

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202211-0239-13 Page: 1 of 68

Radio Test Report FCC ID: 2A3XN-SCORE51X

Report No.	:	TBR-C-202211-0239-13
Applicant	19	Keefe Group
Equipment Under 1	lest ((EUT)
EUT Name	E.	Tablet PC
Model No.	:	SCORE51X
Series Model No.	:	P501B
Brand Name	-	SCORE5CT
Sample ID	17:	RW-C-202211-0239-1-1#& RW-C-202211-0239-1-2#
Receipt Date		2022-11-29
Test Date	in	2022-11-29 to 2022-12-12
Issue Date		2022-12-19
Standards	-	FCC Part 15 Subpart E 15.407
Test Method	1:07	ANSI C63.10: 2013 KDB 789033 D02 General UNII Test Procedures New Rules v02r01
Conclusions		PASS
		In the configuration tested, the EUT complied with the standards specified above.
Witness Engineer		: Wade W TECH Wade Ly
Engineer Supervise	or	: WAN SPE TONIA SU
Engineer Manager		: WALL W : WAN S : frug dai. : frug dai.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CO	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	6
	1.3 Block Diagram Showing the Configuration of System Tested	8
	1.4 Description of Support Units	8
	1.5 Description of Test Mode	9
	1.6 Description of Test Software Setting	11
	1.7 Measurement Uncertainty	
	1.8 Test Facility	13
2.	TEST SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	
	5.6 Test Data	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	23
	6.5 EUT Operating Mode	23
	6.6 Test Data	
7.	RESTRICTED BANDS REQUIREMENT	24
	7.1 Test Standard and Limit	
	7.2 Test Setup	25
	7.3 Test Procedure	25
	7.4 Deviation From Test Standard	

	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	BANDWIDTH TEST	27
	8.1 Test Standard and Limit	27
	8.2 Test Setup	
	8.3 Test Procedure	27
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	29
	8.6 Test Data	29
9.	MAXIMUM CONDUCTED OUTPUT POWER	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Mode	
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY TEST	32
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	32
	10.4 Deviation From Test Standard	
	10.5 Antenna Connected Construction	
	10.6 Test Data	
11.	FREQUENCY STABILITY	
	11.1 Test Standard and Limit	
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	35
	11.5 Antenna Connected Construction	
	11.6 Test Data	35
12.	ANTENNA REQUIREMENT	
	12.1 Test Standard and Limit	
	12.2 Deviation From Test Standard	
	12.3 Antenna Connected Construction	
	12.4 Test Data	

ATTACHMENT A CONDUCTED EMISSION TEST DATA	37
ATTACHMENT BUNWANTED EMISSIONS DATA	

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202211-0239-13	Rev.01	Initial issue of report	2022-12-19
LEGON C	GON .		anB!
In In		TUD TO	
	aus		(TOBU
A COD			
CO BI		3	
and the	B	1000	
Contra C	mOB		TOB
and loo	A LA	TOP TO THE	AN LO
Con Star	mOBL		La mai
A LAND		Our During	

1. General Information about EUT

1.1 Client Information

Applicant		Keefe Group		
Address		10880 Linpage PI, St. Louis, MO , United States 63132		
Manufacturer	:	henzhen Ployer Electronics Co., Ltd.		
Address		6~7F, Building 8, Rundongsheng Industrial Area, Longzhu		
	2	Community, Xixiang Street, Bao'an District, Shenzhen, 518000,		
		China.		

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Tablet PC		
Models No.		SCORE51X, P501B		
Model Different	-	All these models are identical in the same PCB, layout and electrical circuit, the only difference is model name.		
TOBY			Operation Frequency: U-NII-1: 5180MHz~5240MHz U-NII-3: 5745MHz~5825MHz Antenna Gain: U-NII-1: 2.71dBi FPC Antenna U-NII-3: 2.76dBi FPC Antenna	
Product Description		Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM)	
		Bit Rate of Transmitter:	802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 150Mbps 802.11ac: at most 433.3 Mbps	
Power Rating	~	USB Input: DC 5V2.5A		
	DC 3.7V by 4000mAh Rechargeable Li-ion battery			
Software Version	- 1	android 10.0		
Hardware Version	83	V1.0		
Remark:			THE TOWN	

(1)The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

(2)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

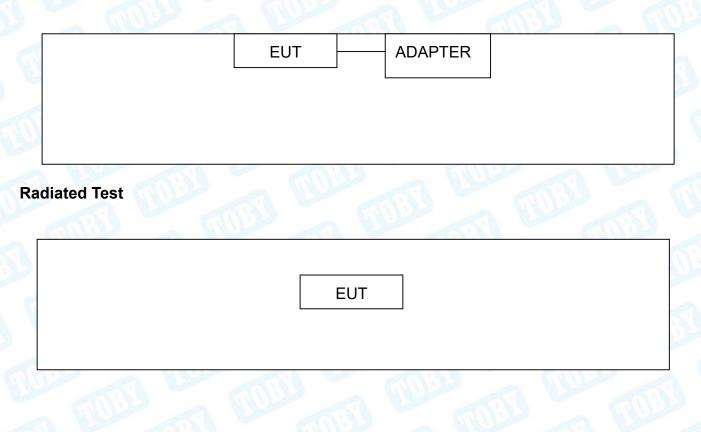
(3)Antenna information provided by the applicant.

(4) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
E190, E240MU	36	5180 MHz	44	5220 MHz
5180~5240MHz	38	5190 MHz	46	5230 MHz
(U-NII-1)	40	5200 MHz	48	5240 MHz
	42	5210 MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.


Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5745~5825MHz	151	5755 MHz	159	5795 MHz
(U-NII-3)	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159. For 80 MHz Bandwidth, use channel 155.

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

1.4 Description of Support Units

		Equipment Inform	nation	
Name	Model	FCC ID/SDOC	Manufacturer	Used "√"
Adapter	C C C C C C C C C C C C C C C C C C C		HUAWEI	\checkmark
		Cable Information		
Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	Yes	NO	1.0M	Accessory
Remark: The a	dapter and cable pr	ovided by Laborator	y.	anB)

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	For Conducted Test		
I Test Mode	Description		
Mode 1	TX a Mode(5180MHz)		
For	Radiated Test Below 1GHz		
Il Test Mode	Description		
Mode 2	TX a Mode(5180MHz)		
For Radiated	Above 1GHz and RF Conducted Test		
Final Test Mode	Description		
Mode 3	TX Mode 802.11a Mode Channel 36/40/48		
Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/40/48		
Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48		
Mode 6	TX Mode 802.11n(HT40) Mode Channel 38/46		
Mode 7	TX Mode 802.11ac(VHT40) Mode Channel 38/46		
Mode 8	TX Mode 802.11ac(VHT80) Mode Channel 42		
Mode 9	TX Mode 802.11a Mode Channel 149/157/165		
Mode 10	TX Mode 802.11n(HT20) Mode Channel 149/157/165		
Mode 11	TX Mode 802.11ac(vHT20) Mode Channel 149/157/165		
Mode 12	TX Mode 802.11n(HT40) Mode Channel 151/159		
Mode 13	TX Mode 802.11ac(VHT40) Mode Channel 151/159		
Mode 14	TX Mode 802.11ac(VHT80) Mode Channel 155		
	Mode 1 For I Test Mode Mode 2 For Radiated A Final Test Mode Mode 3 Mode 3 Mode 4 Mode 5 Mode 5 Mode 6 Mode 7 Mode 7 Mode 8 Mode 9 Mode 10 Mode 11 Mode 12 Mode 13		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0 802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1 802.11ac(VHT80) Mode: MCS 0/ Nss1

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test	Software: Engineering mode			
U-NII-1				
Mode	Frequency (MHz)	Parameters		
	5180	17		
802.11a	5200	20		
	5240	20		
	5180	16.5		
802.11n(HT20)	5200	22		
	5240	20		
	5180	16.5		
802.11ac(VHT20)	5200	21		
	5240	20		
000 44	5190	16.5		
802.11n(HT40)	5230	20		
802.11ac(VHT40)	5190	17		
	5230	20		
802.11ac(VHT80)	5210	20		

TOBY Part of the Cotecna Group

U-NII-3		
Mode	Frequency (MHz)	Parameters
	5745	23
802.11a	5785	23
	5825	23
	5745	23
802.11n(HT20)	5785	23
	5825	22
	5745	23
802.11ac(VHT20)	5785	23
	5825	23
000 44-(UT40)	5755	21
802.11n(HT40)	5795	21
002 44-c()(UT 40)	5755	21
802.11ac(VHT40)	5795	21
802.11ac(VHT80)	5775	21

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty
	r al allieters	(U _{Lab})
	Level Accuracy:	±3.50 dB
Conducted Emission	9kHz~150kHz	
mBJ M	150kHz to 30MHz	±3.10 dB
Radiated Emission	Level Accuracy:	±4.60 dB
	9kHz to 30 MHz	<u>+</u> 4.00 db
Radiated Emission	Level Accuracy:	
Radiated Emission	30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy:	±4.20 dB
	Above 1000MHz	

Report No.: TBR-C-202211-0239-13 Page: 13 of 68

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

Standard Section	T			_
FCC	Test Item	Test Sample(s)	Judgment	Remar
FCC 15.207(a)	Conducted Emission	RW-C-202211-0239-1-1#	PASS	N/A
FCC 15.209 & 15.407(b)	Radiated Unwanted Emissions	RW-C-202211-0239-1-1#	PASS	N/A
FCC 15.203	Antenna Requirement	RW-C-202211-0239-1-2#	PASS	N/A
FCC 15.407(a)	-26dB Emission Bandwidth	RW-C-202211-0239-1-2#	PASS	N/A
FCC 15.407(a)	99% Occupied Bandwidth	RW-C-202211-0239-1-2#	PASS	N/A
FCC 15.407(e)	-6dB Min Emission Bandwidth	RW-C-202211-0239-1-2#	PASS	N/A
FCC 15.407(a)	Maximum Conducted Output Power	RW-C-202211-0239-1-2#	PASS	N/A
FCC 15.407(a)	Power Spectral Density	RW-C-202211-0239-1-2#	PASS	N/A
FCC 15.407(b)& 15.205	Emissions in Restricted Bands	RW-C-202211-0239-1-2#	PASS	N/A
FCC 15.407(b)&15.209	Conducted Unwanted Emissions	RW-C-202211-0239-1-2#	PASS	N/A
FCC 15.407(g)	Frequency Stability	RW-C-202211-0239-1-2#	PASS	N/A
	On Time and Duty Cycle	RW-C-202211-0239-1-2#		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120-3	Tonscend	V3.2.22

4. Test Equipment

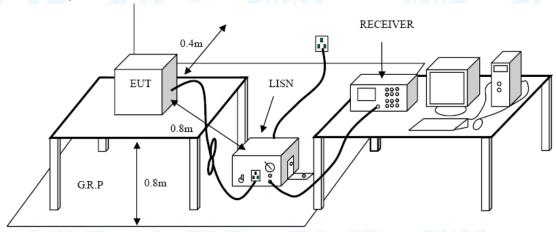
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb.26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 01, 2022	Aug. 31, 2023
Radiation Emission	n Test (A Site)	<u>.</u>		<u> </u>	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb.26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 01, 2022	Aug. 31, 2023
Radiation Emission	n Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 01, 2022	Aug. 31, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472	Feb. 26, 2022	Feb.25, 2023
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 01, 2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 01, 2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 01, 2022	Aug. 31, 2023

Antenna Conducted Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGT	N5182B	MY59101429	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Dec. 16, 2021	Dec. 15, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 01, 2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 23, 2022	Jun. 22, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep. 01, 2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Jun. 23, 2022	Jun. 22, 2023
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023

5. Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.207
 - 5.1.2 Test Limit

Eroquanav	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

● The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

● Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

● I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

●LISN at least 80 cm from nearest part of EUT chassis.

- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.
- 5.4 Deviation From Test Standard No deviation
- 5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

6. Radiated and Conducted Unwanted Emissions

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz			
y Field Strength Measurement Distance			
(microvolt/meter)	(meters)		
2400/F(KHz)	300		
24000/F(KHz)	30		
30	30		
	Field Strength (microvolt/meter) 2400/F(KHz) 24000/F(KHz)		

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz				
Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

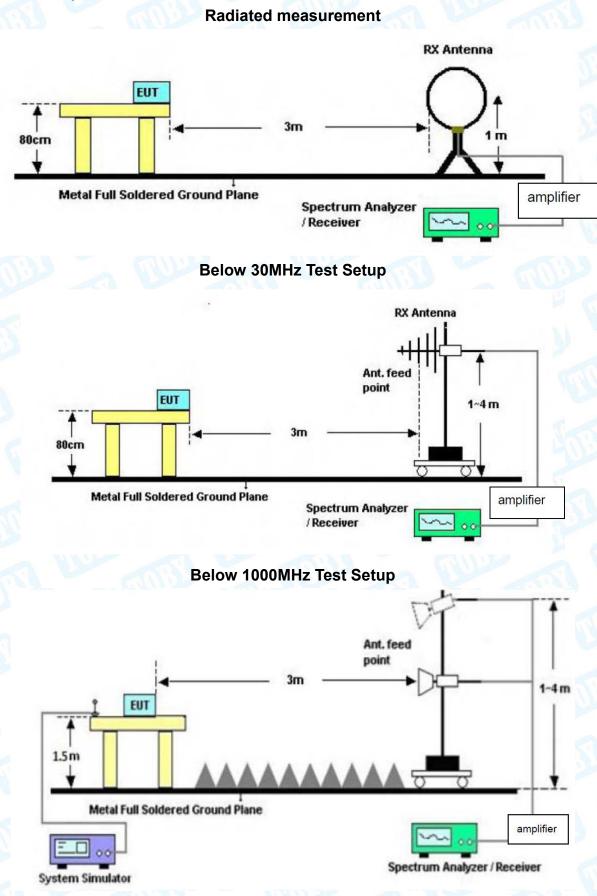
General field strength limits at frequencies Above 1000MHz				
Frequency	Distance of 3m (dBuV/m)			
(MHz)	Peak Average			
Above 1000	74	54		

Note:

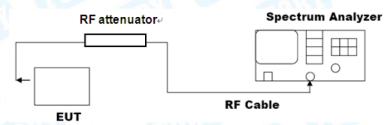
(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power



limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


Report No.: TBR-C-202211-0239-13 Page: 21 of 68

6.2 Test Setup

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

● If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

•Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the external appendix report of 5G Wi-Fi.

7. Restricted Bands Requirement

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard

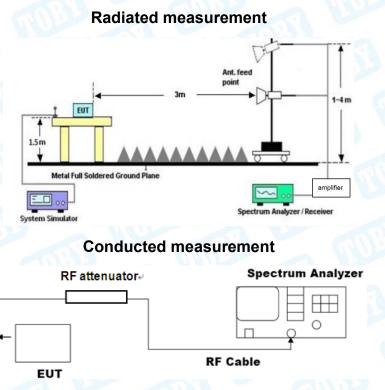
FCC Part 15.205 & FCC Part 15.407(b)

7.1.2 Test Limit

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
2 4	-27(Note 2)	68.3
5725~5825	10(Note 2)	105.3
5725~5625	15.6(Note 2)	110.9
	27(Note 2)	122.3

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:


 $E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at 5 MHz above or below the band edge.

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

7.3 Test Procedure

---Radiated measurement

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

The Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to

determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies

 ${\leq}30$ MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

f) Compare the resultant electric field strength level with the applicable regulatory limit.

g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

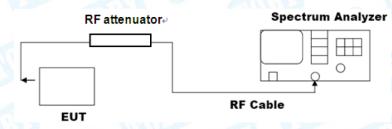
Please refer to the description of test mode.

7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the external appendix report of 5G Wi-Fi.

8. Bandwidth Test


- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard

FCC Part 15.407(a) & FCC Part 15.407(e)

8.1.2 Test Limit

Test Item	Limit	Frequency Range (MHz)
	N/A	5150~5250
26 Bandwidth		5250~5350
		5500~5725
6 dB Bandwidth	>500kHz	5725~5850
	N/A	5150~5250
99% Bandwidth		5250~5350
99% Bandwidth		5500~5725
		5725~5850

8.2 Test Setup

8.3 Test Procedure

- ---Emission bandwidth
- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.

Report No.: TBR-C-202211-0239-13 Page: 28 of 68

----DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

● The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.
e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum

until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled.Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

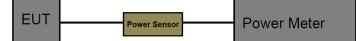
No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.



9. Maximum Conducted Output Power

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.407(a)
 - 9.1.2 Test Limit

Limit	Frequency Range(MHz)				
	5150~5250	5250~5350	5500~5725	5725~5850	
Max Conducted TX Power	Master Device: 1 Watt(30dBm) Client Device: 250mW(24dBm)	24dBm (250 mW) or 11 dBm+ 10 log B, whichever is lower (B= 26-dB emission BW)		1 Watt (30dBm)	
Max E.I.R.P	4 W (36 dBm) with 6 dBi antenna	1 W (30 dBm) with 6 dBi antenna		4 W (36 dBm) with 6 dBi antenna	
	200 W (53 dBm) for fixed P-t-P application with 23 dBiantenna				
	Additional rule for outdoor operation: Max_EIRP< 125 mW(21 dBm) at any elevation angle > 30°from horizon				
TPC	NO	YES, if Max_Elf	RP ≥ 500 mW (27	S V	
			lower EIRP below	NO	
		NO, if Max_E	EIRP < 500mW dBm)	E LU	

9.2 Test Setup

9.3 Test Procedure

The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

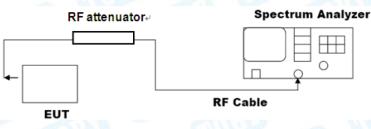
9.4 Deviation From Test Standard No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

9.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.



10. Power Spectral Density Test

- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard
 - FCC Part 15.407(a)
 - 10.1.2 Test Limit

Test Item	Limit	Frequency	
restitem	Linit	Range(MHz)	
Power Spectral - Density -	Master Device: 17dBm/MHz	5150~5250	
	Client Device: 11dBm/MHz		
	11dBm/MHz	5250~5350	
	11dBm/MHz	5500~5725	
	30dBm/500kHz	5725~5850	

10.2 Test Setup

10.3 Test Procedure

•Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:

a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power....."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)

b) Use the peak search function on the instrument to find the peak of the spectrum.

- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.

2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add1 dB to the final result to compensate for the difference between linear averaging and power averaging.

d) The result is the PPSD.

e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:

1) Set RBW \geq 1 / T, where T is defined in 12.2 a).

2) Set VBW ≥ [3*RBW].

3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

10.4 Deviation From Test Standard

No deviation

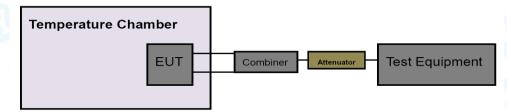
10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

11. Frequency Stability


- 11.1 Test Standard and Limit
 - 11.1.1 Test Standard

FCC Part 15.407(g)

11.1.2 Test Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

11.2 Test Setup

11.3 Test Procedure

Frequency stability with respect to ambient temperature

a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies shown in 5.6.

b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument, through an attenuator if necessary.

NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory agency is the recommended measuring instrument.

c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.

e) Set the temperature control on the chamber to the highest specified in the regulatory

requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.

f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.

- g) Measure the frequency at each of frequencies specified in 5.6.
- h) Switch OFF the EUT but do not switch OFF the oscillator heater.

i) Lower the chamber temperature by not more that 10° C, and allow the temperature inside the chamber to stabilize.

j) Repeat step f) through step i) down to the lowest specified temperature.

Frequency stability when varying supply voltage

Unless otherwise specified. these tests shall be made at ambient room temperature (+15 $^{\circ}$ C to +25 $^{\circ}$ C). An antenna shall be connected to the antenna output terminals of the EUT if possible. If the EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.

a) Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency-measuring instrument.

NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory agency is the recommended measuring instrument.

b) Tune the EUT to one of the number of frequencies required in 5.6. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

c) Measure the frequency at each of the frequencies specified in 5.6.

d) Repeat the above procedure at 85% and 115% of the nominal supply voltage as

described in 5.13.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

12. Antenna Requirement

12.1 Test Standard and Limit

12.1.1 Test Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is U-NII-1:2.71dBi&U-NII-3:2.76dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Test Data

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

	Antenna Type	
	Permanent attached antenna	2
2	Unique connector antenna	
4000	Professional installation antenna	

Attachment A-- Conducted Emission Test Data

TOBY

Temperatur	e: 25.1℃		R	elative Hum	54%		
Test Voltage	e: AC 120)V/60Hz			5	100	
Terminal:	Line		100	-			1
Fest Mode:	Mode 1	400.		1 LUL		12	1
Remark:	Only w	orse case is	reported.		(A)	100	~
80.0 dBuV							
						QP AV	
Ňĸ .		×					
	MAAN	AV III					
30		Why why why he	lander Min Anthon	wh-A-mananaltharana	and the second at the	ı.	
$AA^{*}A$	A A A M	γ <u>η</u> τη τη	naalee i sheed e	Million control		My marker have	the work where
VVV		mound	approximation and	warden the address of the second	and an alexandra	- and the second second	mand when many many many many many many many man
							A
-20							
0.150	0.5		(MHz)	5			30.000
No. M	k Eroa	Reading	Correct	Measure-	Limit	Over	
	k. Freq. MHz		Factor	dBuV	dBuV	dB	Detector
1	0.1580	11.86	11.09	22.95		-42.61	Detector QP
2	0.1580	-2.23	11.09	8.86		-46.70	AVG
3	0.1819	30.35	11.04	41.39		-23.00	QP
4	0.1819	13.32	11.04	24.36		-30.03	AVG
5	0.2540	11.74	10.92	22.66		-38.96	QP
6	0.2540	-2.84	10.92	8.08		-43.54	AVG
		23.65	10.87	34.52	59.35	-24.83	QP
7	0.3339	20.00			10.05	00 50	AVG
	0.3339	4.96	10.87	15.83	49.35	-33.52	AVG
7			10.87 10.90	15.83 37.44		-33.52 -18.56	QP
7	0.3339	4.96			56.00		
7 8 9 *	0.3339 0.6380	4.96 26.54	10.90	37.44	56.00 46.00	-18.56	QP

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

-	N NO			66	110		61113		
Tempe	erature:	25.1℃	;	2 13	Relative H	umidity	54%		
Test V	oltage:	AC 12	20V/60Hz			PP-1	-	L'US	
Termi	nal:	Neutra	leutral						
Test N	lode:	Mode	1	N.S.S.	-	1		and b	
Rema	rk:	Only v	vorse case i	s reported		-	12		
80.0	dBuV								
30	Ă Ă M M M	MANNAM MAN	A Munanimum	the Marine for the second		ekalantakennakennak	QP: AVE		
-20									
0.150		0.5		(MHz)	5			30.000	
٩	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	
	1	0.1819	30.64	11.04	41.68	64.39	-22.71	QP	
	2	0.1819	12.68	11.04	23.72	54.39	-30.67	AVG	

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
- 110.	WIX.	•						Datastan
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1819	30.64	11.04	41.68	64.39	-22.71	QP
2		0.1819	12.68	11.04	23.72	54.39	-30.67	AVG
3		0.2340	27.36	10.95	38.31	62.30	-23.99	QP
4		0.2340	11.36	10.95	22.31	52.30	-29.99	AVG
5		0.3300	26.63	10.87	37.50	59.45	-21.95	QP
6		0.3300	10.75	10.87	21.62	49.45	-27.83	AVG
7	*	0.6460	29.40	10.90	40.30	56.00	-15.70	QP
8		0.6460	16.97	10.90	27.87	46.00	-18.13	AVG
9		1.1180	17.00	10.66	27.66	56.00	-28.34	QP
10		1.1180	4.39	10.66	15.05	46.00	-30.95	AVG
11		1.8460	18.13	10.53	28.66	56.00	-27.34	QP
12		1.8460	6.67	10.53	17.20	46.00	-28.80	AVG
nark:								

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Unwanted Emissions Data

---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	24.3 ℃		Relative Humidity:	45%				
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Horizont	lorizontal						
Test Mode:	Mode 2 ⁻	Node 2 TX Mode 802.11a Mode Channel 36						
Remark:	Only wor	Only worse case is reported.						
80.0 dBu¥/m								
70								
60				5C 3M Radiation				
50			Margin-6					
40								
30				5 male of the second and pe				
20	annon service and the service of the	3	man affer that the second of the second s	X why have the second s				
10	and the second second	alungan all and a second and	Make and a second s					
0								
-10								
-20 30.000	60.00	(MHa	z) 300.00	1000.0				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	43.9658	38.36	-22.76	15.60	40.00	-24.40	peak	Р
2	63.3132	39.76	-23.91	15.85	40.00	-24.15	peak	Р
3	162.6106	38.07	-22.35	15.72	43.50	-27.78	peak	Р
4	399.0302	38.93	-17.88	21.05	46.00	-24.95	peak	Р
5	526.3967	37.55	-14.71	22.84	46.00	-23.16	peak	Р
6 *	884.5029	37.61	-7.69	29.92	46.00	-16.08	peak	Р

*:Maximum data x:Over limit !:over margin

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Temperature:	24.3 ℃		Relative Humidity:	45%				
Test Voltage:	DC 3.7V		6002	100				
Ant. Pol.	Vertical	/ertical						
Test Mode:	Mode 2	Mode 2 TX Mode 802.11a Mode Channel 36						
Remark:	Only wor	orse case is report	ted.	A				
80.0 dBuV/m								
70								
50)FCC 15C 3M Radiation gin -6 dB				
40								
30				5 State Martine Per				
20 July March March 1	- and the standard and the standard	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Mary mary market and the market	mater with the start of the sta				
10	and a second sec	A Mary Markall a strand and a						
0								
-10								
-20 30.000	60.00	a	MHz) 300.00	1000.0				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	42.1542	38.21	-22.83	15.38	40.00	-24.62	peak	Р
2	53.3179	40.20	-22.89	17.31	40.00	-22.69	peak	Р
3	156.4578	39.15	-22.25	16.90	43.50	-26.60	peak	Р
4	309.9977	39.13	-20.67	18.46	46.00	-27.54	peak	P
5	467.2349	37.71	-16.21	21.50	46.00	-24.50	peak	Р
6 *	684.7454	37.29	-11.44	25.85	46.00	-20.15	peak	Ρ

*:Maximum data x:Over limit !:over margin

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Above 1GHz

5180MHz-5240MHz(U-NII-1)

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal	60022	
Test Mode:	TX 802.11a Mode 5180N	/Hz (U-NII-1)	00 _ 0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10358.645	38.19	6.06	44.25	54.00	-9.75	AVG	Р
2 *	10359.070	54.14	6.06	60.20	68.30	-8.10	peak	Ρ

Remark:

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

			E IIII
Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	TUD .	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5180M	IHz (U-NII-1)	an Bl

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10358.010	39.76	6.06	45.82	54.00	-8.18	AVG	Ρ
2	10362.430	50.38	6.07	56.45	68.30	-11.85	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%				
Test Voltage:	DC 3.7V						
Ant. Pol.	nt. Pol. Horizontal						
Test Mode:	TX 802.11a Mode 5200M	1Hz (U-NII-1)	m nu				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10398.620	39.96	6.21	46.17	54.00	-7.83	AVG	Р
2	10400.040	52.93	6.21	59.14	68.30	-9.16	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		COP.
Ant. Pol.	Vertical	THU2	
Test Mode:	TX 802.11a Mode 5200M	1Hz (U-NII-1)	0000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10397.790	40.46	6.21	46.67	54.00	-7.33	AVG	Р
2	10399.895	51.27	6.21	57.48	68.30	-10.82	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6°C Relative Humidity: 56%					
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	BU	1000			
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10479.230	51.78	6.36	58.14	68.30	-10.16	peak	Ρ
2 *	10479.655	42.36	6.36	48.72	54.00	-5.28	AVG	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	LUC OT	E C
Ant. Pol.	Vertical	THU2	
Test Mode:	TX 802.11a Mode 5240M	1Hz (U-NII-1)	1000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10478.155	39.68	6.35	46.03	54.00	-7.97	AVG	Ρ
2	10479.080	51.06	6.35	57.41	68.30	-10.89	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%		
Test Voltage:	DC 3.7V	TU22	200		
Ant. Pol.	Horizontal	TRU C			
Test Mode:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10358.105	50.08	6.06	56.14	68.30	-12.16	peak	Р
2 *	10359.310	40.36	6.06	46.42	54.00	-7.58	AVG	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	RUDB A	
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10358.495	39.25	6.06	45.31	54.00	-8.69	AVG	Р
2	10360.915	51.35	6.06	57.41	68.30	-10.89	peak	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6 ℃	56%				
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	TRU C	TODU A			
Test Mode:	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10401.340	52.20	6.21	58.41	68.30	-9.89	peak	Ρ
2 *	10401.380	39.04	6.21	45.25	54.00	-8.75	AVG	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		6
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5200MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10398.565	40.94	6.21	47.15	54.00	-6.85	AVG	Р
2	10401.230	51.20	6.21	57.41	68.30	-10.89	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		200
Ant. Pol.	Horizontal	COBU C	1000
Test Mode:	TX 802.11n(HT20)) Mode 5240MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10478.715	40.81	6.35	47.16	54.00	-6.84	AVG	Ρ
2	10480.680	51.81	6.36	58.17	68.30	-10.13	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG ($dB\mu V/m$)= Corr. (dB/m)+ Read Level ($dB\mu V$) 3. Margin (dB) = Peak/AVG ($dB\mu V/m$)-Limit PK/AVG($dB\mu V/m$)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mod	e 5240MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10478.085	39.53	6.35	45.88	54.00	-8.12	AVG	Ρ
2	10480.240	51.18	6.36	57.54	68.30	-10.76	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal	BU C	1000				
Test Mode:	TX 802.11ac(VHT20) Mc	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10357.800	41.26	6.06	47.32	54.00	-6.68	AVG	Ρ
2	10361.435	51.15	6.07	57.22	68.30	-11.08	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG ($dB\mu V/m$)= Corr. (dB/m)+ Read Level ($dB\mu V$) 3. Margin (dB) = Peak/AVG ($dB\mu V/m$)-Limit PK/AVG($dB\mu V/m$)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20)	Mode 5180MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10359.245	39.59	6.06	45.65	54.00	-8.35	AVG	Ρ
2	10361.630	49.14	6.07	55.21	68.30	-13.09	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		200
Ant. Pol.	Horizontal	COBU C	1000
Test Mode:	TX 802.11ac(VH	T20) Mode 5200MHz (U-NII-1)	(COD)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10398.955	39.61	6.21	45.82	54.00	-8.18	AVG	Р
2	10400.985	48.00	6.21	54.21	68.30	-14.09	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	TUD T	
Test Mode:	TX 802.11ac(VHT2	0) Mode 5200MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10397.595	50.15	6.20	56.35	68.30	-11.95	peak	Р
2 *	10398.565	39.00	6.21	45.21	54.00	-8.79	AVG	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	TU25	200
Ant. Pol.	Horizontal	TOBY C	TODU A
Test Mode:	TX 802.11 ac(VHT20)) Mode 5240MHz (U-NII-1)	60 B

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10478.505	42.22	6.35	48.57	54.00	-5.43	AVG	Ρ
2	10482.275	48.88	6.36	55.24	68.30	-13.06	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		U I
Ant. Pol.	Vertical		RUUS
Test Mode:	TX 802.11ac(VHT20) Mc	de 5240MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10479.615	40.91	6.36	47.27	54.00	-6.73	AVG	Ρ
2	10482.420	49.05	6.36	55.41	68.30	-12.89	peak	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		200
Ant. Pol.	Horizontal	COBU C	1000
Test Mode:	TX 802.11n(HT40	0) Mode 5190MHz (U-NII-1)	6022

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10379.745	41.85	6.14	47.99	54.00	-6.01	AVG	Р
2	10380.875	52.27	6.14	58.41	68.30	-9.89	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical	TUDD				
Test Mode:	TX 802.11n(HT40) N	/lode 5190MHz (U-NII-1)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10378.085	41.28	6.12	47.40	54.00	-6.60	AVG	Р
2	10381.935	50.00	6.14	56.14	68.30	-12.16	peak	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	A TUP	
Ant. Pol.	Horizontal		TOD A
Test Mode:	TX 802.11n(HT40) M	ode 5230MHz (U-NII-1)	m Dy

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10458.465	40.86	6.32	47.18	54.00	-6.82	AVG	Ρ
2	10459.700	51.09	6.32	57.41	68.30	-10.89	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	TUD T	
Test Mode:	TX 802.11n(HT40) Mode	e 5230MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10457.655	40.65	6.32	46.97	54.00	-7.03	AVG	Ρ
2	10458.620	49.09	6.32	55.41	68.30	-12.89	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Horizontal	BJ C	1000		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5190MHz (U-NII-1)	Cellan .		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10378.730	40.36	6.12	46.48	54.00	-7.52	AVG	Р
2	10381.450	50.27	6. 1 4	56.41	68.30	-11.89	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	TUOD A	
Test Mode:	TX 802.11ac(VHT40) Mc	ode 5190MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10379.245	40.88	6.13	47.01	54.00	-6.99	AVG	Р
2	10381.595	50.27	6.14	56.41	68.30	-11.89	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		200
Ant. Pol.	Horizontal	COBJ C	1000
Test Mode:	TX 802.11ac(VH	T40) Mode 5230MHz (U-NII-1)	(COD)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10458.015	38.88	6.32	45.20	54.00	-8.80	AVG	Р
2	10460.725	50.22	6.32	56.54	68.30	-11.76	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	auss	
Test Mode:	TX 802.11ac(VHT40) Mc	ode 5230MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10460.185	38.89	6.32	45.21	54.00	-8.79	AVG	Ρ
2	10460.335	50.22	6.32	56.54	68.30	-11.76	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	BU G	
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT80) Mc	de 5210MHz (U-NII-1)	2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10417.675	49.96	6.25	56.21	68.30	-12.09	peak	Ρ
2 *	10417.875	38.86	6.25	45.11	54.00	-8.89	AVG	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	ang a	
Test Mode:	TX 802.11ac(VHT80) Mc	ode 5210MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10418.075	39.70	6.25	45.95	54.00	-8.05	AVG	Р
2	10421.145	51.15	6.26	57.41	68.30	-10.89	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5745MHz-5825MHz(U-NII-3)

Temperature:	24.6℃	Relative Humidity:	56%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Horizontal	BU G	1000		
Test Mode:	TX 802.11a Mode 5745M	1Hz (U-NII-3)	0033		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11399.080	36.92	8.98	45.90	54.00	-8.10	AVG	Ρ
2	11400.750	47.33	8.98	56.31	68.30	-11.99	peak	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	TUL!	
Test Mode:	TX 802.11a Mode 5745M	1Hz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11400.725	48.56	8.98	57.54	68.30	-10.76	peak	Ρ
2 *	11400.820	36.23	8.98	45.21	54.00	-8.79	AVG	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Horizontal	COBJ C	1000			
Test Mode:	TX 802.11a Mode	TX 802.11a Mode 5785MHz (U-NII-3)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11570.140	38.81	8.75	47.56	54.00	-6.44	AVG	Р
2	11571.680	46.88	8.74	55.62	68.30	-12.68	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

		E	
Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	anis -	ALL ALL
Test Mode:	TX 802.11a Mode 5785M	1Hz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11567.900	38.16	8.76	46.92	54.00	-7.08	AVG	Ρ
2	11571.500	46.47	8.74	55.21	68.30	-13.09	peak	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV) 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Horizontal	COBJ C	1000			
Test Mode:	TX 802.11a Mode	5825MHz (U-NII-3)	m nu			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11649.095	38.69	8.70	47.39	54.00	-6.61	AVG	Р
2	11649.190	48.81	8.70	57.51	68.30	-10.79	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		COB .
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5825M	/Hz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11649.140	38.06	8.70	46.76	54.00	-7.24	AVG	Ρ
2	11649.435	48.84	8.70	57.54	68.30	-10.76	peak	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6 ℃	Relative Humidity:	56%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	COBJ C	1000				
Test Mode: TX 802.11n(HT20) Mode 5745MHz (U-NII-3)							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11487.925	37.26	9.00	46.26	54.00	-7.74	AVG	Р
2	11488.095	47.52	9.00	56.52	68.30	-11.78	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

		E IIII	
Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5745MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11489.435	37.66	9.00	46.66	54.00	-7.34	AVG	Ρ
2	11490.785	48.53	8.99	57.52	68.30	-10.78	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV) 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode: TX 802.11n(HT20) Mode 5785MHz (U-NII-3)							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11569.500	37.17	8.75	45.92	54.00	-8.08	AVG	Ρ
2	11572.110	47.78	8.74	<u>56.52</u>	68.30	-11.78	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	We and	La const
Ant. Pol.	Vertical	- TUU	
Test Mode:	TX 802.11n(HT20) Mode	5785MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11569.165	38.69	8.75	47.44	54.00	-6.56	AVG	Р
2	11569.840	47.77	8.75	56.52	68.30	-11.78	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		200
Test Mode:	TX 802.11n(HT20) Mode	e 5825MHz (U-NII-3)	TO DO

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11648.785	36.66	8.70	45.36	54.00	-8.64	AVG	Ρ
2	11651.220	47.84	<mark>8.70</mark>	56.54	68.30	-11.76	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	UNIT OF	
Test Mode:	TX 802.11n(HT20) Mod	e 5825MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11647.680	47.54	8.70	56.24	68.30	-12.06	peak	Р
2 *	11649.120	38.81	8.70	47.51	54.00	-6.49	AVG	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		100
Ant. Pol.	Horizontal		TOD'S
Test Mode:	TX 802.11ac(VHT	20) Mode 5745MHz (U-NII-3)	an is

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11489.560	38.64	9.00	47.64	54.00	-6.36	AVG	Р
2	11490.450	47.46	8.99	56.45	68.30	-11.85	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5745MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11488.050	36.54	9.00	45.54	54.00	-8.46	AVG	Ρ
2	11490.465	47.22	8.99	56.21	68.30	-12.09	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	BU				
Test Mode:	TX 802.11ac(VHT20) Mo	de 5785MHz (U-NII-3)	COD .			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11567.965	47.65	8.76	56.41	68.30	-11.89	peak	Ρ
2 *	11567.980	38.59	8.76	47.35	54.00	-6.65	AVG	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	WU DI	E C
Ant. Pol.	Vertical	TUP	
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5785MHz (U-NII-3)	and a

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11569.155	38.49	8.75	47.24	54.00	-6.76	AVG	Р
2	11572.485	48.80	8.74	57.54	68.30	-10.76	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	BU				
Test Mode:	TX 802.11ac(VHT20) Mc	de 5825MHz (U-NII-3)	COD .			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11647.585	47.44	8.70	56.14	68.30	-12.16	peak	Р
2 *	11647.735	37.10	8.70	45.80	54.00	-8.20	AVG	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	WU DI	E C
Ant. Pol.	Vertical	TUP	
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5825MHz (U-NII-3)	0000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11649.690	37.07	8.70	45.77	54.00	-8.23	AVG	Ρ
2	11651.865	48.75	8.70	57.45	68.30	-10.85	peak	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	A TUNE	100
Ant. Pol.	Horizontal	BU	1000
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3)	0027

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11507.800	39.87	8.96	48.83	54.00	-5.17	AVG	Ρ
2	11510.505	47.26	8. <mark>9</mark> 5	56.21	68.30	-12.09	peak	Р

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	NU.	
Ant. Pol.	Vertical	The second	
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3)	0000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11511.120	47.46	8.95	56.41	68.30	-11.89	peak	Р
2 *	11511.575	37.27	8.94	46.21	54.00	-7.79	AVG	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		1
Ant. Pol.	Horizontal	COBY C	1000
Test Mode:	TX 802.11n(HT40	0) Mode 5795MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11591.010	47.85	8.69	56.54	68.30	-11.76	peak	Р
2 *	11591.575	36.53	8.68	45.21	54.00	-8.79	AVG	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

		E IIII	
Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		1
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11587.660	37.78	8.70	46.48	54.00	-7.52	AVG	Р
2	11589.010	48.05	8.69	56.74	68.30	-11.56	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV) 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Horizontal	BU G			
Test Mode:	TX 802.11ac(VHT40) Mo	de 5755MHz (U-NII-3)	COD .		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11509.555	39.15	8.95	48.10	54.00	-5.90	AVG	Ρ
2	11510.820	48.26	8.95	57.21	68.30	-11.09	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V	WWW DE	COR.
Ant. Pol.	Vertical	A TUP	
Test Mode:	TX 802.11ac(VHT40) Mo	de 5755MHz (U-NII-3)	1000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11510.565	36.26	8.95	45.21	54.00	-8.79	AVG	Р
2	11511.100	48.59	8.95	57.54	68.30	-10.76	peak	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	24.6℃	Relative Humidity:	56%				
Test Voltage:	DC 3.7V	A TUNE	100				
Ant. Pol.	Horizontal	BU	1000				
Test Mode:	TX 802.11ac(VHT40) Mo	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11587.730	40.94	8.70	49.64	54.00	-4.36	AVG	Ρ
2	11590.030	48.48	8.69	57.17	68.30	-11.13	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

		E.I.I.I.E	
Temperature:	24.6 ℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical	COULS -	TUP
Test Mode:	TX 802.11ac(VHT40) Mc	de 5795MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11589.195	40.07	8.69	48.76	54.00	-5.24	AVG	Ρ
2	11591.235	46.52	8.69	55.21	68.30	-13.09	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

Temperature:	24.6℃	Relative Humidity:	56%				
Test Voltage:	DC 3.7V		1				
Ant. Pol.	Horizontal	COBJ C	TODU A				
Test Mode:	TX 802.11ac(VH	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11548.030	37.67	8.83	46.50	68.30	-21.80	peak	Р
2 *	11550.695	47.53	8.82	56.35	68.30	-11.95	AVG	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

		E IIII	
Temperature:	24.6℃	Relative Humidity:	56%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT80) Mo	de 5775MHz (U-NII-3)	I TOP

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11547.530	36.88	8.83	45.71	54.00	-8.29	AVG	Р
2	11550.795	47.59	8.82	56.41	68.30	-11.89	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV) 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.

5. No report for the emission which more than 20dB below the prescribed limit.

-----END OF REPORT-----