

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC185470 Page: 1 of 62

FCC Radio Test Report FCC ID: 2A3XN-SCORE7C

Original Grant

Report No.	:	TB-FCC185470
Applicant	:	Keefe Group
Equipment Under Te	st (E	UT)
EUT Name	1	Tablet PC
Model No.	:	SCORE 710
Series Model No.	In	P701B
Brand Name		SCORE 7C
Sample ID	51	20211022-01_1-01#& 20211022-01_1-02#
Receipt Date		2021-12-13
Test Date	<u>.</u> :	2021-12-13 to 2022-01-06
Issue Date		2022-01-06
Standards		FCC Part 15, Subpart E 15.407
Test Method		ANSI C63.10: 2013
Conclusions		PASS
		In the configuration tested, the EUT complied with the standards specified above,
		The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Test/Witness Engineer

Approved& Authorized

Canolle Li : : LUAN SU Rave

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	10
	1.8 Test Facility	
2.	TEST SUMMARY	11
3.	TEST SOFTWARE	11
4.	TEST EQUIPMENT	12
5.	CONDUCTED EMISSION TEST	13
	5.1 Test Standard and Limit	13
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	14
	5.5 EUT Operating Mode	14
	5.6 Test Data	14
6.	RADIATED EMISSION TEST	15
	6.1 Test Standard and Limit	15
	6.2 Test Setup	16
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	18
	6.5 EUT Operating Condition	18
	6.6 Test Data	
7.	RESTRICTED BAND EDGE EMISSIONS	19
	7.1 Test Standard and Limit	19
	7.2 Test Setup	19
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	21
	7.5 EUT Operating Condition	
	7.6 Test Data	21
8.	BANDWIDTH TEST	
	8.1 Test Standard and Limit	22
	8.2 Test Setup	22
	8.3 Test Procedure	22

	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	23
	8.6 Test Data	
9.	MAXIMUM CONDUCTED OUTPUT POWER	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Condition	
	9.6 Test Date	
10.	POWER SPECTRAL DENSITY TEST	
	10.1 Test Standard and Limit	
	9.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 EUT Operating Condition	
	10.6 Test Data	
11.	FREQUENCY STABILITY MEASUREMENT	
	11.1 Test Standard and Limit	
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	
	11.5 EUT Operating Condition	
	11.6 Test Data	
12.	ANTENNA REQUIREMENT	
	12.1 Standard Requirement	
	12.2 Antenna Connected Construction	
	12.3 Deviation From Test Standard	
	12.4 Result	
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	
ATTA	ACHMENT B RADIATED EMISSION TEST DATA	

Revision History

Report No.	Version	Description	Issued Date
TB-FCC185470	Rev.01	Initial issue of report	2022-01-06
BU		A COLORED BE	033
000			0055
CUL S	3	MODEL - MODEL	
	TOPI	TOPA TOPA	CON LAND
and l		The second	600
THE REAL	TOBL	The second second	TI BY
THE REAL	1	The second	MOBU
BU SI	000		El S
			moBL

1. General Information about EUT

1.1 Client Information

TOBY

Applicant	: 1	Keefe Group
Address		10880 Linpage PI, St. Louis, MO 63132, United States
Manufacturer	: :	Shenzhen Ployer Electronics Co., Ltd.
Address	: (6~7F, Building 8, Rundongsheng Industrial Area, Longzhu Community, Xixiang Street, Bao'an District, Shenzhen, 518000, China.

1.2 General Description of EUT (Equipment Under Test)

EUT Name	2	Tablet PC			
Models No.	: (SCORE 710, P	701B		
Model Difference	:	All PCB boards that names.	and circuit diagrams are the same, the only difference is		
TOB	E		Operation Frequency: U-NII-1: 5180MHz~5240MHz, U-NII-3: 5745MHz~5825MHz		
		Antenna Gain:	1.55dBi PIFA Antenna		
Product Description	Hodulation Type: Bit Rate of Transmitter:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM)			
		802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 150Mbps 802.11ac: at most 433.3 Mbps			
Power Rating	2	DC 3.7V by bat			
Software Version	-	Android10.0	Android10.0		
Hardware Version	:	V1.0			
Remark			d antenna gain provided by the applicant, the verified for ion test provided by TOBY test lab.		

Note:

(1) This Test Report is FCC Part 15, Subpart E(15.407) for 802.11a/n/ac, the test procedure follows the KDB 789033 D02 General U-NII Test Procedures New Rules v02r01. More detailed features description, please refer to the manufacturer's specifications or the User's Manual.

5825 MHz

Frequency Band	Channel No.	Frequency	Channel No.	Frequency			
	36	5180 MHz	44	5220 MHz			
5180~5240MHz (U-NII-1)	38	5190 MHz	46	5230 MHz			
(0-111-1)	40	5200 MHz	48	5240 MHz			
	42	5210 MHz					
For 20 MHz Bandwidth, us	For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46.						
For 80 MHz Bandwidth, us	se channel 42.						
Frequency Band	Channel No.	Frequency	Channel No.	Frequency			
	149	5745 MHz	157	5785 MHz			
5745~5825MHz (U-NII-3)	151	5755 MHz	159	5795 MHz			
(0-1411-3)	153	5765 MHz	161	5805 MHz			

5775 MHz

165

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159. For 80 MHz Bandwidth, use channel 155.

1.3 Block Diagram Showing the Configuration of System Tested

155

Cable 1

Charging + TX Mode

EUT

1.4 Description of Support Units

		Equipment Inform	nation	
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
Adapter		<u> </u>	HUAWEI	\checkmark
		Cable Information		
Number	Shielded Type	Ferrite Core	Length	Note
6				5 6
Remark: the U	SB Cable and adapt	ter provided by TOB	r test lab.	

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	For Conducted Test				
Fina	al Test Mode	Description			
5	Mode 1	Charging + TX a Mode(5180MHz)			
For Radiated Test Below 1GHz		Radiated Test Below 1GHz			
Fina	al Test Mode	Description			
Mode 2 Charging + TX a Mode(5180MHz)		Charging + TX a Mode(5180MHz)			
	For Radiated	Above 1GHz and RF Conducted Test			
Test Band	Final Test Mode	Description			
	Mode 3	TX Mode 802.11a Mode Channel 36/40/48			
	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/40/48			
	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48			
U-NII-1	Mode 6	TX Mode 802.11n(HT40) Mode Channel 38/46			
	Mode 7	TX Mode 802.11ac(VHT40) Mode Channel 38/46			
100	Mode 8	TX Mode 802.11ac(VHT80) Mode Channel 42			
	Mode 9	TX Mode 802.11a Mode Channel 149/157/165			
	Mode 10	TX Mode 802.11n(HT20) Mode Channel 149/157/165			
	Mode 11	TX Mode 802.11ac(vHT20) Mode Channel 149/157/165			
U-NII-3	Mode 12	TX Mode 802.11n(HT40) Mode Channel 151/159			
aus	Mode 13	TX Mode 802.11ac(VHT40) Mode Channel 151/159			
	Mode 14	TX Mode 802.11ac(VHT80) Mode Channel 155			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows: 802.11a Mode: OFDM (6 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

	U-NII-1	
Mode	Frequency (MHz)	Parameters
4000	5180	17
802.11a	5200	17
	5240	17
	5180	17
802.11n(HT20)	5200	17
RUDD	5240	17
	5180	17
802.11ac(VHT20)	5200	17
an BU	5240	17
000 44	5190	17
802.11n(H140)	5230	17
	5190	17
802.11ac(VH140)	5230	17
802.11ac(VHT80)	5210	17
	U-NII-3	
Mode	Frequency (MHz)	Parameters
	5745	17
802.11a	5785	17
802.11a 802.11n(HT20) 02.11ac(VHT20) 802.11n(HT40) 02.11ac(VHT40) 02.11ac(VHT80) Mode 802.11a 802.11a	5825	17
	5745	17
802.11n(HT20)	5785	17
02.11ac(VHT20) 802.11n(HT40) 02.11ac(VHT40) 02.11ac(VHT40) 02.11ac(VHT80) Mode 802.11a 802.11a 802.11n(HT20) 802.11n(HT20) 802.11n(HT40)	5825	17
	5745	17
802.11ac(VHT20)	5785	17
	5825	17
000 44 m/UT 40)	5755	17
ου 2.11 η(Π140)	5795	17
	5755	17
502.11aC(VH140)	5795	17
302.11ac(VHT80)	5775	17

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.Designation Number:CN1223

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

2. Test Summary

	FCC Part 1	15 Subpart E(15.407)		
Standard Section FCC	- Test Item	Test Sample(s)	Judgment	Remark
15.203	Antenna Requirement	20211022-01_1-02#	PASS	N/A
FCC 15.207(a)	Conducted Emission	20211022-01_1-01#	PASS	N/A
FCC 15.407(b)& 15.205	Emissions in Restricted Bands	20211022-01_1-02#	PASS	N/A
15.407(a)	26dB Bandwidth	20211022-01_1-02#	PASS	N/A
15.407(e)	6dB Bandwidth	20211022-01_1-02#	PASS	N/A
15.407(a)	Maximum Conducted Output Power	20211022-01_1-02#	PASS	N/A
15.407(a)	Power Spectral Density	20211022-01_1-02#	PASS	N/A
15.209 15.407(b)	Transmitter Radiated Spurious Emission	20211022-01_1-01# 20211022-01_1-02#	PASS	N/A
15.407(g)	Frequency Stability	20211022-01_1-02#	PASS	N/A
	On Time and Duty Cycle	20211022-01_1-02#	PASS	N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

4. Test Equipment

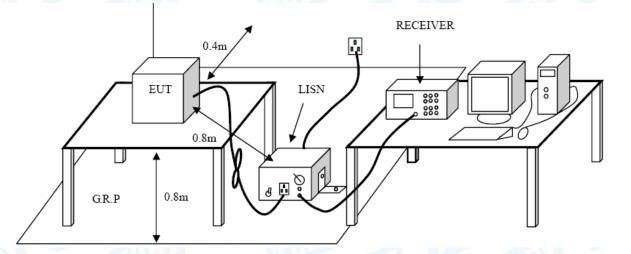
Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission T	est		<u>.</u>	<u>.</u>	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 10, 2021	Sep. 09, 2022
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 10, 2021	Sep. 09, 2022
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 10, 2021	Sep. 09, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 10, 2021	Sep. 09, 2022
DE Dower Concer	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 10, 2021	Sep. 09, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 10, 2021	Sep. 09, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 10, 2021	Sep. 09, 2022

5. Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1Test Standard FCC Part 15.207(a)
 - 5.1.2 Test Limit

Conducted Emission Test Limit

Frequency	Maximum RF Line Voltage (dBμV)		
	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

6. Radiated Emission Test

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard FCC Part 15.209
 - 6.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency (MHz)	Distance of 3m (dBuV/m)	
	Peak	Average
Above 1000	74	54

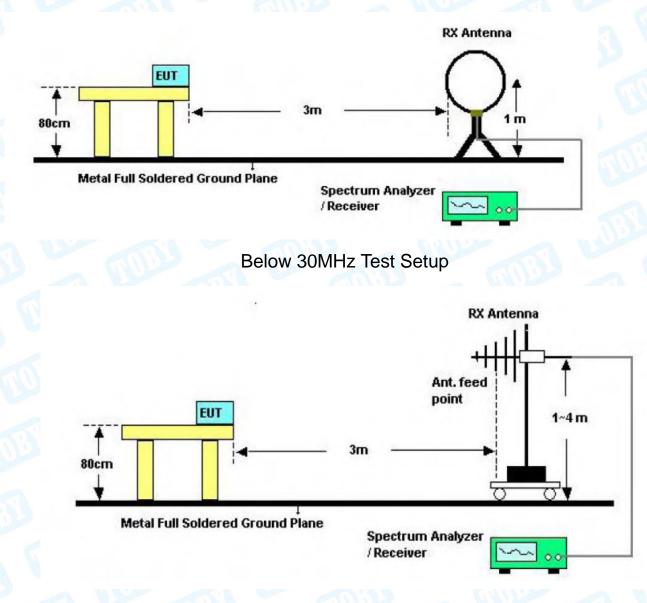
Note:

(1) The tighter limit applies at the band edges.

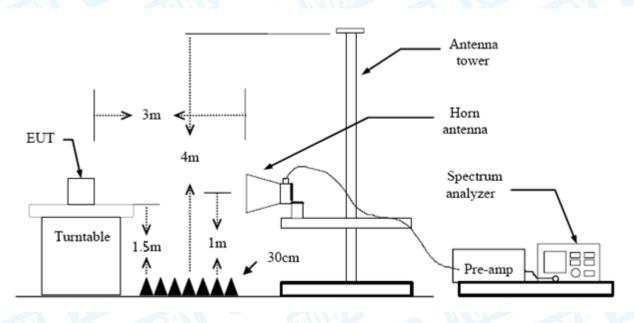
(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
	-27(Note 2)	68.3
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.3


NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:


$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

6.2 Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

6.3 Test Procedure

TOBY

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical Antenna 0re set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values. Please refer to the Attachment B.

7. Restricted Band Edge Emissions

7.1 Test Standard and Limit

7.1.1 Test Standard

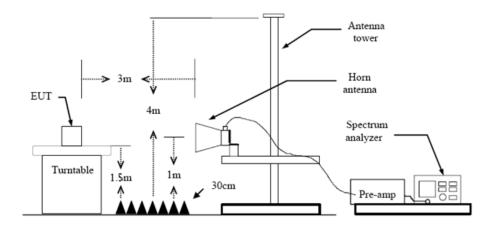
FCC Part 15.407(b)

7.1.2 Test Limit

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
	-27(Note 2)	68.3
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
anis a	27(Note 2)	122.3

NOTE:


E= -

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$\frac{1000000\sqrt{30P}}{3}$$
 uV/m, where P is the eirp (Watts)

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

7.2 Test Setup

TOBY

7.3 Test Procedure

---Radiated measurement

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

● The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

 The Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

$E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

f) Compare the resultant electric field strength level with the applicable regulatory limit.

g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

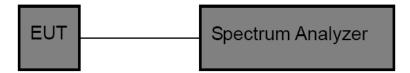
No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Please refer to the Appendix D.



8. Bandwidth Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard FCC Part 15.407
 - 8.1.2 Test Limit

FC	C Part 15 Subpart C(15	.407)
Test Item	Limit	Frequency Range (MHz)
The second	N/A	5150~5250
26 Bandwidth		5250~5350
		5500~5700
6 dB Bandwidth	>500kHz	5725~5850

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The setting of the spectrum analyser as below:

	26dB Bandwidth Test		
Spectrum Parameters		Setting	
	Attenuation	Auto	
	Span	>26 dB Bandwidth	
RBW Approximately 1% of the emission bandwidth		Approximately 1% of the emission bandwidth	
	VBW	VBW>RBW	
2	Detector	Peak	
	Trace	Max Hold	
Sweep Time Auto		Auto	

6dB Bandwidth Test		
Spectrum Parameters	Setting	
Attenuation	Auto	
Span	>6 dB Bandwidth	
RBW	100 kHz	
VBW	VBW>=3*RBW	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	
	99% Occupied Bandwidth Test	
Spectrum Parameters	Setting	
Attenuation	Auto	
RBW	1% to 5% of the OBW	
VBW	≥ 3RBW	
Detector	Peak	
Trace	Max Hold	

8.4 Deviation From Test Standard

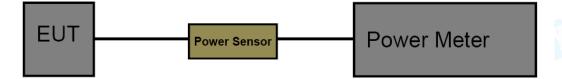
No deviation

8.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

8.6 Test Data

Please refer to the Appendix D.



9. Maximum Conducted Output Power

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.407 (a)
 - 9.1.2 Test Limit

FCC Part 15 Subpart E(15.407)				
Test Item	Limit	Frequency Range(MHz)		
AT THE TOPY	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250		
Conducted Output Power	250mW (24dBm)	5250~5350		
	250mW (24dBm)	5500~5700		
	1 Watt (30dBm)	5725~5850		

9.2 Test Setup

9.3 Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

The EUT was connected to RF power meter via a broadband power sensor as show the block above.

9.4 Deviation From Test Standard

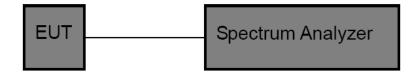
No deviation

9.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Date

Please refer to the Appendix D.



10. Power Spectral Density Test

- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard FCC Part 15.407 (a) 10.1.2 Test Limit

FCC Part 15 Subpart E(15.407)				
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	Other than Mobile and Portable : 17dBm/MHz Mobile and Portable : 11dBm/MHz	5150~5250		
Power Spectral Density	11dBm/MHz	5250~5350		
	11dBm/MHz	5500~5700		
	30dBm/500kHz	5725~5850		

9.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.
- (4) Set the RBW to: 1 MHz
- (5) Set the VBW to: 3 MHz
- (6) Detector: RMS
- (7) Trace: Max Hold
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.

- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.
- 10.4 Deviation From Test Standard

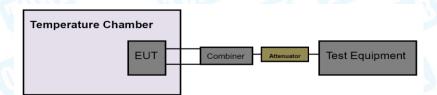
No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Appendix D.



11. Frequency Stability Measurement

- 11.1 Test Standard and Limit
 - 11.1.1 Test Standard
 - FCC Part 15.407(g)
 - 11.1.2 Test Limit

FCC Part 15 Subpart C(15.407)							
Test Item	Limit	Frequency Range(MHz)					
T TUD	Manufacturers of U-NII devices are responsible	5150~5250					
Laboration and and	for ensuring frequency stability such that an	5250~5350					
Frequency Stability Measurement	emission is maintained within the band of	5500~5700					
E BERE	operation under all conditions of normal operation as specified in the users manual	5725~5850					

11.2 Test Setup

11.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
- (4) Set the RBW to: 10 kHz, VBW=10 kHz with peak detector and maxhold settings.
- (5) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
- (6) Extreme temperature is $0^{\circ}C \sim 50^{\circ}C$

11.4 Deviation From Test Standard

No deviation

11.5 EUT Operating Condition

The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

11.6 Test Data

Please refer to the Appendix D.

12. Antenna Requirement

12.1 Standard Requirement

12.1.1 Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.55dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.3 Deviation From Test Standard

No deviation

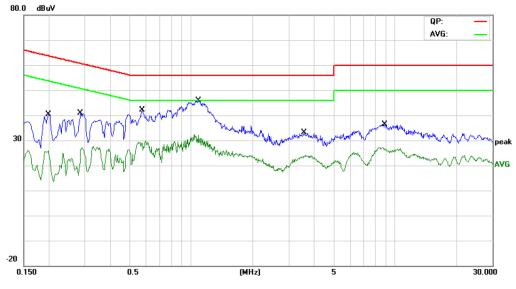
12.4 Result

The EUT antennas are PIFA Antenna. It complies with the standard requirement.

	Antenna Type
MOBY	Permanent attached antenna
	Unique connector antenna
000	Professional installation antenna

Attachment A-- Conducted Emission Test Data

Remark: All channels have been tested and Shows only the worst channels.


emperature:	24.8 ℃	Relative Humidity: 42	2%
est Voltage:	AC 120V/60 Hz	61102	
erminal:	Line		
est Mode:	TX 802.11a Mode	CH36	1
emark:	Only worse case is	reported.	AUC
			AVG:
30	W Mr Manne Market		AMM peak

				<u> </u>				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector
1		0.1940	24.62	11.65	36.27	63.86	-27.59	QP
2		0.1940	13.25	11.65	24.90	53.86	-28.96	AVG
3		0.2860	25.43	11.60	37.03	60.64	-23.61	QP
4		0.2860	12.55	11.60	24.15	50.64	-26.49	AVG
5		0.5460	21.09	11.47	32.56	56.00	-23.44	QP
6		0.5460	12.46	11.47	23.93	46.00	-22.07	AVG
7	*	1.0859	32.12	11.14	43.26	56.00	-12.74	QP
8		1.0859	16.36	11.14	27.50	46.00	-18.50	AVG
9		4.1420	19.67	10.13	29.80	56.00	-26.20	QP
10		4.1420	12.14	10.13	22.27	46.00	-23.73	AVG
11		6.1060	19.16	10.09	29.25	60.00	-30.75	QP
12		6.1060	11.36	10.09	21.45	50.00	-28.55	AVG

*:Maximum data x:Over limit !:over margin

Temperature:	24.8 ℃	Relative Humidity:	42%				
Test Voltage:	AC 120V/60 Hz						
Terminal:	Neutral	BU C					
Test Mode:	TX 802.11a Mode CH36	TX 802.11a Mode CH36					
Remark:	Only worse case is repor	ted	10				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector
1		0.1980	20.28	11.67	31.95	63.69	-31.74	QP
2		0.1980	10.99	11.67	22.66	53.69	-31.03	AVG
3		0.2860	27.22	11.60	38.82	60.64	-21.82	QP
4		0.2860	13.41	11.60	25.01	50.64	-25.63	AVG
5		0.5740	28.34	11.48	39.82	56.00	-16.18	QP
6		0.5740	16.73	11.48	28.21	46.00	-17.79	AVG
7	*	1.0820	31.82	11.14	42.96	56.00	-13.04	QP
8		1.0820	18.51	11.14	29.65	46.00	-16.35	AVG
9		3.5780	18.02	10.13	28.15	56.00	-27.85	QP
10		3.5780	13.07	10.13	23.20	46.00	-22.80	AVG
11		8.8940	21.33	10.10	31.43	60.00	-28.57	QP
12		8.8940	15.64	10.10	25.74	50.00	-24.26	AVG

*:Maximum data x:Over limit !:over margin

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

emperature:	24.6 °C	2	Re	elative Humi	dity: 4	13%		
est Voltage:	AC 12	0V/60Hz						
nt. Pol.	Horizo	Horizontal						
est Mode:	TX 802	TX 802.11a Mode 5180MHz (U-NII-1)						
emark:	Only w	orse case i	is reported		00	Contraction of the second seco	1150	
80.0 dBu¥/m								
					(RF)FCC 1	5C 3M Radiatior		
						Margin -6	dB	
30				-				
1				5		6		
Mur 1	;		4	man mini	when when	manter	manna and	
m - War		Jun and	www.		A NUMBER			
V 1	Whoman	Martin						
-20 30.000 40	50 60 70	80	(MHz)	300	400 50	0 600 700	1000.000	
	30 00 12				100	10 000 101	1000.000	
No. Mk.	Erea	Reading	Correct	Measure-	Limit	Over		
INU. IVIK.	Freq.	Level	Factor	ment				
					dBu∀/m	dB	Detector	
	MHz	dBu∨	dB/m	dBuV/m				
1 * 3	MHz 2.6340	dBu∨ 35.28	dB/m -15.37	dBuV/m 19.91	40.00	-20.09	peak	
							peak peak	
2 4	2.6340	35.28	-15.37	19.91	40.00	-20.09	•	
2 4 ¹ 3 8	2.6340 7.9940	35.28 37.68	-15.37 -22.89	19.91 14.79	40.00	-20.09 -25.21	peak	
2 4 3 8 4 16	2.6340 7.9940 8.9639	35.28 37.68 31.06	-15.37 -22.89 -22.17	19.91 14.79 8.89	40.00 40.00 43.50	-20.09 -25.21 -34.61	peak peak	

*:Maximum data x:Over limit !:over margin

Temperature:	24.6 ℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical						
Test Mode:	TX 802.11a Mode 5180M	IHz (U-NII-1)	200				
Remark:	Only worse case is report	ted.	201				
80.0 dBuV/m							
		(RF)FCC 1	5C 3M Radiation				
			Margin -6 dB				
1 2			_				
30 × × 3							
M	4	5	6 Xim				
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, th	5 S	ummunu				
	manner hours						
-20							

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		36.2541	47.73	-17.72	30.01	40.00	-9.99	peak
2	*	42.3022	52.11	-20.59	31.52	40.00	-8.48	peak
3		46.0164	49.94	-22.25	27.69	40.00	-12.31	peak
4		115.3205	40.09	-22.50	17.59	43.50	-25.91	peak
5		379.9141	30.02	-13.31	16.71	46.00	-29.29	peak
6		810.2654	27.48	-5.52	21.96	46.00	-24.04	peak

*:Maximum data x:Over limit !:over margin

5180MHz-5240MHz(U-NII-1)

Temperature:	23.6 ℃	Relative Humidity:	47%				
Test Voltage:	DC 3.7V		TOUS A				
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11a Mode 5180M	1Hz (U-NII-1)	2				
Remark:	No report for the emissio	No report for the emission which more than 10 dB below the					
	prescribed limit. Only wo	rse case is reported.					

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10360.103	26.59	16.85	43.44	54.00	-10.56	AVG
2	*	10360.225	41.96	16.85	58.81	68.30	-9.49	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 ℃	Relative Humidity:	47%				
Test Voltage:	DC 3.7V	con B					
Ant. Pol.	Vertical	10	A REAL				
Test Mode:	TX 802.11a Mode 5180M	1Hz (U-NII-1)	TU ST				
Remark:	No report for the emissio	No report for the emission which more than 10 dB below the					
	prescribed limit. Only wo	rse case is reported.					

N	lo.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10359.870	28.46	16.85	45.31	54.00	-8.69	AVG
2			10360.211	41.66	16.85	58.51	68.30	-9.79	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 ℃	Relative Humidity:	47%			
Test Voltage:	DC 3.7V		TUD			
Ant. Pol.	Horizontal					
Test Mode: TX 802.11a Mode 5200MHz (U-NII-1)						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

	No.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	1	*	10400.360	27.64	16.92	44.56	54.00	-9.44	AVG
2	2		10401.100	40.67	16.92	57.59	68.30	-10.71	peak

Remark:

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 ℃	Relative Humidity:	47%			
Test Voltage:	DC 3.7V		61135			
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11a Mode	5200MHz (U-NII-1)				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1			10399.740	41.55	16.92	58.47	68.30	-9.83	peak
2	2	*	10400.210	28.90	16.92	45.82	54.00	-8.18	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 ℃	Relative Humidity:	47%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)					
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

N	0.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		*	10480.268	28.20	17.07	45.27	54.00	-8.73	AVG
2			10480.320	40.43	17.07	57.50	68.30	-10.80	peak

Remark:

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

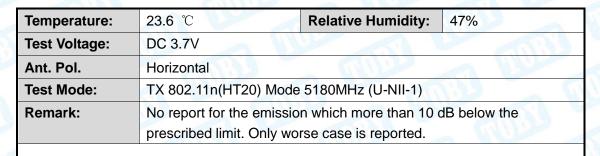
4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 ℃	Relative Humidity: 47%				
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

N	0.	Mk.	Freq.	•	Correct Factor	Measure- ment	Limit	Over	ł
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1			10479.490	40.49	17.07	57.56	68.30	-10.74	peak
2		*	10480.560	28.75	17.07	45.82	54.00	-8.18	AVG

Remark:


1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10359.559	40.51	16.85	57.36	68.30	-10.94	peak
2	*	10360.100	28.27	16.85	45.12	54.00	-8.88	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 ℃	Relative Humidity:	47%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1)	anu's				
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit. Only worse case is reported.						

1	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		*	10359.920	28.55	16.85	45.40	54.00	-8.60	AVG
2			10360.117	40.97	16.85	57.82	68.30	-10.48	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	47%				
Test Voltage:	DC 3.7V		TUB A				
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11n(HT20) Mode	5200MHz (U-NII-1)					
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit. Only worse case is reported.						

N	0.	Mk.	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	ť	k	10400.180	28.98	16.92	45.90	54.00	-8.10	AVG
2			10400.260	40.44	16.92	57.36	68.30	-10.94	peak

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

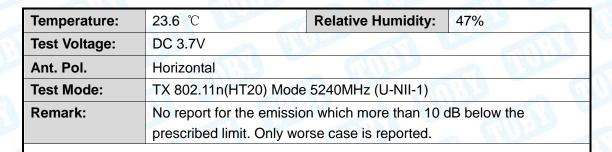
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 ℃	Relative Humidity:	47%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT20) Mod	de 5200MHz (U-NII-1)	0000				
Remark: No report for the emission which more than 10 dB below the							
	prescribed limit. Only w	orse case is reported.					

No	o. Mi	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		10400.000	41.22	16.92	58.14	68.30	-10.16	peak
2	*	10400.200	27.43	16.92	44.35	54.00	-9.65	AVG


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

No	р. M	lk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	*	10	0480.220	28.55	17.07	45.62	54.00	-8.38	AVG
2		10	0481.102	41.36	17.07	58.43	68.30	-9.87	peak

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

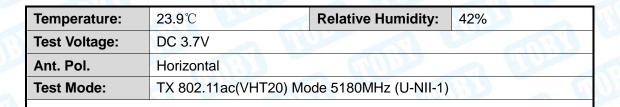
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

23.6 ℃	Relative Humidity:	47%				
DC 3.7V	con Ba					
Vertical	1	1 mar				
TX 802.11n(HT20) Mode	5240MHz (U-NII-1)	TU TO				
No report for the emission which more than 10 dB below the						
prescribed limit. Only wo	rse case is reported.	AV				
	DC 3.7V Vertical TX 802.11n(HT20) Mode No report for the emission	DC 3.7V Vertical TX 802.11n(HT20) Mode 5240MHz (U-NII-1)				

No	р. М	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10479.699	27.20	17.07	44.27	54.00	-9.73	AVG
2		10479.780	40.28	17.07	57.35	68.30	-10.95	peak


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

No	. Mk	. Freq.	•		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10359.900	41.32	16.85	58.17	68.30	-10.13	peak
2	*	10360.002	27.38	16.85	44.23	54.00	-9.77	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

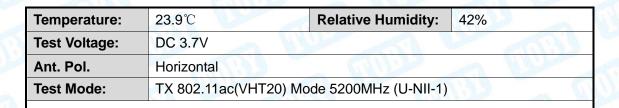
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%					
Test Voltage:	DC 3.7V	GUD -						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)							

No	Э.	Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		*	10360.128	27.15	16.85	44.00	54.00	-10.00	AVG
2			10360.520	40.64	16.85	57.49	68.30	-10.81	peak


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

No	o. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	*	10399.909	27.36	16.92	44.28	54.00	-9.72	AVG
2		10400.270	40.28	16.92	57.20	68.30	-11.10	peak

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

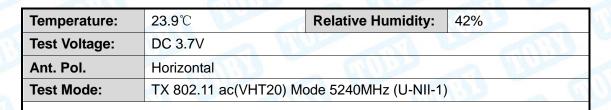
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	1					
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)						

No	р. M	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB	Detector
1	*	10400.1	55 28.93	16.92	45.85	54.00	-8.15	AVG
2		10400.2	00 40.28	16.92	57.20	68.30	-11.10	peak


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

No	. M	k. Freq.	· · · · ·	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		10480.147	41.42	17.07	58.49	68.30	-9.81	peak
2	*	10480.332	27.24	17.07	44.31	54.00	-9.69	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

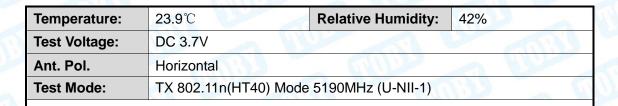
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

23.9℃	Relative Humidity:	42%					
DC 3.7V							
Vertical	Vertical						
TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)							
	DC 3.7V Vertical	DC 3.7V Vertical					

No	р. M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	*	10480.122	27.32	17.07	44.39	54.00	-9.61	AVG
2		10480.710	40.30	17.07	57.37	68.30	-10.93	peak


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

N	lo.	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBu∀/m	dBu∀/m	dB	Detector
1		1	0379.883	41.03	16.88	57.91	68.30	-10.39	peak
2	لا	* 1	0380.166	27.72	16.88	44.60	54.00	-9.40	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

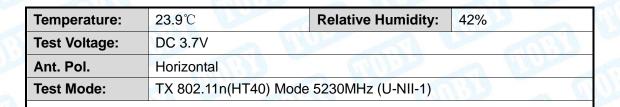
3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9 ℃	Relative Humidity:	42%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)							

	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		*	10379.915	41.68	16.88	58.56	68.30	-9.74	peak
2			10380.240	26.60	16.88	43.48	54.00	-10.52	AVG


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBu∨/m	dBu∀/m	dB	Detector
1		10459.230	40.12	17.04	57.16	68.30	-11.14	peak
2	*	10460.250	27.31	17.04	44.35	54.00	-9.65	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

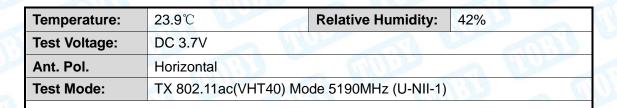
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	1					
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)						

N	0.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBu∀/m	dBu∀/m	dB	Detector
1		*	10458.900	28.09	17.04	45.13	54.00	-8.87	AVG
2			10460.200	40.01	17.04	57.05	68.30	-11.25	peak


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Ν	10.	M	k. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		*	10380.908	41.72	16.88	58.60	68.30	-9.70	peak
2			10381.054	27.37	16.88	44.25	54.00	-9.75	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

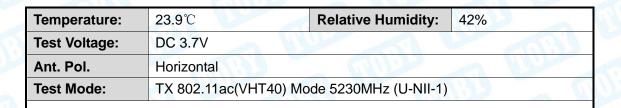
3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical	MIS -				
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)					

No	. Mł	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		10379.521	40.39	16.88	57.27	68.30	-11.03	peak
2	*	10380.111	28.65	16.88	45.53	54.00	-8.47	AVG


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBu∀/m	dBuV/m	dB	Detector
1		10459.800	41.47	17.04	58.51	68.30	-9.79	peak
2	*	10460.102	28.34	17.04	45.38	54.00	-8.62	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9°C	Relative Humidity:	42%			
Temperature.	23.9 0	Relative Humaity.	42.78			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)						

N	lo.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		*	10459.500	28.44	17.04	45.48	54.00	-8.52	AVG
2			10460.211	40.21	17.04	57.25	68.30	-11.05	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.9℃	Relative Humidity:	42%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)						

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10419.665	27.27	16.96	44.23	54.00	-9.77	AVG
2	*	10420.115	41.85	16.96	58.81	68.30	-9.49	peak

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated 1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical	A DUP				
Test Mode: TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)						

No	р. M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detecto
1		10420.190	40.09	16.96	57.05	68.30	-11.25	peak
2	*	10420.804	28.69	16.96	45.65	54.00	-8.35	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5745MHz-5825MHz(U-NII-3)

	• • • • • • •					
Temperature:	23.4 ℃	Relative Humidity:	48%			
Test Voltage:	DC 3.7V		TOUS A			
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11a Mode 5745M	1Hz (U-NII-3)	2			
Remark: No report for the emission which more than 10 dB below the prescribed limit.						
	No report for the emissio		dB below the			

No	. M	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBu∀/m	dBu\//m	dB	Detector
1	*	11489.550				54.00	-8.79	AVG
2		11490.320	37.98	18.35	56.33	68.30	-11.97	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

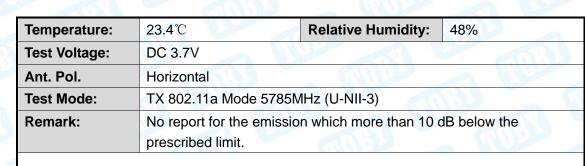
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	48%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical		-				
Test Mode:	TX 802.11a Mode 574	TX 802.11a Mode 5745MHz (U-NII-3)					
Remark:	No report for the emis prescribed limit.	ssion which more than 10	dB below the				

N	0.	Mk.	Freq.	· · · ·	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∖/m	dB	Detector
1	,	÷ .	11490.150	26.27	18.35	44.62	54.00	-9.38	AVG
2			11490.650	37.54	18.35	55.89	68.30	-12.41	peak


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11569.355	38.96	18.45	57.41	68.30	-10.89	peak
2	*	11570.822	26.59	18.45	45.04	54.00	-8.96	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4℃	Relative Humidity:	48%					
Test Voltage:	DC 3.7V		TOT I					
Ant. Pol.	Vertical							
Test Mode:	TX 802.11a Mode 5785M	1Hz (U-NII-3)	anu!					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							

No). Mł	k. Freq.	· · · · ·	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBu∀/m	dBu∀/m	dB	Detector
1	*	11569.730	26.58	18.45	45.03	54.00	-8.97	AVG
2		11570.000	39.09	18.45	57.54	68.30	-10.76	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.4 ℃	Relative Humidity:	48%					
Test Voltage:	DC 3.7V		TUD A					
Ant. Pol.	Horizontal							
Test Mode:	TX 802.11a Mode 5825M	1Hz (U-NII-3)						
Remark: No report for the emission which more than 10 dB below the prescribed limit.								

Nc	b. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBu∀/m	dBuV/m	dB	Detector
1	*	11649.318	26.09	18.56	44.65	54.00	-9.35	AVG
2		11650.110	39.06	18.55	57.61	68.30	-10.69	peak

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature	: 23.4°	С	R	elative Humic	dity: 48	3%	
Test Voltage:	DC 3	.7V		No.	122		ant
Ant. Pol.	Vertic	al	BB		1 Provention		Ch and a start
Test Mode: TX 802.11a Mode 5825MHz (U-NII-3)							-
Remark:		port for the ribed limit.	emission w	hich more tha	in 10 dB l	below the	1081
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1 1 ⁻	1649.650	38.66	18.56	57.22	68.30	-11.08	peak

Remark:

2

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

11650.266

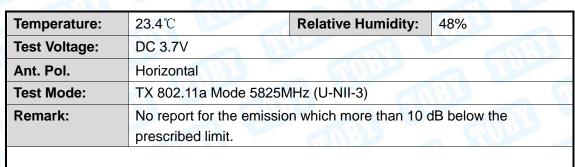
2. Peak/AVG ($dB\mu V/m$)= Corr. (dB/m)+ Read Level ($dB\mu V$)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

26.63

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

18.55


45.18

54.00

5. No report for the emission which more than 20dB below the prescribed limit.

AVG

-8.82

No. Mk.		Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBu\//m	dBu∀/m	dB	Detector
1		*	11649.318	26.09	18.56	44.65	54.00	-9.35	AVG
2			11650.110	39.06	18.55	57.61	68.30	-10.69	peak

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

A 15 15 1			
Temperature:	23.4 ℃	Relative Humidity:	48%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	TUN A	No.
Test Mode:	TX 802.11a Mode 5825	MHz (U-NII-3)	
Remark:	No report for the emission	on which more than 10	dB below the
	prescribed limit.		

-	No.	Mk	. Freq.			Measure- ment	Limit	Over	
-			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
-	1		11649.650	38.66	18.56	57.22	68.30	-11.08	peak
-	2	*	11650.266	26.63	18.55	45.18	54.00	-8.82	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.4℃	Relative Humidity:	48%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)						

No	р. М	k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	*	11	490.410	26.32	18.35	44.67	54.00	-9.33	AVG
2		11	491.220	37.14	18.35	55.49	68.30	-12.81	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4℃	Relative Humidity:	48%				
Test Voltage:	DC 3.7V		TUL				
Ant. Pol.	Vertical						
Test Mode:	TX 802.11n(HT20) Mod	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)					

No	р. M	k. Freq	· · · · ·		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB	Detector
1	*	11489.5	15 27.47	18.35	45.82	54.00	-8.18	AVG
2		11490.2	80 37.74	18.35	56.09	68.30	-12.21	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.4 °C	Relative Humidity:	48%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)							

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBu\//m	dBu\/m	dB	Detector
1		11570.860	38.91	18.45	57.36	68.30	-10.94	peak
2	*	11571.222	26.84	18.45	45.29	54.00	-8.71	AVG

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4 ℃	Relative Humidity:	48%				
Test Voltage:	DC 3.7V		TU'L				
Ant. Pol.	Vertical						
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)					

No	No. Mk.		Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	*	11	1569.980	25.85	18.45	44.30	54.00	-9.70	AVG
2		11	1570.202	38.81	18.45	57.26	68.30	-11.04	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.4 ℃	Relative Humidity:	48%			
Test Voltage:	DC 3.7V		10			
Ant. Pol.	Horizontal		TUDE A			
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)					

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1		11590.255	38.75	18.47	57.22	68.30	-11.08	peak
2	*	11590.471	26.80	18.47	45.27	54.00	-8.73	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.4℃	Relative Humidity:	48%				
Test Voltage:	DC 3.7V			5			
Ant. Pol.	Vertical		1				
Test Mode:	TX 802.11n(HT20) Mode	X 802.11n(HT20) Mode 5825MHz (U-NII-3)					

	No.	Mk	. Freq.	•		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu\/m	dB	Detector
1		*	11589.390	26.71	18.47	45.18	54.00	-8.82	AVG
2			11590.600	38.74	18.47	57.21	68.30	-11.09	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.9℃	Relative Humidity:	42%				
Test Voltage:	DC 3.7V		TOUS A				
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11ac(VHT20) Mc	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)					
Test Widde.							

No	b. N	1k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu\//m	dB	Detector
1	*	1	1489.850	25.73	18.35	44.08	54.00	-9.92	AVG
2		1	1490.260	37.75	18.35	56.10	68.30	-12.20	peak

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		Carls -
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5745MHz (U-NII-3)	

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11490.420	36.82	18.35	55.17	68.30	-13.13	peak
2	*	11491.288	27.23	18.35	45.58	54.00	-8.42	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.9℃	Relative Humidity:	42%	U.S.
Test Voltage:	DC 3.7V	RU C	INDO D	
Ant. Pol.	Horizontal		e	
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5785MHz (U-NII-3)		

No	b. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu\/m	dB	Detector
1		11570.131	38.83	18.45	57.28	68.30	-11.02	peak
2	*	11571.112	26.85	18.45	45.30	54.00	-8.70	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	Thursday and the	
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5785MHz (U-NII-3)	100

No).	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∖/m	dB	Detector
1	1	k	11569.590	26.93	18.45	45.38	54.00	-8.62	AVG
2			11570.155	39.60	18.45	58.05	68.30	-10.25	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.9℃	Relative Humidity:	42%			
Test Voltage:	DC 3.7V	RU C	TODO A			
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)					

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11650.250	38.84	18.55	57.39	68.30	-10.91	peak
2	*	11650.740	26.50	18.55	45.05	54.00	-8.95	AVG

TOBY

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	nu.	
Test Mode:	TX 802.11ac(VHT20) Mo	de 5825MHz (U-NII-3)	A 100

No	р. М	lk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	*	1	1650.220	26.66	18.55	45.21	54.00	-8.79	AVG
2		1	1650.670	37.58	18.55	56.13	68.30	-12.17	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.9℃	Relative Humidity:	42%			
Test Voltage:	DC 3.7V		TUD A			
Ant. Pol.	Horizontal		COB)			
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)					

Nc	D. N	1k.	Freq.		Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBu\//m	dBu\//m	dB	Detector
1	*	1	1509.288		18.38	44.52	54.00	-9.48	AVG
2		1	1510.510	38.92	18.38	57.30	68.30	-11.00	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3)					

N	lo.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBu∀/m	dBuV/m	dB	Detector
1		*	11510.480	26.29	18.38	44.67	54.00	-9.33	AVG
2			11510.630	38.43	18.38	56.81	68.30	-11.49	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.9℃	Relative Humidity:	42%			
Test Voltage:	DC 3.7V	RU C	TOUS A			
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11n(HT40) Mode 5795MHz (U-NII-3)					

No	b. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11590.277	27.25	18.47	45.72	54.00	-8.28	AVG
2		11590.430	39.34	18.47	57.81	68.30	-10.49	peak

TOBY

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%
Test Voltage:	DC 3.7V		1270
Ant. Pol.	Vertical		NUL -
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3)	

N	0.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11570.400	27.25	18.45	45.70	54.00	-8.30	AVG
2			11570.610	38.71	18.45	57.16	68.30	-11.14	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.9℃	Relative Humidity:	42%			
Test Voltage:	DC 3.7V	BU G	TOUL A			
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)					

No	D. N	/k.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBu∀/m	dB	Detector
1	*	1	1510.220	27.20	18.38	45.58	54.00	-8.42	AVG
2		1	1511.166	37.93	18.38	56.31	68.30	-11.99	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	TU-	
Test Mode:	TX 802.11ac(VHT40) Mc	ode 5755MHz (U-NII-3)	

No). N	1k.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBu\//m	dBu∀/m	dB	Detector
1	*	11	1509.899	25.90	18.38	44.28	54.00	-9.72	AVG
2		11	1510.160	37.00	18.38	55.38	68.30	-12.92	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.9 ℃	Relative Humidity:	42%			
Test Voltage:	DC 3.7V	RU C	TOUS A			
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)					

No	b. Mi	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBu\//m	dBuV/m	dB	Detector
1	*	11589.950	26.99	18.47	45.46	54.00	-8.54	AVG
2		11590.210	38.69	18.47	57.16	68.30	-11.14	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.9℃	Relative Humidity:	42%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	anys -	THU:
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5795MHz (U-NII-3)	

No	. M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu\//m	dB	Detector
1	*	11590.488	39.95	18.47	58.42	68.30	-9.88	peak
2		11590.660	25.58	18.47	44.05	54.00	-9.95	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	23.9℃	Relative Humidity:	42%				
Test Voltage:	DC 3.7V	BU C	TOUS A				
Ant. Pol.	Horizontal		6039				
Test Mode:	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)						

N	o. M	k. Freq.	· · · ·	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBu\/m	dB	Detector
1		11549.800	37.65	18.43	56.08	68.30	-12.22	peak
2	*	11550.299	25.70	18.42	44.12	54.00	-9.88	AVG

TOBY

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.9℃	Relative Humidity:	42%					
Test Voltage:	DC 3.7V	AV	ARY .					
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 802.11ac(VHT80) Mo	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)						

Ν	۱o.	Mk	. Freq.	· · · ·		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11550.235	25.77	18.42	44.19	54.00	-9.81	AVG
2			11551.120	38.89	18.42	57.31	68.30	-10.99	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

-----END OF REPORT-----