

Product

FCC ID

Trade mark

Report Number

Date of Issue

Test result

Test Standards

Model/Type reference

Page 1 of 44

TEST	REPORT
·	

- DREO BABY MONITOR
- DREO
- : DR-BBM001, WDR-BM001
- Serial Number : N/A
 - : EED32N81477103
 - 2A3SY-BBM001B
 - : Mar. 04, 2022
 - 47 CFR Part 15 Subpart C
 - PASS

Prepared for: Hesung Innovation Limited Room 803, Chevalier House, 45-51 Chatham Road South, Tsim Sha Tsui, Kowloon

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385


1 Contents

Page 2 of 44

rest summary	
GENERAL INFORMATION	
4.1 CLIENT INFORMATION	
4.2 GENERAL DESCRIPTION OF EUT	
4.3 TEST ENVIRONMENT	
4.4 DESCRIPTION OF SUPPORT UNITS	
TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 AC POWER LINE CONDUCTED EMISSIONS	
5.3 MAXIMUM CONDUCTED OUTPUT POWER	
5.4 20dB Emission Bandwidth	
5.5 CARRIER FREQUENCY SEPARATION	
5.6 NUMBER OF HOPPING CHANNEL	
5.7 TIME OF OCCUPANCY	
5.8 BAND EDGE MEASUREMENTS	
5.9 CONDUCTED SPURIOUS EMISSIONS	
5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
APPENDIX A	
PHOTOGRAPHS OF TEST SETUP	

Page 3 of 44

2 Version

	Version No).	Date		Descriptio	on	
(S)	00		lar. 04, 2022		Original		
	(A)		(SI)	(A)		(K)	

3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: DR-BBM001, WDR-BM001

Only the model DR-BBM001 was tested, The difference between each model is only for the product name is different, the color is different, the rest circuit principle, the internal structure, the PCB Layout and the safety key parts are the same, does not affect the EMC and safety test.

4

Report No. : EED32N81477103

Ì

Page 5 of 44

General Information

4.1 Client Information

Applicant:	Hesung Innovation Limited
Address of Applicant:	Room 803, Chevalier House, 45-51 Chatham Road South, Tsim Sha Tsui, Kowloon
Manufacturer:	Shenzhen Hesung Innovation Technology Co., LTD
Address of Manufacturer:	26th Floor, Building A7, Chuangzhiyuncheng, Liuxian Avenue, Nanshan District, Shenzhen
Factory:	Power7 Technology (Dong Guan) Co., Ltd.
Address of Factory:	No.28 Binjiang Street. Shishuikou Village, Qiaotou Town, Dongguan City, GuangDong Province P.R.China

4.2 General Description of EUT

Product N	ame:		DREO BABY MOI	NITOR					
Model No	.(EUT):	9	DR-BBM001, WDR-BM001						
Test Mode	el No:		DR-BBM001						
Trade Ma	rk:		DREO		11.54 TBr				
Power Supply:			Adapter:(Monitor) Model: TPA285-10050-US Input:100-240V~50/60Hz 0.6A Max Output: 5V 2.0A						
Operation	Frequency:		2410MHz - 2477M						
Modulatio	n Technique:	-0	Frequency Hoppir	ng Spread S	Spectrum(FHS	S)	~ * *		
Test Powe	er Grade:		Default						
Test Softv	vare of EUT:	Ľ	N/A(manufacturer	declare)	6	\mathcal{D}	V		
Modulatio	n Type:		GFSK						
Number o	f Channel:		20						
Hopping C	Channel Type:		Adaptive Frequency Hopping systems						
Antenna 1	ype and Gain:		Dipole Antenna, 2dBi						
Test Volta	ige:		AC 120V,60Hz						
Sample R	eceived Date:		Dec. 31, 2021						
Sample te	ested Date:	ES .	Dec. 31, 2021 to F	eb. 27, 20 ⁻	22	E C			
Operation	Frequency ea	ch of cha	nnel						
Channel	Frequency	Chann	el Frequency	Channel	Frequency	Channel	Frequency		
1	2410MHz	6	2427.5MHz	11	2445MHz	16	2462.5MHz		
2	2413.5MHz	7	2431MHz	12	2448.5MHz	17	2466MHz		
3	2417MHz	8	2434.5MHz	13	2452MHz	18	2469.5MHz		
4	2420.5MHz	9	2438MHz	14	2455.5MHz	19	2473MHz		
5	2424MHz	10	2441.5MHz	15	2459MHz	20	2477MHz		

4.3 Test Environment

	Operating Environment	t:				
	Radiated Spurious Emi	ssions:				
	Temperature:	22~25.0 °C		(i)		(à)
1	Humidity:	50~55 % RH		$\langle G \rangle$		67)
	Atmospheric Pressure:	1010mbar		\sim		\sim
	Conducted Emissions:	·				
	Temperature:	22~25.0 °C	~°>>		100	
	Humidity:	50~55 % RH	(25)		(\sim)	
	Atmospheric Pressure:	1010mbar	U		U	
	RF Conducted:					
	Temperature:	22~25.0 °C		-07		-0.5
	Humidity:	50~55 % RH				
1	Atmospheric Pressure:	1010mbar		0		6

4.4 Description of Support Units

The EUT has been tested independently

4.5 Test Location

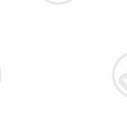
All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

Page 6 of 44

4.6 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
2		0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
2	Dedicted Sources emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



4.7 Equipment List

		RF test s	system			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022	
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022	
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022	
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022	
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022	
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611 879	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(\mathbf{c})		

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	ток	SAC-3		05-24-2019	05-23-2022		
Receiver	R&S	ESCI7	100938-003	10-14-2021	10-13-2022		
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05-23-2019	05-22-2022		
Multi device Controller	maturo	NCD/070/10711 112					
Horn Antenna	ETS- LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024		
Spectrum Analyzer	R&S	FSP40	100416	04-29-2021	04-28-2022		
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022		

Page 9 of 44

(2)	12				211
Equipment	Manufacturer	3M full-anecho Model No.	ic Chamber Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-21-2021	04-20-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		- /
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		- (
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		<u>(^)</u> -
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		<u> </u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		- (

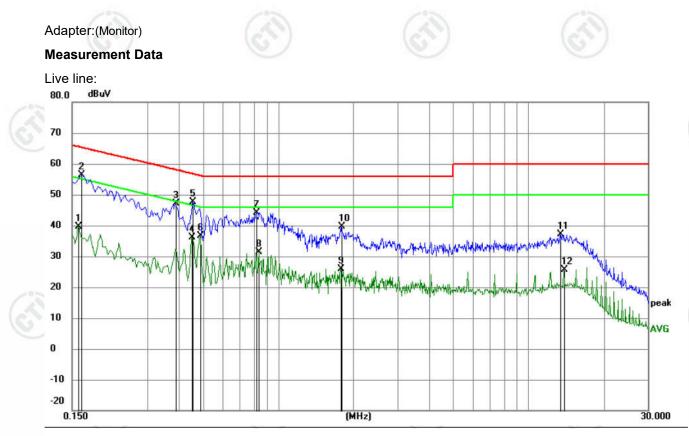
Page 10 of 44

5 Test results and Measurement Data

5.1 Antenna Requirement

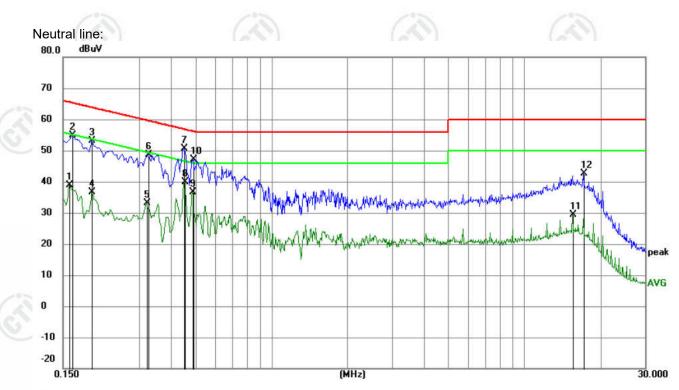
2	Standard r	equirement:	47 CFR	Part 15C Sec	tion 15.203 /2	247(c)		- 51
	 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. 							
	EUT Anten			ee Internal pl				
		a is Dipole ant		esi case gain		ια ιδ 2UDI.	Ì	

Page 11 of 44


5.2 AC Power Line Conducted Emissions

5.2	AC Power Line Cor	iducted Emissions						
	Test Requirement:	47 CFR Part 15C Section 15	.207	(U)				
	Test Method:	ANSI C63.10: 2013						
	Test Frequency Range:							
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto					
2	Limit:		Limit (dl	BuV)				
		Frequency range (MHz)	Quasi-peak	Average				
2		0.15-0.5	66 to 56*	56 to 46*				
		0.5-5	56	46				
		5-30	60	50				
		* Decreases with the logarith						
	Test Setup:							
		Shielding Room	AE UISN2 + AC Ground Reference Plane	Test Receiver				
	Test Procedure:	1) The mains terminal distu	rbance voltage test was	conducted in a shielde				
		 2) The EUT was connected in Impedance Stabilization N impedance. The power can connected to a second Life reference plane in the same measured. A multiple soc power cables to a single L exceeded. 3) The tabletop EUT was placed on the horizontal ground reference plane. A placed on the horizontal ground reference plane. The LISM unit under test and bonder mounted on top of the group between the closest point the EUT and associated e 5) In order to find the maxim equipment and all of the implication. 	Network) which provides ables of all other units of SN 2, which was bonded me way as the LISN 1 for ket outlet strip was used LISN provided the rating aced upon a non-metallic And for floor-standing arr ground reference plane, with a vertical ground reference of from the vertical ground plane was bonded to the N 1 was placed 0.8 m fro ed to a ground reference bund reference plane. Th ts of the LISN 1 and the fere equipment was at least 0 pum emission, the relative nterface cables must be	a $50\Omega/50\mu$ H + 5Ω linea the EUT were to the ground r the unit being to connect multiple of the LISN was not table 0.8m above the angement, the EUT was rence plane. The rear reference plane. The horizontal ground m the boundary of the plane for LISNs is distance was EUT. All other units of .8 m from the LISN 2. e positions of				
	Exploratory Test Mode:	Non-hopping transmitting mo data type at the lowest, midd		ation and all kind of				
	Final Test Mode:	Through Pre-scan, find the		e lowest channel is th				
2		worst case.						
2		Only the worst case is record	led in the report.					

Page 12 of 44


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	29.88	9.87	39.75	55.52	-15.77	AVG	
2	*	0.1635	46.55	9.87	56.42	65.28	-8.86	QP	
3		0.3885	37.19	9.98	47.17	58.10	-10.93	QP	
4		0.4515	26.09	9.96	36.05	46.85	-10.80	AVG	
5		0.4560	37.77	9.96	47.73	56.77	-9.04	QP	
6		0.4875	26.74	9.95	36.69	46.21	-9.52	AVG	
7		0.8205	34.30	9.85	44.15	56.00	-11.85	QP	
8		0.8385	21.63	9.85	31.48	46.00	-14.52	AVG	
9		1.7790	16.17	9.80	25.97	46.00	-20.03	AVG	
10		1.7835	29.94	9.80	39.74	56.00	-16.26	QP	
11		13.3440	27.21	9.88	37.09	60.00	-22.91	QP	
12		13.8885	15.81	9.90	25.71	50.00	-24.29	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 13 of 44

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	29.13	9.87	39.00	55.52	-16.52	AVG	
2	0.1635	45.05	9.87	54.92	65.28	-10.36	QP	
3	0.1949	43.26	9.87	53.13	63.83	-10.70	QP	
4	0.1949	26.80	9.87	36.67	53.83	-17.16	AVG	
5	0.3209	23.10	10.05	33.15	49.68	-16.53	AVG	
6	0.3255	38.69	10.04	48.73	59.57	-10.84	QP	
7 *	0.4515	40.69	9.96	50.65	56.85	-6.20	QP	
8	0.4560	29.86	9.96	39.82	46.77	-6.95	AVG	
9	0.4875	26.60	9.95	36.55	46.21	-9.66	AVG	
10	0.4920	37.19	9.95	47.14	56.13	-8.99	QP	
11	15.5400	19.48	9.93	29.41	50.00	-20.59	AVG	
12	17.1689	32.57	9.95	42.52	60.00	-17.48	QP	

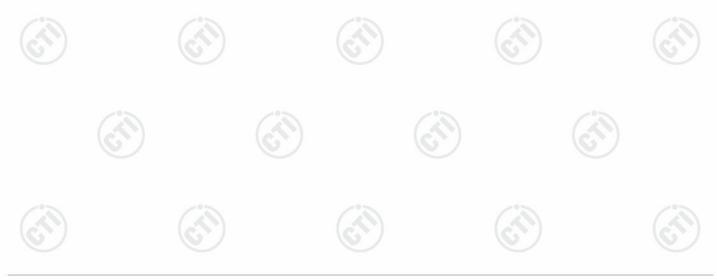
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32N81477103

Page 14 of 44

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
ŝ	Test Setup:	Control Control Control Power Suppy Temperature CABNET Table
5	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings:
		Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
3	Limit:	21dBm
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type
	Test Results:	Refer to Appendix A



Page 15 of 44

5.4 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
<u> </u>	Test Setup:						
		Control Control Control Pottol Suppresent Table					
23		Remark: Offset=Cable loss+ attenuation factor.					
3	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 					
	Limit:	NA					
5	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSk modulation type					
		inoutidion (jpo					

Report No. : EED32N81477103

Page 16 of 44

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)							
Test Method:	ANSI C63.10:2013							
Test Setup:	Control Control Control Porter Porter Porter TemPERATURE CABNET Table							
 Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF							
	 cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 							
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band ma have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever i greater.							
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type							
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type							
Test Results:	Refer to Appendix A							

5.6 Number of Hopping Channel

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
200	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Control Composer Power Suppy TemPERATURE CABNET Table
(Z		Remark: Offset=Cable loss+ attenuation factor.
Q	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function.
(S		 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel.
		6. Record the measurement data in report.
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
	Test Mode:	Hopping transmitting with all kind of modulation
	Test Results:	Refer to Appendix A

Page 18 of 44

5.7 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Control Control Control Control Control Porter Prover Supply TEMPERATURE CABRET Table					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 					
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.					
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.					
Test Results:	Refer to Appendix A					

Test Requirement:	47 CFR Part 15C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013							
Test Setup:	Control Computer Power Supply TemPERature CABNET Table							
	Remark: Offset=Cable loss+ attenuation factor.							
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. 							
 Limit:	4. Measure and record the results in the test report. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type							
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type							
Test Results:	Refer to Appendix A							

Page 20 of 44

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
	Test Method:	ANSI C63.10:2013						
	Test Setup:							
		Control Computer Computer Computer Power Supply TemPERATURE CABNET Table						
25		Remark: Offset=Cable loss+ attenuation factor.						
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission 						
		level within the authorized band as measured with a 100kHz RBW.4. Measure and record the results in the test report.5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.						
3	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type						
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type						
2	Test Results:	Refer to Appendix A						

5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

Hopping Mechanism

DR-BBM001 family use adaptive frequency hopping. There are at 20 radio non-overlap channels (above 20dBc) in the 2.4GHz ISM band. The channel transmission bandwidth is about 3.5MHz. We can allocate 20 non-overlap channels between 2410MHz to 2477MHz. Like AFH of Bluetooth, DR-BBM001 provide smart channel selection algorithm to avoid radio interference from other 2.4GHz devices.

The system will generate a pseudorandom ordered list base on:

1) A 8 bit factory ID(8 bit)

2) A 6 bit set number ID(6 bit)

Test Method:

Receiver Setup:

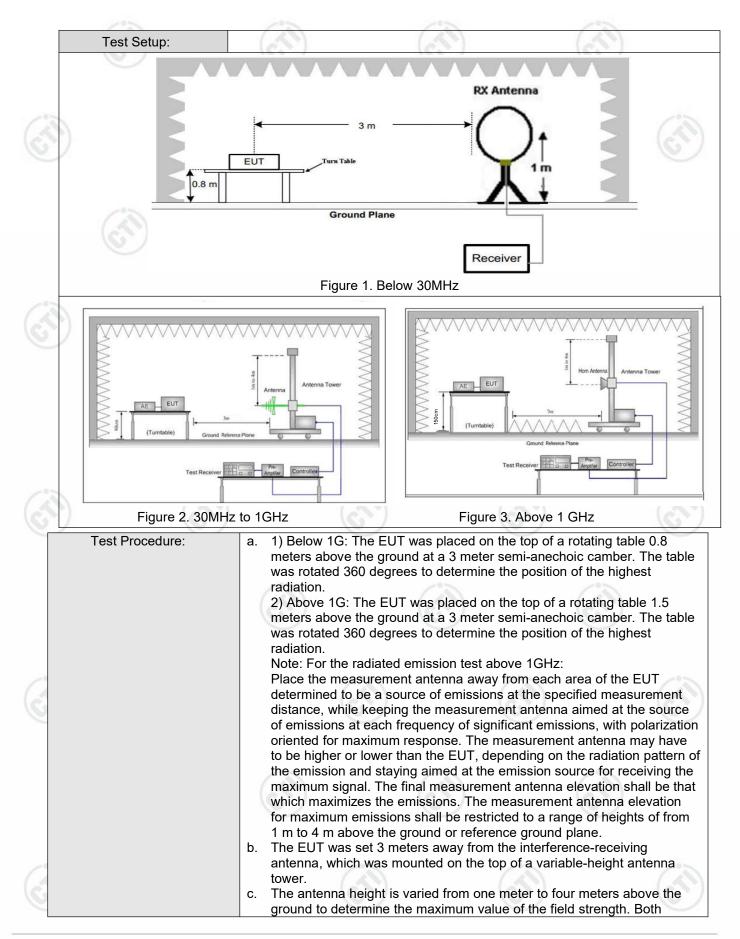
Test Site:

Report No. : EED32N81477103

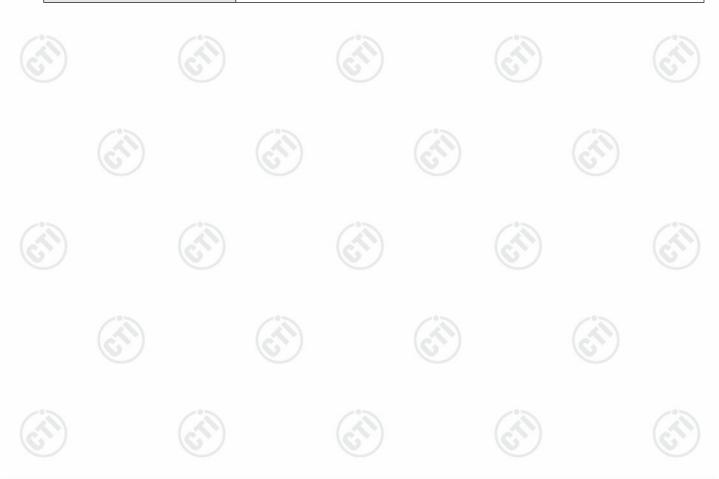
Page 22 of 44

5.11 Radiated Spurious Emission & Restricted bands 47 CFR Part 15C Section 15.209 and 15.205 Test Requirement: ANSI C63.10: 2013 Measurement Distance: 3m (Semi-Anechoic Chamber) VBW Frequency Detector RBW Remark

		0.009MHz-0.090MH	lz	Peak	10kHz	30kHz	Peak	
		0.009MHz-0.090MH	lz	Average	10kHz	30kHz	Average	
		0.090MHz-0.110MH	lz	Quasi-peak	10kHz	30kHz	Quasi-peak	
		0.110MHz-0.490MH	lz	Peak	10kHz	30kHz	Peak	
		0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average	
		0.490MHz -30MHz	<u>.</u>	Quasi-peak	10kHz	30kHz	Quasi-peak	
		30MHz-1GHz	0	Peak	100 kH	z 300kHz	Peak	
S)		(C)	7	Peak	1MHz	3MHz	Peak	
		Above 1GHz		Peak	1MHz	10kHz	Average	
	Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
		0.009MHz-0.490MHz	240	00/F(kHz)	-	6	300	
		0.490MHz-1.705MHz	240	00/F(kHz)	-		30	
		1.705MHz-30MHz		30	-	-	30	
		30MHz-88MHz		100	40.0	Quasi-peak	3	
8		88MHz-216MHz)	150	43.5	Quasi-peak	3	
\sim		216MHz-960MHz	/	200	46.0	Quasi-peak	3	
		960MHz-1GHz		500	54.0	Quasi-peak	3	
		Above 1GHz		500	54.0	Average	3	
		Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	B abov equipi	ve the maxin ment under t	num permi est. This p	tted average	emission limit	



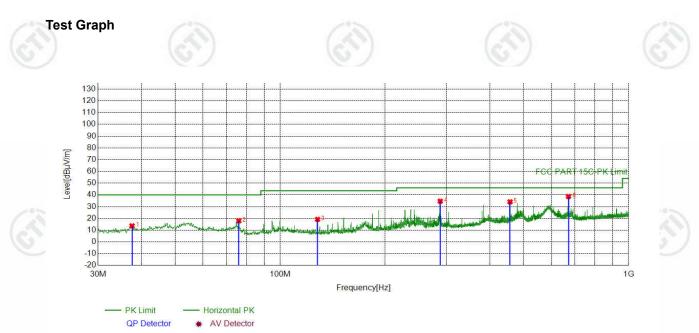
Page 23 of 44



S

Page 24 of 44

Exploratory Test Mode: Final Test Mode:	 horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Through Pre-scan, find the DH5 of data type and GFSK modulation with adapter VSD0500120VU was the worst case. Pretest the EUT at Transmitting mode, For below 1GHz part, through pre-scan, the worst case to how and found.
Test Results:	Pass
	Only the worst case was recorded in the report.
	scan, the worst case was the lowest channel.
Final Test Mode [.]	
Exploratory Test Mode:	
	EUT would be reported. Otherwise the emissions that did not have 10dB
	meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	measurement.

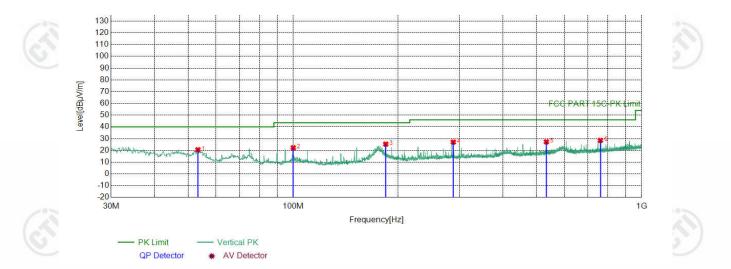


Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Page 25 of 44

	Suspect	ed List				_				
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	37.5668	-18.80	32.47	13.67	40.00	26.33	PASS	Horizontal	PK
	2	76.0796	-21.87	39.83	17.96	40.00	22.04	PASS	Horizontal	PK
	3	127.9798	-21.27	40.47	19.20	43.50	24.30	PASS	Horizontal	PK
	4	287.9488	-15.76	50.43	34.67	46.00	11.33	PASS	Horizontal	PK
	5	456.8427	-11.60	45.73	34.13	46.00	11.87	PASS	Horizontal	PK
	6	672.0102	-8.01	46.67	38.66	46.00	7.34	PASS	Horizontal	PK


Page 26 of 44

Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	53.2823	-17.61	38.18	20.57	40.00	19.43	PASS	Vertical	PK
2	100.0410	-18.40	40.66	22.26	43.50	21.24	PASS	Vertical	PK
3	184.3424	-19.36	44.73	25.37	43.50	18.13	PASS	Vertical	PK
4	288.0458	-15.76	42.83	27.07	46.00	18.93	PASS	Vertical	PK
5	532.9953	-10.19	37.46	27.27	46.00	18.73	PASS	Vertical	PK
6	761.4531	-6.90	35.46	28.56	46.00	17.44	PASS	Vertical	PK

Radiated Spurious Emission above 1GHz:

Mode		2.4G Tra	ansmitting		Channel:	2410		V	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1160.0160	0.82	42.56	43.38	74.00	30.62	PASS	Horizontal	PK
2	1849.8850	3.65	44.23	47.88	74.00	26.12	PASS	Horizontal	PK
3	3238.0159	-20.14	59.73	39.59	74.00	34.41	PASS	Horizontal	PK
4	4820.1213	-16.22	57.01	40.79	74.00	33.21	PASS	Horizontal	PK
5	7750.3167	-11.21	52.80	41.59	74.00	32.41	PASS	Horizontal	PK
6	12419.6280	-4.72	51.28	46.56	74.00	27.44	PASS	Horizontal	PK
7	1118.4118	0.84	42.84	43.68	74.00	30.32	PASS	Vertical	PK
8	1849.8850	3.65	41.79	45.44	74.00	28.56	PASS	Vertical	PK
9	3300.0200	-19.80	57.28	37.48	74.00	36.52	PASS	Vertical	AV
10	5389.1593	-14.57	53.70	39.13	74.00	34.87	PASS	Vertical	PK
11	8773.3849	-9.64	52.57	42.93	74.00	31.07	PASS	Vertical	PK
12	14372.7582	0.77	48.89	49.66	74.00	24.34	PASS	Vertical	PK

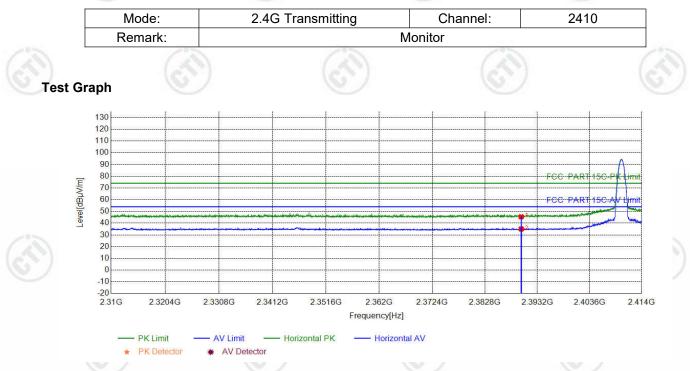
	Mode:	~~~	2.4G Tra	ansmitting		Channel:	2441.5		10	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1152.4152	0.82	42.31	43.13	74.00	30.87	PASS	Horizontal	PK
	2	1619.0619	2.41	42.63	45.04	74.00	28.96	PASS	Horizontal	PK
k	3	3469.0313	-20.08	58.09	38.01	74.00	35.99	PASS	Horizontal	PK
2	4	6296.2197	-12.93	53.98	41.05	74.00	32.95	PASS	Horizontal	PK
	5	10850.5234	-6.30	51.90	45.60	74.00	28.40	PASS	Horizontal	PK
	6	14928.7953	-0.71	49.29	48.58	74.00	25.42	PASS	Horizontal	PK
	7	1239.0239	0.90	41.91	42.81	74.00	31.19	PASS	Vertical	PK
	8	1849.6850	3.65	48.16	51.81	74.00	22.19	PASS	Vertical	PK
	9	3931.0621	-19.03	59.10	40.07	74.00	33.93	PASS	Vertical	PK
	10	7785.3190	-11.33	53.02	41.69	74.00	32.31	PASS	Vertical	AV
ſ	11	11195.5464	-6.42	51.97	45.55	74.00	28.45	PASS	Vertical	PK
2	12	14395.7597	1.15	48.72	49.87	74.00	24.13	PASS	Vertical	PK
5	2)		2)	6	57		(\sim)

Page 28 of 44

	Mode:	G	2.4G Tra	ansmitting		Channel:	2477		6)	
	NO	Freq. [MHz]	Factor [dB]	Reading [dB µ V]	Level [dB µ V/m]	Limit [dB µ V/m]	Margin [dB]	Result	Polarity	Remark
13	1	1148.6149	0.83	42.17	43.00	74.00	31.00	PASS	Horizontal	PK
2	2	1618.6619	2.41	42.89	45.30	74.00	28.70	PASS	Horizontal	PK
Ľ	3	3846.0564	-19.18	56.47	37.29	74.00	36.71	PASS	Horizontal	PK
	4	5621.1747	-14.20	54.94	40.74	74.00	33.26	PASS	Horizontal	PK
	5	9283.4189	-7.94	51.89	43.95	74.00	30.05	PASS	Horizontal	PK
	6	13822.7215	-1.71	49.53	47.82	74.00	26.18	PASS	Horizontal	PK
	7	1223.0223	0.86	41.64	42.50	74.00	31.50	PASS	Vertical	PK
	8	1849.8850	3.65	47.46	51.11	74.00	22.89	PASS	Vertical	PK
	9	3238.0159	-20.14	60.08	39.94	74.00	34.06	PASS	Vertical	PK
-	10	5246.1497	-14.64	54.34	39.70	74.00	34.30	PASS	Vertical	PK
	11	9306.4204	-7.95	51.99	44.04	74.00	29.96	PASS	Vertical	PK
6	12	13754.7170	-1.69	49.03	47.34	74.00	26.66	PASS	Vertical	PK

Remark:

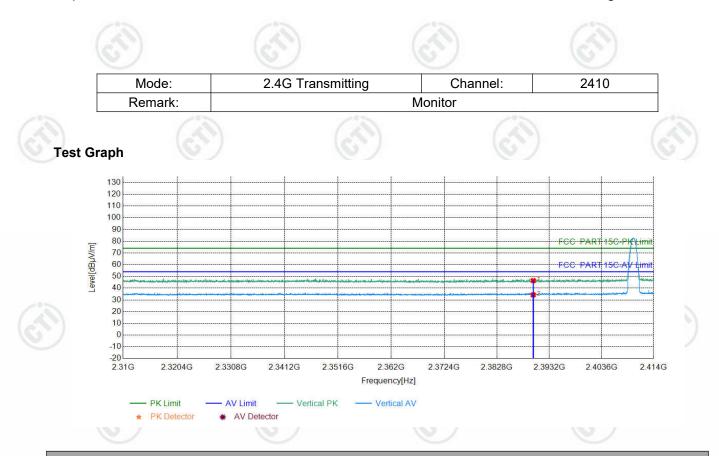
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

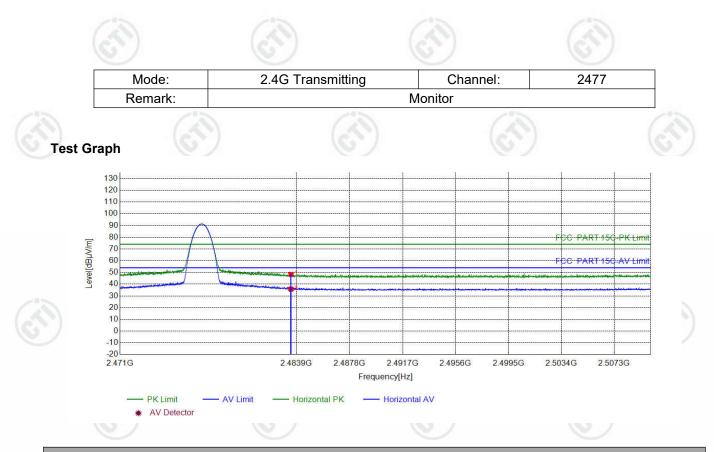
Page 29 of 44

Restricted bands:



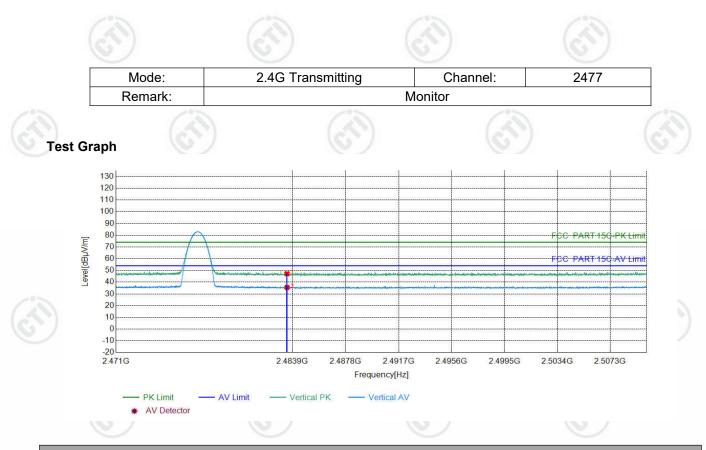
	Suspe	Suspected List													
12	NO	Freq.	Freq. Factor		Level	Limit	Margin	Result	Polarity	Remark					
G		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	1 Oldinty	Roman					
	1	2390.0000	5.77	39.67	45.44	74.00	28.56	PASS	Horizontal	PK					
	2	2390.0000	5.77	29.25	35.02	54.00	18.98	PASS	Horizontal	AV					

Page 30 of 44



	Suspec	Suspected List												
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark				
6		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	rolanty	Remark				
	1	2390.0000	5.77	40.69	46.46	74.00	27.54	PASS	Vertical	PK				
	2	2390.0000	5.77	28.52	34.29	54.00	19.71	PASS	Vertical	AV				

Page 31 of 44



	Suspec	Suspected List												
6	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
Ľ	1	2483.5000	6.57	41.76	48.33	74.00	25.67	PASS	Horizontal	PK				
	2	2483.5000	6.57	29.25	35.82	54.00	18.18	PASS	Horizontal	AV				

Page 32 of 44

S	Suspec	Suspected List												
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
	1	2483.5000	6.57	40.66	47.23	74.00	26.77	PASS	Vertical	PK				
	2	2483.5000	6.57	28.95	35.52	54.00	18.48	PASS	Vertical	AV				

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

