

RADIO TEST REPORT FCC ID: 2A3VP-Q35

Product: Wireless Gaming Controller

Trade Mark: N/A

Model No.: Q35

 G35SL, Q35SH, Q35X, Q35XL, Q35XH,

 Family Model:

 Q35SL, Q35SH, Q35X, Q35XL, Q35XH,

 S10, S11, S12, S13, S14, S15, Z01, Z02,

 Z03, Z04, Z05, Z06, Q34, Q34SL, Q34SH,

 Q34X, Q34XL, Q34XH

 Report No.:

 S24010807305001

Issue Date: Mar 04. 2024

Prepared for

ShenZhen ShanWan Technology Co., Ltd

5 / F, building 33, chentian Industrial Zone, chentian community, Xixiang street, Bao'an District, Shenzhen, Guangdong China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	1 TEST RESULT CERTIFICATION					
2	SUI	MMARY OF TEST RESULTS				
3	FAC	CILITIES AND ACCREDITATIONS				
	3.1 3.2 3.3	FACILITIES				
4	GE	NERAL DESCRIPTION OF EUT				
5	DE	SCRIPTION OF TEST MODES				
6	SET	FUP OF EQUIPMENT UNDER TEST9				
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM				
7	TES	ST REQUIREMENTS				
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST13RADIATED SPURIOUS EMISSION166DB BANDWIDTH25DUTY CYCLE26PEAK OUTPUT POWER28POWER SPECTRAL DENSITY29CONDUCTED BAND EDGE MEASUREMENT31SPURIOUS RF CONDUCTED EMISSIONS32ANTENNA APPLICATION33				
8	TES	ST RESULTS				
	8.1 8.2 8.3 8.4 8.5	MAXIMUM CONDUCTED OUTPUT POWER34-6DB BANDWIDTH36MAXIMUM POWER SPECTRAL DENSITY LEVEL38BAND EDGE40CONDUCTED RF SPURIOUS EMISSION42				

1 TEST RESULT CERTIFICATION

Applicant's name	ShenZhen ShanWan Technology Co., Ltd		
Address	5 / F, building 33, chentian Industrial Zone, chentian community, Xixiang street, Bao'an District, Shenzhen, Guangdong China		
Manufacturer's Name	ShenZhen ShanWan Technology Co., Ltd		
Address	5 / F, building 33, chentian Industrial Zone, chentian community, Xixiang street, Bao'an District, Shenzhen, Guangdong China		
Product description			
Product name	Wireless Gaming Controller		
Model and/or type reference	Q35		
Family Model	Q35SL, Q35SH, Q35X, Q35XL, Q35XH, S10, S11, S12, S13, S14, S15, Z01, Z02, Z03, Z04, Z05, Z06, Q34, Q34SL, Q34SH, Q34XL, Q34XL, Q34XH		
Test sample number			
Date (s) of performance of tests	Jan 08, 2024 ~ Mar 04, 2024		

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT		
FCC 47 CFR Part 2, Subpart J			
FCC 47 CFR Part 15, Subpart C	Complied		
ANSI C63.10-2013	Complied		
KDB 558074 D01 15.247 Meas Guidance v05r02			

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared By: Mary Hu By: Mary Hu By: Aaron Cheng By: Aaron Cheng By: Alex Li (Manager) (Manager) (Project Engineer) (Supervisor)

FCC Part15 (15.247), Subpart C						
Standard Section	Test Item	Verdict	Remark			
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Peak Output Power	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	PASS					
15.203	Antenna Requirement	PASS				

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted, PSD	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±4.7%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment	Wireless Gaming Controller				
Trade Mark	N/A				
FCC ID	2A3VP-Q35				
Model No.	Q35				
Family Model	Q35SL, Q35SH, Q35X, Q35XL, Q35XH, S10, S11, S12, S13, S14, S15, Z01, Z02, Z03, Z04, Z05, Z06, Q34, Q34SL, Q34SH, Q34X, Q34XL, Q34XH				
Model Difference	All models are the same circuit and RF module, except for different colors.				
Operating Frequency	2402MHz~2480MHz				
Modulation	GFSK				
Number of Channels	40 Channels				
Antenna Type	PCB Antenna				
Antenna Gain	2.88 dBi				
Battery	DC 3.7V, 600mAh, 2.22Wh				
Power supply	DC 3.7V from battery or DC 5V from Type-C Port				
Adapter	N/A				
HW Version	V1.2				
SW Version	V1.0.3				

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

	Re	evision History	
Report No.	Version	Description	Issued Date
S24010807305001	Rev.01	Initial issue of report	Mar 04, 2024

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)		
0	2402		
1	2404		
19	2440		
20	2442		
38	2478		
39	2480		

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases					
Test Item	Data Rate/ Modulation				
AC Conducted Emission	Mode 1: normal link mode				
	Mode 1: normal link mode				
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps				
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps				
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps				
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps				
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps				
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps				

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

<u>N'TEK</u>		Centificate #4298.0))1	Report	No.: S24010807305001		
	EQUIPMENT UN	IDER TEST					
	C-2	C-1		PLUG			
EUT	AE-2 Notebook		E-1 dapter				
For Radiated Test	Cases						
	EUT						
For Conducted Tes	st Cases						
Measurement	C-3						
Instrument	EUT						
	rary antenna connec iporary antenna coni				r to perform conducted		

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Notebook	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	YES	YES	1.0m
C-2	RF Cable	YES	NO	60 cm
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

N

Vaulatio	on& Conducted I	estequipment					
Item	Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.15	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2025.03.30	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.27	2026.03.26	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period	
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year	
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year	
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year	
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year	
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year	
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year	
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year	

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

て 王氏 北辺

7.1 CONDUCTED EMISSIONS TEST

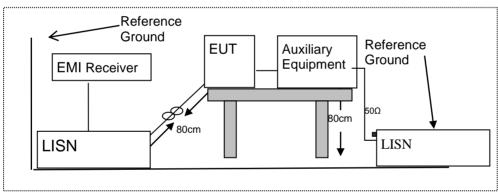
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 **Conformance Limit**

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

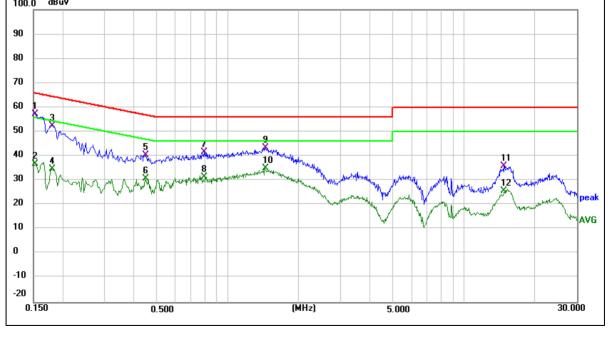
7.1.4 **Test Configuration**

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:		Wireless G	aming Controller		Model Name :		Q35	
Temperature: 22 °C		Relative		Humidity:	57%			
Pressure:		1010hPa			Phase :		L	
Test Voltage	:	DC 5V from AC 120V/6	n Notebook Adap 0Hz			Mode 1		
Frequency	Rea	ading Level	Correct Factor	Measur	e-ment	Limits	Margin	Damaria
(MHz)		(dBµV)	(dB)	(dB	μV)	(dBµV)	(dB)	Remark
0.1524		47.47	9.93	57.	40	65.87	-8.47	QP
0.1524		27.05	9.93	36.	98	55.87	-18.89	AVG
0.1819		42.36	9.99	52.	35	64.40	-12.05	QP
0.1819		24.66	9.99	34.	65	54.40	-19.75	AVG
0.4500		29.90	10.55	40.	45	56.88	-16.43	QP
0.4500		20.31	10.55	30.	86	46.88	-16.02	AVG
0.7940		30.27	11.24	41.	51	56.00	-14.49	QP
0.7940		20.26	11.24	31.	50	46.00	-14.50	AVG
1.4460		30.81	12.56	43.	37	56.00	-12.63	QP
1.4460		22.52	12.56	35.	08	46.00	-10.92	AVG
14.7620		26.24	9.70	35.	94	60.00	-24.06	QP
14.7620		16.19	9.70	25.	89	50.00	-24.11	AVG

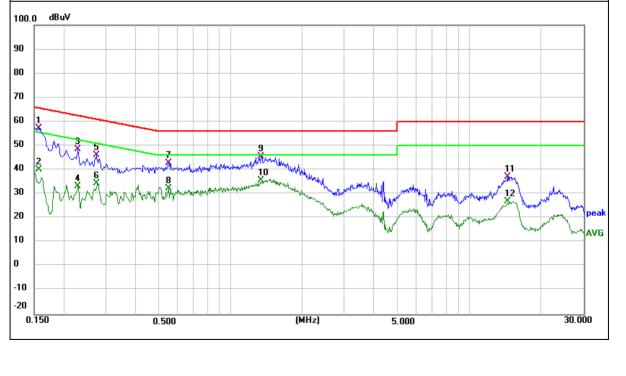
Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

100.0 dBuV

Version.1.3



EUT:		Wireless G	Saming Controller		Model Name :		Q35	
Temperature: 22 °C				Relative Humidity:		57%		
Pressure: 1010hPa		F		Phase :		N		
Test Voltage	:	DC 5V from AC 120V/6	n Notebook Adap 0Hz	apter Test Mode:		Mode 1		
Frequency	Rea	ading Level	Correct Factor	Measur	e-ment	Limits	Margin	Dement
(MHz)		(dBµV)	(dB)	(dB	μV)	(dBµV)	(dB)	Remark
0.1580		47.24	9.95	57.	19	65.57	-8.38	QP
0.1580		30.29	9.95	40.	24	55.57	-15.33	AVG
0.2300		38.59	10.10	48.	69	62.45	-13.76	QP
0.2300		23.29	10.10	33.	39	52.45	-19.06	AVG
0.2740		35.94	10.18	46.	12	61.00	-14.88	QP
0.2740		24.32	10.18	34.	50	51.00	-16.50	AVG
0.5500		32.23	10.75	42.	98	56.00	-13.02	QP
0.5500		21.60	10.75	32.	35	46.00	-13.65	AVG
1.3380		33.32	12.34	45.	66	56.00	-10.34	QP
1.3380		23.27	12.34	35.	61	46.00	-10.39	AVG
14.4220		27.58	9.70	37.	28	60.00	-22.72	QP
14.4220		17.38	9.70	27.	08	50.00	-22.92	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art 13.20	According to F CC F att 15.200, Restricted bands						
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

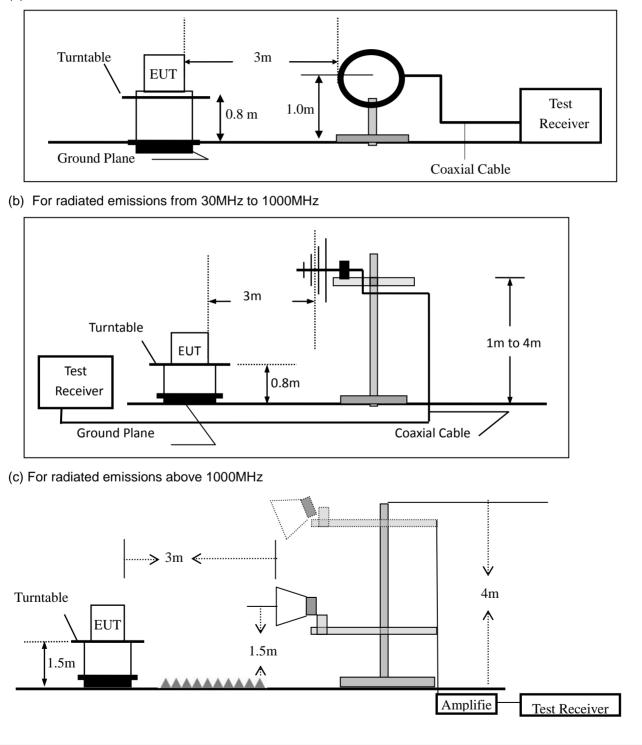
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(wiriz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

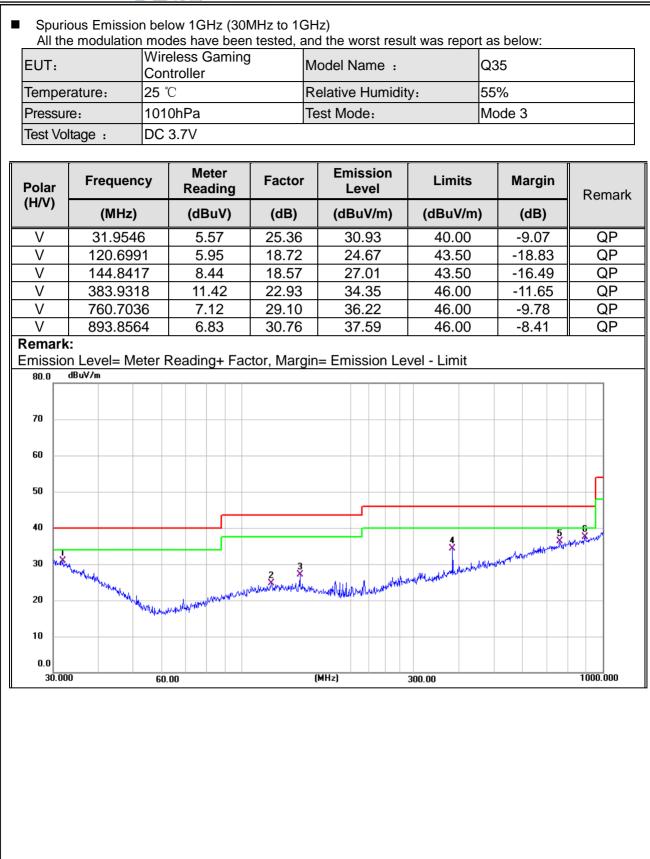
Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:						
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth			
30 to 1000	QP	120 kHz	300 kHz			
Ab 200	Peak	1 MHz	1 MHz			
Above 1000	Average	1 MHz	1 MHz			

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results


	Spurious	Emission	below	30MHz	(9KHz to	30MHz)
--	----------	----------	-------	-------	----------	--------

EUT:	Wireless Gaming Controller	Model No.:	Q35
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	32.8635	5.90	24.86	30.76	40.00	-9.24	QP
Н	145.3506	8.94	18.56	27.50	43.50	-16.00	QP
Н	321.0608	11.19	20.55	31.74	46.00	-14.26	QP
Н	383.9318	16.30	22.93	39.23	46.00	-6.77	QP
Н	432.5457	11.66	23.96	35.62	46.00	-10.38	QP
Н	945.4400	7.07	31.34	38.41	46.00	-7.59	QP
	n Level= Meter I	Reading+ Fac	tor, Margin	= Emission Le	vel - Limit		
80.0 d	Bu¥/m						
70							
10							
60							
50							
40					<u>4</u> 5		E .
30	wooded warmen warder the		2	.t I have a sublem	3 WWWWWWWWWWWWWWWWW	munderstand	
20	Mary Mary Mary Mary Mary Mary Mary Mary	nother work and the styring at the set	unation of the light	whether the stand of the stand			
10							
0.0							
30.000	60.	00	(MHz)	300.00		1000.000

(MHz) (dBµV) (dB) dB/m (dB) (dBµV/m) (dBµV/m) (dB) Low Channel (2402 MHz)(GFSK)Above 1G 4804.20 67.26 5.21 35.59 44.30 63.76 74.00 -10.24 Pk V/m 4804.20 44.52 5.21 35.59 44.30 63.76 74.00 -10.24 Pk V/m 4804.20 44.52 5.21 35.59 44.30 41.02 54.00 -12.98 AV V/m 7206.96 64.31 6.48 36.27 44.60 43.96 54.00 -11.54 Pk V/m 7206.96 45.81 6.48 36.27 44.60 43.96 54.00 -10.04 AV V/m 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk Ho 7206.23 <t< th=""><th colspan="10">Spurious Emission Above 1GHz (1GHz to 25GHz)</th></t<>	Spurious Emission Above 1GHz (1GHz to 25GHz)									
Test Mode: Mode2/Mode3/Mode4 Test By: Mary Hu Frequency Read Level Cable loss Antenna Factor Preamp Factor Emission Level Limits Margin Margin Remark Co (MHz) (dBµV) (dB) dB/m (dB) (dBµV/m) (dB) Co Low Channel (2402 MHz)(GFSK)Above 1G Low Channel (2402 MHz)(GFSK)Above 1G Emission -10.24 Pk V/v 4804.20 67.26 5.21 35.59 44.30 63.76 74.00 -10.24 Pk V/v 4804.20 44.52 5.21 35.59 44.30 41.02 54.00 -12.98 AV V/v 7206.96 64.31 6.48 36.27 44.60 43.96 54.00 -10.04 AV V/v 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk </td <td></td>										
Frequency Read Level Cable loss Antenna Factor Preamp Factor Emission Level Limits Margin Remark Co (MHz) (dBµV) (dB) dB/m (dB) (dBµV/m) (dBµV/m) (dB) (dB) (dBµV/m) (dB) (dB) (dBµV/m) (dB) (dB) (dBµV/m) (dB) (dB) (dB) (dBµV/m) (dB) (dB) <td></td>										
Frequency Read Level Cable loss Antenna Factor Preamp Factor Emission Level Limits Margin Remark Co (MHz) (dBµV) (dB) dB/m (dB) (dBµV/m) (dB) (dBµV/m) (dB) Low Channel (2402 MHz)(GFSK)Above 1G Low Channel (2402 MHz)(GFSK)Above 1G Emission -10.24 Pk V/m 4804.20 67.26 5.21 35.59 44.30 63.76 74.00 -10.24 Pk V/m 4804.20 44.52 5.21 35.59 44.30 41.02 54.00 -12.98 AV V/m 7206.96 64.31 6.48 36.27 44.60 62.46 74.00 -10.04 AV V/m 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.04 AV V/m 4804.50 44.06 5.21 35.55 44.30 40.52 54.00 -13.48 AV Ho 7206.23 66.51 6.48 <td></td>										
Frequency Level loss Factor Factor Level Limits Margin Remark Co (MHz) (dBµV) (dB) dB/m (dB) (dBµV/m) (dB) (dB) (dBµV/m) (dB) (dB) (dBµV/m) (dB) (dB) (dBµV/m) (dB) (dB) (dB) (dBµV/m) (dB) (dB) <td></td>										
Low Channel (2402 MHz)(GFSK)Above 1G 4804.20 67.26 5.21 35.59 44.30 63.76 74.00 -10.24 Pk V/d 4804.20 44.52 5.21 35.59 44.30 63.76 74.00 -10.24 Pk V/d 4804.20 44.52 5.21 35.59 44.30 41.02 54.00 -12.98 AV V/d 7206.96 64.31 6.48 36.27 44.60 62.46 74.00 -11.54 Pk V/d 7206.96 45.81 6.48 36.27 44.60 43.96 54.00 -10.04 AV V/d 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 4804.50 44.06 5.21 35.55 44.30 40.52 54.00 -13.48 AV Ho 7206.23 66.51 6.48 36.27 44.52 63.79 54.00 -10.21 AV Ho	mment									
4804.20 67.26 5.21 35.59 44.30 63.76 74.00 -10.24 Pk Vietor 4804.20 44.52 5.21 35.59 44.30 41.02 54.00 -12.98 AV Vietor 7206.96 64.31 6.48 36.27 44.60 62.46 74.00 -11.54 Pk Vietor 7206.96 45.81 6.48 36.27 44.60 43.96 54.00 -10.04 AV Vietor 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.04 AV Vietor 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 4804.50 44.06 5.21 35.55 44.30 40.52 54.00 -13.48 AV Ho 7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk Ho 7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho										
4804.20 44.52 5.21 35.59 44.30 41.02 54.00 -12.98 AV Value 7206.96 64.31 6.48 36.27 44.60 62.46 74.00 -11.54 Pk Value 7206.96 45.81 6.48 36.27 44.60 43.96 54.00 -10.04 AV Value 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk Ho 7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk Ho 7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho Mid Channel (2440 MHz)(GFSK)Above 1G Mid Channel (2440 MHz)(GFSK)Above 1G 4880.87 65.62 5.21 35.66 44.20										
7206.96 64.31 6.48 36.27 44.60 62.46 74.00 -11.54 Pk Viether 7206.96 45.81 6.48 36.27 44.60 43.96 54.00 -10.04 AV Viether 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 4804.50 44.06 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 4804.50 44.06 5.21 35.55 44.30 40.52 54.00 -13.48 AV Ho 7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk Ho 7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho Mid Channel (2440 MHz)(GFSK)Above 1G Mid Channel (2440 MHz)(GFSK)Above 1G Mid A880.87 65.62 5.21 35.66 44.20 41.39 54.00 -11.61 <	ertical									
7206.96 45.81 6.48 36.27 44.60 43.96 54.00 -10.04 AV Viether 4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 4804.50 44.06 5.21 35.55 44.30 40.52 54.00 -13.48 AV Ho 7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk Ho 7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho 7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho 7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho Mid Channel (2440 MHz)(GFSK)Above 1G Mid Channel (2440 MHz)(GFSK)Above 1G 4880.87 65.62 5.21 35.66 44.20 62.29 74.00 -11.71 Pk <td>ertical</td>	ertical									
4804.50 67.18 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 4804.50 44.06 5.21 35.55 44.30 63.64 74.00 -10.36 Pk Ho 4804.50 44.06 5.21 35.55 44.30 40.52 54.00 -13.48 AV Ho 7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk Ho 7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho Mid Channel (2440 MHz)(GFSK)Above 1G Mid Channel (2440 MHz)(GFSK)Above 1G 4880.87 65.62 5.21 35.66 44.20 62.29 74.00 -11.71 Pk Va 4880.87 44.72 5.21 35.66 44.20 41.39 54.00 -12.61 AV Va	ertical									
4804.50 44.06 5.21 35.55 44.30 40.52 54.00 -13.48 AV Ho 7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk Ho 7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho Mid Channel (2440 MHz)(GFSK)Above 1G Mid Channel (2440 MHz)(GFSK)Above 1G 4880.87 65.62 5.21 35.66 44.20 62.29 74.00 -11.71 Pk Va 4880.87 44.72 5.21 35.66 44.20 41.39 54.00 -12.61 AV Va	ertical									
7206.23 66.51 6.48 36.27 44.52 64.74 74.00 -9.26 Pk Ho 7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho Mid Channel (2440 MHz)(GFSK)Above 1G 4880.87 65.62 5.21 35.66 44.20 62.29 74.00 -11.71 Pk Vale 4880.87 44.72 5.21 35.66 44.20 41.39 54.00 -12.61 AV Vale	rizontal									
7206.23 45.56 6.48 36.27 44.52 43.79 54.00 -10.21 AV Ho Mid Channel (2440 MHz)(GFSK)Above 1G 4880.87 65.62 5.21 35.66 44.20 62.29 74.00 -11.71 Pk Valable 4880.87 44.72 5.21 35.66 44.20 41.39 54.00 -12.61 AV Valable	rizontal									
Mid Channel (2440 MHz)(GFSK)Above 1G 4880.87 65.62 5.21 35.66 44.20 62.29 74.00 -11.71 Pk Value 4880.87 44.72 5.21 35.66 44.20 41.39 54.00 -12.61 AV Value	rizontal									
4880.87 65.62 5.21 35.66 44.20 62.29 74.00 -11.71 Pk V/4 4880.87 44.72 5.21 35.66 44.20 41.39 54.00 -12.61 AV V/4	rizontal									
4880.87 44.72 5.21 35.66 44.20 41.39 54.00 -12.61 AV V	Mid Channel (2440 MHz)(GFSK)Above 1G									
	ertical									
7320.44 64.06 7.10 36.50 44.43 63.23 74.00 -10.77 Pk V	ertical									
	ertical									
7320.44 46.44 7.10 36.50 44.43 45.61 54.00 -8.39 AV V	ertical									
4880.76 65.98 5.21 35.66 44.20 62.65 74.00 -11.35 Pk Ho	rizontal									
4880.76 45.39 5.21 35.66 44.20 42.06 54.00 -11.94 AV Ho	rizontal									
7320.93 65.65 7.10 36.50 44.43 64.82 74.00 -9.18 Pk Ho	rizontal									
7320.93 44.15 7.10 36.50 44.43 43.32 54.00 -10.68 AV Ho	rizontal									
High Channel (2480 MHz)(GFSK) Above 1G										
4960.73 67.99 5.21 35.52 44.21 64.51 74.00 -9.49 Pk V	ertical									
4960.73 45.50 5.21 35.52 44.21 42.02 54.00 -11.98 AV V	ertical									
7440.98 68.89 7.10 36.53 44.60 67.92 74.00 -6.08 Pk Ve	ertical									
7440.98 45.51 7.10 36.53 44.60 44.54 54.00 -9.46 AV Vel	ertical									
4960.51 64.71 5.21 35.52 44.21 61.23 74.00 -12.77 Pk Ho	rizontal									
4960.51 44.37 5.21 35.52 44.21 40.89 54.00 -13.11 AV Ho	rizontal									
7440.48 66.25 7.10 36.53 44.60 65.28 74.00 -8.72 Pk Ho	rizontal									
7440.48 44.05 7.10 36.53 44.60 43.08 54.00 -10.92 AV Ho	rizontal									

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

EUT: Wireless Gaming Controller M			cted Band	1	Model No.: Q3		Q35	Q35		
Femperature:				48%						
Fest Mode:										
Frequency	Meter Reading	Cable Loss	Antenna Factor	Prear Facto	•	Lim	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)) (dBµV/m)	(dBµ'	V/m)	(dB)	Туре	
1Mbps(GFSK)										
2310.00	66.33	2.97	27.80	43.8	53.30	74	4	-20.70	Pk	Horizontal
2310.00	46.29	2.97	27.80	43.8	0 33.26	54	4	-20.74	AV	Horizontal
2310.00	66.94	2.97	27.80	43.8	0 53.91	74	4	-20.09	Pk	Vertical
2310.00	45.94	2.97	27.80	43.8	0 32.91	54	4	-21.09	AV	Vertical
2390.00	67.59	3.14	27.21	43.8	0 54.14	74	4	-19.86	Pk	Vertical
2390.00	45.23	3.14	27.21	43.8	0 31.78	54	4	-22.22	AV	Vertical
2390.00	66.97	3.14	27.21	43.8	0 53.52	74	4	-20.48	Pk	Horizontal
2390.00	46.90	3.14	27.21	43.8	0 33.45	54	4	-20.55	AV	Horizontal
2483.50	66.97	3.58	27.70	44.0	0 54.25	74	4	-19.75	Pk	Vertical
2483.50	44.33	3.58	27.70	44.0	0 31.61	54	4	-22.39	AV	Vertical
2483.50	68.89	3.58	27.70	44.0	0 56.17	74	4	-17.83	Pk	Horizontal
2483.50	45.65	3.58	27.70	44.0	0 32.93	54	4	-21.07	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

EUT	:	Wireles	ss Gami	ng Contro	ller	Mode	Model No.:		Q35			
Tem	perature:	20 ℃				Relat	ive Humidit	y:	48%			
Test Mode: Mode2/ Mode4		Test	By:		Mary	Hu						
ł	Frequency	Reading Level	Cable Loss	Antenna Factor		eamp actor	Emission Level	Lin	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
	3260	68.03	4.04	29.57	44	4.70	56.94	7	'4	-17.06	Pk	Vertical
	3260	45.41	4.04	29.57	44	4.70	34.32	5	64	-19.68	AV	Vertical
	3260	67.82	4.04	29.57	44	4.70	56.73	7	'4	-17.27	Pk	Horizontal
	3260	46.59	4.04	29.57	44	4.70	35.50	5	54	-18.50	AV	Horizontal
	3332	67.46	4.26	29.87	44	4.40	57.19	7	'4	-16.81	Pk	Vertical
	3332	44.48	4.26	29.87	44	4.40	34.21	5	54	-19.79	AV	Vertical
	3332	66.22	4.26	29.87	44	4.40	55.95	7	'4	-18.05	Pk	Horizontal
	3332	46.45	4.26	29.87	44	4.40	36.18	5	54	-17.82	AV	Horizontal
	17797	54.15	10.99	43.95	43	3.50	65.59	7	'4	-8.41	Pk	Vertical
	17797	32.99	10.99	43.95	43	3.50	44.43	5	64	-9.57	AV	Vertical
	17788	52.50	11.81	43.69	44	4.60	63.40	7	'4	-10.60	Pk	Horizontal
	17788	34.09	11.81	43.69	44	4.60	44.99	5	4	-9.01	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 **Conformance Limit**

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Wireless Gaming Controller	Model No.:	Q35
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 **Test Procedure**

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on}/T_{total}

7.4.6 Test Results

EUT:	Wireless Gaming Controller	Model No.:	Q35
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 **Conformance Limit**

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 **Test Procedure**

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Wireless Gaming Controller	Model No.:	Q35
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Wireless Gaming Controller	Model No.:	Q35
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Wireless Gaming Controller	Model No.:	Q35
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mary Hu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

Below -20dB of the highest emission level in operating band.
 Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

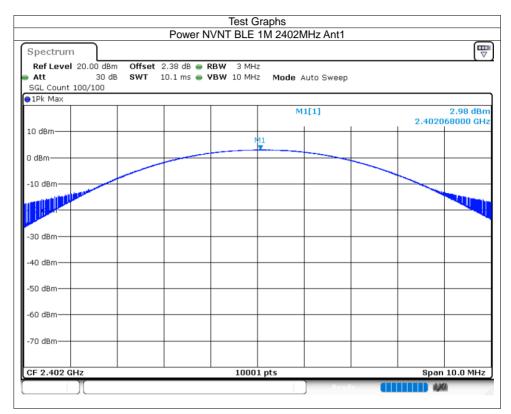
7.9 ANTENNA APPLICATION

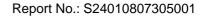
7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

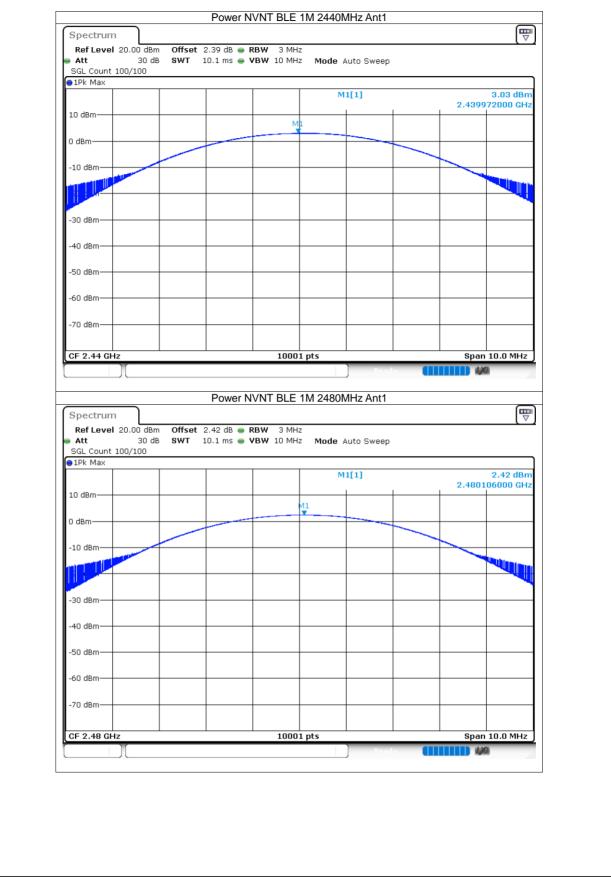
7.9.2 **Result**

The EUT antenna is permanent attached PCB antenna (Gain: 2.88 dBi). It comply with the standard requirement.



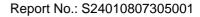

8 TEST RESULTS

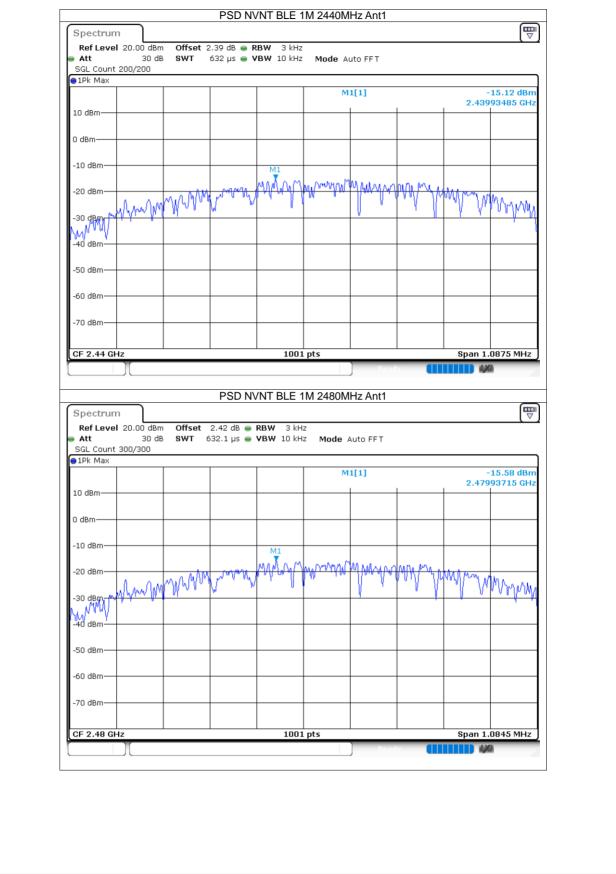
8.1 Maximum Conducted Output Power

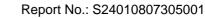

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	2.98	30	Pass
NVNT	BLE 1M	2440	Ant1	3.03	30	Pass
NVNT	BLE 1M	2480	Ant1	2.42	30	Pass

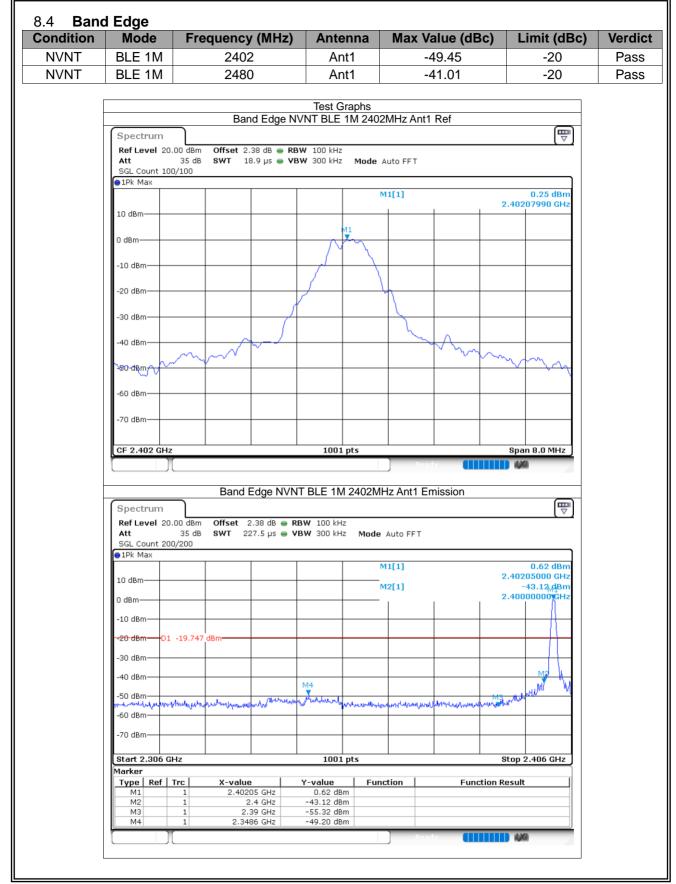
ACCREDITED Certificate #4298.01

ondition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwid (MHz)		imit -6 dB dwidth (MHz)	Verdi
NVNT	BLE 1M	2402	Ant1	0.707		0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.725		0.5	Pas
NVNT	BLE 1M	2480	Ant1	0.723		0.5	Pas
			Tes	st Graphs			
		-6dB	Bandwidth NV	NT BLE 1M 2402MHz	Ant1	_	
	Spectrum					E	
	Ref Level 20. Att SGL Count 100,	30 dB SWT 18.	8 dB 👄 RBW 100 9 µs 👄 VBW 300	0 kHz 0 kHz Mode Auto FFT			
	IPk Max	/100					
				M1[1]		1.14 dBm	
	10 dBm			M2[1] M1	2	2.402323770 GHz -4.83 dBm	
	0 dBm				2	2.401713000 GHz	
	-10 dBm		J.				
	-10 ubiii						
	-20 dBm						
	-30 dBm					~	
	-40 dBm						
	-50 dBm						
	-60 dBm						
	-70 dBm						
	CF 2.402 GHz		1	0001 pts		Span 2.0 MHz	
	Marker Type Ref T	rc X-value	Y-valu	e Function	Function	Result 1	
	M1	1 2.40232377	GHz 1.1	4 dBm	i anotion		
	M2	1 2.401713		3 dBm]	
	M3	1 2.40242	GHZ -4.8	6 dBm			

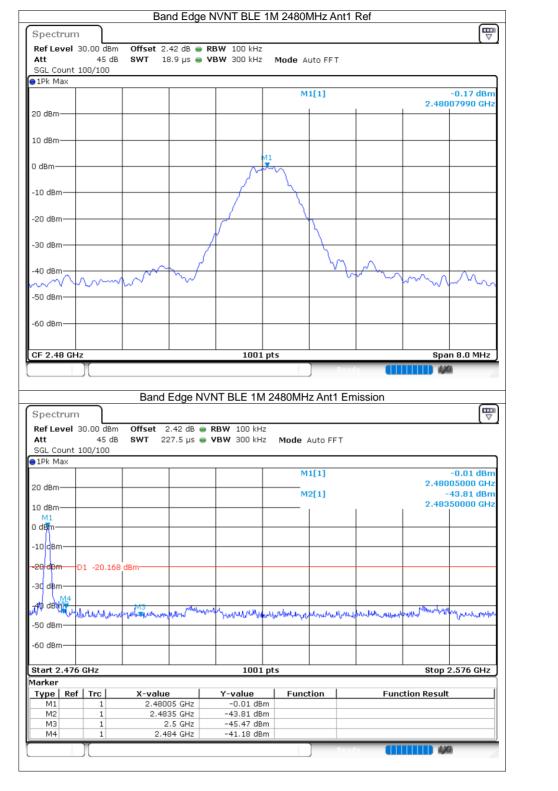



Ref Level 20.00 dB Att 30 d SGL Count 300/300		 RBW 100 kHz VBW 300 kHz 	Mode Auto FFT		
1Pk Max					
			M1[1]		1.54 dBm
10 dBm			M1 M2[1]		2.440085790 GHz -4.49 dBm
D dBm			×		2.439723000 GHz
-10 dBm		-			
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm	<u> </u>				
CF 2.44 GHz Iarker		10001	pts		Span 2.0 MHz
Type Ref Trc	X-value	Y-value	Function	Function	Result
M1 1 M2 1	2.44008579 GHz 2.439723 GHz	1.54 dBm -4.49 dBm			
-			LE 1M 2480MHz	adv (1111) Ant1	
Spectrum Ref Level 20.00 dB	-6dB Band m Offset 2.42 dB	dwidth NVNT BI	Re	adv Ant1	
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 300/300	-6dB Band m Offset 2.42 dB	dwidth NVNT BI	LE 1M 2480MHz Mode Auto FFT	Ant1	
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 300/300 91Pk Max	-6dB Band m Offset 2.42 dB	dwidth NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]		0.59 dBm 2.480328770 GHz
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 300/300 1Pk Max 10 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT	:	0.59 dBm
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 300/300 1Pk Max 10 dBm	-6dB Band m Offset 2.42 dB	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]		0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 300/300 1Pk Max 10 dBm 0 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]	:	0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 30 o SGL Count 300/300 1Pk Max 10 dBm -10 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]	:	0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 300/300 91Pk Max 10 dBm -10 dBm -20 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]	:	0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 300 SGL Count 300/300 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]	:	0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 30 of SGL Count 300/300 1Pk Max 10 dBm -10 dBm -20 dBm -40 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]	:	0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 300/300 1PK Max 10 dBm -10 dBm -20 dBm -39 dBm -40 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]	:	0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 300/300 PIPk Max 10 dBm -10 dBm -20 dBm -20 dBm -38 dBm -40 dBm -50 dBm -60 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]	:	0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 30 c SGL Count 300/300 PIPk Max 10 dBm -10 dBm -20 dBm -20 dBm -38 dBm -40 dBm -50 dBm -60 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1]	:	0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 30 of SGL Count 300/300 PIPK Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1] M2[1] M1	:	0.59 dBm 2.480328770 GHz -5.42 dBm
Spectrum Ref Level 20.00 dB Att 30 d SGL Count 300/300 IPK Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	-6dB Banc m Offset 2.42 dB в SWT 18.9 µs	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1] M2[1] M1	:	0.59 dBm 2.480328770 GHz -5.42 dBm 2.479711000 GHz
Spectrum Ref Level 20.00 dB	-6dB Banc	width NVNT BI	LE 1M 2480MHz Mode Auto FFT M1[1] M2[1] M1 M2[1] M1 M2[1] M1 M2[1] M1 M1 M2[1] M1 M2[1] M1 M2 M1 M1 M1 M2 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1		0.59 dBm 2.480328770 GHz -5.42 dBm 2.479711000 GHz




Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdic
NVNT	BLE 1M	2402	Ant1	-14.96	8	Pass
NVNT	BLE 1M	2440	Ant1	-15.12	8	Pass
NVNT	BLE 1M	2480	Ant1	-15.58	8	Pass
			est Graphs BLE 1M 2402M	Hz Ant1		
Spectrum						
Ref Level 2	0.00 dBm Offset	2.38 dB 👄 RBW	3 kHz			(v)
👄 Att	30 dB SWT			Auto FFT		
SGL Count 10	0/100					
			M	1[1]		4.96 dBm
10 dBm					2.4019	3325 GHz
0 dBm						
-10 dBm						
-10 dbiii		M1				
-20 dBm	0.0 MW	MM mon M	Manna	MANAMANA	MAR Man	la
- I MA	mmmm	W V	4 1	V * . Y		mm
-30 dBm						0.1
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.402 GHz			1001 pts		Span 1.0	605 MHz
				Ready		1

R


'EK 北测

ILAC-MR

ACCREDITED Certificate #4298.01

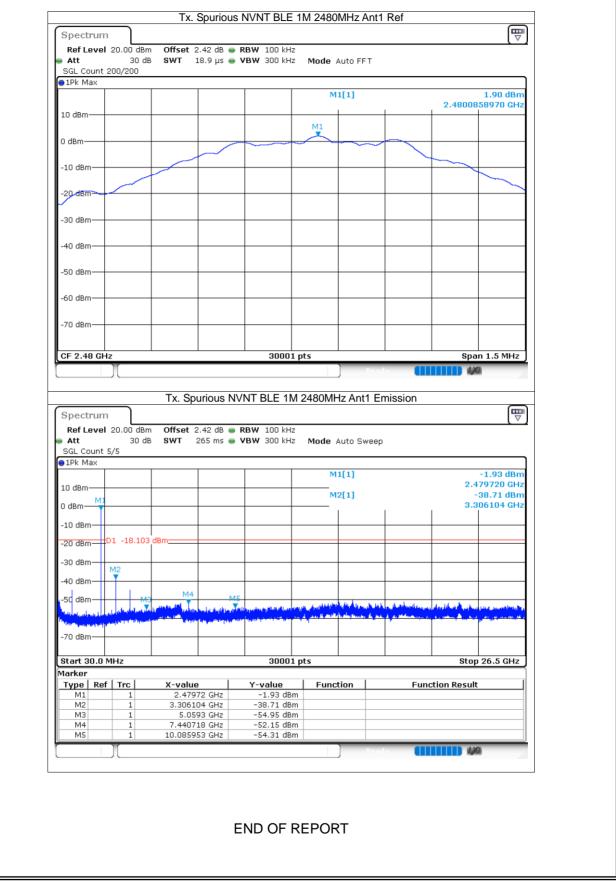
Report No.: S24010807305001

NTEK 北测[®]

8.5 Cond	lucted RF	Spurious Emission	1 IIII			
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-36.92	-20	Pass
NVNT	BLE 1M	2440	Ant1	-36.59	-20	Pass
NVNT	BLE 1M	2480	Ant1	-40.6	-20	Pass

VTEK:	

Ref Le	rum evel :	ل 20.00 (RBW 100 kHz					(▽
SGL Co				WT 1	18.9 µs 🖷	VBW 300 kHz	Mode Au	ito FFT				_
-							M1[1]		2.4020	1.46 di 0828970 G	
10 dBm-	+						M1					
0 dBm—	+							~				
-10 dBm				_								
-20 đBm												<u> </u>
-30 dBm	·											
-40 dBm												
-50 dBm												
-60 dBm												
-70 dBm												
CF 2.40		lz) (x. Spu	urious N	30001		Read 2 Ant1 Em	nission	Sr Sr	Dan 1.5 MF	
Spects Ref Le Att	rum evel :	20.00 (dBm O f	ffset 2	.38 dB 🖷		2402MHz		nission	Sr Sr	(XI)	iz
Specti Ref Le	rum evel :	20.00 (dBm O f	ffset 2	.38 dB 🖷	IVNT BLE 1M	2402MHz Mode Au	ito Sweep	nission	Sr.		
Specta Ref La Att SGL Co	rum evel a ount 1 ax	20.00 (dBm O f	ffset 2	.38 dB 🖷	IVNT BLE 1M	2402MHz	ito Sweep	nission	2	0.16 dl .402070 G -35.46 dl	Bm HHz 3m
Specta Ref Le Att SGL Co 1Pk Ma 10 dBm- 0 dBm-	rum evel : ount 1 ax	20.00 (dBm O f	ffset 2	.38 dB 🖷	IVNT BLE 1M	1 2402MHz Mode Au	ito Sweep	nission	2	0.16 di .402070 G	Bm HHz 3m
Spectr Ref La Att SGL Co 1Pk Ma 10 dBm	rum evel : ount 1 ax	20.00 (20.00 (30	dBm O f	ffset 2	.38 dB 🖷	IVNT BLE 1M	1 2402MHz Mode Au	ito Sweep	nission	2	0.16 dl .402070 G -35.46 dl	Bm HHz 3m
Specta Ref La Att SGL Co 1Pk Ma 10 dBm- -10 dBm-	rum evel : ax M1	20.00 (20.00 (30	dBm Of 0 dB SV	ffset 2	.38 dB 🖷	IVNT BLE 1M	1 2402MHz Mode Au	ito Sweep	nission	2	0.16 dl .402070 G -35.46 dl	Bm HHz 3m
Specta Ref Le Att SGL Co 10 dBm- -10 dBm- -10 dBm -20 dBm -30 dBm	rum sevel ; munt 1 sax	20.00 (30 0/10	dBm Of 0 dB SV	ffset 2 WT 2	.38 dB 🖷	IVNT BLE 1M	1 2402MHz Mode Au	ito Sweep	nission	2	0.16 dl .402070 G -35.46 dl	Bm HHz 3m
Spect Ref Le Att SGL Co 1Pk Ma 10 dBm- -10 dBm- -20 dBm -30 dBm	rum sevel ; munt 1 sax	20.00 (30 0/10	dBm O() dB S1 541 dBm=	M4	.38 dB 🖷	IVNT BLE 1M	Mode Au Mode Au M1[1]		2	0.16 di 402070 G -35.46 di 202871 G	Bm HHz 3m
Specta Ref Le Att SGL Co 10 dBm- -10 dBm- -10 dBm -20 dBm -30 dBm	M1	20.00 (30 0/10	dBm Of 0 dB SN 541 dBm=	M4	.38 dB 🖷	IVNT BLE 1M	Mode Au Mode Au M1[1]		2	0.16 di 402070 G -35.46 di 202871 G	Bm HHz 3m
Spect Ref Le Att SGL Co 1Pk Ma 10 dBm- -10 dBm -20 dBm -30 dBm -40 dBm	M1	220.00 (30 0/10	dBm O() dB S1 541 dBm=	M4	.38 dB 🖷	IVNT BLE 1M	Mode Au Mode Au M1[M2]	1]		2 3	0.16 di .402070 G -35.46 di .202871 G	Bm HIZ BM HIZ
Specta Ref Le Att SGL Co 10 dBm- -10 dBm- -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 3 Marker	MI MI MI MI MI MI MI MI MI MI MI MI MI M	20.00 (3(C) 0/10	dBm Ot 0 dB S1	M4	38 dB 265 ms	VNT BLE 1M	Mode Au Mode Au M1[M2] M2] M2] M2] M2] M2] M2] M2]	Ito Sweep		2 3	0.16 di 402070 G -35.46 di 202871 G	Bm HIZ BM HIZ
Spect Ref Le Att SGL Co 1Pk Ma 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -70 dBm Start 3 Market Type M1	MI MI MI MI MI MI MI MI MI MI MI MI MI M	220.00 () 3000/10	dBm Of 0 dB SV 541 dBm= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ffset 2 WT 2 M4		VNT BLE 1M	Mode Au Mode Au M1[Ito Sweep		2 3	0.16 di 402070 G -35.46 di 202871 G	Bm HIZ BM HIZ
Specta Ref Le Att SGL Co 10 dBm- -10 dBm- -10 dBm -20 dBm -30 dBm -40 dBm -30 dBm -70 dBm Start 3 Marker Type M1 M1 M1 M3	MI MI MI MI MI MI MI MI MI MI MI MI MI M	220.00 (3(0)/10 	dBm Ot) dB S1 541 dBm= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M4 -valuee 2.402C 3.202878		VNT BLE 1M	Mode Au Mode Au M1[Ito Sweep		2 3	0.16 di 402070 G -35.46 di 202871 G	Bm HIZ BM HIZ
Spectr Ref Le Att SGL Co 1Pk Ma 10 dBm- -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm Start 3 Marker Type M1 M2	MI MI MI MI MI MI MI MI MI MI MI MI MI M	220.00 (30 0/10 1 -18.3 1 1 -18.3 1 1 1	dBm Ot 0 dB SV 541 dBm= 1000000000000000000000000000000000000	M4 -valuee 2.4020287	2.38 dB 265 ms	VNT BLE 1M	Mode Au Mode Au M1[M2] M2] M2] M2] M2] M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	Ito Sweep		2 3	0.16 di 402070 G -35.46 di 202871 G	Bm HIZ BM HIZ


Report No.: S24010807305001

Att SGL Count :	20.00 dBm 30 dB			RBW 100 kH: VBW 300 kH:		uto FFT		
1Pk Max	100/100							
					Mi	L[1]	2.44009	0.42 dBm 930470 GHz
10 dBm					M1			
0 dBm					¥			
-10 dBm			\sim	_				
-20 dBm	-							
-30 dBm								
-40 dBm				_			 	
E0 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
Spectrum Ref Level	20.00 dBm	Offset 2	2.39 dB 🖷	3000: IVNT BLE 1M RBW 100 kH; VBW 300 kH;	M 2440MH			an 1.5 MHz)
Att SGL Count :	20.00 dBm 30 dB	Offset 2	2.39 dB 🖷	IVNT BLE 1	M 2440MH	Rea z Ant1 E		0
Spectrum Ref Level Att SGL Count :	20.00 dBm 30 dB	Offset 2	2.39 dB 🖷	IVNT BLE 1	Z Z Z Mode A			0.26 dBm
Spectrum Ref Level Att	20.00 dBm 30 dB	Offset 2	2.39 dB 🖷	IVNT BLE 1	M 2440MH ^z Mode A	uto Sweep	2,4	0.26 dBm 140010 GHz -36.18 dBm
Spectrum Ref Level Att SGL Count 3 IPk Max 10 dBm 0 dBm	20.00 dBm 30 dB	Offset 2	2.39 dB 🖷	IVNT BLE 1	M 2440MH ^z Mode A	uto Sweer	2,4	0.26 dBm ₩40010 GHz
Spectrum Ref Level SGL Count : 1Pk Max 10 dBm 10 dBm -10 dBm	20.00 dBm 30 dB 10/10	Offset 3 SWT	2.39 dB 🖷	IVNT BLE 1	M 2440MH ^z Mode A	uto Sweer	2,4	0.26 dBm 140010 GHz -36.18 dBm
Spectrum Ref Level Att SGL Count : 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 10/10	Offset 3 SWT	2.39 dB 🖷	IVNT BLE 1	M 2440MH ^z Mode A	uto Sweer	2,4	0.26 dBm 140010 GHz -36.18 dBm
Spectrum Ref Level Att SGL Count : 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 10/10	Offset 3 SWT	2.39 dB 🖷	IVNT BLE 1	M 2440MH ^z Mode A	uto Sweer	2,4	0.26 dBm 140010 GHz -36.18 dBm
Spectrum Ref Level SGL Count : Prk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 10/10	Offset 3 SWT	2.39 dB 265 ms	IVNT BLE 1N	M 2440MH	L[1] 2[1]	2,4	0.26 dBm 440010 GHz -36.18 dBm 253164 GHz
Spectrum Ref Level Att SGL Count : 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 10/10	Offset : SWT	2.39 dB 265 ms	IVNT BLE 1N	M 2440MH	L[1] 2[1]	2,4	0.26 dBm 140010 GHz -36.18 dBm
Spectrum Ref Level SGL Count : Prk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 10/10	Offset : SWT	2.39 dB 265 ms	IVNT BLE 1N	M 2440MH	L[1] 2[1]	2,4	0.26 dBm 440010 GHz -36.18 dBm 253164 GHz
Spectrum Ref Level Att SGL Count : 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB 10/10	Offset : SWT	2.39 dB 265 ms	VNT BLE 1	M 2440MH	L[1] 2[1]		0.26 dBm 440010 GHz -36.18 dBm 253164 GHz
Spectrum Ref Level Att SGL Count : IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 30 dB 10/10	dBm	2.39 dB 265 ms	IVNT BLE 11	M 2440MH	L[1] 2[1]	2.4 3.2	0.26 dBm 440010 GHz -36.18 dBm 253164 GHz
Spectrum Ref Level Att SGL Count : IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20.00 dBm 30 dB 10/10 01 -19.578 M2 M3 MHz Trc 1	Offset : SWT dBm	2.39 dB 265 ms	IVNT BLE 11	M 2440MH	L[1] 2[1]		0.26 dBm 440010 GHz -36.18 dBm 253164 GHz
Spectrum Ref Level Att SGL Count : TPk Max ID dBm I	20.00 dBm 30 dB 10/10 01 -19.578 M2 M3 MHz Trc 1	Offset : SWT dBm	2.39 dB 265 ms 265 ms 	VNT BLE 11 RBW 100 kH; VBW 300 kH; S S S S S S S S S S S S S	M 2440MH	L[1] 2[1]	2.4 3.2	0.26 dBm 440010 GHz -36.18 dBm 253164 GHz
Spectrum Ref Level Att SGL Count : IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm Start 30.0 N Marker Type M1 M2 M3 M4	20.00 dBm 30 dB 10/10 01 -19.578 M3 MHz MHz	Offset : SWT dBm 	2.39 dB 265 ms 265 ms 200 ms 265 ms 200 ms 265 ms 200 ms 265 ms 200 ms 265 ms 2	IVNT BLE 11 RBW 100 kH VBW 300 kH S S S S S S S S S S S S S	M 2440MH	L[1] 2[1]	2.4 3.2	0.26 dBm 440010 GHz -36.18 dBm 253164 GHz
Spectrum Ref Level Att SGL Count : IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm Start 30.0 M Arker Type Ref M1 M2 M3	20.00 dBm 30 dB 10/10	Offset : SWT dBm 	2.39 dB 265 ms 	VNT BLE 11 RBW 100 kH: VBW 300 kH: S S S S S S S S S S S S S	M 2440MH	L[1] 2[1]	2.4 3.2	0.26 dBm 440010 GHz -36.18 dBm 253164 GHz

Report No.: S24010807305001

