.372 W/kg

Report No.: 18220WC30176101

#2

Page 39 of 82

WIFI 5.2G Body Back 5240MHz

Communication System: UID 0, 802.11a (0); Frequency: 5240MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5240 MHz; $\sigma = 6.14 \text{ S/m}$; $\epsilon_r = 46.74$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Date: 2023-08-17

Probe: EX3DV4 – SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: 05,06.2023;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

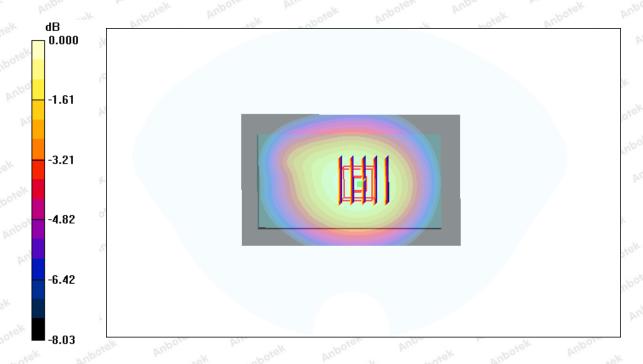
Electronics: DAE4 Sn387; Calibrated: 09.06.2022

Phantom: SAM2; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

BODY / Back /Area Scan (9x13x1):Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.333 W/kg


BODY / Back /Zoom Scan (8x8x12)/Cube 0:Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 18.32 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.329 W/kg

SAR(1 g) = 0.274 W/kg; SAR(10 g) = 0.168 W/kg

Maximum value of SAR (measured) = 0.312 W/kg

Report No.: 18220WC30176101

Page 40 of 82

#3

Date: 2023-08-17

WIFI 5.8G _Body Back_ 5825MHz

Communication System: UID 0, 802.11a (0); Frequency: 5825MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5825MHz; $\sigma = 6.14 \text{ S/m}$; $\varepsilon_r = 46.74$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: 05,06.2023;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

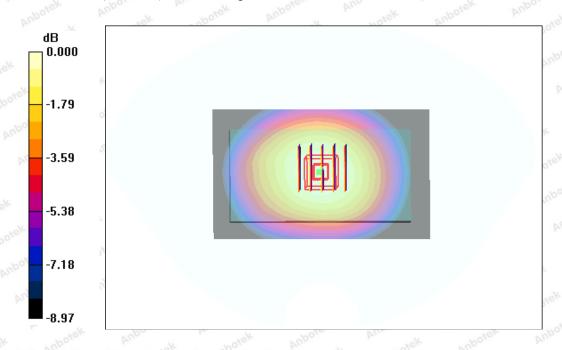
Electronics: DAE4 Sn387; Calibrated: 09.06.2022

Phantom: SAM2; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

BODY / Back /Area Scan (9x13x1):Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) =0.280 W/kg


BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.66 V/m; Power Drift =0.12 dB

Peak SAR (extrapolated) = 0.328 W/kg

SAR(1 g) = 0.243 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 0.298 W/kg

Shenzhen Anbotek Compliance Laboratory Limited