

Zhenjiang Electronics (Shenzhen) Co., LTD.

Cord Extension Set

Test Model: QY03

Additional Model No.: QY03-01

Prepared for Address

Prepared by Address

Tel Fax Web Mail

Date of receipt of test sample Number of tested samples Sample number Serial number Date of Test Date of Report

: Zhenjiang Electronics (Shenzhen) Co., LTD.

- : 401, Building 2, No. 39, Hengling North Road, Nianfeng Community, Pingdi Street, Longgang District, Shenzhen China
- : Shenzhen LCS Compliance Testing Laboratory Ltd.
- : Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China (+86)755-82591330
 - (+86)755-82591332
 - www.LCS-cert.com
 - webmaster@LCS-cert.com

May 16, 2022

1

2

÷

- A051022050 ÷
 - Prototype
 - May 16, 2022 ~ May 19, 2022 May 20, 2022

	FCC SDoC TEST REPORT 5 Subpart B, Class B(SDoC), AN	SI C63.4 -2014
Report Reference No	.: LCSA051022050EA	1 Sa LCS Testi
Date Of Issue	. [:] May 20, 2022	
Testing Laboratory Name	. [:] Shenzhen LCS Compliance Testir	ng Laboratory Ltd.
	 Room 101, 201, Building A and Roo Industrial Park, Yabianxueziwei, Sha District, Shenzhen, Guangdong, Chi Full application of Harmonised stand Partial application of Harmonised state 	ajing Street, Bao'an na Jards ∎
and the second second	Other standard testing method	(分别)(11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Applicant's Name	. [:] Zhenjiang Electronics (Shenzhen)	Co., LTD.
Address	. [:] 401, Building 2, No. 39, Hengling No. Community, Pingdi Street, Longgang China	
Test Specification		
Standard	[:] FCC 47 CFR Part 15 Subpart B, Cla C63.4 -2014	iss B(SDoC), ANSI
Test Report Form No	-	
TRF Originator	. : Shenzhen LCS Compliance Testing	Laboratory Ltd.
Master TRF	. : Dated 2011-03	
This publication may be reproc as the SHENZHEN LCS COM copyright owner and source of LABORATORY LTD. takes no	CE TESTING LABORATORY LTD. Al duced in whole or in part for non-comm PLIANCE TESTING LABORATORY L ⁻ the material. SHENZHEN LCS COMP responsibility for and will not assume I erpretation of the reproduced material d	ercial purposes as long TD. is acknowledged as PLIANCE TESTING iability for damages
Test Item Description	: Cord Extension Set	
Test Model	: QY03	
Trade Mark	. : N/A	
Ratings	. : Input: AC 100-125V, 60Hz, 15A, 18 Output: DC 5V, 2.4A, Max 12W	375W Max
Result	•	
Compiled by:	Supervised by:	Approved by:
Kevin Huang	Jin Wang	Grino Limoz

Test Report No. :LCSA051022050EAMay 20, 2022
Date of issue

Test Model	: QY03
EUT	: Cord Extension Set
Applicant Address	 Zhenjiang Electronics (Shenzhen) Co., LTD. 401, Building 2, No. 39, Hengling North Road, Nianfeng Community, Pingdi Street, Longgang District, Shenzhen China
Telephone	:/
Fax	
Address	Community, Pingdi Street, Longgang District, Shenzhen China
Telephone Fax	
Factory Address	 Zhenjiang Electronics (Shenzhen) Co., LTD. 401, Building 2, No. 39, Hengling North Road, Nianfeng Community, Pingdi Street, Longgang District, Shenzhen China
Telephone Fax	
. an diffe	and the

Test Result according to the standards on page 6: Positive

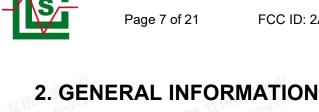
The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

	Revis	sion History		
Report Version	Issue Date	Revision Content	Revised By	
000	May 20, 2022	Initial Issue		

TABLE OF	F CONTENTS	
Test Report Description		Page
1. SUMMARY OF STANDARDS AND RE	SULTS	6
1.1. Description of Standards and Result	ts	6
2. GENERAL INFORMATION		7
2.1. Description of Device (EUT)		7
2.2. Support Equipment List		8
2.3 External I/O Cable		
2.4. Description of Test Facility	• •	
2.4. Statement of the Measurement Uncerta	ainty	9 g
2.5. Measurement Uncertainty	the instan	
3.1. POWER LINE CONDUCTED EMISSIC		
3.2. Radiated emission Measurement		
4. TEST SETUP PHOTOGRAPHS OF EU	ТТ	21
5. EXTERIOR PHOTOGRAPHS OF THE		
6. INTERIOR PHOTOGRAPHS OF THE E	EUT	21

1. SUMMARY OF STANDARDS AND RESULTS


1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION								
Description of Test Item	Limits	Results						
Conducted disturbance at mains terminals	Class B	PASS						
Radiated disturbance FCC 47 CFR Part 15 Subpart B, Cl B(SDoC), ANSI C63.4 -2014		Class B	PASS					
N/A is an abbreviation for Not A	oplicable.	工业	ing Lab					
RE res	100 100 10	ST LCS IS						
Test mode:								
Mode 1	Operate in USB mode	Record						

2.1. Description of Device (EUT) EUT : Cord Extension Set Trade Mark : N/A Test Model : QY03 Additional Model : QY03-01 Model Declaration : PCB board, structure and internal of these model(s) are the same, only the connection mode is different: copper or wire, they have all been tested and the reports show only the worst data Power Supply : Input: AC 100-125V, 60Hz, 15A, 1875W Max Output: DC 5V, 2.4A, Max 12W

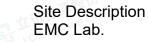
: Fx > 1 GHz

Highest internal frequency (Fx)

Highest internal frequency (Fx) Highest measured frequency Fx ≤ 108 MHz 1 GHz $108 \text{ MHz} < \text{Fx} \le 500 \text{ MHz}$ 2 GHz 500 MHz < Fx \leq 1 GHz 5 GHz

Fx > 1 GHz5 × Fx up to a maximum of 6 GHz NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz.


2.2. Support Equipment List

H the Will Be Da	Manufacturer	Description	Model	Serial Number	Certificate
cs Testins	151 10	.1.eeth	LCS TO		101 Los Test

2.3 External I/O Cable

I/O Port Description	Quantity	Cable

2.4. Description of Test Facility

: NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. Test Firm Registration Number: 254912.

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

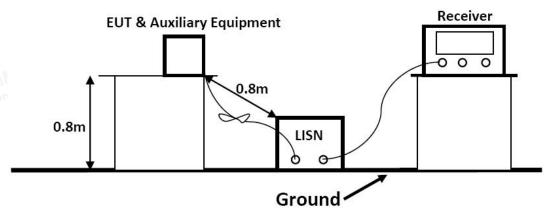
2.5. Measurement Uncertainty

2.5. Measur	2.5. Measurement Uncertainty					
Test	Parameters	Expanded Uncertainty (Ulab)	Expanded Uncertainty (Ucispr)			
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB			
Radiated Emission	Level accuracy (9kHz to 30MHz)	\pm 3.68 dB	N/A			
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB			
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	± 5.2 dB			

(1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

(2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. TEST RESULTS


3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	Farad	EZ	/	N/A	N/A
2	EMI Test Receiver	R&S	ESR3	102311	2022-03-15	2023-03-14
3	Artificial Mains	R&S	ENV216	101288	2021-06-21	2022-06-20
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2021-06-21	2022-06-20
5	Impedance Stabilization Network	TESEQ	ISN T800	45130	2021-12-01	2022-11-30

3.1.2.Block Diagram of Test Setup

3.1.3.Test Standard

Power Line Conducted Emission Limits (Class B)

Frequency			Limit (dBµV)				
· 在所的200	(MHz)		Quasi-peak Level	Average Level			
0.15	~	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *			
0.50	~	5.00	56.0	46.0			
5.00	~	30.00	60.0	50.0			
	he lower		ply at the transition fre				
			early with the logarithm				

in the range 0.15MHz to 0.50MHz.

3.1.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

3.1.5. Operating Condition of EUT

- 3.1.5.1.Setup the EUT as shown on Section 3.1.2
- 3.1.5.2. Turn on the power of all equipments.
- 3.1.5.3.Let the EUT work in measuring Mode 1 and measure it.

3.1.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

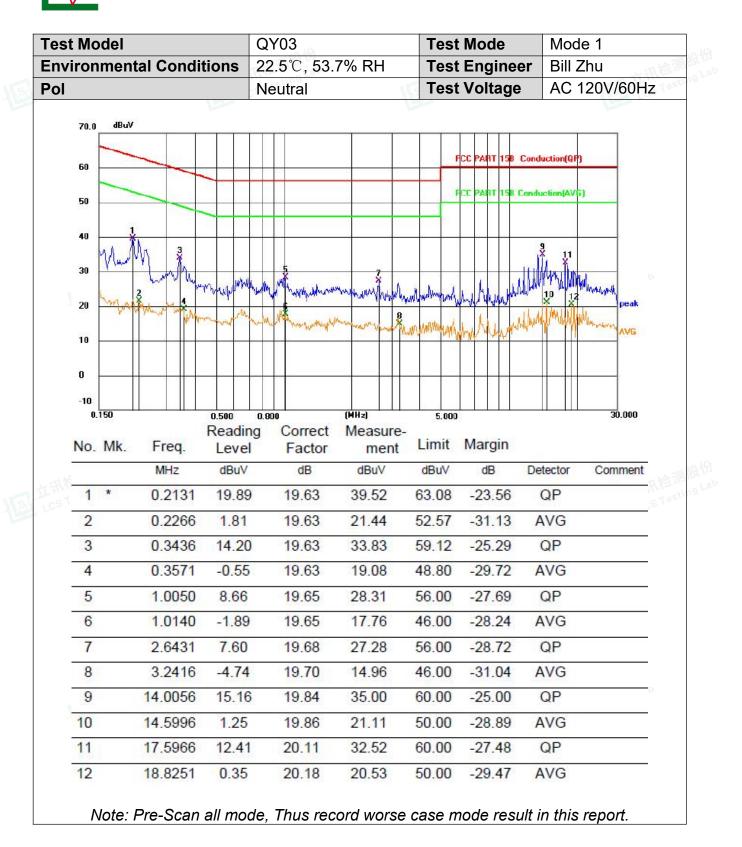
The bandwidth of the test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated

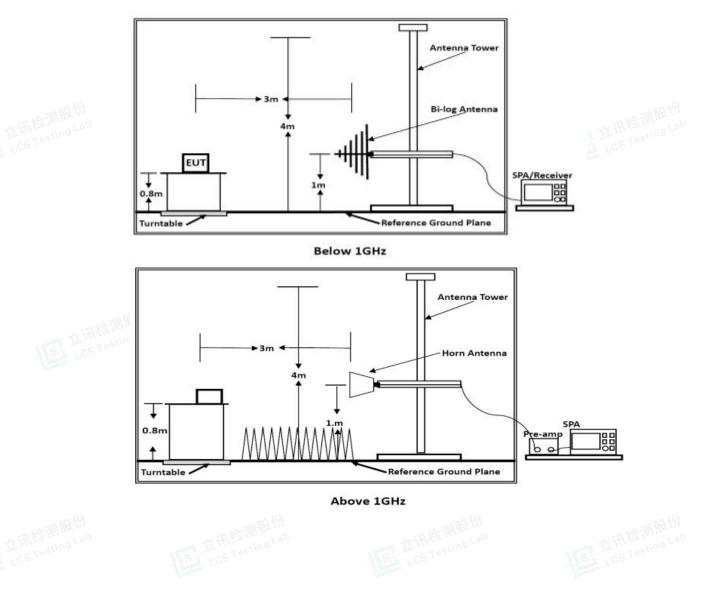
3.1.7.Test Results

PASS.

The test result please refer to the next page.



Tes	t Mode		Q	Y03		Test	Mode	Mode	e 1	NE TH
	ironme	ental Condit	1. State 1.	2.5℃, 53.7	7% RH 📊		Engineer		WARDA ALS	s Testi
Pol			Li	ne	1	Test	Voltage	AC 1	20V/60Hz	2
	70.0 dl 60 50 40 30 20 10		March Handle				FCC PART 158 C	5.55		
	0 -10 0.150	k Frag	0.500 0.8 Reading	Correct	(MHz) Measure-		Margin		30.000	
	No. M	k. Freq. MHz	Level dBuV	Factor dB	dBuV	dBuV		Detector	Comment	附到
	1 *	0.2131	22.89	19.63	42.52	63.08	-20.56	QP	Comment	37051
	2	0.2131	5.23	19.63	24.86	53.08	-28.22	AVG		
	3	0.3436	14.20	19.63	33.83	59.12	-25.29	QP		
	4	0.3571	-0.55	19.63	19.08	48.80	-29.72	AVG		
	5	0.9871	7.55	19.65	27.20	56.00	-28.80	QP		
	6	1.0141	1000000	19.65	15.76	46.00	-30.24	AVG		
	7	2.6431	7.10	19.68	26.78	56.00	-29.22	QP		
	8	3.2146	-4.60	19.70	15.10	46.00	-30.90	AVG		
	9	14.0056	19.16	19.84	39.00	60.00	-21.00	QP		
	10	14.5996	5.25	19.86	25.11	50.00	-24.89	AVG		
	11	17.5966	16.41	20.11	36.52	60.00	-23.48	QP		
	12	18.2311	2.89	20.16	23.05	50.00	-26.95	AVG		


3.2. Radiated emission Measurement

3.2.1. Test Equipment

The following test equipments are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	Farad	EZ	/	N/A	N/A
2	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2021-06-21	2022-06-20
3	Positioning Controller	MF	MF7082	MF78020803	2021-06-21	2022-06-20
4	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24
5	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2024-06-30
6	EMI Test Receiver	R&S	ESR3	102312	2021-06-21	2022-06-20
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2021-11-16	2022-11-15
8	Broadband Preamplifier	- K-LGS	BP-01M18G	P190501	2021-06-21	2022-06-20

3.2.2. Block Diagram of Test Setup

3.2.3. Radiated Emission Limit (Class B)

Limits for I	Radiated Disturba	nce Below 1GHz

Limit	s for Radiated Dist	urbance Below 10	JΗΖ	
FREQUENCY	DISTANCE	FIELD STREM	NGTHS LIMIT	
MHz	Meters	μV/m	dB(µV)/m	
30 ~ 88	3	100	40	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46	
960 ~ 1000	3	500	54	
Remark: (1) Emission I	evel (dB)µV = 20 l	og Emission level	μV/m	
(2) The small	er limit shall apply	at the cross point	between two	
frequency	bands.	-		
(3) Distance i	s the distance in m	eters between the	e measuring	
instrument, a	antenna and the cl	osest point of any	part of the	
device or sy	stem.		ST CS Testing	
Limits	for Radiated Emiss	sion Above 1GHz		
Frequency	Distance	Peak Limit	Average Limit	
(MHz)	(Meters)	(dBµV/m)	(dBµV/m)	
Above 1000	3	74	54	

***Note: The lower limit applies at the transition frequency.

3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.2.5. Operating Condition of EUT

3.2.5.1.Setup the EUT as shown in Section 3.2.2.

3.2.5.2.Let the EUT work in test Mode 1 and measure it.

3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

3.2.7. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for
band)	Average

The frequency range from 30MHz to 1000MHz and above 1000MHz is checked.

3.2.8. Radiated Emission Noise Measurement Result

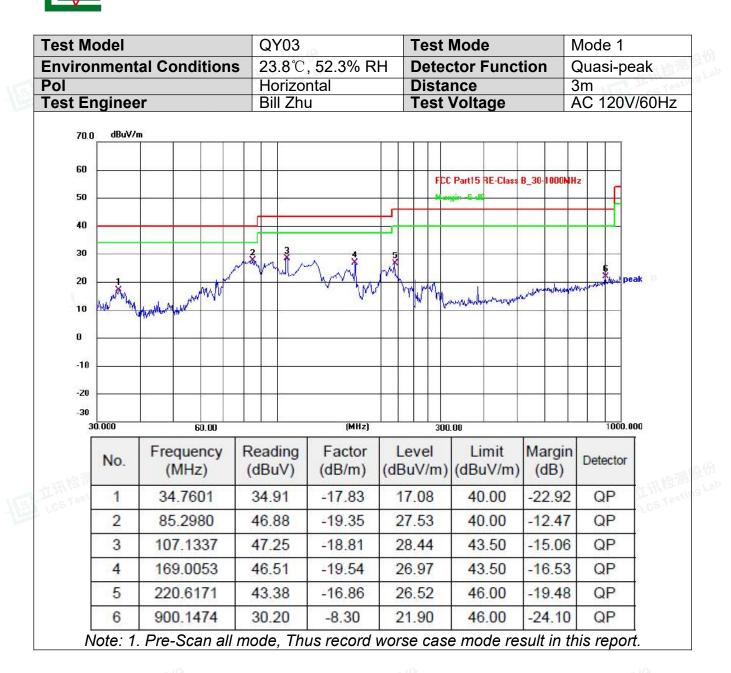
PASS.

The scanning waveforms please refer to the next page.

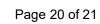
Page 17 of 21

FCC ID: 2A3US-QY03

Report No.: LCSA051022050EA


Test M	est Model				Test	Mode	N	lode 1		
Enviro	nmenta	al Conditions	23.8℃, 52.3% RH		- Detec	ctor Functi	ion C	Quasi-peak		
Pol			Vertica	Vertical		nce	3	3m		
Test Er	nginee	r	Bill Zhu		Test Voltage		A	AC 120V/60Hz		
70.0 60 50 40		n				C Part15 RE-Class I ngin - C - Cl	3_30-1000MH	z		
30 20 10 0 -10	Warming			V [*] V	× www.	S	for a constraint of the constr	ea	k. 5	
-20 -30 3		60.00		(MHz)	1	0.00		1000.00	IO	
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	- ml	
立词 物 ···································	1	41.7129	37.78	-17.32	20.46	40.00	-19.54	QP	Lift the pair	
LCS Jean	2	99.1797	47.97	-18.24	29.73	<mark>43.50</mark>	- <mark>1</mark> 3.77	QP	1.CS 1	
	3	154.8204	41.34	-19.75	21.59	4 3.50	-21.91	QP		
	4	215.2678	40.20	-16.99	23.21	43.50	-20.29	QP		
	5	441.7425	38.17	-14.45	23.72	46.00	-22.28	QP		
	6	900.1474	32.87	-8.30	24.57	46.00	-21.43	QP	ľ	

Page 18 of 21



Test Model			el QY03		Test I	Test Mode			Above	
Enviro	Environmental Conditions Pol			52.3% RI	- Detec	Detector Function			V	
Pol				Vertical		Distance			Lep .	
Test E	nginee	r	Bill Zhu	Bill Zhu		Test Voltage			AC 120V/60Hz	
90 80 70 60 50					FCC	Part15 RE-Class 8	_1-66Hz-AV6	i	ak D	
	al 25 15	X un enth warm	A Marthan							
30 20 10 -11	0	1500.00 2000.00		00.00 (MHz)	4000.00	4500.00 5000	.00 5500	1.00 5000.D	0	
20 10 0 -11	0 1000.000			D0.00 (MHz) Factor (dB/m)	Level	4500.00 5000 Limit (dBuV/m)	Margin	0.00 6000.0 Detector	0	
20 10 0	0 1000.000	1500.00 2000.00 Frequency	2500.00 300 Reading	Factor	Level	Limit	Margin	Detector	0 Dilling CS Test	
20 10 0 -11	0 1000.000	1500.00 2000.00 Frequency (MHz)	2500.00 300 Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	0 Liii Miii LCS Test	
20 10 0 -11	No.	1500.00 2000.00 Frequency (MHz) 1625.000	2500.00 300 Reading (dBuV) 50.56	Factor (dB/m) -14.55	Level (dBuV/m) 36.01	Limit (dBuV/m) 74.00	Margin (dB) -37.99	Detector peak peak	0 Liithii Los Test	
20 10 0 -11	No.	1500.00 2000.00 Frequency (MHz) 1625.000 2445.000	2500.00 300 Reading (dBuV) 50.56 50.17	Factor (dB/m) -14.55 -11.53	Level (dBuV/m) 36.01 38.64	Limit (dBuV/m) 74.00 74.00	Margin (dB) -37.99 -35.36	Detector peak peak	O Liillii Los Test	
20 10 0 -11	No. 1 2 3	1500.00 2000.00 Frequency (MHz) 1625.000 2445.000 3010.000	2500.00 300 Reading (dBuV) 50.56 50.17 50.20	Factor (dB/m) -14.55 -11.53 -9.58	Level (dBuV/m) 36.01 38.64 40.62	Limit (dBuV/m) 74.00 74.00 74.00	Margin (dB) -37.99 -35.36 -33.38	Detector peak peak peak	0 Link Marin Los Test	

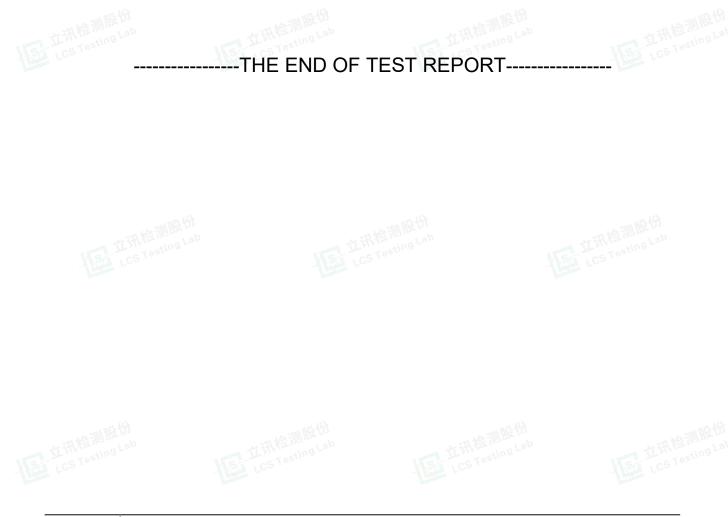
在i和检测器的 LCS Testing Lab

Test M	t Model ironmental Conditions			QY0	QY03 23.6℃, 52.5% RH			Test Mode Detector Function			Above
Enviro				s 23.6°							Peak + AV
Pol					Horizontal		Distance			3m 🦳 🖉	rea la
Test E	Engineer			Bill Z	Bill Zhu		Test Voltage			AC 120V/60Hz	
90.	.0 dBuV/	m				2	3				
80							FFF	Derette DE Clave		44	
70							FLL	Part15 RE-Class	5_1-60HZ-PE		
60		~				5					
50		8		-			FLL	Pari 15 RE-Class	8_1-6GHz-AV	<u>6</u>	
40					2	3	- week week	- Segue Labor marine	unadappenentation	viden sweephilities P	eak O
30	Whereman	whentieth	Duniharynellar	n	and the second strategy	of the particular sector of	levi-				
20											
10						0					
0 -10	1					-			2 A		
8	1000.000	1500.00	2000.00	2500.00	3000.00 (MH	z) 4	000.00	4500.00 500	0.00 550	0.00 6000.	00
فكنحب	No.		uency IHz)	Reading (dBuV)		10 A	evel uV/m)	Limit (dBuV/m)	Margin (dB)	Detector	tr ift the
Tin the in		102			c 20 20		2/				Sec. 1
Linter l	1	182	0.000	50.49	-14.04	3	6.45	74.00	-37.55	peak	LCS Ter
Linta i	1		0.000 5.000	50.49 49.85	-14.04 -9.68	14 74	6.45 0.17	74.00 74.00	-37.55 -33.83	peak peak	LCS Ter
Lift检测 LCS Test		297			1.587.0	4				10 38 Mars	1.CS 1.8°
LCS Test	2 3 4	297 357 438	5.000 0.000 5.000	49.85 49.50 48.73	-9.68	4 4 4	0.17 0.21 1.70	74.00	-33.83 -33.79 -32.30	peak	LCSTE
L语检测 LCS Test	2	297 357 438 499	5.000 0.000	49.85 49.50	-9.68 -9.29	4 4 4 4	0.17 0.21	74.00 74.00	-33.83 -33.79	peak peak	LCS 16

LCS Testing Lat

Please refer to separated files for Test Setup Photos of the EUT.

4. TEST SETUP PhotographS of eut


Please refer to separated files for Test Setup Photos of the EUT.

5. Exterior Photographs of the eut

Please refer to separated files for External Photos of the EUT.

6. INTERIOR Photographs of the eut

Please refer to separated files for Internal Photos of the EUT.

