

FCC Test Report

Report No.: RFBAYG-WTW-P22090618

FCC ID: 2A3ULTVC2TX

Model No.: TVC2-TX

Received Date: Sep. 19, 2022

Test Date: Oct. 13 ~ Dec. 21, 2022

Issued Date: Mar. 16, 2023

Applicant: Sonova Consumer Hearing GmbH

Address: Am Labor ?	I, 30900 Wedemark,	Germany
---------------------	--------------------	---------

- Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
 Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
- **Test Location:** No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration / 788550 / TW0003

Designation Number:

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the report, the tests conducted and the correctness of the report contents.

Table of Contents

Re	eleas	e Control Record	4
1	Cer	tificate of Conformity	5
2	Sun	nmary of Test Results	6
		Measurement Uncertainty Modification Record	
3	Ger	neral Information	8
•		General Description of EUT	
		Description of Test Modes	
	0.2	3.2.1 Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
		3.4.1 Configuration of System under Test	
		General Description of Applied Standards and References	
4		t Types and Results	
	4.1	Radiated Emission and Bandedge Measurement	. 13
		4.1.1 Limits of Radiated Emission and Bandedge Measurement	
		4.1.2 Test Instruments	
		4.1.3 Test Procedures4.1.4 Deviation from Test Standard	
		4.1.4 Deviation from rest Standard	
		4.1.6 EUT Operating Conditions	
		4.1.7 Test Results	
	4.2	Conducted Emission Measurement	
		4.2.1 Limits of Conducted Emission Measurement	
		4.2.2 Test Instruments	
		4.2.3 Test Procedures	
		4.2.4 Deviation from Test Standard4.2.5 Test Setup	
		4.2.6 EUT Operating Condition	
		4.2.7 Test Results	
	4.3	Number of Hopping Frequency Used	
		4.3.1 Limits of Hopping Frequency Used Measurement	
		4.3.2 Test Setup	
		4.3.3 Test Instruments	
		4.3.4 Test Procedure4.3.5 Deviation from Test Standard	
		4.3.6 Test Results	
	4.4	Dwell Time on Each Channel	
		4.4.1 Limits of Dwell Time on Each Channel Measurement	
		4.4.2 Test Setup	29
		4.4.3 Test Instruments	
		4.4.4 Test Procedures	
		4.4.5 Deviation from Test Standard	
	15	4.4.6 Test Results Channel Bandwidth	
	4.5	4.5.1 Limits of Channel Bandwidth Measurement	
		4.5.2 Test Setup	
		4.5.3 Test Instruments	
		4.5.4 Test Procedure	
		4.5.5 Deviation from Test Standard	
		4.5.6 EUT Operating Condition	
	10	4.5.7 Test Results	
	4.6	Occupied Bandwidth Measurement	33

		4.6.1 Test Setup	33
		4.6.2 Test Instruments	33
		4.6.3 Test Procedure	33
		4.6.4 Deviation from Test Standard	33
		4.6.5 EUT Operating Conditions	33
		4.6.6 Test Results	
	4.7	Hopping Channel Separation	35
		4.7.1 Limits of Hopping Channel Separation Measurement	
		4.7.2 Test Setup	
		4.7.3 Test Instruments	35
		4.7.4 Test Procedure	
		4.7.5 Deviation from Test Standard	35
		4.7.6 Test Results	36
	4.8	Maximum Output Power	
		4.8.1 Limits of Maximum Output Power Measurement	37
		4.8.2 Test Setup	
		4.8.3 Test Instruments	37
		4.8.4 Test Procedure	37
		4.8.5 Deviation from Test Standard	
		4.8.6 EUT Operating Condition	
		4.8.7 Test Results	
	4.9	Conducted Out of Band Emission Measurement	
		4.9.1 Limits Of Conducted Out of Band Emission Measurement	
		4.9.2 Test Instruments	
		4.9.3 Test Procedure	
		4.9.4 Deviation from Test Standard	
		4.9.5 EUT Operating Condition	
		4.9.6 Test Results	39
5	Pict	ures of Test Arrangements	41
6	Cor	struction Photos of EUT	42
An	nex	A- Band Edge Measurement	43
Ap	pen	dix – Information of the Testing Laboratories	44

Release Control Record

Issue No.	Description	Date Issued
RFBAYG-WTW-P22090618	Original Release	Mar. 16, 2023

1 Certificate of Conformity

Product:	TV Clear Transmitter 2		
Brand:	SENNHEISER		
Model No.:	TVC2-TX		
Sample Status:	Engineering Sample		
Applicant:	Sonova Consumer Hearing GmbH		
Test Date:	Oct. 13 ~ Dec. 21, 2022		
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)		
	ANSI C63.10-2013		

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Gina Wu

Date: Mar. 16, 2023

Gina Liu / Specialist

Jeremy Lin

Approved by :

Jeremy Lin / Project Engineer

Date: Mar. 16, 2023

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)									
FCC Clause	Test Item	Result	Remarks							
15.207 AC Power Conducted Emission		Pass	Meet the requirement of limit. Minimum passing margin is -11.66 dB at 0.15000 MHz.							
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.							
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.							
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.							
15.247(b) (1)	Maximum Peak Output Power	Pass	Meet the requirement of limit.							
	Occupied Bandwidth Measurement	Pass	Reference only							
15.205 & 209	5 & 209 Radiated Emissions		Meet the requirement of limit. Minimum passing margin is -5.5 dB at 2350.00 MHz.							
15.247(d) Band Edge Measurement		Pass	Meet the requirement of limit.							
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.							
15.203 Antenna Requirement		Pass	No antenna connector is used.							

Note:

- If the Frequency Hopping System operating in 2400-2483.5 MHz band and the output power less than 125 mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of hopping channel whichever is greater.
- 2. For 2.4G band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.79 dB
	9 kHz ~ 30 MHz	3.04 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.93 dB
	200 MHz ~ 1000 MHz	2.95 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	2.26 dB
Raulateu Emissions adove 1 GHZ	18 GHz ~ 40 GHz	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	TV Clear Transmitter 2			
Brand	SENNHEISER			
Model No.	TVC2-TX			
Status of EUT	Engineering Sample			
Power Supply Rating	5Vdc, 0.5A (USB port)			
Operating Temperature	0°C~ 45°C			
Modulation Type	GMSK			
Data Transfer Rate	2.6 Mbps			
Operating Frequency	2402 ~ 2480 MHz			
Number of Channel	40			
Channel Spacing 2MHz				
Channel Bandwidth	2MHz			
Transmission technology	proprietary 2.4GHz transmission protocol			
Maximum Output Power	11.722 mW			
Antenna Type	PIFA antenna with 3.38 dBi gain			
Antenna Connector N/A				
Accessory Device	Refer to Note as below			
Data Cable Supplied	Refer to Note as below			

Note:

1. The EUT contains following accessory devices.

Accessories information					
	Brand	Dong Guan An Huan Electronics			
USB Cable	Model	043-3093 USB-A to USB-C cable 1m flexible			
	Signal Line	1m			
	Brand	Mline			
Audio Cable	Model	057-0011 Toslink cable 100cm, 3.5mm, black			
	Signal Line	100cm			
	Brand	Lin Shiung Enterprise			
Audio Cable	Model	052-3205 Stereo cable 3.5mm / 1m			
	Signal Line	1m			

2. Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

Channel	Freq. (MHz)						
1	2402	11	2422	21	2442	31	2462
2	2404	12	2424	22	2444	32	2464
3	2406	13	2426	23	2446	33	2466
4	2408	14	2428	24	2448	34	2468
5	2410	15	2430	25	2450	35	2470
6	2412	16	2432	26	2452	36	2472
7	2414	17	2434	27	2454	37	2474
8	2416	18	2436	28	2456	38	2476
9	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configur	e	Applic	able To			
Mode	RE≥1G	RE<1G	PLC	APCM	Description	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
Where RE≥1G: Radiated Emission above 1 GHz RE<1G: Radiated Emission below 1 GHz						
PLC: Power Line Conducted Emission A			nission	APCM: Ant	tenna Port Conducted Measurement	
Note:						

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

2. "-" means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Data Rate (Mbps)
-	1 to 40	1, 20, 40	GMSK	2.6

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

	EUT Configure Available Channel Mode		Tested Channel	Modulation Technology	Data Rate (Mbps)	
I	-	1 to 40	1	GMSK	2.6	

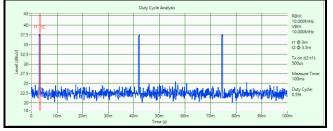
Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Data Rate (Mbps)	
-	1 to 40	1	GMSK	2.6	

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

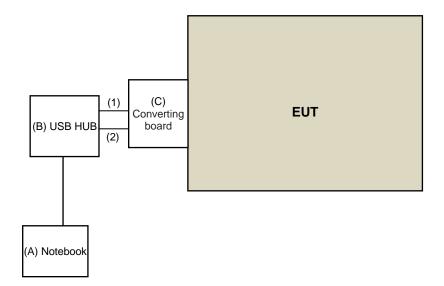

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Data Rate (Mbps)	
-	1 to 40	1, 20, 40	GMSK	2.6	

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by	
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Rex Wang	
RE<1G	23 deg. C, 67 % RH	120 Vac, 60 Hz	Adair Peng	
PLC	25 deg. C, 75 % RH	120 Vac, 60 Hz	Rex Wang	
APCM 25 deg. C, 65 % RH		5 Vdc	Han Wu	

3.3 Duty Cycle of Test Signal

Duty cycle = 0.5 ms * 3 / 100 ms x 100% = 0.015%, Duty cycle correction factor = 20 * log (Duty cycle) = -36.5 dB


3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	Notebook	Lenovo	X250ALT5	PC06HPSE	NA	Provided by Lab
В	USB HUB	NA	NA	NA	NA	Supplied by applicant
С	Converting board	NA	NA	NA	NA	Supplied by applicant

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	USB Cable	1	0.1	Ν	0	Supplied by applicant
2	USB Cable	1	0.1	Y	0	Supplied by applicant

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- a. The lower limit shall apply at the transition frequencies.
- b. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- c. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Dec. 30, 2021	Dec. 29, 2022
Spectrum Analyzer ROHDE & SCHWARZ	FSW43	101582	Apr. 13, 2022	Apr. 12, 2023
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Oct. 28, 2021 Oct. 21, 2022	Oct. 27, 2022 Oct. 20, 2023
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Nov. 14, 2021 Nov. 13, 2022	Nov. 13, 2022 Nov. 12, 2023
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Oct. 26, 2021 Oct. 20, 2022	Oct. 25, 2022 Oct. 19, 2023
Loop Antenna TESEQ	HLA 6121	45745	Jun. 27, 2022	Jun. 26, 2023
Preamplifier Agilent (Below 1GHz)	8447D	2944A10631	May 14, 2022	May 13, 2023
Preamplifier KEYSIGHT (Above 1GHz)	83017A	MY53270295	Feb. 16, 2022	Feb. 15, 2023
RF Coaxial Cable WOKEN With 5dB PAD	8D-FB	Cable-CH4-01	Jul. 09, 2022	Jul. 08, 2023
RF Coaxial Cable EMCI	EMC102-KM-KM-3 000	150929	May 14, 2022	May 13, 2023
RF Coaxial Cable EMCI	EMC102-KM-KM-6 00	150928	May 14, 2022	May 13, 2023
RF signal cable HUBER+SUHNER	SUCOFLEX 104	MY 13380+295012/04	Jan. 15, 2022	Jan. 14, 2023
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH4-03 (250724)	Jan. 15, 2022	Jan. 14, 2023
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021703	NA	NA
Turn Table BV ADT	TT100	TT93021703	NA	NA
Turn Table Controller BV ADT	SC100	SC93021703	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Pre-amplifier (18GHz-40GHz) EMC	EMC184045B	980175	Sep. 03, 2022	Sep. 02, 2023
Wideband Power Sensor KEYSIGHT	N1923A	MY58020002	Jan. 17, 2022	Jan. 16, 2023
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	Jan. 18, 2022	Jan. 17, 2023

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 4.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

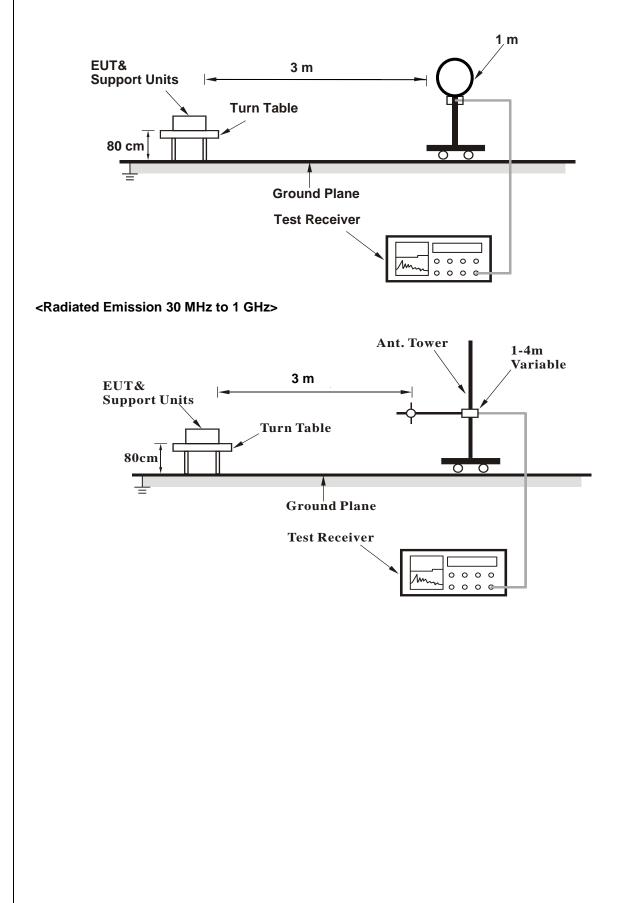
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

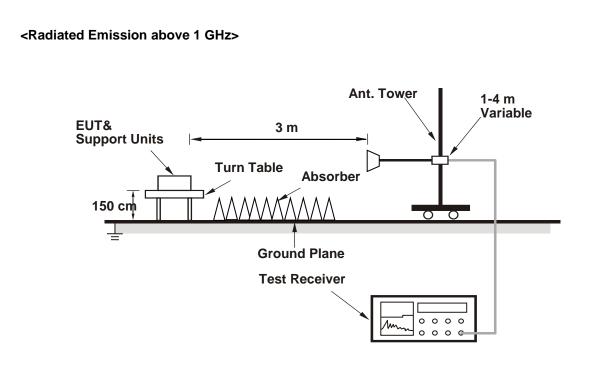
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- For Fundamental frequency and band edge & harmonic: The average value of fundamental frequency is :average value = peak value + 20*log(Duty cycle) where the duty cycle correction factor is calculated from following formula: 20*Log(Duty cycle) = 20*log (0.5*3 ms/100 ms) = -36.5 dB, please refer to the plotted duty (see section 3.3)
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Set Up

<Radiated Emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1 GHz Data:

RF Mode	FLORA	Channel	CH 1:2402 MHz
Frequency Range	1 GHz - 25 GHz	Detector Function	Peak (PK)
Trequency Mange		Detector runction	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2350.00	58.6 PK	74.0	-15.4	1.95 H	154	24.7	33.9		
2	2350.00	48.2 AV	54.0	-5.8	1.95 H	154	14.3	33.9		
3	*2402.00	104.3 PK			1.95 H	154	70.5	33.8		
4	*2402.00	67.8 AV			1.95 H	154	34.0	33.8		
5	4804.00	51.1 PK	74.0	-22.9	1.65 H	187	40.3	10.8		
6	4804.00	14.6 AV	54.0	-39.4	1.65 H	187	3.8	10.8		
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2350.00	59.1 PK	74.0	-14.9	1.19 V	195	25.2	33.9		
2	2350.00	48.5 AV	54.0	-5.5	1.19 V	195	14.6	33.9		
3	*2402.00	106.4 PK			1.19 V	195	72.6	33.8		
4	*2402.00	69.9 AV			1.19 V	195	36.1	33.8		
5	4804.00	51.5 PK	74.0	-22.5	1.88 V	286	40.7	10.8		
6	4804.00	15.0 AV	54.0	-39.0	1.88 V	286	4.2	10.8		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. for Fundamental frequency and bandedge & harmonic:

The average value of fundamental frequency is: average = peak value + $20\log(\text{Duty cycle})$ where the duty factor is calculated from following formula: $20*\text{Log}(\text{Duty cycle}) = 20*\log(0.5*3 \text{ ms}/100 \text{ ms}) = -36.5\text{dB}$ please refer to the plotted duty (see section 3.3)

RF Mode	FLORA	Channel	CH 20:2440 MHz
Fraguency Bange		Detector Function	Peak (PK)
Frequency Kange	e 1 GHz ~ 25 GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2388.00	58.7 PK	74.0	-15.3	1.84 H	176	24.8	33.9		
2	2388.00	48.2 AV	54.0	-5.8	1.84 H	176	14.3	33.9		
3	*2440.00	104.8 PK			1.84 H	176	71.0	33.8		
4	*2440.00	68.3 AV			1.84 H	176	34.5	33.8		
5	4880.00	51.5 PK	74.0	-22.5	1.46 H	189	40.4	11.1		
6	4880.00	15.0 AV	54.0	-39.0	1.46 H	189	3.9	11.1		
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2388.00	59.2 PK	74.0	-14.8	1.34 V	198	25.3	33.9		
2	2388.00	48.4 AV	54.0	-5.6	1.34 V	198	14.5	33.9		
3	*2440.00	107.4 PK			1.34 V	198	73.6	33.8		
4	*2440.00	70.9 AV			1.34 V	198	37.1	33.8		
5	4880.00	51.7 PK	74.0	-22.3	1.94 V	283	40.6	11.1		
6	4880.00	15.2 AV	54.0	-38.8	1.94 V	283	4.1	11.1		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. for Fundamental frequency and bandedge & harmonic:

The average value of fundamental frequency is: average = peak value + $20\log(\text{Duty cycle})$ where the duty factor is calculated from following formula: $20*\text{Log}(\text{Duty cycle}) = 20*\log(0.5*3 \text{ ms}/100 \text{ ms}) = -36.5\text{dB}$ please refer to the plotted duty (see section 3.3)

RF Mode	FLORA	Channel	CH 40 : 2480 MHz
Frequency Range	1 CHz 25 CHz	Detector Function	Peak (PK)
Trequency Kange		Detector runction	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2480.00	104.3 PK			2.05 H	176	70.5	33.8			
2	*2480.00	67.8 AV			2.05 H	176	34.0	33.8			
3	2483.50	55.5 PK	74.0	-18.5	2.05 H	176	43.3	12.2			
4	2483.50	19.0 AV	54.0	-35.0	2.05 H	176	6.8	12.2			
5	4960.00	51.4 PK	74.0	-22.6	2.44 H	200	40.4	11.0			
6	4960.00	14.9 AV	54.0	-39.1	2.44 H	200	3.9	11.0			
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m					
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2480.00	106.0 PK			1.08 V	198	72.2	33.8			
2	*2480.00	69.5 AV			1.08 V	198	35.7	33.8			
3	2483.50	55.7 PK	74.0	-18.3	1.08 V	198	43.5	12.2			
4	2483.50	19.2 AV	54.0	-34.8	1.08 V	198	7.0	12.2			
5	4960.00	51.6 PK	74.0	-22.4	1.85 V	295	40.6	11.0			
6	4960.00	15.1 AV	54.0	-38.9	1.85 V	295	4.1	11.0			

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. for Fundamental frequency and bandedge & harmonic:

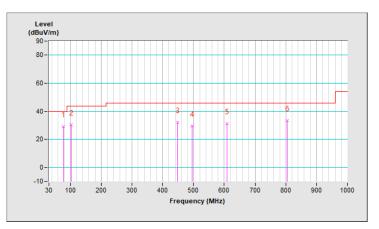
The average value of fundamental frequency is: average = peak value + $20\log(\text{Duty cycle})$ where the duty factor is calculated from following formula: $20*\text{Log}(\text{Duty cycle}) = 20*\log(0.5*3 \text{ ms}/100 \text{ ms}) = -36.5\text{dB}$ please refer to the plotted duty (see section 3.3)

9 kHz ~ 1 GHz Worst-Case Data:

RF Mode FLORA		Channel	CH 0:2402 MHz		
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)		

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	76.56	29.1 QP	40.0	-10.9	1.50 H	5	41.7	-12.6				
2	102.75	30.5 QP	43.5	-13.0	2.00 H	5	43.6	-13.1				
3	449.04	31.9 QP	46.0	-14.1	1.00 H	271	35.4	-3.5				
4	495.60	29.5 QP	46.0	-16.5	1.00 H	321	32.1	-2.6				
5	608.12	31.0 QP	46.0	-15.0	1.50 H	71	31.0	0.0				
6	804.06	33.2 QP	46.0	-12.8	1.00 H	9	29.7	3.5				

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

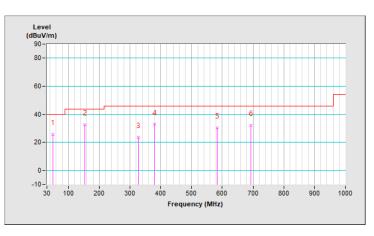
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	FLORA	Channel	CH 0 : 2402 MHz
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	No Frequency (MHz) Emission (MHz) Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	50.37	25.5 QP	40.0	-14.5	1.50 V	15	34.3	-8.8				
2	154.16	32.5 QP	43.5	-11.0	1.50 V	137	41.1	-8.6				
3	327.79	23.3 QP	46.0	-22.7	1.00 V	256	29.3	-6.0				
4	379.20	32.7 QP	46.0	-13.3	1.00 V	137	37.9	-5.2				
5	582.90	30.4 QP	46.0	-15.6	2.00 V	81	30.9	-0.5				
6	693.48	32.2 QP	46.0	-13.8	1.00 V	12	31.2	1.0				

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted I	Limit (dBuV)		
Frequency (MHz)	Quasi-Peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

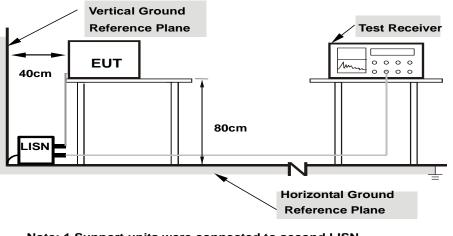
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 3, 2021	Dec. 2, 2022
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Jan. 15, 2022	Jan. 14, 2023
LISN/AMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Mar. 14, 2022	Mar. 13, 2023
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Sep. 12, 2022	Sep. 11, 2023
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1 (Conduction 1).
- 3. The VCCI Site Registration No. is C-12040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

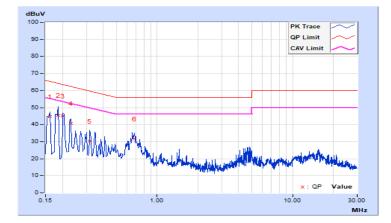
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 Test Results

CONDUCTED WORST-CASE DATA

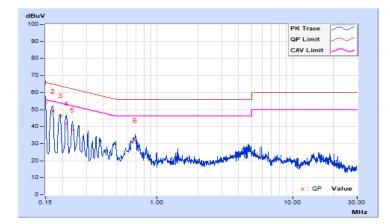

Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Rex Wang	Test Date	2022/10/13

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor		Reading Value (dBuV)		-		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16190	9.62	35.32	21.02	44.94	30.64	65.37	55.37	-20.43	-24.73	
2	0.18600	9.63	35.68	18.80	45.31	28.43	64.21	54.21	-18.90	-25.78	
3	0.20200	9.64	35.35	18.91	44.99	28.55	63.53	53.53	-18.54	-24.98	
4	0.23000	9.65	31.17	15.37	40.82	25.02	62.45	52.45	-21.63	-27.43	
5	0.31800	9.67	20.68	8.23	30.35	17.90	59.76	49.76	-29.41	-31.86	
6	0.68200	9.69	22.09	14.69	31.78	24.38	56.00	46.00	-24.22	-21.62	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

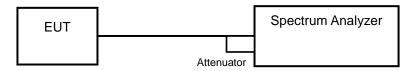


Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Rex Wang	Test Date	2022/10/13

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor		Reading Value Emission Level (dBuV) (dBuV)		Limit (dBuV)		Margin (dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.62	44.72	27.62	54.34	37.24	66.00	56.00	-11.66	-18.76	
2	0.17000	9.63	39.69	22.66	49.32	32.29	64.96	54.96	-15.64	-22.67	
3	0.19316	9.64	36.88	20.15	46.52	29.79	63.90	53.90	-17.38	-24.11	
4	0.21400	9.64	32.03	16.48	41.67	26.12	63.05	53.05	-21.38	-26.93	
5	0.23786	9.65	28.33	15.23	37.98	24.88	62.17	52.17	-24.19	-27.29	
6	0.69000	9.69	22.22	15.68	31.91	25.37	56.00	46.00	-24.09	-20.63	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

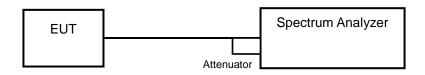
4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 40 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

31 ₌ p	Ref 31 dBm	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 15 ms	[T1] MP VIEW	Marker 1 [T1] 5.90 dBm 2.40200 GHz Marker 2 [T1]	31 = Ref 31 dBm	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 15 ms	[T1] MP VIEW	Marker 1 [T1] 7.76 dBm 2.44200 GHz Marker 2 [T1]
20-	Offset 11 dB				8.43 dBm 2.44000 GHz	Offset 11 dB 20 -				7.40 dBm 2.48000 GHz
10-	1 .* & ./. /\	antaka mara wa A. A.	and the star star ward at a	2 1		10-11 10-11	have many in the second	1 n k A A. 10	2 1 1 1 1	
0-	_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VVVV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VVV		• WW VV	VY VY VY	VYVYYY	WVY.	
-10	<u> </u>					-10-				
-20						-20 -				
-30 -						-30 -				
-40						-40				
-50					AUVE	-50 -				ALL VE
-60						-60 -				
-69 -	I I Center 2.42042 GHz	4.1 M	Hz/	I Span 41 MHz	B U R E A U VERITAS	-69 - Center 2.46153 GHz	4.1 M	Hz/	I I Span 41 MHz	B U R E A U VERITAS



4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

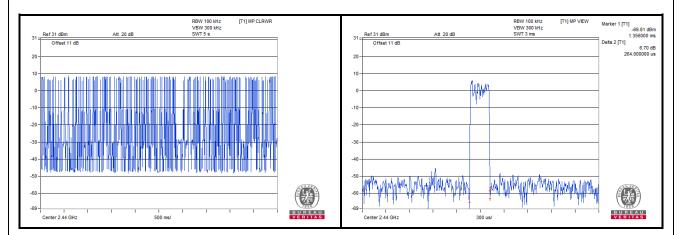
4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

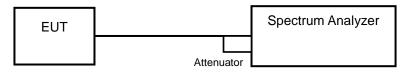
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.
- 4.4.5 Deviation from Test Standard


No deviation.

4.4.6 Test Results

Mode	Number of Transmission in a 16 (40 Hopping*0.4)				Length of Transmission Time (msec)	Result (msec)	Limit (msec)
Hopping	137	(times / 5 sec) * 3.2 =	439	times	0.264	115.9	400

Note: Test plots of the transmitting time slot are shown as below.



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

Maximum bandwidth is not specified.

4.5.2 Test Setup

4.5.3 Test Instruments

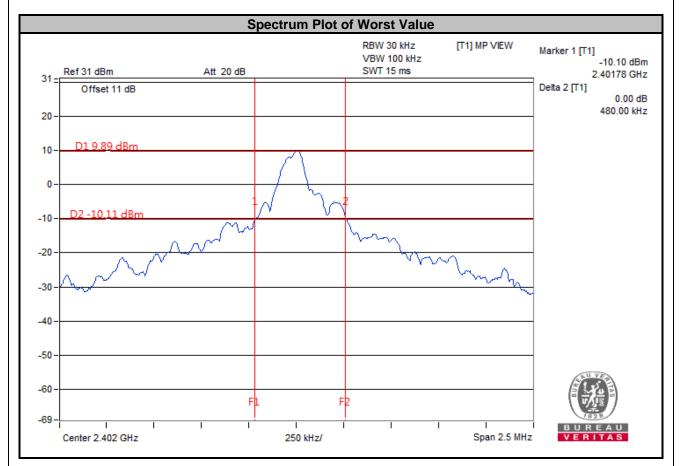
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

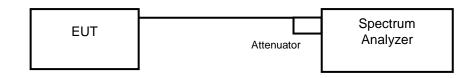
4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results


Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
1	2402	0.48
20	2440	0.48
40	2480	0.48

4.6 Occupied Bandwidth Measurement

4.6.1 Test Setup

4.6.2 Test Instruments

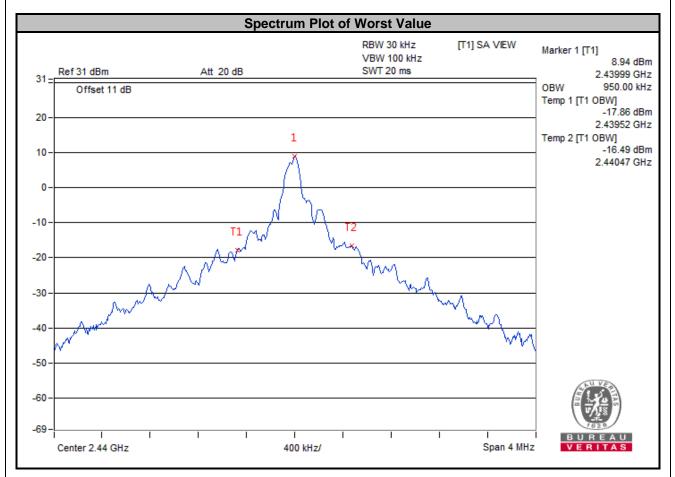
Refer to section 4.1.2 to get information of above instrument

4.6.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1 % to 5 % of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to sampling. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.6.4 Deviation from Test Standard

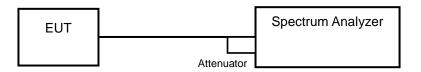
No deviation.


4.6.5 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.6 Test Results

Channel	Frequency (MHz)	Occupied Bandwidth (MHz)
1	2402	0.93
20	2440	0.95
40	2480	0.93



4.7 Hopping Channel Separation

4.7.1 Limits of Hopping Channel Separation Measurement

At least 25 kHz or two-third of 20 dB hopping channel bandwidth (whichever is greater).

4.7.2 Test Setup

4.7.3 Test Instruments

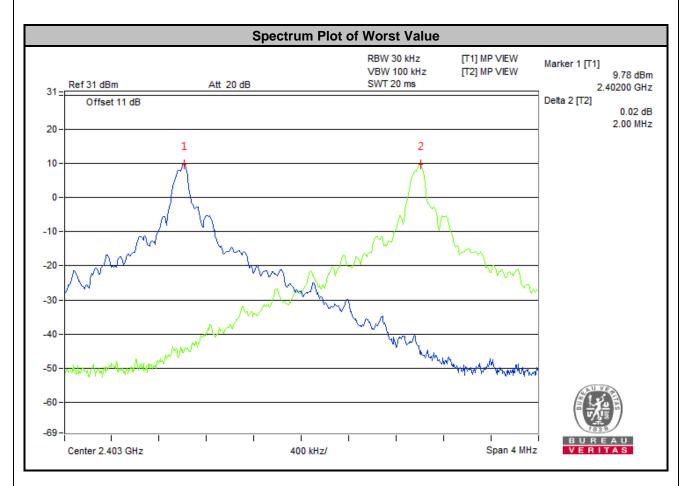
Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

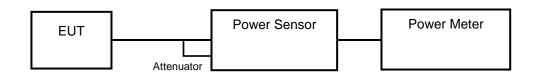
4.7.5 Deviation from Test Standard


No deviation.

4.7.6 Test Results

Channel	Freq. (MHz)	Adjacent Channel Separation (MHz)	20 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2402	2.00	0.48	0.32	Pass
20	2440	2.00	0.48	0.32	Pass
40	2480	2.00	0.48	0.32	Pass

Note: The minimum limit is two-third 20 dB bandwidth.


4.8 Maximum Output Power

4.8.1 Limits of Maximum Output Power Measurement

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt.

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

4.8.2 Test Setup

4.8.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.8.4 Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.8.5 Deviation from Test Standard

No deviation.

4.8.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.7 Test Results

Channel		Peak Power		Average Power		Power Limit	Bass / Esil	
Channel	Freq. (MHz)	(mW)	(dBm)	(mW)	(dBm)	(mW)	Pass / Fail	
1	2402	11.722	10.69	11.641	10.66	125 / 1000 Note	Pass	
20	2440	10.023	10.01	9.977	9.99	125 / 1000 Note	Pass	
40	2480	7.638	8.83	7.621	8.82	125 / 1000 Note	Pass	

Note: RF Output Power limit depends on the operating channel numbers, please refer to section 4.3 of the results.

4.9 Conducted Out of Band Emission Measurement

4.9.1 Limits Of Conducted Out of Band Emission Measurement

Below 20 dB of the highest emission level of operating band (in 100 kHz RBW).

4.9.2 Test Instruments

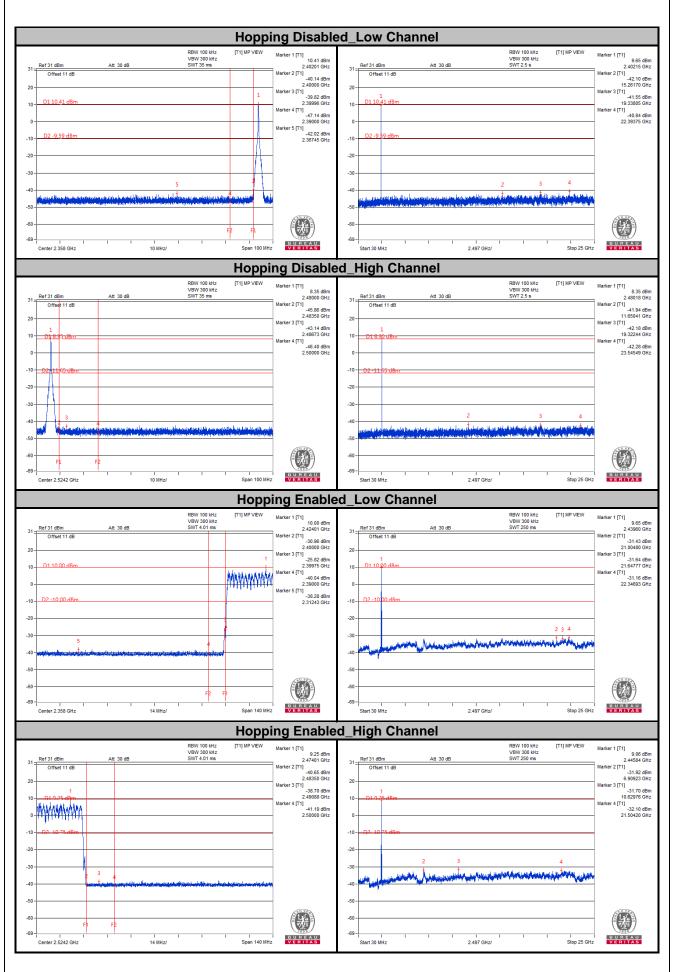
Refer to section 4.1.2 to get information of above instrument.

4.9.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.9.4 Deviation from Test Standard

No deviation.


4.9.5 EUT Operating Condition

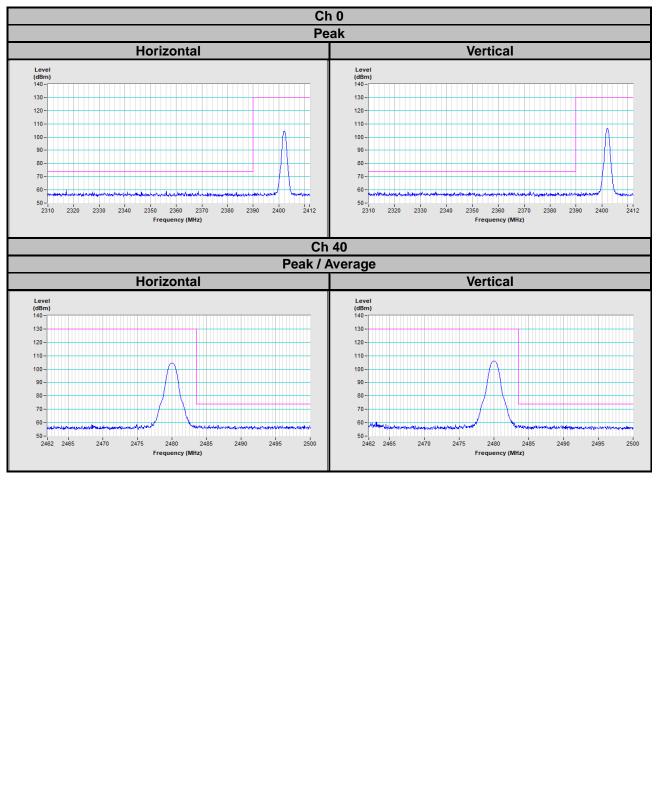
The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.9.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20 dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Reference No.: RFBAYG-WTW-P22090618_TSup (Test Setup Photo)).



6 Construction Photos of EUT

Please refer to the attached file (BAYG-WTW-P22090618 (EUT Photo)).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---