

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard:	47 CFR FCC Part 15, Subpart C (Section 15.247)
Report No.:	RFCFQC-WTW-P22060736-2
FCC ID:	2A3ULCONCPLUS1
Product Name:	Conversation Clear Plus (ConCPlus1), ConC 400 (ConCPlus1)
	(refer to item 3.1 for more details)
Brand Name:	SENNHEISER
Model No.:	ConCPlus1 (refer to item 3.1 for more details)
Received Date:	2022/7/6
Test Date:	2022/8/24 ~ 2022/9/23
Issued Date:	2022/11/21
Applicant:	Sonova Consumer Hearing GmbH
Address:	Am Labor 1, D-30900 Wedemark, Germany
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
	Lin Kou Laboratories
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
Test Location (1):	No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan
Test Location (2):	No. 70, Wenming Rd., Guishan Dist., Taoyuan City 333, Taiwan
FCC Registration /	(1) 788550 / TW0003
esignation Number:	(2) 281270 / TW0032

Jeremy Lin

Date:

2022/11/21

Jeremy Lin / Project Engineer

This test report consists of 47 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Vera Huang / Specialist

Desi

Approved by:

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <u>http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/</u> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the report contents.

Table of Contents

Re	leas	se Control Record	4
1		Certificate	5
2		Summary of Test Results	6
	2.1 2.2	Measurement Uncertainty Supplementary Information	
3		General Information	7
	3.1	General Description	7
	3.2	Antenna Description of EUT	
	3.3	Channel List	
	3.4	Test Mode Applicability and Tested Channel Detail	
	3.5	Duty Cycle of Test Signal	
	3.6	Description of Support Units	
	3.6.	5	
4		Test Instruments	
	4.1	RF Output Power	
	4.2	Number of Hopping Frequency Used	
	4.3	Dwell Time on Each Channel	
	4.4 4.5	Hopping Channel Separation	
	4.6	Conducted Out of Band Emissions	
	4.7	AC Power Conducted Emissions	
	4.8	Unwanted Emissions below 1 GHz	
	4.9	Unwanted Emissions above 1 GHz	
5		Limits of Test Items	16
	5.1	RF Output Power	16
	5.2	Number of Hopping Frequency Used	
1	5.3	Dwell Time on Each Channel	
;	5.4	Hopping Channel Separation	
	5.5	20 dB Bandwidth	
	5.6	Conducted Out of Band Emissions	
	5.7	AC Power Conducted Emissions Unwanted Emissions below 1 GHz	
	5.8 5.9	Unwanted Emissions above 1 GHz	
	5.9		
6		Test Arrangements	
	6.1	RF Output Power	
	6.1. [:] 6.1.:	I	
	6.1.4 6.2	2 Test Procedure Number of Hopping Frequency Used	
	6.2. ⁻		
	6.2.2	I	
	6.3	Dwell Time on Each Channel	
	6.3. ⁻	1 Test Setup	19
	6.3.2		
	6.4	Hopping Channel Separation	
	6.4.		
	6.4.2 8 5		
	6.5 6.5. ⁻	20 dB Bandwidth 1 Test Setup	
	o.s. 6.5.2		
	6.6	Conducted Out of Band Emissions	
	6.6. ⁻		
	6.6.2		
	6.7	AC Power Conducted Emissions	
_	6.7.	1 Test Setup	21

		12111140
6.7		21
6.8		
6.8		
6.8		
6.9	Unwanted Emissions above 1 GHz	
6.9	0.1 Test Setup	
6.9	0.2 Test Procedure	24
7	Test Results of Test Item	35
1		25
7.1		
7.2		
7.3		
7.4	Hopping Channel Separation	
7.5	5 20 dB Bandwidth	
7.6	Conducted Out of Band Emissions	
7.7		
7.8	3 Unwanted Emissions below 1 GHz	
7.9		
8	Pictures of Test Arrangements	45
9	Construction Photos of EUT	46
10	Information of the Testing Laboratories	47

Release Control Record

Issue No.	Description	Date Issued
RFCFQC-WTW-P22060736-2	Original Release	2022/11/21

1 Certificate

Product Name:	Conversation Clear Plus (ConCPlus1), ConC 400 (ConCPlus1) (refer to item 3.1 for more details)
Brand Name:	SENNHEISER
Model No.:	ConCPlus1 (refer to item 3.1 for more details)
Sample Status:	Engineering sample
Applicant:	Sonova Consumer Hearing GmbH
Test Date:	2022/8/24 ~ 2022/9/23
Standard:	47 CFR FCC Part 15, Subpart C (Section 15.247)
Measurement	ANSI C63.10-2013
procedure:	KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)			
Standard / Clause	Test Item	Result	Remark
15.247 (a)(1)	RF Output Power	Pass	Meet the requirement of limit.
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.
15.247(a)(1)	Hopping Channel Separation	Pass	Meet the requirement of limit.
15.247(a)(1)	20 dB Bandwidth	Pass	Refer to Note 1
15.247(d)	Conducted Out of Band Emissions	Pass	Meet the requirement of limit.
15.207	AC Power Conducted Emissions	Pass	Minimum passing margin is -8.02 dB at 0.46200 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -8.7 dB at 41.64 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -6.9 dB at 2390.00 MHz
15.203	Antenna Requirement	Pass	No antenna connector is used.

Notes:

1. If the Frequency Hopping System operating in 2400-2483.5 MHz band and the output power less than 125 mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of hopping channel whichever is greater.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (±)
Conducted Out of Band Emissions	9 kHz ~ 40 GHz	2.79 dB
AC Power Conducted Emissions	9 kHz ~ 30 MHz	2.79 dB
Unwanted Emissions holes 4 CHz	9 kHz ~ 30 MHz	3 dB
Unwanted Emissions below 1 GHz	30 MHz ~ 1 GHz	2.92 dB
Unwanted Emissions above 1 GHz	1 GHz ~ 18 GHz	1.76 dB
	18 GHz ~ 40 GHz	1.77 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description

Test Item Description	True Wireless Earphones	
Product Name	Conversation Clear Plus (ConCPlus1), ConC 400 (ConCPlus1)	
	(refer to note for more details)	
Brand Name	SENNHEISER	
Model No.	ConCPlus1 (refer to note for more details)	
Sample Status	Engineering sample	
	Left earbud & Right earbud: 3.7Vdc, 70mAh (from battery)	
Power Ratings	Charging Case:	
Tower Ratings	5Vdc, 900 mA (from Type-C USB interface)	
	3.7Vdc, 500 mAh (from battery)	
Power Supply	5Vdc, 900 mA (from Type-C USB interface)	
(Nominal & Testing)		
Nominal Testing Voltage	3.7Vdc	
(Vnom)		
Operating Temperature range	0~40°C	
Modulation Type	GFSK	
	π/4-DQPSK (Rx only)	
Modulation Technology	FHSS	
Technology	BLUETOOTH	
Operating Frequency	2402~2480MHz	
	(for Frequency band 2400-2483.5MHz)	
No. of channels	Bluetooth BDR: 79	
Channel Spacing	Bluetooth BDR: 1MHz	
Channel Bandwidth	Bluetooth BDR:79MHz	
Data Transfer Rate	Bluetooth BDR: 1Mbps	
Maximum Transmit/	Bluetooth BDR: 4.169 mW (6.20 dBm)	
Output Power		
HW Version	Earbuds: PTR6	
	Charging Case: R2	
SW Version	Earbuds: 1.0.2.0	
	Charging Case: 1.0.14	

Note:

- 1. This test report is for Right Earbud.
- The EUT system model no. ConCPlus1 contain the following devices. The enclosure of earbuds includes 2 colors, and 1 color for charging case.

Device Name	Brand Name	Device Model No.
Right Earbud	SENNHEISER	ConCPlus1-R
Left Earbud	SENNHEISER	ConCPlus1-L
Charging Case	SENNHEISER	ConCPlus1-C

* ConCPlus1-R and ConCPlus1-L with BT, BT LE, DM, and Flora TX/RX function. * Charging case is solely used for charging ConCPlus1-R and ConCPlus1-L only.

3. The enclosure colors of ConCPlus1 are available in the following combinations.

System Model No.	Product Name	Enclosure Color
	Conversation Clear Plus (ConCPlus1)	Earbuds: Black (top & bottom housing)
		Charging Case: Black
ConCPlus1		Earbuds: Silver (top housing) and Black
	ConC 400 (ConCPlus1)	(bottom housing)
		Charging Case: Black

4. The EUT contains following accessory devices.

USB Cable

Brand Name	Model No.	Specification
SENNHEISER	043-3093	Signal Line : 1M shielded cable w/o core

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

6. BT, BT-LE, DM, and Flora technology cannot transmit at same time.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

Gain (dBi)	Antenna Type	Connector Type
-5	PCB Dipole Antenna	N/A

* Detail antenna specification please refer to antenna datasheet or an antenna gain measurement report.

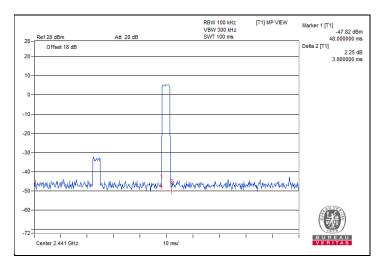
3.3 Channel List

79 channels are provided for BT-BDR:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.4 Test Mode Applicability and Tested Channel Detail

Pre-Scan [.]	EUT can be used in the following ways: X-axis/ Y-axis/ Z-axis. Pre-scan in these ways and find the worst case as a representative test condition.
Worst Case:	Worst Condition: Y-axis
	Mode A: EUT (Right Earbud)
	Mode B: EUT (Left Earbud + Right Earbud + Charging case)
-	Mode C: EUT (Left Earbud + Right Earbud + Charging case + Wireless charger)
	Mode D: EUT (Left Earbud + Right Earbud + Charging case) + Notebook
	Mode E: EUT (Left Earbud + Right Earbud + Charging case + Wireless charger) + Notebook


*The EUT had been pre-test on Mode A-E. The worst case was found on Mode A-C. Therefore, Mode A-C was chosen for final test.

Following channel(s) was (were) selected for the final test as listed below:

Test Item	EUT Configure Mode	Tested Channel	Modulation	Data Rate Parameter
AC Power Conducted Emissions	B, C		Charging Mode	
Unwanted Emissions below 1	А	0	GFSK	DH1
GHz	B, C		Charging Mode	
Unwanted Emissions above 1 GHz	А	0, 39, 78	GFSK	DH5
RF Output Power	А	0, 39, 78	GFSK	DH5
Hopping Channel Separation / 20 dB Bandwidth	А	0, 39, 78	GFSK	DH5
Number of Hopping Frequency Used	А	Hopping	GFSK	DH5
Conducted Out of Band Emissions	А	Hopping 0, 78	GFSK	DH5
Dwell Time on Each Channel	А	Hopping	GFSK	DH1/DH3/DH5

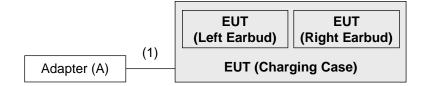
3.5 Duty Cycle of Test Signal

GFSK: Duty cycle = 3.8 ms / 100 ms x 100% = 3.8%

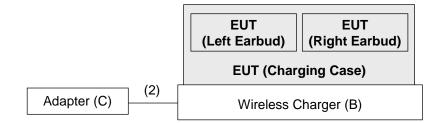
3.6 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Adapter	Liteon	PA-1050-39	NA	NA	Provided by Lab
В.	Wireless Charger	MI	MDY-10-EP	NA	NA	Provided by Lab
C.	Adapter	MI	MDY-10-EJ	NA	NA	Provided by Lab


No.	Cable Descriptions	Qty.	Length (m)	Shielded (Yes/ No)	Cores (Qty.)	Remark
1.	USB Cable	1	1	Y	0	Accessory of the EUT
2.	USB Cable	1	0.6	Y	0	Provided by Lab

3.6.1 Configuration of System under Test


Test Mode A

EUT (Right Earbud)

Test Mode B

Test Mode C

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	2022/1/18	2023/1/17
Power sensor Keysight	U2021XA	MY55380009	2022/3/23	2023/3/22
Wideband Power Sensor(N1923A) KEYSIGHT	N1923A	MY58020002	2022/1/17	2023/1/16

Notes:

1. The test was performed in Oven room.

2. Tested Date: 2022/9/18

4.2 Number of Hopping Frequency Used

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Software BV	ADT_RF Test Software V6.6.5.4	N/A	N/A	N/A
Spectrum Analyzer R&S	FSV40	100979	2022/3/25	2023/3/24

Notes:

1. The test was performed in Oven room.

2. Tested Date: 2022/9/18

4.3 Dwell Time on Each Channel

Refer to section 4.2 to get information of the instruments.

4.4 Hopping Channel Separation

Refer to section 4.2 to get information of the instruments.

4.5 20 dB Bandwidth

Refer to section 4.2 to get information of the instruments.

4.6 Conducted Out of Band Emissions

Refer to section 4.2 to get information of the instruments.

4.7 AC Power Conducted Emissions

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
DC-LISN SCHWARZBECK MESS- ELETRONIK	NNBM 8126G	8126G-069	2021/11/10	2022/11/9
LISN R&S	ESH3-Z5	100220	2021/11/25	2022/11/24
LISN ROHDE & SCHWARZ	ENV216	101826	2022/3/14	2023/3/13
RF Coaxial Cable WOKEN	5D-FB	Cable-cond1-01	2022/1/15	2023/1/14
Software BVADT	BVADT_Cond_ V7.3.7.4	N/A	N/A	N/A
Test Receiver Rohde&Schwarz	ESCI	100613	2021/12/3	2022/12/2
V-LISN Schwarzbeck	NNBL 8226-2	8226-142	2022/8/31	2023/8/30

Notes:

The test was performed in HY - Conduction 1.
Tested Date: 2022/9/22 ~ 2022/9/23

4.8 **Unwanted Emissions below 1 GHz**

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower KaiTuo	N/A	N/A	N/A	N/A
Antenna Tower Controller KaiTuo	KT-2000	N/A	N/A	N/A
Bi-log Broadband Antenna Schwarzbeck	VULB9168	9168-995	2021/10/28	2022/10/27
Loop Antenna EMCI	EM-6879	269	2021/9/16	2022/9/15
Loop Antenna TESEQ	HLA 6121	45745	2022/7/27	2023/7/26
MXA Signal Analyzer KEYSIGHT	N9020B	MY60110462	2021/12/21	2022/12/20
Pre-amplifier EMCI	EMC001340	980201	2021/9/15	2022/9/14
Pre_Amplifier EMCI	EMC330N	980783	2022/1/17	2023/1/16
	5D-NM-BM	140903+140902	2022/1/15	2023/1/14
RF Coaxial Cable	EMCCFD400-NM-NM- 500	201245	2022/1/17	2023/1/16
EMCI	EMCCFD400-NM-NM- 3000	201250	2022/1/17	2023/1/16
	EMCCFD400-NM-NM- 9000	201252	2022/1/17	2023/1/16
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Test Receiver R&S	ESR3	102579	2022/7/1	2023/6/30
Turn Table Max-Full	MFT-151SS-0.5T	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802BS	MF780208675	N/A	N/A

Notes:

The test was performed in WM - 966 chamber 7.
Tested Date: 2022/8/27

4.9 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower KaiTuo	N/A	N/A	N/A	N/A
Antenna Tower Controller KaiTuo	KT-2000	N/A	N/A	N/A
Horn Antenna RFSPIN	DRH18-E	210104A18E	2021/11/14	2022/11/13
Horn Antenna Schwarzbeck	BBHA 9170	9170-1048	2021/11/14	2022/11/13
MXA Signal Analyzer KEYSIGHT	N9020B	MY60110462	2021/12/21	2022/12/20
Pre_Amplifier	EMC118A45SE	980810	2021/12/30	2022/12/29
EMCI	EMC184045SE	980787	2022/1/17	2023/1/16
	EMC101G-KM-KM-2000	201253	2022/1/17	2023/1/16
	EMC101G-KM-KM-3000	201256	2022/1/17	2023/1/16
RF Coaxial Cable	EMC101G-KM-KM-5000	201259	2022/1/17	2023/1/16
EMCI	EMC104-SM-SM-1000	210101	2022/1/17	2023/1/16
	EMC104-SM-SM-3000	201242	2022/1/17	2023/1/16
	EMC104-SM-SM-9000	201230	2022/1/17	2023/1/16
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Test Receiver R&S	ESR3	102579	2022/7/1	2023/6/30
Turn Table Max-Full	MFT-151SS-0.5T	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802BS	MF780208675	N/A	N/A

Notes:

1. The test was performed in WM - 966 chamber 7.

2. Tested Date: 2022/8/24 ~ 2022/8/26

5 Limits of Test Items

5.1 RF Output Power

The Maximum Output Power Measurement is 125 mW (21 dBm).

5.2 Number of Hopping Frequency Used

At least 15 channels frequencies, and should be equally spaced.

5.3 Dwell Time on Each Channel

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.4 Hopping Channel Separation

At least 25 kHz or two-third of 20 dB hopping channel bandwidth (whichever is greater).

5.5 20 dB Bandwidth

Maximum bandwidth is not specified.

5.6 Conducted Out of Band Emissions

Below 20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

5.7 AC Power Conducted Emissions

Frequency (MHz)	Conducted Limit (dBuV)		
Frequency (wiriz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56	56 - 46	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.8 Unwanted Emissions below 1 GHz

Radiated emissions up to 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

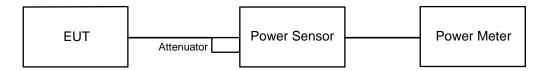
- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

5.9 Unwanted Emissions above 1 GHz

Radiated emissions above 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
Above 960	500	3

Notes:


- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

6 Test Arrangements

6.1 RF Output Power

6.1.1 Test Setup

6.1.2 Test Procedure

Peak Power:

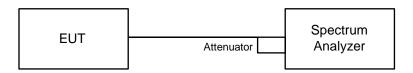
A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average Power:

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

6.2 Number of Hopping Frequency Used

6.2.1 Test Setup


6.2.2 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

6.3 Dwell Time on Each Channel

6.3.1 Test Setup

6.3.2 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

6.4 Hopping Channel Separation

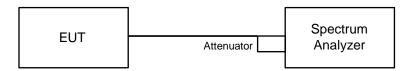
6.4.1 Test Setup

6.4.2 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

6.5 20 dB Bandwidth

6.5.1 Test Setup



6.5.2 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

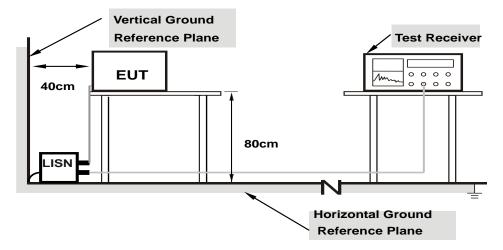
6.6 Conducted Out of Band Emissions

6.6.1 Test Setup

6.6.2 Test Procedure

MEASUREMENT PROCEDURE REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW \geq 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.


MEASUREMENT PROCEDURE OOBE

- a. Set RBW = 100 kHz.
- b. Set VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

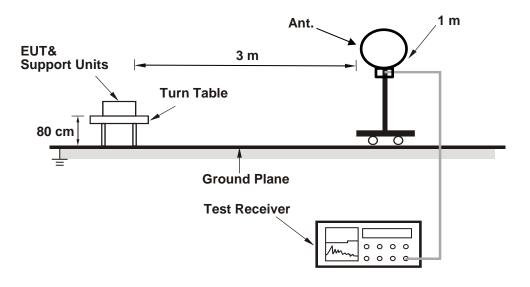
6.7 AC Power Conducted Emissions

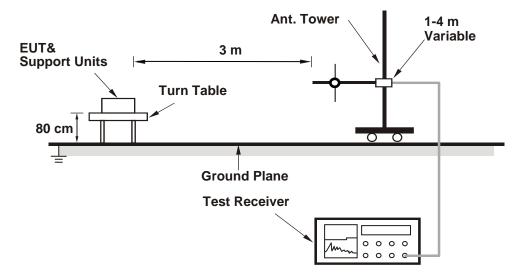
6.7.1 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.7.2 Test Procedure


- a. The EUT was placed on a 0.8 meter to the top of table and placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz-30 MHz.


6.8 Unwanted Emissions below 1 GHz

6.8.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.8.2 Test Procedure

For Radiated emission below 30 MHz

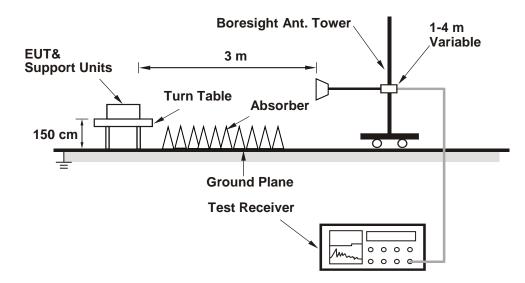
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.


Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

6.9 Unwanted Emissions above 1 GHz

6.9.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.9.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- 2. According to ANSI C63.10 section 6.6.4 and 4.1.4.2.2. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty cycle correction factor. For duty cycle correction factor values, see the Test Signal Duty Cycle section in this report.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

7 Test Results of Test Item

7.1 RF Output Power

Input Power:	3.7 Vdc	Environmental Conditions:	25°C, 60% RH	Tested By:	Jisyong Wang
--------------	---------	------------------------------	--------------	------------	--------------

For Peak Power

GFSK

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
0	2402	4.169	6.20	21	Pass
39	2441	4.13	6.16	21	Pass
78	2480	4.102	6.13	21	Pass

Note: The antenna gain is -5 dBi < 6 dBi, so the output power limit shall not be reduced.

For Average Power

GFSK

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	4.13	6.16
39	2441	4.074	6.10
78	2480	4.055	6.08

7.2 Number of Hopping Frequency Used

Note: There are 79 hopping frequencies in the hopping mode. On the plots, it shows that the hopping frequencies are equally spaced.

7.3 Dwell Time on Each Channel

Input Powe	: 3.7 Vdc		Environmental Conditions:	25	°C, 60% RH Tes		sted By:	Jisyong Wang	
GFSK									
Mode	Number of transmission in 31.6 sec				Length of transmission (msec)		Result (msec)	Limit (msec)	Test Result
DH1	51 (times / 5 sec) * 6.32 = 323 times				0.438		141.47	400	Pass
DH3	26 (times / 5 sec) * 6.32 = 165 times			1.67		275.55	400	Pass	
DH5	18 (times / 5 sec) * 6.32 = 114 times				2.928		333.79	400	Pass

Pass

Pass

7.4 Hopping Channel Separation

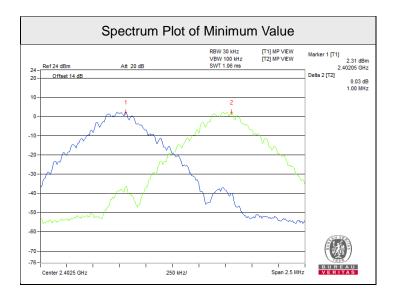
39

78

Input Power:	3.7 Vdc		vironmental onditions:	25°C, 60% RH		25°C, 60% RH		25°C, 60% RH		25°C, 60% RH		Tested By:	Jisyong Wang
GFSK													
Channel	Frequency (MHz))	Hopping Channel Separation (MHz)		Mini	mum Limit (MHz)	Test Result						
0	2402			1		0.64	Pass						

1

1

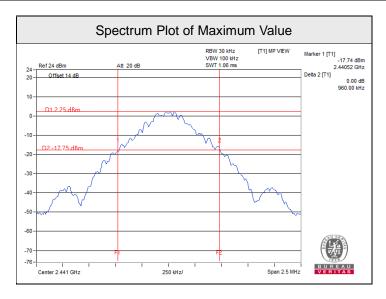

0.64

0.64

Note: The minimum limit is two-third 20dB bandwidth.

2441

2480



7.5 20 dB Bandwidth

Input Power:3.7 VdcEnvironmental Conditions:25°C	, 60% RH Tested By: Jisyong Wang
---	----------------------------------

GFSK

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
0	2402	0.95
39	2441	0.96
78	2480	0.96

7.6 Conducted Out of Band Emissions

7.7 AC Power Conducted Emissions

Mode B

Inodo B			
RF Mode	Charging Mode		
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	Rex Wang		

	Phase Of Power : Line (L)									
	Frequency	Correction	Readin	g Value	Emissic	Emission Level		nit	Margin	
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16190	9.69	26.49	16.86	36.18	26.55	65.37	55.37	-29.19	-28.82
2	0.19400	9.72	19.57	13.16	29.29	22.88	63.86	53.86	-34.57	-30.98
3	0.26200	9.74	18.54	13.07	28.28	22.81	61.37	51.37	-33.09	-28.56
4	0.46200	9.80	30.41	28.84	40.21	38.64	56.66	46.66	-16.45	-8.02
5	1.48200	9.87	14.20	4.84	24.07	14.71	56.00	46.00	-31.93	-31.29
6	20.69400	10.16	11.40	3.08	21.56	13.24	60.00	50.00	-38.44	-36.76

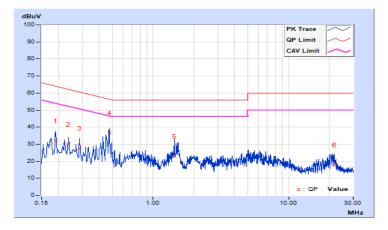
Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

RF Mode	Charging Mode		
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	Rex Wang		

	Phase Of Power : Neutral (N)									
	Frequency Correction Reading Value			n Level		nit		rgin		
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.19000	9.71	22.42	8.92	32.13	18.63	64.04	54.04	-31.91	-35.41
2	0.23800	9.74	20.18	11.15	29.92	20.89	62.17	52.17	-32.25	-31.28
3	0.28600	9.76	17.72	7.78	27.48	17.54	60.64	50.64	-33.16	-33.10
4	0.47400	9.82	26.94	24.80	36.76	34.62	56.44	46.44	-19.68	-11.82
5	1.43800	9.89	13.16	3.20	23.05	13.09	56.00	46.00	-32.95	-32.91
6	21.71400	10.20	7.62	0.65	17.82	10.85	60.00	50.00	-42.18	-39.15

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

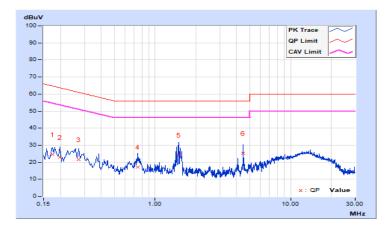
5. Emission Level = Correction Factor + Reading Value

Mode C

RF Mode	Charging Mode							
Frequency Range	150 kHz ~ 30 MHz		Quasi-Peak (QP) / Average (AV), 9 kHz					
Input Power	Input Power 120 Vac, 60 Hz		25°C, 75% RH					
Tested By	Rex Wang							

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor	5					nit uV)		rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17384	9.70	14.93	6.59	24.63	16.29	64.77	54.77	-40.14	-38.48
2	0.19800	9.72	13.24	6.49	22.96	16.21	63.69	53.69	-40.73	-37.48
3	0.27400	9.75	11.91	6.66	21.66	16.41	61.00	51.00	-39.34	-34.59
4	0.74600	9.82	7.29	3.48	17.11	13.30	56.00	46.00	-38.89	-32.70
5	1.49000	9.87	14.28	3.66	24.15	13.53	56.00	46.00	-31.85	-32.47
6	4.45800	9.96	15.36	2.55	25.32	12.51	56.00	46.00	-30.68	-33.49

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

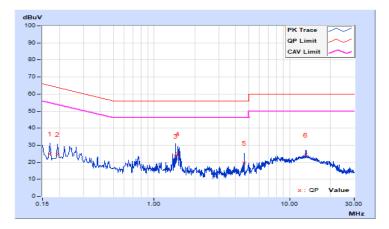
4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

RF Mode	Charging Mode						
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz				
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH				
Tested By	Rex Wang						

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor	Reading Value (dBuV)			on Level uV)		nit uV)	Margin (dB)	
NO	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17000	9.70	15.06	5.29	24.76	14.99	64.96	54.96	-40.20	-39.97
2	0.19400	9.72	14.71	8.82	24.43	18.54	63.86	53.86	-39.43	-35.32
3	1.44198	9.89	13.54	2.59	23.43	12.48	56.00	46.00	-32.57	-33.52
4	1.49000	9.89	15.19	4.24	25.08	14.13	56.00	46.00	-30.92	-31.87
5	4.60600	9.98	9.54	2.32	19.52	12.30	56.00	46.00	-36.48	-33.70
6	13.19000	10.11	14.28	3.53	24.39	13.64	60.00	50.00	-35.61	-36.36

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

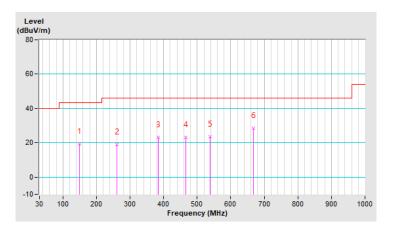
5. Emission Level = Correction Factor + Reading Value

7.8 Unwanted Emissions below 1 GHz

Mode A

RF Mode	TX BT GFSK	Channel	CH 0:2402 MHz						
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz						
Input Power	3.7 Vdc	Environmental Conditions	24°C, 68% RH						
Tested By	Wade Huang								

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	148.34	19.3 QP	43.5	-24.2	1.51 H	153	32.6	-13.3	
2	259.89	19.0 QP	46.0	-27.0	1.99 H	256	33.5	-14.5	
3	384.05	23.2 QP	46.0	-22.8	1.51 H	312	34.0	-10.8	
4	466.50	23.3 QP	46.0	-22.7	1.00 H	318	32.0	-8.7	
5	538.28	23.5 QP	46.0	-22.5	1.51 H	238	31.1	-7.6	
6	668.26	28.4 QP	46.0	-17.6	1.99 H	253	33.3	-4.9	


Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

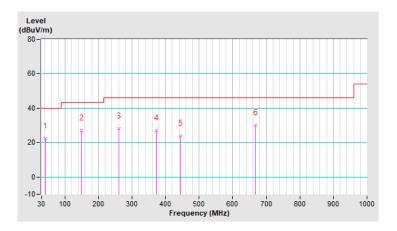
3. Margin value = Emission Level - Limit value

- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

			VENTIAS
RF Mode	TX BT GFSK	Channel	CH 0:2402 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	3.7 Vdc	Environmental Conditions	24°C, 68% RH
Tested By	Wade Huang		

			Antenna Pola	rity & Test Dis	tance : Vertica	l at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	42.61	22.6 QP	40.0	-17.4	2.00 V	2	36.1	-13.5
2	148.34	26.9 QP	43.5	-16.6	1.00 V	146	40.2	-13.3
3	259.89	28.3 QP	46.0	-17.7	1.00 V	149	42.8	-14.5
4	371.44	27.0 QP	46.0	-19.0	1.49 V	269	38.1	-11.1
5	445.16	23.9 QP	46.0	-22.1	1.49 V	80	33.0	-9.1
6	668.26	30.1 QP	46.0	-15.9	1.00 V	230	35.0	-4.9

Remarks:

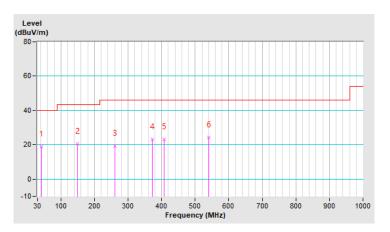

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.


Mode B

RF Mode	Charging Mode							
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz					
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 69% RH					
Tested By	Wade Huang							

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	41.64	19.0 QP	40.0	-21.0	1.99 H	175	32.5	-13.5	
2	148.34	20.5 QP	43.5	-23.0	1.51 H	111	33.8	-13.3	
3	259.89	19.3 QP	46.0	-26.7	1.00 H	77	33.8	-14.5	
4	371.44	23.1 QP	46.0	-22.9	1.99 H	271	34.2	-11.1	
5	408.30	23.1 QP	46.0	-22.9	1.99 H	313	33.5	-10.4	
6	540.22	24.2 QP	46.0	-21.8	1.99 H	133	31.7	-7.5	

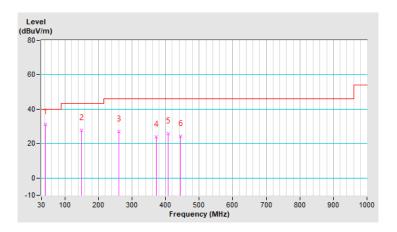
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	Charging Mode						
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz				
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 69% RH				
Tested By	Wade Huang						

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	41.64	31.3 QP	40.0	-8.7	1.49 V	196	44.8	-13.5				
2	148.34	27.9 QP	43.5	-15.6	1.00 V	88	41.2	-13.3				
3	259.89	27.1 QP	46.0	-18.9	1.49 V	130	41.6	-14.5				
4	371.44	24.0 QP	46.0	-22.0	1.49 V	18	35.1	-11.1				
5	408.30	25.8 QP	46.0	-20.2	1.00 V	87	36.2	-10.4				
6	445.16	24.3 QP	46.0	-21.7	1.49 V	292	33.4	-9.1				

Remarks:

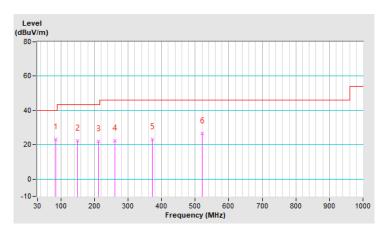

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.


Mode C

RF Mode	harging Mode							
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz					
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 69% RH					
Tested By	Wade Huang							

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	84.32	23.1 QP	40.0	-16.9	1.99 H	121	42.2	-19.1				
2	148.34	22.4 QP	43.5	-21.1	1.01 H	79	35.7	-13.3				
3	211.39	22.2 QP	43.5	-21.3	1.01 H	85	39.1	-16.9				
4	259.89	22.6 QP	46.0	-23.4	1.99 H	2	37.1	-14.5				
5	371.44	23.1 QP	46.0	-22.9	1.99 H	289	34.2	-11.1				
6	520.82	26.8 QP	46.0	-19.2	1.99 H	204	34.4	-7.6				

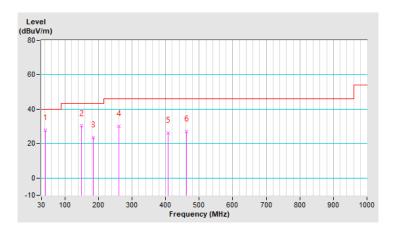
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	Charging Mode		
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 69% RH
Tested By	Wade Huang		

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	41.64	27.9 QP	40.0	-12.1	1.01 V	1	41.4	-13.5				
2	148.34	30.2 QP	43.5	-13.3	1.01 V	100	43.5	-13.3				
3	185.20	23.6 QP	43.5	-19.9	2.00 V	357	39.0	-15.4				
4	259.89	30.1 QP	46.0	-15.9	1.01 V	147	44.6	-14.5				
5	408.30	26.2 QP	46.0	-19.8	1.51 V	101	36.6	-10.4				
6	462.62	27.0 QP	46.0	-19.0	1.01 V	18	35.8	-8.8				

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

7.9 Unwanted Emissions above 1 GHz

RF Mode	TX BT GFSK	Channel	CH 0:2402 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz
Input Power	3.7 Vdc	Environmental Conditions	21°C, 66% RH
Tested By	Wade Huang		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	58.3 PK	74.0	-15.7	2.18 H	322	26.4	31.9		
2	2390.00	47.1 AV	54.0	-6.9	2.18 H	322	15.2	31.9		
3	*2402.00	99.9 PK			2.18 H	322	67.9	32.0		
4	*2402.00	71.5 AV			2.18 H	322	39.5	32.0		
5	4804.00	54.1 PK	74.0	-19.9	1.67 H	301	50.8	3.3		
6	4804.00	25.7 AV	54.0	-28.3	1.67 H	301	22.4	3.3		
			Antenna Pola	arity & Test Dis	tance : Vertica	l at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	58.0 PK	74.0	-16.0	3.74 V	51	26.1	31.9		
2	2390.00	46.7 AV	54.0	-7.3	3.74 V	51	14.8	31.9		
3	*2402.00	91.8 PK			3.74 V	51	59.8	32.0		
4	*2402.00	63.4 AV			3.74 V	51	31.4	32.0		
5	4804.00	51.2 PK	74.0	-22.8	1.57 V	57	47.9	3.3		
6	4804.00	22.8 AV	54.0	-31.2	1.57 V	57	19.5	3.3		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:

20 log(Duty cycle) = 20 log(3.8 ms / 100 ms) = -28.4 dB

			VENTIAS
RF Mode	TX BT GFSK	Channel	CH 39:2441 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz
Input Power	3.7 Vdc	Environmental Conditions	21°C, 66% RH
Tested By	Wade Huang		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2441.00	98.9 PK			2.43 H	341	67.1	31.8	
2	*2441.00	70.5 AV			2.43 H	341	38.7	31.8	
3	4882.00	55.4 PK	74.0	-18.6	2.07 H	334	52.0	3.4	
4	4882.00	27.0 AV	54.0	-27.0	2.07 H	334	23.6	3.4	
			Antenna Pola	arity & Test Dis	tance : Vertica	l at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2441.00	91.9 PK			3.59 V	77	60.1	31.8	
2	*2441.00	63.5 AV			3.59 V	77	31.7	31.8	
3	4882.00	51.1 PK	74.0	-22.9	1.78 V	62	47.7	3.4	
4	4882.00	22.7 AV	54.0	-31.3	1.78 V	62	19.3	3.4	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:

20 log(Duty cycle) = 20 log(3.8 ms / 100 ms) = -28.4 dB

RF Mode	TX BT GFSK	Channel	CH 78:2480 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz
Input Power	3.7 Vdc	Environmental Conditions	21°C, 66% RH
Tested By	Wade Huang		

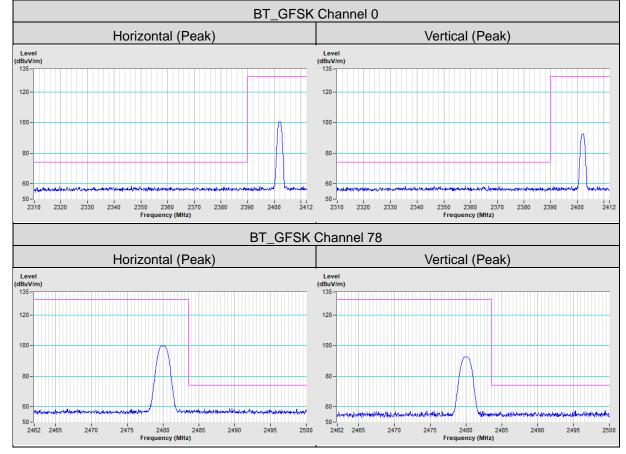
	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	99.3 PK			2.11 H	322	67.5	31.8	
2	*2480.00	70.9 AV			2.11 H	322	39.1	31.8	
3	2483.50	50.9 PK	74.0	-23.1	2.11 H	322	55.5	-4.6	
4	2483.50	22.5 AV	54.0	-31.5	2.11 H	322	27.1	-4.6	
5	4960.00	53.6 PK	74.0	-20.4	2.08 H	335	50.4	3.2	
6	4960.00	25.2 AV	54.0	-28.8	2.08 H	335	22.0	3.2	
			Antenna Pola	arity & Test Dis	tance : Vertica	l at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	93.1 PK			3.48 V	46	61.3	31.8	
2	*2480.00	64.7 AV			3.48 V	46	32.9	31.8	
3	2483.50	50.9 PK	74.0	-23.1	3.48 V	46	55.5	-4.6	
4	2483.50	22.5 AV	54.0	-31.5	3.48 V	46	27.1	-4.6	
5	4960.00	51.9 PK	74.0	-22.1	3.16 V	274	48.7	3.2	
6	4960.00	23.5 AV	54.0	-30.5	3.16 V	274	20.3	3.2	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value


4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:

20 log(Duty cycle) = 20 log(3.8 ms / 100 ms) = -28.4 dB

Band Edge Measuremen

8 Pictures of Test Arrangements

Please refer to the attached file (Reference no.: CFQC-WTW-P22060736-1 (TSup Photo_Right Earbud))

9 Construction Photos of EUT

Please refer to the attached file (CFQC-WTW-P22060736 (EUT photo)).

10 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@bureauveritas.com</u> Web Site: <u>http://ee.bureauveritas.com.tw</u>

The address and road map of all our labs can be found in our web site also.

--- END ----