

Page 1 of 43

Report No.: HK2111114311-E

TEST REPORT

FCC PART 15 SUBPART C 15.247

Test report

On Behalf of

ZHONGSHAN SMART OPTOELECTRONICS TECHNOLOGY CO., LTD

For

Laser level

Model No.: P03CG, P02CG, P03DG, P04CG, P03CG-L, P03DG-L, P04CG-L

FCC ID: 2A3RS-P03CG

Prepared for : Z

ZHONGSHAN SMART OPTOELECTRONICS TECHNOLOGY CO., LTD 1/F - 3, Building A, No.16 Qianjin 3rd Road, Tanzhou Town, Zhongshan, Guangdong, China

Prepared By :

Shenzhen HUAK Testing Technology Co., Ltd. 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

 Date of Test:
 Nov. 11, 2021 ~ Nov. 18, 2021

 Date of Report:
 Nov. 18, 2021

 Report Number:
 HK2111114311-E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

FIF

TEST RESULT CERTIFICATION

Applicant's name	ZHONGSHAN SMART OPTOELECTRONICS TECHNOLOGY CO.,LTD						
Address	1/F - 3, Building A, No.16 Qianjin 3rd Road, Tanzhou Town, Zhongshan, Guangdong, China						
Manufacture's Name	ZHONGSHAN SMART OPTOELECTRONICS TECHNOLOGY CO.,LTD						
Address	1/F - 3, Building A, No.16 Qianjin 3rd Road, Tanzhou Town, Zhongshan, Guangdong, China						
Product description							
Trade Mark:	N/A						
Product name:	Laser level						
Model and/or type reference:	P03CG, P02CG, P03DG, P04CG, P03CG-L, P03DG-L, P04CG-L						
Standards	47 CFR FCC Part 15 Subpart C 15.247						

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests:	Nov. 11, 2021 ~ Nov. 18, 2021
Date of Issue	Nov. 18, 2021
Test Result	Pass

Prepared by:

Rian samp

Project Engineer

Reviewed by:

Approved by:

zden

Project Supervisor

rson Mou

Technical Director

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2111114311-E

NG

IК

Contents

				Page
C				
1	TEST S	SUMMARY	ESTAN BURN TESTAN	
		T DESCRIPTION		
		ASUREMENT UNCERTAINTY		
2		MATION OF THE TEST LABORATORY		
[©] 3	GENER	AL INFORMATION		
	3.1 Gen	NERAL DESCRIPTION OF EUT	NG MUAR	
		SCRIPTION OF TEST CONDITIONS		
	3.3 DE	SCRIPTION OF TEST SETUP		
4	EQUIPI	MENTS LIST FOR ALL TEST ITEMS		
-	• =	ESULT		
5 110	IE91 H	ESULI	an Hubber	
	5.1 ANT			
	5.1.1 ^{ميرو}	Standard requirement		
	5.1.2	EUT Antenna		
	5.2 Cor	NDUCTION EMISSIONS MEASUREMENT		
	5.2.1	Applied procedures / Limit		
	5.2.2	Test procedure		
	5.2.3	Test setup		
	5.2.4	Test results	HUAK	
	5.3 RAD	DIATED EMISSIONS MEASUREMENT		
	5.3.1	Applied procedures / Limit		18
	5.3.2	Test setup	and and a state of the second	
	5.3.3	Test Result	E. MUMATE	
	5.4 MAX	XIMUM OUTPUT POWER MEASUREMENT		
	5.4.1	Limit	STAG	
	5.4.2	Test procedure		
	5.4.3	Deviation from standard		
	5.4.4	Test setup		
	5.4.5	Test results		
		VER SPECTRAL DENSITY		
	5.5.1	Limit		
	5.5.2	Test procedure		
	5.5.3	Deviation from standard		
	5.5.4	Test setup		
	5.5.5	Test results		
	0.0.0			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

*ATA *	HUAK	TESTING	Philip A of 40	
Sand P		BANDWIDTH	Page 4 of 43	Report No.: HK2111114311-E
	5.6.1			
	5.6.2			
	5.6.3			
	5.6.4			
	5.6.5			
	TING			
	5.7.1			
	5.7.2			
	5.7.3			
	5.7.4			
	1000			
	5.8.1			35
	5.8.2	Test procedure	and anno on the	
	5.8.3			
	5.8.4			
	5.8.5			
	5.9.1			
	5.9.2			37
	5.9.3			
	5.9.4			
	5.9.5			
GTING 6				
16.				
7	РНОТС	S OF THE EUT		

·

*

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 5 of 43

Report No.: HK2111114311-E

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Nov. 18, 2021	Jason Zhou
TING	TING	TING	G TING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

CATION

1 Test Summary

1.1 Test Description

WILL MAKIN	ILAK TL	MAKTL	ILAK TL	WAK TE
Test Ite	m	Test Requirement	t	Result
Antenna Req	uirement	§15.203/§16.247(b)((4)	PASS
Conducted E	mission	FCC Part 15.207	STRUG	PASS
Radiated En	nissions	FCC Part 15.205/15.2	209	PASS
Maximum Peak C	Dutput Power	FCC Part 15.247(b))	PASS
Power Spectra	al Density	FCC Part 15.247 (e	e)	PASS
6dB Bandwidth & 9	9% Bandwidth	FCC Part 15.247(a)	(2)	PASS
Spurious RF Condu	ucted Emission	FCC Part 15.247(d)	PASS
Band Ed	dge	FCC Part 15.247(d)) HUAKTESTIN	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties. The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. The maximum value of the uncertainty as below:

No.	ltem	Uncertainty
1	Conducted Emission Test	±2.71dB
2	All emissions, radiated(<1G)	±3.90dB
3 JUNKT	All emissions, radiated(>1G)	±4.28dB
4	RF power, conducted	±0.37dB
5	Occupied Bandwidth	±3.68%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2 Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

3 General Information

3.1 General Description of EUT

Manufacturer:	ZHONGSHAN SMART OPTOELECT CO.,LTD	RONICS TECHNOLOGY
Manufacturer Address:	1/F - 3, Building A, No.16 Qianjin 3rd Zhongshan, Guangdong, China	Road, Tanzhou Town,
EUT Name:	Laser level	HUAKTES HUAK
Model No:	P03CG	
Series Model:	P02CG, P03DG, P04CG, P03CG-L,	P03DG-L, P04CG-L
Model Difference:	All model's the function, software and same, only with a product color, appe different. Test sample model: P03CG	earance and model named
Brand Name:	N/A	WARTEST
Operation frequency:	2402 MHz to 2480 MHz	HUAK TES
Channel separation:	2MHz	TING
NUMBER OF CHANNEL:	40	W.TES
Modulation Technology:	GFSK	K TESTING
Hardware Version:	V03	O HUM O M
Software Version:	V1.0	
Antenna Type:	PCB Antenna	OW
Antenna Gain:	0dBi	HUAK TESTIC
Power Supply:	DC 5V from Type-C or DC 11.1V from	m battery
Note:	-STNG	STING

The r

sUSE In ShManual rt refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, nent cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mar

NG

¦К РВ

STINC	SI' W	STINC	ESI'		NC SI'
		Description of	f Channel:		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4 HUAN	2410	18	2438	32	2466
5	2412	19	2440	33	2468
6	2414	20	2442	34	2470
HUAK TO	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
m ⁶ 12	2426	26	2454		
13	2428	27	2456	hol	TESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

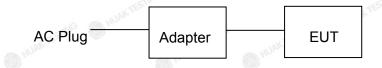
HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 10 of 43

3.2 Description of Test conditions

(1) E.U.T. test conditions:

For intentional radiators, measurements of the variation of the input power or the adiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.


- (2) Frequency range of radiated measurements: The test range will be up to the tenth harmonic of the highest fundamental frequency.
- (3) Pre-test the EUT in all transmitting mode at the lowest (2402 MHz), middle (2440 MHz) and highest (2480 MHz) channel with different data packet and conducted to determine the worst-case mode,

only the worst-case results are recorded in this report.

(4) The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

3.3 DESCRIPTION OF TEST SETUP

Operation of EUT during conducted testing and radiation below 1GHz testing:

Operation of EUT during radiation above 1GHz testing:

Adapter information Model: HW-059200CHQ Input: 100-240V, 50-60Hz, 0.5A Output: 5VDC, 2A

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK TESTING

Equipments List for All Test Items

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
r1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 10, 2020	1 Year
2.	L.I.S.N.	R&S	ENV216	HKE-059	Dec. 10, 2020	1 Year
3.	Receiver	R&S	ESCI 7	HKE-010	Dec. 10, 2020	^a 1 Year
4.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	1 Year
5.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 10, 2020	1 Year
6.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	1 Year
7.	High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Dec. 10, 2020	1 Year
8.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 10, 2020	1 Year
9.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 10, 2020	1 Year
10.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	³ Dec. 10, 2020	1 Year
11.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 10, 2020	1 Year
12	Pre-amplifier	EMCI	EMC051845SE	HKE-015	Dec. 10, 2020	1 Year
13	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 10, 2020	1 Year
14	High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 10, 2020	1 Year
15	Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A
16	Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
17.	RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	⇒ N/A
18.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 17, 2020	3 Year
19.	RF test software	Tonscend	JS1120-4	HKE-113	N/A	N/A
20.	RF test software	Tonscend	JS1120-3	HKE-114	N/A	N/A
21.	RF test software	Tonscend	JS1120-1	HKE-115	N/A	N/A
22.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	1 Year
23.	Signal generator	Agilent	N5182A	HKE-029	Dec. 10, 2020	1 Year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK TESTING

Report No.: HK2111114311-E

FICATION

	Olm		allo		
Signal Generator	Agilent	83630A	HKE-028	Dec. 10, 2020	1 Year
Power meter	Agilent	E4419B	HKE-085	Dec. 10, 2020	1 Year
Power Sensor	Agilent	E9300A	HKE-086	Dec. 10, 2020	1 Year
RF Cable(below1GHz)	Times	9kHz-1GHz	HKE-117	Dec. 10, 2020	1 Year
RF Cable(above 1GHz)	Times	1-40G	HKE-034	Dec. 10, 2020	1 Year
RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	Dec. 10, 2020	1 Year
Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 17, 2020	3 Year
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Dec. 10, 2020	1 Year
	Power meter Power Sensor RF Cable(below1GHz) RF Cable(above 1GHz) RF Cable (9KHz-40GHz) Shielded room	Power meterAgilentPower SensorAgilentRF Cable(below1GHz)TimesRF Cable(above 1GHz)TimesRF Cable (9KHz-40GHz)TonscendShielded roomShiel Hong	Power meterAgilentE4419BPower SensorAgilentE9300ARF Cable(below1GHz)Times9kHz-1GHzRF Cable(above 1GHz)Times1-40GRF Cable (9KHz-40GHz)Tonscend170660Shielded roomShiel Hong4*3*3	Power meterAgilentE4419BHKE-085Power SensorAgilentE9300AHKE-086RF Cable(below1GHz)Times9kHz-1GHzHKE-117RF Cable(above 1GHz)Times1-40GHKE-034RF Cable (9KHz-40GHz)Tonscend170660N/AShielded roomShiel Hong4*3*3HKE-039	Power meterAgilentE4419BHKE-085Dec. 10, 2020Power SensorAgilentE9300AHKE-086Dec. 10, 2020RF Cable(below1GHz)Times9kHz-1GHzHKE-117Dec. 10, 2020RF Cable(above 1GHz)Times1-40GHKE-034Dec. 10, 2020RF Cable (9KHz-40GHz)Tonscend170660N/ADec. 10, 2020Shielded roomShiel Hong4*3*3HKE-039Dec. 17, 2020

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5 Test Result

5.1 Antenna Requirement

5.1.1 Standard requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, is a permanently attached antenna on the PCB. It conforms to the standard requirements, The directional gains of antenna used for transmitting is 0dBi.

5.1.2 EUT Antenna

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK TESTING

F

5.2 Conduction Emissions Measurement

5.2.1 Applied procedures / Limit

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

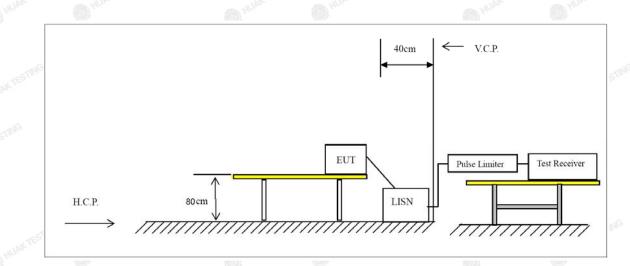
HULAR TESTING	MARTESTING Limi	t (dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

5.2.2 Test procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

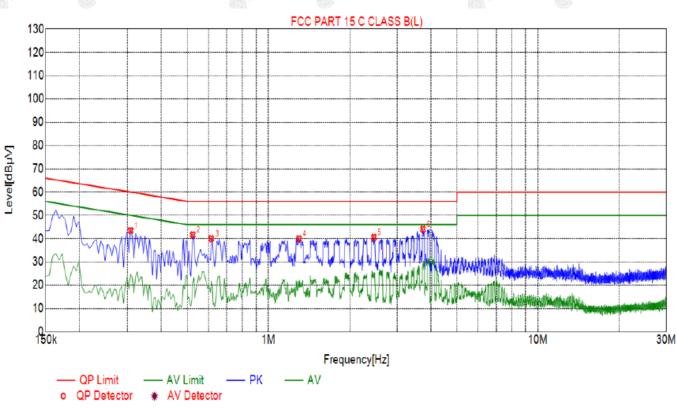

Page 15 of 43

Report No.: HK2111114311-E

NG

IК °PB

5.2.3 Test setup


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5.2.4 Test results

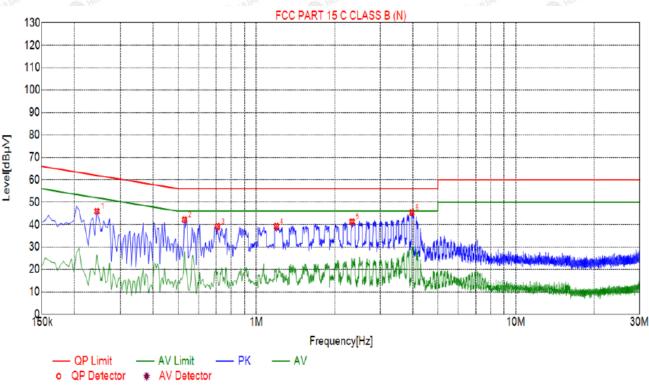
Test Specification: Line

Suspected List

		•							
	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
	1	0.3075	43.49	20.05	60.04	16.55	23.44	PK	L
	2	0.5235	41.69	20.04	56.00	14.31	21.65	PK	L
5	3	0.6135	40.03	20.05	56.00	15.97	19.98	PK	L
	4	1.2975	39.99	20.10	56.00	16.01	19.89	PK	L
	5	2.4630	40.56	20.19	56.00	15.44	20.37	PK	L
	6	3.7455	44.09	20.25	56.00	11.91	23.84	PK	L

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss


Level=Test receiver reading + correction factor

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- esults shows in this test report refer only to the sample(s) tested in as otherwise stated and the sample(s) are retained for 30 days only. The document is is: 3. Final Level = Receiver Read level + LISM Factor + Cable Loss ocument cannot be reproduced excert in full with our prior written permission. The more details and the authenticity of the report will be confirmed at bits
 - 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver. It is service@cer-mark.com

Su	Suspected List												
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре					
1	0.2445	45.94	20.03	61.94	16.00	25.91	PK	Ν					
2	0.5280	42.21	20.04	56.00	13.79	22.17	PK	Ν					
3	0.7080	39.14	20.05	56.00	16.86	19.09	PK	Ν					
4	1.1940	39.17	20.09	56.00	16.83	19.08	PK	Ν					
5	2.3370	41.28	20.18	56.00	14.72	21.10	PK	Ν					
6	3.9750	45.39	20.25	56.00	10.61	25.14	PK	Ν					

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.
- The results/fithe average limit is met when using a quasi-peak detector receiver; the EUT shall be deemed to meet both limits this document connect be reproduced extended to meet both limits and measurement with the average detector receiver is unnecessary.

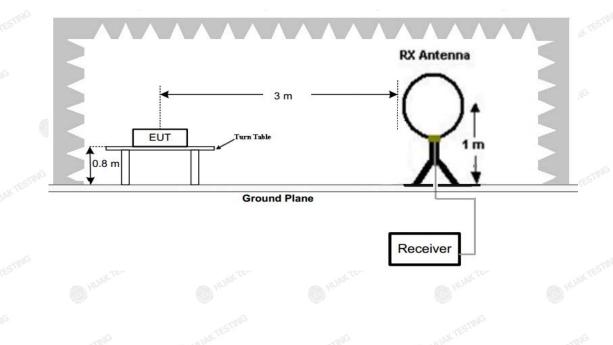
HUAK Testing Lab TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

FICATION

5.3 Radiated Emissions Measurement

5.3.1 Applied procedures / Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

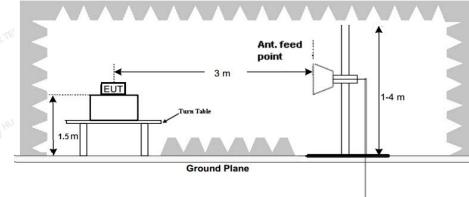

Except when the requirements applicable to a given device state otherwise, emissions from licence exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

		Rad	iated emission limits	
ŝ	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
R	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
STIN	⁶ 88-216	3 SING	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500

5.3.2 Test setup

Test Configuration:


1) 9 kHz to 30 MHz emissions:


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

1 GHz to 25 GHz emissions:

Test Procedure

3)

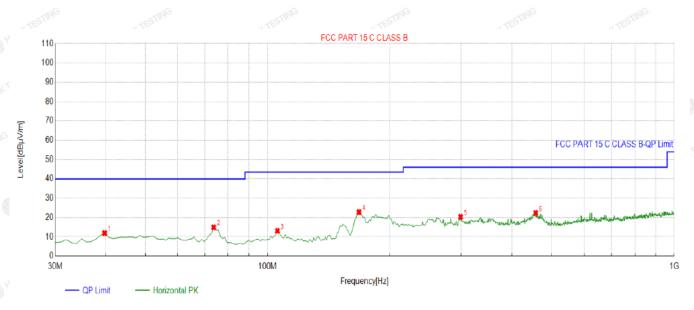
1. The EUT was placed on turn table which is 0.8m above ground plane for below 1GHz test, and on a low permittivity and low loss tangent turn table which is 1.5m above ground plane for above 1GHz test.

Receiver

Amp

- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



Report No.: HK2111114311-E

АР ПР

5.3.3 Test Result

Below 1GHz Test Results: Antenna polarity: H

QP Detector

	Suspe	cted List								
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delerity
3	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	39.7097	-14.64	26.55	11.91	40.00	28.09	100	31 <mark>8</mark>	Horizontal
	2	73.6937	-18.33	33.21	14.88	40.00	25.12	100	2	Horizontal
	3	105.7357	-15.42	28.50	13.08	43.50	30.42	100	359	Horizontal
	4	167.8779	-17.50	40.25	22.75	43.50	20.75	100	254	Horizontal
	5	298.9590	-12.75	33.07	20.32	46.00	25.68	100	281	Horizontal
	6	457.2272	-8.76	31.06	22.30	46.00	23.70	100	128	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2111114311-E

Antenna polarity: V

Suspe	cted List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delerity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	38.7387	-14.95	37.97	23.02	40.00	16.98	100	360	Vertical
2	61.0711	-15.43	37.34	21.91	40.00	18.09	100	345	Vertical
3	72.7227	-18.16	39.60	21.44	40.00	18.56	100	116	Vertical
4	170.7908	-17.26	44.86	27.60	43.50	15.90	100	201	Vertical
5	335.8559	-11.62	31.07	19.45	46.00	26.55	100	8	Vertical
6	832.0220	-2.46	32.81	30.35	46.00	15.65	100	327	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Remark :

(1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.

(2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

For 1GHz to 25GHz

CH Low (2402MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	55.20	-3.65	51.55	74.00	-22.45	peak
4804	44.41	-3.65	40.76	54.00	-13.24	AVG
7206	51.55	-0.95	50.60	74.00	-23.40	peak
[©] 7206	41.17	-0.95	40.22	54.00	-13.78	AVG

Vertical:

	1 AKTL		MAK TH			AAKTL	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	O he	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
4804	52.73	-3.65	49.08	74.00	-24.92	peak	
4804	41.68	-3.65	38.03	54.00	-15.97	AVG	
7206	50.41	-0.95	49.46	74.00	-24.54	peak	
7206	36.39	-0.95	35.44	54.00	-18.56	AVG	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail: service@cer-mark.com

CH Middle (2440MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	o Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880.00	55.72	-3.54	52.18	74.00	-21.82	peak
4880.00	41.62	-3.54	38.08	54.00	-15.92	AVG
7320.00	56.14	-0.81	55.33	74.00	-18.67	peak
7320.00	39.99	-0.81	39.18	54.00	-14.82	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

6	STING	STAR	STA	0	STING	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	📣 (dB)	Detector Type
4880.00	52.69	-3.54	49.15	74.00	-24.85	peak
4880.00	45.98	-3.54	42.44	54.00	-11.56	AVG
7320.00	50.67	-0.81	49.86	74.00	-24.14	peak
7320.00	39.86	-0.81	39.05	54.00	-14.95	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

NCATION

CH High (2480MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar
MHz)	(dBµV)	(dB)	(dBµV/m)	<pre>⟨dBµV/m)</pre>	(dB)	Detector Type
4960	52.26	-3.43	48.83	74.00	-25.17	peak
4960	41.54	-3.44	38.10	54.00	-15.90	AVG
7440	52.22	-0.77	51.45	74.00	-22.55	peak
7440	39.06	-0.77	38.29	54.00	-15.71	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	51.57	-3.43	48.14	74.00	-25.86	peak
4960	45.33	-3.44	41.89	54.00	-12.11	AVG
7440	53.21	-0.77	52.44	74.00	-21.56	peak
7440	35.68	-0.77	34.91	54.00	-19.09	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak

detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed. (7)All modes of operation were investigated and the worst-case emissions are reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HUAK TESTING

Radiated Band Edge Test:

Operation Mode: TX CH Low (2402MHz)

Horizontal (Worst case):

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m) 🌑	(dB)	Туре
2310.00	58.22	-5.81	52.41	74	-21.59	peak
2310.00	48.50	-5.81	42.69	54	-11.31	AVG
2390.00	55.26	-5.84	49.42	74	-24.58	peak
2390.00	Ing O	-5.84	STING /	54	I	AVG
2400.00	57.77	-5.84	51.93	74	-22.07	peak
2400.00	1	-5.84	/	54	1	AVG
Remark: Facto	or = Antenna Fac	ctor + Cable L	oss – Pre-amplifier.	esting	TESTING	

Vertical:

UNIC .				STINC			
Frequency	Reading ResultFactorI(dBµV)(dB)		Emission Level	Limits	Margin	Detector	
(MHz)			(dBµV/m)	(dBµV/m)	(dB)	Туре	
2310.00 58.52		-5.81 52.71		74	-21.29	peak	
2310.00 /		-5.81	HUAK I	54	HUNTER	AVG	
2390.00	2390.00 54.33		-5.84 48.49		-25.51	peak	
2390.00 /		-5.84	-5.84 /		STING	AVG	
2400.00	2400.00 57.58 -5.84		51.74	74	-22.26	peak	
2400.00 /		-5.84	/	54	- Dig	AVG	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 26 of 43

HUAK TESTING Operation Mode: TX CH High (2480MHz)

Horizontal (Worst case)

					and the		
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.50 55.74		-5.81	49.93	74	-24.07	peak AVG peak	
2483.50	2483.50 / 2500.00 53.05		g /	54	1		
2500.00			46.99	74	-27.01		
2500.00	1	-6.06	× Yuan	54	1	AVG	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor Emission Level		Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m) 🌑	(dB)	Туре	
2483.50	2483.50 54.33 2483.50 / 2500.00 54.68		48.52	74	-25.48	peak	
2483.50			I JAK TESTING	54 🔘 🗥	/	AVG	
2500.00			48.62	74	-25.38	peak	
2500.00		-6.06	1	54	1	AVG	
E TESTING	interne Fee		Dro omplifior	crime (C)	TESTING	NKTEST	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

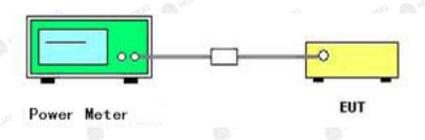
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5.4 Maximum Output Power Measurement

5.4.1 Limit

The Maximum Peak Output Power Measurement is 30dBm.

5.4.2 Test procedure


The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

5.4.3 Deviation from standard

No deviation.

5.4.4 Test setup

5.4.5 Test results

Channel	Channel frequency (MHz)	Output power (dBm)	Limit (dBm)	Result
Low	2402	5.75	OHUM	Pass
Middle	2440	5.71	30	Pass
High	2480	5.74	AKTESTING	Pass

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5.5 Power Spectral Density

HUAK TESTING

5.5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.5.2 Test procedure

Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

Set the RBW =3 kHz.

Set the VBW =10 KHz.

Set the span to 1.5 times the DTS channel bandwidth.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum power level. If measured value exceeds limit, reduce RBW(no less than 3 kHz)and repeat. The resulting peak PSD level must be 8 dBm.

5.5.3 Deviation from standard

No deviation.

5.5.4 Test setup

EUT

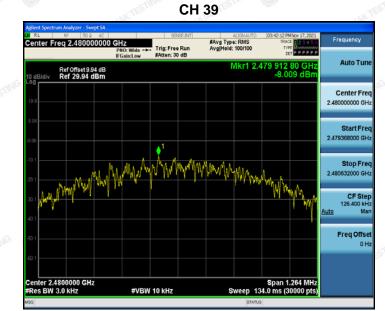
SPECTRUM ANALYZER

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5.5.5 Test results

Channel	Channel frequency (MHz)	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
Low	2402	-7.89	0	Pass	
Middle	2440	-8.05	8.00	Pass	
High	2480	-8.01	HUAKIL	Pass	


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2111114311-E

FICATION

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail: service@cer-mark.com

5.6 6dB Bandwidth

5.6.1 Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.6.2 Test procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300 KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.6.3 Deviation from standard

No deviation.

5.6.4 Test setup

(1 HD. 0	
EUT		SPECTRUM
EUT		ANALYZER
	TING	TING

5.6.5 Test result

Channel	Channel frequency (MHz)	6dB Bandwidth (MHz)	Limit (KHz)	Result	
Low	2402	0.660	STING	Pass	
Middle	2440	0.652	≥500	Pass	
High	2480	0.632	LAK TEST	Pass	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.con

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 32 of 43

Report No.: HK2111114311-E

EST -

CH 00

CH 19

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 33 of 43 CH 39

Report No.: HK2111114311-E

NG

IК °PB

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5.7 Occupied Bandwidth

5.7.1 Test procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW

VBW=approximately 3 X RBW

Detector=Peak

Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recorded.

5.7.2 Deviation from standard

No deviation.

5.7.3 Test setup

5.7.4 Test result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5.8 Band edge

5.8.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under FCC rules in section 5.8.1, the attenuation required shall be 30 dB instead of 20 dB.

5.8.2 Test procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation, RBW ≥ 1% of the span, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold

5.8.3 Deviation from standard

No deviation.

5.8.4 Test setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2111114311-E

5.8.5 Test results

PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5.9 Conducted Spurious Emissions

5.9.1 Applied procedures / Limit

HUAK TESTING

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section (b)(3) of RSS 5.4(4), the attenuation required shall be 30 dB instead of 20 dB.

For below 30MHz, For 9KHz-150kHz, 150K-10MHz, We use the RBW 1KHz, 10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz, RBW 1KHz, The Limit= the highest emission level-20-10log(100/1)= the highest emission level-40.

5.9.2 Test procedure

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b.Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation, $RBW \ge 1\%$ of the span, $VBW \ge RBW$, Sweep = auto, Detector function = peak, Trace = max hold

5.9.3 Deviation from standard

No deviation.

5.9.4 Test setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

Report No.: HK2111114311-E

CH 00

Frequency	6:03 PMNov 17, 2021 TRACE	0 (00)	vg Type: RMS gjHeid: 10/10		Summer	PNO: Fast		req 515.0	
Auto Tune	774.70 MHz 59.542 dBm					II OBBICCO		Ref Offset Ref 19.9	10 dB/div
Center Freq 515.000000 MHz									9.94
Start Freq 30.000000 MHz	-15.35 (80%)								-10.1
Stop Freq 1.000000000 GHz									-20.1 -30.1
CF Step 97.000000 MHz Auto Man									-411
Freq Offset 0 Hz	and the Report	1		difference for	e i Silitanini	er i ser ti altribita	ي. مار بالكرون	sidd parties	60.1
			ning birbahata I		un kirjun	a) kassi ini kata kata a	o selicita e i		
	p 1.0000 GHz ns (30001 pts)		#Sweep		300 kHz	#VBW			Start 30. #Res BV

natyzer - Swep F 50 2 13.75000 ef Offset 9.94 ef 19.94 di	AC DOODO GH PNC IFGa	Z D: Fast → in:Low		SE:INT Run dB		ALIGNAUTO Type: RMS old: 10/10 Mkr/	TRAC TYP DE 2 7.205	4Nov 17, 2021 E 1 2 3 4 5 6 E M P P P P P P 00 GHz 99 dBm	Frequency Auto Tu
13.75000	00000 GH PNC IFGa): Fast 🔸	Trig: Free	Run		ype: RMS old: 10/10	TRAC TYP DE 2 7.205	E 123456 PPPPPP 00 GHz	
of Offset 9.94	PNC IFGa): Fast 🔸	Trig: Free #Atten: 20	Run dB		old: 10/10	ce 2 7.205	00 GHz	Auto Tu
						Mkr	2 7.205	00 GHz 99 dBm	Auto Tu
									Center F 13.750000000 (
	• 2							-15.35 dBn	
									Start F 1.000000000
	tetivia,								Stop F 26.500000000
iz) kHz		#VBW	300 kHz			#Sweep 30			CF S
ı	×		Y		CTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	Auto
									Freq Of
								-	
)	kHz	z kHz 2.40165	z kHz #VBW	kHz #VBW 300 kHz	z kHz 2 kHz 2 2 2 2 2 2 2 2 2 2 401 65 GHz 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1	kHz #VBW 300 kHz RACTON	kHz #VBW 300 kHz #Sweep 300 2 X Y A01 65 GHz 5 25 GBm	Stop 2 Stop 2 kHz #VBW 300 kHz #Sweep 300.0 ms (3) X Y Function Function width 2.401 65 GHz 6.514 gHz Function Function width	Stop 26.50 GHz Stop 26.50 GHz x ¥VBW 300 kHz #Sweep 300.0 ms (30001 pts) X ¥ FIRCTION FIRCTION 2.401 65 GHz 5.516 GBm FIRCTION FIRCTION

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

TIN

-||-

Page 39 of 43 CH 19

lent Spectrum Analyzer - Swept SA				
RL IF 500 AC enter Freq 515.000000 M	PNO: Fast +++ Trig: Free Run	#Avg Type: RMS Avg Held: 10/10	03-39-47 PMNov 17, 2021 TRACE 2.2.4 B TYPE MINIMUM	Frequency
Ref Offset 9.94 dB dB/div Ref 19.94 dBm	IFGalicLow #Atten: 20 dB	1	/kr1 32.07 MHz -60.194 dBm	Auto Tun
9				Center Fre 515.000000 MH
.1			- isstates	Start Fre 30.000000 Mi
				Stop Fre
				CF Ste 97.000000 Mi Auto Mi
1 Middigtonic an stability of the	second and the second states of the second states of the second states of the second states of the second states			Freq Offs 01
art 30.0 MHz	n an	an na sa bin dina kana di Andrikan	Stop 1.0000 GHz	
tes BW 100 kHz	#VBW 300 kHz	#Sweep 30	00.0 ms (30001 pts)	1

				-			
Agilent Spectr	um Analyzer - Swept Si	A					
UK RL	RF 50 Q AC		SENSE:IN		ALIGNAUTO	03:40:13 PMNov 17, 202	Frequency
Center F	req 13.750000	000 GHz	Trig: Free Run		Type: RMS Hold: 10/10	TRACE 1 2 3 4 5 TYPE MUSIC	
		PNO: Fast H IFGain:Low	#Atten: 20 dB	Avgi	1010: 10/10	DETPPPP	
		IFGainLow	Braten. 20 GD				Auto Tune
	Ref Offset 9.94 dl	в			MKr	2 7.320 60 GH	
10 dB/div	Ref 19.94 dBn	n				-26.442 dBm	
Log							
9.94	> <mark>-</mark>						Center Freq
-0.06							13.750000000 GHz
-10.1							
		.2				-15.31 dBr	
-20.1		↓ ²					Start Freq
-30.1							1.00000000 GHz
-40.1							
						يعرف مرد	
-50.1				and the Bester	No. 14 August 199		Stop Freq
-60.1			and the set is she	ALL ALL PROPERTY.	and the second s	Making a talk	26.50000000 GHz
-70.1							26.50000000 GHZ
Start 1.00	GHz					Stop 26.50 GHz	CF Step
#Res BW	100 kHz	#VB\	N 300 kHz		#Sweep 30	0.0 ms (30001 pts	2.550000000 GHz
MKR MODE TR	10.00	x	¥	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
1 N A		2.439 90 GHz	2.492 dBm	PONCTION	PONCTION WIDTH	PONCTION VALUE	
2 N 1		7.320 60 GHz	-26.442 dBm				
3							Freq Offset
4	++						0 Hz
6							
7							
8	+						
10							
11							

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2111114311-E

RO

*

CH 39

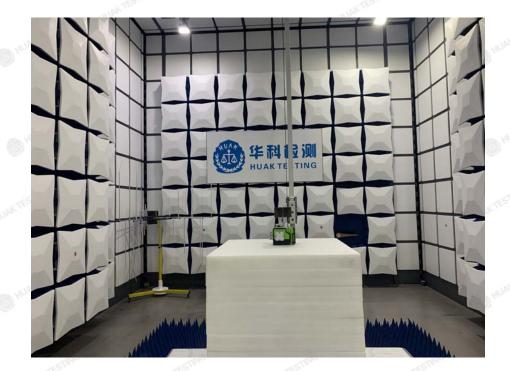
		Analyzer - Se									
Cen		q 515.00		Z	Trig: Free	Run	#Avg Type AvgiHold:		1RAI	4Nov 17, 2021 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	Frequency
			1	FGain:Low	#Atten: 20			00000		PPPPP	Auto Tune
10 dE	Jidiv F	tef Offset 9. Ref 19.94	94 dB dBm					M	kr1 839. -59.6	53 MHz 56 dBm	Auto Tune
201											Center Freq
9.94											515.000000 MHz
0.05											14. T
											Start Freq 30.000000 MHz
-50.1										-15 20 titles	30.00000 MH2
-20.1											Stop Freq
											1.00000000 GHz
-30.1											
-43.1											CF Step 97.000000 MHz
-60.11											Auto Man
									A1		
-60.1	minlesser	فالمعامدة فا	die maar die	day and the ball	والمتحد وحدالته	and the same	in finalitet fichete	the Dismotor B	M. Little Lange	a ta sin dala	Freq Offset 0 Hz
.70 t									ia ant a state		
Star	t 30.0 M	Hz							Stop 1.	0000 GHz	
#Res	5 BW 10	00 kHz		#VBW	300 kHz		#S	weep 3	00.0 ms (3	0001 pts)	<u>.</u>
MSG								STATU	5		

Agilent Spect RL Center F	RF	50 Q	AC) GHz			ISE:INT		g Type	ALIGN AUTO	TRA	MNov 17, 202 ICE 2 3 4 5		Frequency
				PNO: F IFGain:		#Atten: 20		Avg	Hold:	10/10		PPPPP		
10 dB/div													Auto Tun	
9.94	} ¹ │													Center Freq
0.06													1	3.750000000 GHz
20.1				2								-15.28 dB		01
30.1			ľ											Start Freq 1.00000000 GHz
40.1														
60.1 	lada in			i and	ind.		v.		de	nyady		100		Stop Freq
-70.1		-07											2	6.50000000 GHz
	tart 1.00 GHz Stop 26.50 G Res BW 100 kHz #VBW 300 kHz #Sweep 300.0 ms (30001 p									26.50 GH2 30001 pts) :	CF Step 2.55000000 GHz		
MKR MODE TRC SOL			×					FUNCTION	TION FUNCTION WIDTH		FUNCTION VALUE		AL	<u>to</u> Man
1 N 2 N	f		2.4	19 85 GH 10 45 GH	iz iz	5,154 de -28,932 de								-
3 4 5	\pm				+				-					Freq Offset 0 Hz
6														
8					-									
10														

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

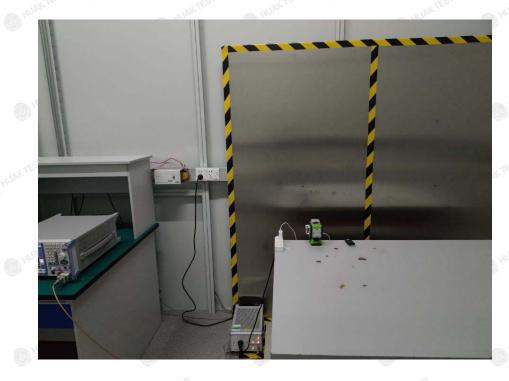
Page 41 of 43


Report No.: HK2111114311-E

Ve Ve

6 Test setup photo

Radiated Emissions


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 42 of 43

Report No.: HK2111114311-E

Conducted Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

EICATIO.

7 PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.