

Report No.: TW2109244E File reference No.: 2021-10-29

Applicant: Shenzhen ELET Technology Co.,Ltd.

Product: Chessnut AIR

Model No.: CA100, CA101, CA102, CA103, CA104

Trademark: Chessnut

Test Standards: FCC Part 15.249

Test result:

It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.10 &FCC Part 15 Subpart C,

Paragraph 15.249 regulations for the evaluation of

electromagnetic compatibility

Approved By

Jack Chung

Jack Chung

Manager

Dated: October 29, 2021

Results appearing herein relate only to the sample tested The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TESTING LABORATORIES

Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le Village, Nanshan District, Shenzhen, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com

Report No.: TW2109244E Page 2 of 47

Date: 2021-10-29

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 744189

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 744189.

Industry Canada (IC) — Registration No.:5205A

The EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 5205A.

A2LA (Certification Number: 5013.01)

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number:5013.01

39

Report No.: TW2109244E

Date: 2021-10-29

Test Report Conclusion

Content 1.0 General Details 1.1 Test Lab Details. 1.2 Applicant Details. 4 1.3 Description of EUT 4 1.4 Submitted Sample.... 4 1.5 Test Duration. 5 1.6 Test Uncertainty. 5 1.7 Test By..... 5 2.0 List of Measurement Equipment..... 7 3.0 Technical Details..... 3.1 Summary of Test Results.... 7 3.2 7 Test Standards.... 4.0 EUT Modification. 7 Power Line Conducted Emission Test. 5.0 5.1 Schematics of the Test. 8 5.2 Test Method and Test Procedure. 5.3 Configuration of the EUT..... 8 5.4 EUT Operating Condition. 5.5 Conducted Emission Limit. 9 5.6 Test Result. 6.0 Radiated Emission test.... 12 Test Method and Test Procedure. 6.1 12 6.2 Configuration of the EUT..... 13 6.3 EUT Operation Condition. 13 6.4 Radiated Emission Limit. 14 6.5 Test Result.... 15 7.0 Band Edge.... 23 7.1 Test Method and Test Procedure. 23 7.2 Radiated Test Setup. 23 7.3 Configuration of the EUT..... 23 7.4 EUT Operating Condition. 23 7.5 Band Edge Limit..... 23 7.6 Band Edge Test Result. 24 8.0 Antenna Requirement..... 28 20dB bandwidth measurement. 9.0 29 FCC ID Label..... 10.0 38

The report refers only to the sample tested and does not apply to the bulk.

11.0

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Photo of Test Setup and EUT View.

Date: 2021-10-29

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TESTING LABORATORIES.

Address: Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le

Village, Nanshan District, Shenzhen, China

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 744189 For 3m Anechoic Chamber

1.2 Applicant Details

Applicant: Shenzhen ELET Technology Co.,Ltd.

Address: 506 Room, building A, wenle Industrial Zone, Longzhu community, Xixiang street, Bao'an

District, Shenzhen

Telephone: -Fax: --

1.3 Description of EUT

Product: Chessnut AIR

Manufacturer: Shenzhen ELET Technology Co.,Ltd.

Address: 506 Room, building A, wenle Industrial Zone, Longzhu community, Xixiang

street, Bao'an District, Shenzhen

Trademark: Chessnut
Additional Trademark: N/A
Model Number: CA100

Additional Model Name CA101, CA102, CA103, CA104

Hardware Version: HW V1.2 Software Version: SW V2.2

Rating: DC5.0V, 500mA

Battery: DC3.7V, 1000mAh Li-ion battery

Modulation Type: GFSK, π/4D-QPSK, 8DPSK (Bluetooth)

Operation Frequency: 2402-2480MHz

Channel Separate: 1MHz Channel Number: 79

Antenna Designation PCB antenna with gain 1.49dBi maximum (Get from the antenna specification

provided by the Manufacturer)

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No.: TW2109244E Page 5 of 47

Date: 2021-10-29

1.4 Submitted Sample: 1 pc

1.5 Test Duration 2021-09-24 to 2021-10-29

1.6 Test Uncertainty

Conducted Emissions Uncertainty =3.6dB

Radiated Emissions below 1GHz Uncertainty =4.7dB

Radiated Emissions above 1GHz Uncertainty =6.0dB

Conducted Power Uncertainty =6.0dB

Occupied Channel Bandwidth Uncertainty = 5%

Conducted Emissions Uncertainty = 3.6dB

Note: The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

1.7 Test Engineer

Terry Tang

The sample tested by

Print Name: Terry Tang

Page 6 of 47

Report No.: TW2109244E

Date: 2021-10-29

2.0 Test Equipment					
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	R&S	ESPI 3	100379	2021-06-18	2022-06-17
LISN	R&S	EZH3-Z5	100294	2021-06-18	2022-06-17
LISN	R&S	EZH3-Z5	100253	2021-06-18	2022-06-17
Impuls-Begrenzer	R&S	ESH3-Z2	100281	2021-06-18	2022-06-17
Loop Antenna	EMCO	6507	00078608	2021-06-18	2024-06-17
Spectrum	R&S	FSIQ26	100292	2021-06-18	2022-06-17
Horn Antenna	A-INFO	LB-180400-KF	J211060660	2021-07-02	2024-07-01
Horn Antenna	R&S	BBHA 9120D	9120D-631	2021-07-02	2024-07-01
Power meter	Anritsu	ML2487A	6K00003613	2021-06-18	2022-06-17
Power sensor	Anritsu	MA2491A	32263	2021-06-18	2022-06-17
Bilog Antenna	Schwarebeck	VULB9163	9163/340	2021-07-02	2024-07-01
9*6*6 Anechoic			N/A	2021-07-02	2022-07-01
EMI Test Receiver	RS	ESVB	826156/011	2021-06-18	2022-06-17
EMI Test Receiver	RS	ESH3	860904/006	2021-06-18	2022-06-17
Spectrum	HP/Agilent	ESA-L1500A	US37451154	2021-06-18	2022-06-17
Spectrum	HP/Agilent	E4407B	MY50441392	2021-06-18	2022-06-17
Spectrum	RS	FSP	1164.4391.38	2021-01-16	2022-01-15
RF Cable	Zhengdi	ZT26-NJ-NJ-8M/FA		2021-06-18	2022-06-17
RF Cable	Zhengdi	7m		2021-06-18	2022-06-17
RF Switch	EM	EMSW18	060391	2021-06-18	2022-06-17
Pre-Amplifier	Schwarebeck	BBV9743	#218	2021-06-18	2022-06-17
Pre-Amplifier	HP/Agilent	8449B	3008A00160	2021-06-18	2022-06-17
LISN	SCHAFFNER	NNB42	00012	2021-01-06	2022-01-05

2.2 Automation Test Software

For Conducted Emission Test

Name	Version		
EZ-EMC	Ver.EMC-CON 3A1.1		

For Radiated Emissions

Name	Version
EMI Test Software BL410-EV18.91	V18.905
EMI Test Software BL410-EV18.806 High Frequency	V18.06

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No.: TW2109244E Page 7 of 47

Date: 2021-10-29

3.0 Technical Details

3.1 Summary of test results

The EUT has been tested according to the following specifications:

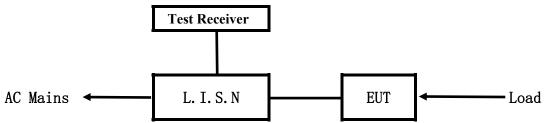
Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.207	Conducted Emission Test	Pass	Complies
FCC Part 15 Subpart C Paragraph 15.249(a) & 15.249(b) Limit	Field Strength of Fundamental	Pass	Complies
FCC Part 15, Paragraph 15.209	Radiated Emission Test	Pass	Complies
FCC Part 15 Subpart C Paragraph 15.249(d) Limit	Band Edge Test	Pass	Complies

3.2 Test Standards

FCC Part 15 Subpart C, Paragraph 15.249, ANSI C63.4:2014 and ANSI C63.10:2013

4.0 EUT Modification

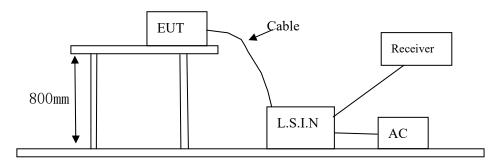
No modification by SHENZHEN TIMEWAY TESTING LABORATORIES


Report No.: TW2109244E

Date: 2021-10-29

5. Power Line Conducted Emission Test

5.1 Schematics of the test



EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.10-2013. The Frequency spectrum from 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.10 –2013.

Test Voltage: 120V~, 60Hz Block diagram of Test setup

5.3 Configuration of the EUT

The EUT was configured according to ANSI C63.10-2013. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

79 channels are provided to the EUT

A. EUT

Device	Manufacturer	Model	FCC ID
		CA100, CA101,	
Chessnut AIR	Shenzhen ELET Technology Co.,Ltd.	CA102, CA103,	2A3RB-CA100
		CA104	

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No.: TW2109244E Page 9 of 47

Date: 2021-10-29

B. Internal Device

Device	Manufacturer	Model	FCC ID/DOC
N/A			

C. Peripherals

Device	Manufacturer	Model Rating		
Power Supply	KEYU	KA23-0502000DEU	Input: 100-240V~, 50/60Hz, 0.35A;	

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.10-2013

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207

Frequency	Limits (dB µ V)				
(MHz)	Quasi-peak Lev 1	Average Level			
$0.15 \sim 0.50$	66.0~56.0*	56.0~46.0*			
$0.50 \sim 5.00$	56.0	46.0			
$5.00 \sim 30.00$	60.0	50.0			

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The tighter limit shall apply at the transition frequencies

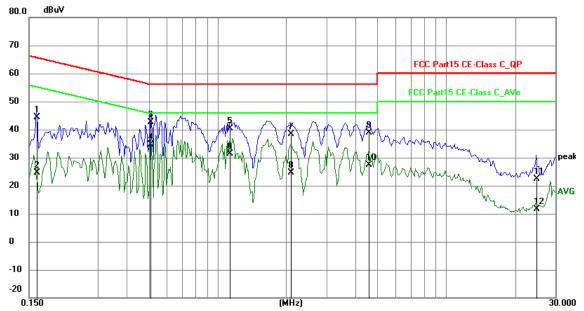
5.6 Test Results:

Pass

Report No.: TW2109244E

Date: 2021-10-29

A: Conducted Emission on Live Terminal (150kHz to 30MHz)


EUT Operating Environment

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Communication by BT

Results: Pass

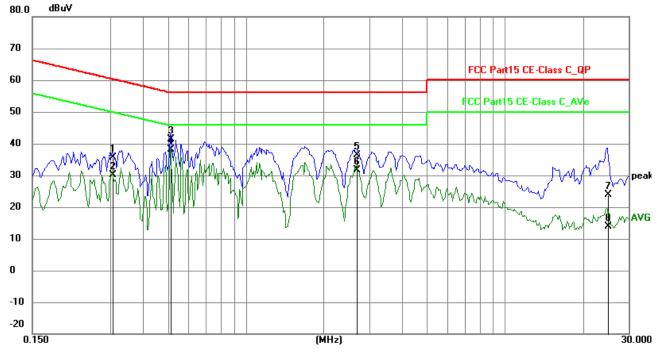
Please refer to following diagram for individual

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1617	34.53	9.78	44.31	65.38	-21.07	QP	Р
2	0.1617	14.96	9.78	24.74	55.38	-30.64	AVG	Р
3	0.5088	32.93	9.77	42.70	56.00	-13.30	QP	Р
4	0.5088	24.86	9.77	34.63	46.00	-11.37	AVG	Р
5	1.1328	30.64	9.79	40.43	56.00	-15.57	QP	А
6	1.1328	21.53	9.79	31.32	46.00	-14.68	AVG	Л
7	2.0961	28.51	9.80	38.31	56.00	-17.69	QP	Р
8	2.0961	14.78	9.80	24.58	46.00	-21.42	AVG	Р
9	4.5834	29.04	9.91	38.95	56.00	-17.05	QP	Р
10	4.5834	17.35	9.91	27.26	46.00	-18.74	AVG	Р
11	24.6801	11.34	10.97	22.31	60.00	-37.69	QP	Р
12	24.6801	0.75	10.97	11.72	50.00	-38.28	AVG	Р

Report No.: TW2109244E Page 11 of 47

Date: 2021-10-29

B: Conducted Emission on Neutral Terminal (150kHz to 30MHz)


EUT Operating Environment

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Communication by BT

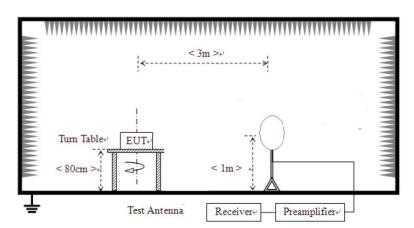
Results: Pass

Please refer to following diagram for individual

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.3060	25.86	9.76	35.62	60.08	-24.46	QP	Р
2	0.3060	20.25	9.76	30.01	50.08	-20.07	AVG	Р
3	0.5127	31.57	9.77	41.34	56.00	-14.66	QP	Р
4	0.5127	28.43	9.77	38.20	46.00	-7.80	AVG	Р
5	2.6694	26.57	9.83	36.40	56.00	-19.60	QP	Р
6	2.6694	21.92	9.83	31.75	46.00	-14.25	AVG	Р
7	24.9375	12.84	10.99	23.83	60.00	-36.17	QP	Р
8	24.9375	2.77	10.99	13.76	50.00	-36.24	AVG	Р

Report No.: TW2109244E Page 12 of 47

Date: 2021-10-29

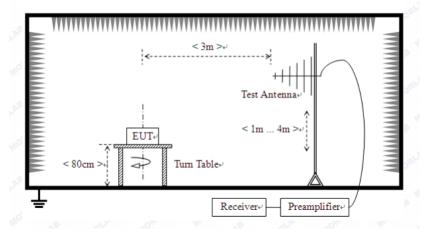


6 Radiated Emission Test

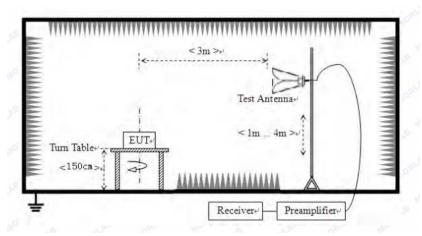
- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.10-2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2013.
- (3) The frequency spectrum from 30 MHz to 25 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz (Note: for Fundamental frequency radiated emission measurement, RBW=3MHz, VBW=10MHz). Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

For radiated emissions from 9kHz to 30MHz


Page 13 of 47

Report No.: TW2109244E


Date: 2021-10-29

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

- 6.2 Configuration of The EUT
 Same as section 5.3 of this report
- 6.3 EUT Operating Condition

 Same as section 5.4 of this report.

Report No.: TW2109244E Page 14 of 47

Date: 2021-10-29

6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

A FCC Part 15 Subpart C Paragraph 15.249(a) Limit

Fundamental Frequency	Field Strength of Fundamental (3m)			Field S	trength of Harmo	nics (3m)
(MHz)	mV/m	dBuV/m		uV/m	dBu	V/m
2400-2483.5	50	94 (Average)	114 (Peak)	500	54 (Average)	74 (Peak)

Note:

- 1. RF Field Strength (dBuV) = 20 log RF Voltage (uV)
- 2.Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

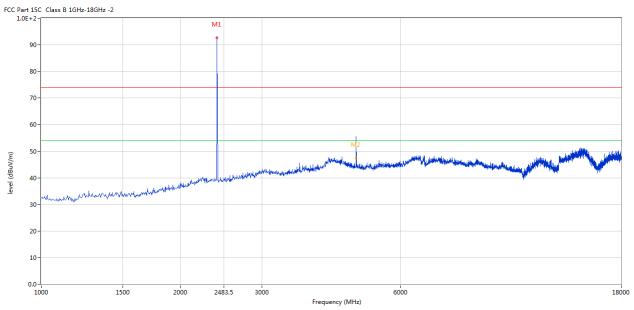
Frequency Range (MHz)	Distance (m)	Field strength (dB μ V/m)
0.009-0.049	3	20log(2400/F(kHz)) +40log (300/3)
0.490-1.705	3	20log(24000/F(kHz)) +40log (30/3)
1.705-30	3	69.5
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz.As to 1G-25G, the final emission level got using PK. For fundamental measurement, PK detector used.
- 5. The three modulation modes of GFSK, π /4D-QPSK and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.
- 6. For radiated emissions from 9kHz to 30MHz, the emission level is much less than the limit for more than 20dB. No necessary to take down the record.

Report No.: TW2109244E Page 15 of 47

Date: 2021-10-29

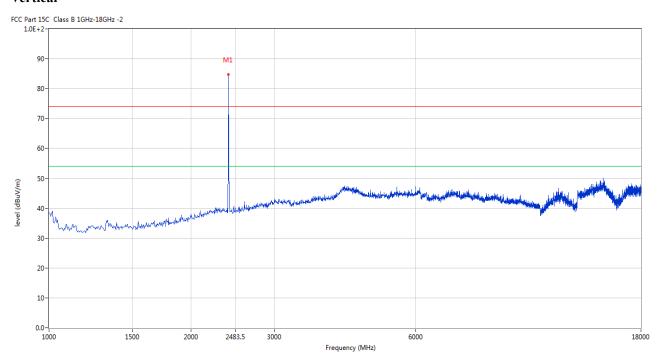


6.5 Test result

A Fundamental & Harmonics Radiated Emission Data

Please refer to the following test plots for details: Low Channel-2402MHz

Horizontal

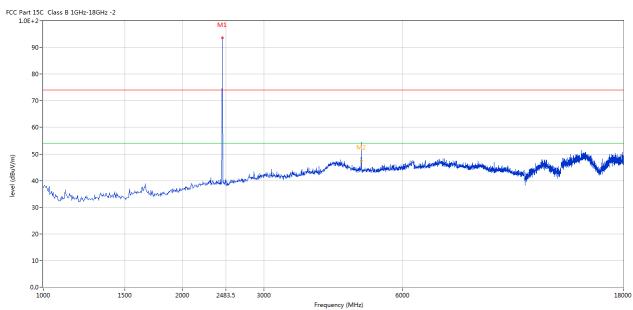

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2402.149	92.68	-3.57	114.0	-21.32	Peak	133.00	100	Horizontal	Pass
2	4802.799	55.59	3.12	74.0	-18.41	Peak	129.00	100	Horizontal	Pass
2**	4802.799	47.47	3.12	54.0	-6.53	AV	129.00	100	Horizontal	Pass

Report No.: TW2109244E Page 16 of 47

Date: 2021-10-29

Vertical

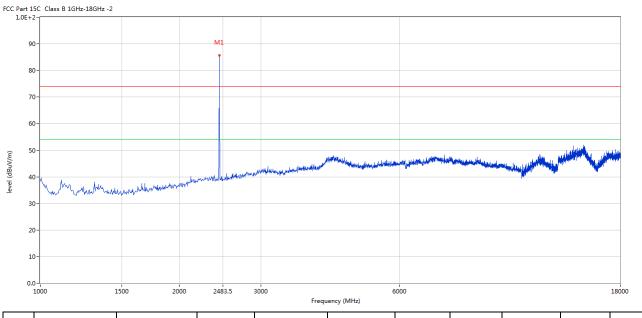
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2402.149	84.73	-3.57	114.0	-29.27	Peak	234.00	100	Vertical	Pass


Report No.: TW2109244E Page 17 of 47

Date: 2021-10-29

Please refer to the following test plots for details: Middle Channel-2441MHz

Horizontal

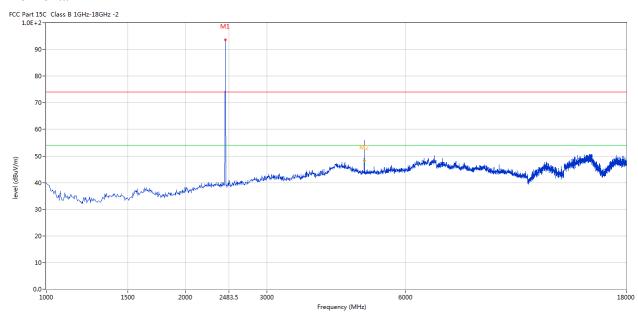

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2440.390	93.51	-3.57	114.0	-20.49	Peak	98.00	100	Horizontal	Pass
2	4883.529	54.49	3.20	74.0	-19.51	Peak	102.00	100	Horizontal	Pass
2**	4883.529	47.51	3.20	54.0	-6.49	AV	102.00	100	Horizontal	Pass

Report No.: TW2109244E Page 18 of 47

Date: 2021-10-29

Vertical

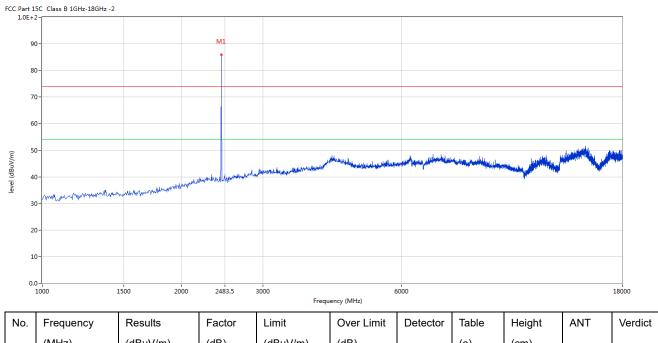
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(0)	(cm)		
1	2440.390	85.65	-3.57	114.0	-28.35	Peak	234.00	100	Vertical	Pass


Report No.: TW2109244E Page 19 of 47

Date: 2021-10-29

Please refer to the following test plots for details: High Channel-2480MHz

Horizontal


No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2440.390	93.69	-3.57	114.0	-20.31	Peak	99.00	100	Horizontal	Pass
2	4883.529	55.93	3.20	74.0	-18.07	Peak	99.00	100	Horizontal	Pass
2**	4883.529	48.30	3.20	54.0	-5.70	AV	99.00	100	Horizontal	Pass

Report No.: TW2109244E Page 20 of 47

Date: 2021-10-29

Vertical

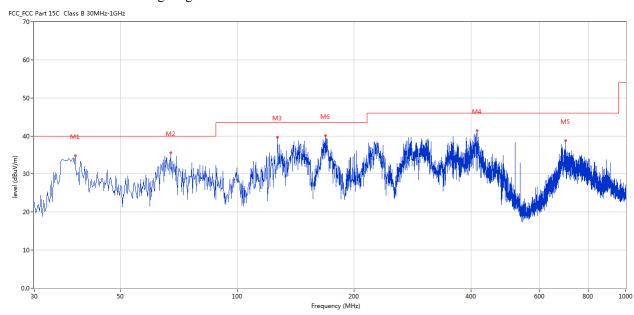
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2440.390	85.89	-3.57	114.0	-28.11	Peak	236.00	100	Vertical	Pass

Note: (2) Emission Level = Reading Level + Antenna Factor + Cable Loss-Amplifier

- (3) Margin=Emission-Limits
- (4) According to section 15.35(b), the peak limit is 20dB higher than the average limit
- (5) For test purpose, keep EUT continuous transmitting
- (5) For emission above 18GHz and Below 30MHz, It is only the floor noise. No necessary to take down.
- (6) the measured PK value less than the AV limit.

Report No.: TW2109244E Page 21 of 47

Date: 2021-10-29



B. General Radiated Emission Data Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

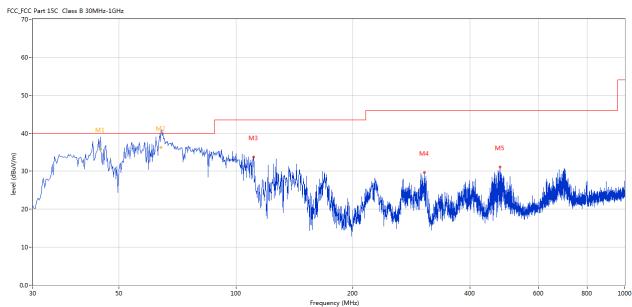
Results: Pass

Please refer to following diagram for individual

No.	Frequency	Results	Factor	Limit	Over	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit (dB)		(o)	(cm)		
1	37.031	37.86	-13.17	40.0	-2.14	Peak	350.00	100	Horizontal	Pass
2	67.336	35.56	-14.40	40.0	-4.44	Peak	246.00	100	Horizontal	Pass
3	126.976	39.69	-16.60	43.5	-3.81	Peak	320.00	100	Horizontal	Pass
4	413.782	41.37	-8.27	46.0	-4.63	Peak	277.00	100	Horizontal	Pass
5	700.830	38.79	-4.13	46.0	-7.21	Peak	289.00	100	Horizontal	Pass
6	168.675	40.05	-16.12	43.5	-3.45	Peak	360.00	100	Horizontal	Pass

Report No.: TW2109244E Page 22 of 47

Date: 2021-10-29



Radiated Emission In Vertical (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

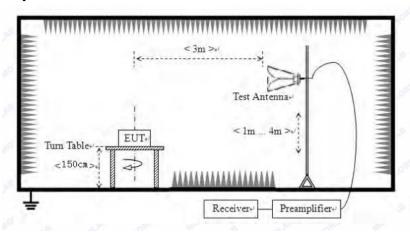
Results: Pass

Please refer to following diagram for individual

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	44.789	39.07	-11.42	40.0	-0.93	Peak	17.00	150	Vertical	Pass
1*	44.789	35.92	-11.42	40.0	-4.08	QP	17.00	150	Vertical	Pass
2	64.184	41.94	-13.37	40.0	1.94	Peak	48.00	150	Vertical	N/A
2*	64.184	36.31	-13.37	40.0	-3.69	QP	48.00	150	Vertical	Pass
3	110.975	33.72	-13.65	43.5	-9.78	Peak	100.00	150	Vertical	Pass
4	305.654	29.65	-10.92	46.0	-16.35	Peak	81.00	150	Vertical	Pass
5	477.301	31.16	-7.44	46.0	-14.84	Peak	0.00	150	Vertical	Pass

Report No.: TW2109244E

Date: 2021-10-29



7. Band Edge

7.1 Test Method and test Procedure:

- (1) The EUT was tested according to ANSI C63.10–2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) Set Spectrum as RBW=1MHz, VBW=3MHz and Peak detector used for PK value. RBW=1MHz, VBW=10Hz and Peak detector used for AV value.
- (3) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (4) The antenna polarization: Vertical polarization and Horizontal polarization.

7. 2 Radiated Test Setup

For the actual test configuration, please refer to the related items – Photos of Testing

7.3 Configuration of The EUT

Same as section 5.3 of this report

7.4 EUT Operating Condition

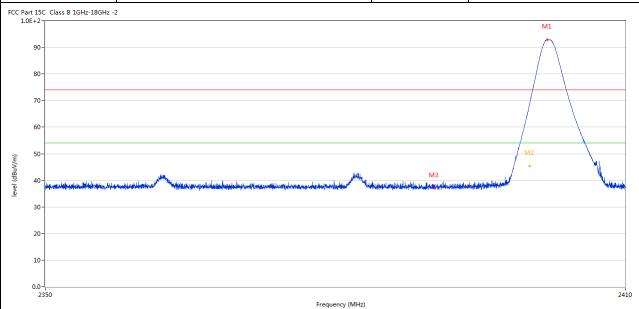
Same as section 5.4 of this report.

7.5 Band Edge Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.


Report No.: TW2109244E Page 24 of 47

Date: 2021-10-29

7.6 Test Result

Product:	Chessnut AIR	Polarity	Horizontal
Mode	Keeping Transmitting	Test Voltage	DC3.7V
Temperature	24 deg. C,	Humidity	56% RH
Test Result:	Pass		

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
2	2400.027	68.05	-3.57	74.0	-5.95	Peak	134.00	100	Horizontal	Pass
2**	2400.027	45.41	-3.57	54.0	-8.59	AV	134.00	100	Horizontal	Pass
3	2390.070	37.13	-3.53	74.0	-36.87	Peak	160.00	100	Horizontal	Pass

Report No.: TW2109244E Page 25 of 47

]	Product:		Chessnu	t AIR		Detector		Ve	rtical	
	Mode	K	eeping Tra	nsmitting	Te	est Voltage	;	DC	3.7V	
Te	mperature		24 deg	g. C,]	Humidity		56%	6 RH	
Te	est Result:		Pas	S						
CC Part 1	L5C Class B 1GHz-18GHz -	2								
9	0-							M	1	
								<u></u>	\	
8	0-									
7	0-								$\overline{}$	
6	0-								-	
≘ 5	0-							110		
evel (dBuV/m)	0-					M3		M2		
	Agente congressive transfers professive to the design and agent block for the	akilikisi, idiqdisisise qii.de ddoodaspeegas pai ai.	lateral discussion de la lateral de la discussión de la	halle had a far a state of the desired of the desired of the state of	ni alika di karakan di Karakan di karakan di	iaphileseileseileseileseileseileseile	of professional and state of	04e04e1fqatti-x ^b	44	k, mar politica
3	0-									
2	0-									
1	0-									
0.	0-									
	2350			Fr	equency (MHz)					2410
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
2	2400.072	62.31	-3.57	74.0	-11.69	Peak	235.00	100	Vertical	Pass
2**	2400.072	42.36	-3.57	54.0	-11.64	AV	235.00	100	Vertical	Pass
3	2390.040	38.19	-3.53	74.0	-35.81	Peak	182.00	100	Vertical	Pass

Report No.: TW2109244E Page 26 of 47

]	Product:		Chessni	ıt AIR		Polarity		Н	orizontal	
	Mode	K	eeping Tra	ansmitting		Test Voltag	ge	Γ	OC3.7V	
Te	mperature		24 de	g. C,		Humidity	7	5	6% RH	
Te	est Result:		Pas	SS						
CC Part 1 1.0E+	.5C Class B 1GHz-18GHz -	2								
9										
7	0-									
6	0-									
5	0-			M2						
(iii/angn) 4	O-	and the place of the second second		•	Why William	وخواله فيعتم ومحمان فالمجالة	الماسوع مبار والمام أمار المار والمار وا	halffyl de skierdynt saat in olf he	Altibergelesse likkingskapter problektiv	kilginesistist
3	0-									
2	0-									
1	0-									
0.	0- 2470			2483.	5 Frequency (MHz)					2500
No.	Frequency	Results	Factor	Limit	Over	Detector	Table	Height	ANT	Verdic
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit (dB)		(o)	(cm)		
2	2483.257	55.83	-3.57	74.0	-18.17	Peak	108.00	100	Horizontal	Pass
2**	2483.257	43.30	-3.57	54.0	-10.70	AV	108.00	100	Horizontal	Pass

Report No.: TW2109244E Page 27 of 47

Date: 2021-10-29

ŀ	Product:		Chessnu	t AIR]]	Detector				
	Mode	Ke	eeping Tra	nsmitting	Te	st Voltage	oltage DC3.7V			
Te	mperature		24 deg	g. C,	I	Humidity				
Te	est Result:		Pas	s						
C Part 1	.5C Class B 1GHz-18GHz	-2								
90	0-									
80										
70	0-									
60	0-									
50	0-				<u> </u>					
5(معصاره التبعانية والماء			Note the section of t	haiindag a agaah a gada da bir a bha a c	Paraphased a transport of the board	المراجعة والمعارضة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة و	المارية والمارية والم	Hardensky.
40	O -	intelligibility de la constitución			Night and the second section of the section of th	ingin ika njuknjeka ketrastan	أمضاء وطدا ومتاطاته أصار	નેત્રુપત્ત તેમાં સમાનું કર્યું અને ભાગ હોલ્સ છે. તે કે અને ક્ષેત્ર અને સ્ટેસ્ટર અને સ્ટેસ્ટર અને સ્ટેસ્ટર અને સ	عامليانك معصول والمانة الريالية المعالمة والمعالمة والمعالمة والمعالمة والمعالمة والمعالمة والمعالمة والمعالمة	n parting and part
41	O - Mariellanian (hid , s. d. sensi , s. singularian d. s.	inkidi kiludoni insida shaqar			a del legica positivamentes	haiseabhai naghadh an ag dhaidh ag a	İndeler açlan eyeli elekti de kend	المراجعة والمراجعة و	માં ત્રો કર્યું કર્યો કૃષ્ય ભાગમાં ત્રામાં કર્યા ક	in which we have the second
31	O- - Marikatingal-sahlaya-laya-laya-laya-laya-laya-laya-lay	interior interior in the contract of the contr			4 William management has	itaria dan sejenden yaka kista ai fenera	habendara, ardallahabenda	જે.જુ	والمرابعة	in which will be
30		which the surround end has been a			A MAN LAST A COMMISSION AND AND AND AND AND AND AND AND AND AN	il anima da que migrado de proposições de la compansa de la compansa de la compansa de la compansa de la compa	historianiquiseleptikisudi	ng, pangkaping dan panda	ir hjejs aml privst _e vije ann	ing the substitute
30 20 10	O- - Marikatingal-sahlaya-laya-laya-laya-laya-laya-laya-lay	indial-betturensia sulda a brasa		2483.		teritoritani esperitani esperitani esperitani esperitani esperitani esperitani esperitani esperitani esperitani	hainadara windapahainda	handaday kayin etti kalifi ka qaraba	eringisk veerlevisk uit geven	2500
44 36 20 10		Results	Factor	z483.	.5	Detector	Table	Height	ANT	2500
44 30 20	0-		Factor (dB)	1	.5 Frequency (MHz)					

Note: 1. The PK emission level less than the AV limit. No necessary to record the AV emission level.

2. The three modulation modes of GFSK, π /4D-QPSK and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.

Report No.: TW2109244E Page 28 of 47

Date: 2021-10-29

8.0 Antenna Requirement

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This product has a PCB antenna with gain 1.49dBi maximum. It fulfills the requirement of this section.

Test Result: Pass

Page 29 of 47

Report No.: TW2109244E

SK Modulation							1				
Product:	Chessnut AIR				T	est Mode:		Keep transmitting			
Mode	Keeping Transmitting				Test Voltage			DC3.7V			
Temperature		24 deg. C,			I	Humidity		56%	RH		
Test Result:		Pass				Detector		Pl	K		
dB Bandwidth	{	865.73kHz	Z						-		
Ref Lvl	ndB		.00 dB	VI	3W 3W	30 k	Hz	F Att	20 dE		
10 dBm	BW 865	5.731462	293 kHz	SI	ЛT	8.5 m	s U:	nit	dE	m	
						v ₁	[T1]	- (.18 dB	m	
			1					2.40180	461 GH		
0			M	\		ndE	3	20	.00 dB		
				*		BW ▽ _{T1}	86 [T1]	5.73146	293 kH .78 dB		
10		/ ا	V	\ \ \	٦	. 13		2.40151			
		TA /			٧)	$\checkmark_{\Gamma 2} \triangledown_{\Gamma 1}$	P [T1]	-20			
20						Ty I		2.40238	176 GH		
30 1MAX	~)~				M				1	
40							λ η				
50								\			
60								N.	moun	~4	
70										4	
80										-	
90											
Center 2.402	GHz		300	kHz/				Spa	ın 3 MH	z	

Page 30 of 47

Date: 2021-10-29

Report No.: TW2109244E

Product:	Ch	essnut AIR		Test Mode:	Keep to	ransmitting	
Mode	Keepin	g Transmitting		Test Voltage	De	C3.7V	
Temperature	2	4 deg. C,		Humidity	56	6% RH	
Test Result:		Pass		Detector	PK		
20dB Bandwidth	80	65.73kHz					
Ŕ	Marker	1 [T1 ndB]	RBW	30 kHz	RF Att	20 dB	
Ref Lvl	ndB	20.00 dB	VBW				
10 dBm	BW 865	5.73146293 kHz	SWT	8.5 ms	Unit	dBm	
10				▼ 1 [:	r1] -	0.01 dBm	
		1			2.4408	0461 GHz	
0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M _A	ndB	2	0.00 dB	
			• 0	BW ▽ _{T1}	865.7314 1- T11	6293 kHz 9.42 dBm	
-10		7/	\	1	2.4405		
		T1		V _{T2} ∇ _{T2}			
-20		~		1	2.4413	8176 GHz	
1MAX	~			M		1M2	
-30							
				7	۲		
-40	Mal						
) W						
-50					<u> </u>	All III	
W W V						Told Told	
-60							
-70							
-80							
-90							
Center 2.4	441 GHz	300	kHz/		Sp	an 3 MHz	

Page 31 of 47

Report No.: TW2109244E

Product:	Chessnut AIR				T	est Mode:		Keep transmitting				
Mode		Keepin	g Transmi	tting		Te	est Voltage		DC3.7V			
Temperature			4 deg. C,			Humidity			56% RH			
Test Result:	Pass						Detector		PK			
0dB Bandwidth		88	39.78kHz									
<u>————</u>		Marker	1 [T1 r	ndB]	R	BW	30 k	Hz R	F Att	20 dB		
Ref Lvl		ndB	20.	00 dB	V	BW	100 k	Hz				
10 dBm		BW 889	779559	12 kHz	SI	TW	8.5 m	s U	nit	dBm	ı	
10							v ₁	[T1]	-0	.24 dBm	A	
				1					2.47980	461 GHz		
0				M	M,		ndE	0.7	20	.00 dB		
				J	\ \		BW ▼ _{T1}	88 . [T1]	39.77955 -20	912 kHz 1.90 dBm		
-10			_/	V					2.47951			
			TA			-	√ T2 ▼T2	[T1]	-20	.14 dBm		
-20 1MAX		^					The second		2.48039	980 GHz	1M2	
-30							\ 	L _y				
-40	~~~								M			
-50								-	m	who		
-60												
-70												
-80												
-90												
Center 2	.48 GHz	Z		300	kHz/				Spa	ın 3 MHz		

Report No.: TW2109244E Page 32 of 47

π/4D-QPSK Mo	dulation							
Product:	Che	ssnut AIR		Test Mode:]	Keep transmi	tting	
Mode	Keeping	Transmitting	,	Test Voltage	DC3.7V			
Temperature	24	deg. C,		Humidity	56% RH			
Test Result:			Detector	PK				
20dB Bandwidth	1.3	805MHz						
₩.	Marker	1 [T1 ndB]	RBW	30 kHz	z RF	Att 20	dВ	
Ref Lvl	ndB	20.00 dB	VBW					
10 dBm	BW 1	.30460922 MHz	SWT	' 8.5 ms	Uni	t	dBm	
				v ₁ [T1]	-0.77	dBm	
0			1		2 .	.40212926		
		$\wedge \wedge$	\bigwedge	ndB BW	1	20.00	dB MII-	
1.0			\sim	$ \sqrt{} \nabla_{\text{T1}} $	[T1]		MHz dBm	
-10		/ 	·	7		.40130561		
	<u>T</u> 1			▽ [122	[T1]	-20.43	dBm	
-20					2.	.40261022	GHz 1MA	
-30				\				
-40					hu	, my	<u>~~~</u>	
	V							
-50								
-60								
7.0								
-70								
-80								
-90								
Center 2.	402 GHz	300	kHz/			Span 3	MHz	
Date: 25.	OCT.2021 14:	45:09						

Report No.: TW2109244E Page 33 of 47

π/4D-QPSK Moo	dulation						
Product:	Chessnut AIR		Test Mode:	Keep tra	nsmitting		
Mode	Keeping Transmit	tting	Test Voltage	DC	3.7V		
Temperature	24 deg. C,		Humidity	56% RH PK			
Test Result:	Pass		Detector				
20dB Bandwidth	1.311MHz						
r)	Marker 1 [T1 n	ndB] R	BW 30 kHz	RF Att	20 dB		
Ref Lvl			BW 100 kHz				
10 dBm	BW 1.310621	24 MHz S	WT 8.5 ms	Unit	dBm		
10			▼ 1 [3	r1] -0	.68 dBm		
0		1		2.44112	325 GHz		
		$\wedge \wedge \wedge$	ndB	20	.00 dB		
	~ ^	\sqrt{N}	$\bigvee_{T_1}^{BW}$	1.31062 [T1] -20	124 MHz .46 dBm		
-10				2.44030			
	T1		▽ \	[T1] -21	.01 dBm		
-20			7	2.44161	623 GHz 1MA		
					IMA		
-30)		1	\			
-40	~~~\\			man	man		
-40				· ·			
-50							
-50							
-60							
-70							
-80							
-90 Center 2.4	141 CH2	300 kHz/		C	n 3 MHz		
		SUU KHZ/		spa.	II 2 MUZ		
Date: 25.0	OCT.2021 14:52:51						

Page 34 of 47

Report No.: TW2109244E

π/4D-QPSK Mo	odulation								
Product:		Chessnut AIR		Test Mod	le:	Keep tra	nsmitting		
Mode	Kee	ping Transmitting	Ţ,	Test Volta	ge	DC3.7V			
Temperature		24 deg. C,		Humidit	у	56% RH			
Test Result:		Detecto	r	PK					
20dB Bandwidth		1.311MHz							
- R	Marke	er 1 [T1 ndB]	R	BW 30	kHz R	F Att	20 dB		
Ref Lvl	ndB	20.00	dB V	BW 100	kHz				
10 dBm	BW	1.31062124	MHz S	WT 8.5	ms U	nit	dBm		
10				_	1 [T1]	- C	.86 dBm	7	
			1			2.48012	325 GHz	A	
0			\wedge	n		20	.00 dB		
			$\bigvee\bigvee$	W V B		1.31062	124 MHz		
-10		\\\		7	11 [11]	2.47929			
	т	<u></u>		ightharpoons	Г _{т2} [Т1]	-20			
-20	7	1				2.48061	022 GHz	1MA	
1MAX								IMA	
-30									
~ ~							<i>^</i> ~- ~		
-40	V-v-v				3 40	~~~	- A		
-50									
-60									
-70									
-80									
-90									
Center 2	.48 GHz		300 kHz/			Spa	n 3 MHz		
Date: 25	.OCT.2021	14:54:32							

Page 35 of 47

Report No.: TW2109244E

Product:	Chessnut AIR	2	Test Mode:	Keep tra	nsmitting		
Mode	Keeping Transmi	tting	Test Voltage	DC	3.7V		
Temperature	24 deg. C,		Humidity	56% RH PK			
Test Result:	Pass		Detector				
20dB Bandwidth	1.311MHz						
, A	Marker 1 [T1 n	ndB] F	BW 30 kHz	RF Att	20 dB		
Ref Lvl	ndB 20.	00 dB V	BW 100 kHz				
10 dBm	BW 1.310621	24 MHz S	8.5 ms	Unit	dBm		
10			▼ 1 [3	r1] -0	.80 dBm		
		1			926 GHz		
0		. ^ /	ndB	20	.00 dB		
	_	/\	BW	1.31062	124 MHz		
-10		\mathcal{N}	VV W _{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	T1] -20	.50 dBm		
	\ \frac{1}{2}			2.40130			
-20	T1/		· Ef2	[T1] -21	.11 dBm		
1MAX				2.40261	623 GHz 1M2		
-30			1	\ .			
-40	~~~			WW ~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-50							
-60							
-70							
-80							
-90							
Center 2.40	2 GHz	300 kHz/		Spa	n 3 MHz		

Page 36 of 47

Report No.: TW2109244E

8QPSK Modul	ation									
Product:		Chessnut AIR		Т	est Mode:		Keep tr	ansmitting		
Mode	Ke	eping Transmi	tting	Te	est Voltage		DO	C3.7V		
Temperature		24 deg. C,		-	Humidity		56% RH			
Test Result:	Pass				Detector					
20dB Bandwidth		1.305MHz								
Ŕ	Mark	er 1 [T1 n	ıdB]	RBW	30 kH:	z RI	7 Att	20 dB		
Ref Lvl	ndB		00 dB	VBW	100 kH:					
10 dBm	BW	1.304609	22 MHz	SWT	8.5 ms	Ur	nit	dBm		
10					▼1 [T1]	- 1	0.68 dBm	A	
				<u>1</u>			2.44112	2926 GHz	T.	
0			\wedge \wedge		ndB		20	0.00 dB		
		\sim	, / / \	$\sqrt{\ \ }$	BW ▼T1		1.30460			
-10			•	7	Why TI	[T1]	2.44030	0.38 dBm		
		r1			∇m ₂	[T1]	-2			
-20					<u> </u>		2.44163	1022 GHz		
1MAX									1MA	
-30						\ \ \ \				
-40	V-my					VW		- Jany		
-50										
-60										
-70										
-80										
-90										
Center 2	.441 GHz		300 }	<hz <="" td=""><td></td><td></td><td>Spa</td><td>an 3 MHz</td><td></td></hz>			Spa	an 3 MHz		
Date: 25	OCT.2021	14:50:00								

Report No.: TW2109244E Page 37 of 47

8QPSK Modula	ation										
Product:		Cho	essnut AIR	<u> </u>		T	est Mode:		Keep tr	ansmitting	
Mode		Keepin	g Transmi	tting		Test Voltage		e	DC3.7V		
Temperature	24 deg. C,]	Humidity		56% RH		
Test Result:			Pass				Detector		-	PK	
20dB Bandwidth		1.	311MHz								
(F)		Marker	1 [T1 r	ndB]	R	BW	30 k	Hz R	F Att	20 dB	
Ref Lvl		ndB		00 dB		BW	100 k				
10 dBm		BW 1	.310621	24 MHz	S	WT	8.5 m	ns U	nit	dBm	<u>.</u>
							\mathbf{v}_1	[T1]	- (0.82 dBm	A
0					1				2.48012	2325 GHz	
				$\wedge \wedge$	\wedge		ndI BW	B 	1.31062	0.00 dB	
1.0			$\sim $	$J \ V \ V$	\sim \setminus	~~	V _T	[[T1]	-21	$2124~\mathrm{MHz}$	
-10			<u> </u>				7		2.47929	960 GHz	
		T1					$\triangle \int_{\mathbb{T}^2}$	7 ₂ [T1]	-20	0.87 dBm	
-20		7						<u> </u>	2.48061	1022 GHz	1MA
-30											
^^ ^ ^		A /						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		^ 1	
-40	**************************************	<u> </u>						47~	~~~~		
-50											
-60											
-70											
-80											
-90											
Center 2	Center 2.48 GHz								Spa	an 3 MHz	
Date: 2	5.OCT.2	021 14	:56:37								

Report No.: TW2109244E Page 38 of 47

Date: 2021-10-29

10.0 FCC ID Label

FCC ID: 2A3RB-CA100

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Mark Location:

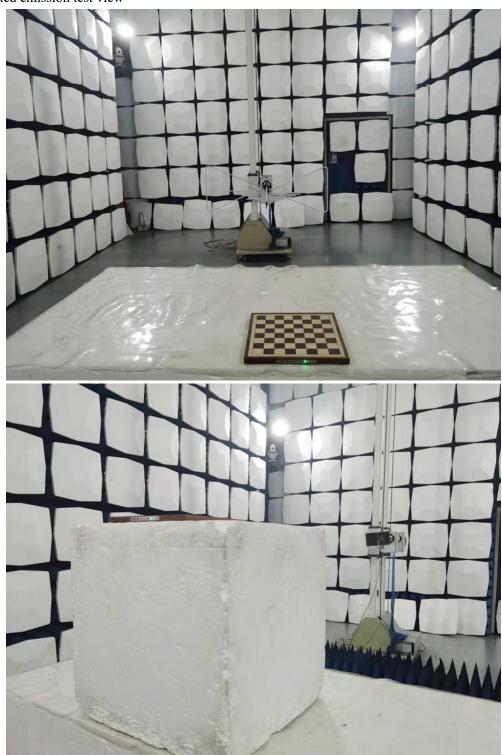
Page 39 of 47

Report No.: TW2109244E

Date: 2021-10-29

11.0 Photo of testing

11.1 Conducted test View--


Page 40 of 47

Report No.: TW2109244E

Date: 2021-10-29

Radiated emission test view

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No.: TW2109244E

Date: 2021-10-29

11.2 Photographs – EUT

Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Page 42 of 47

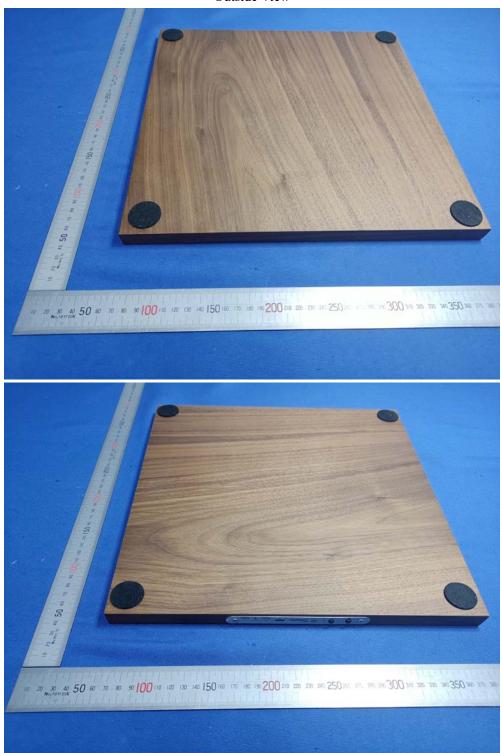
Report No.: TW2109244E

Date: 2021-10-29

Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.


Page 43 of 47

Report No.: TW2109244E

Date: 2021-10-29

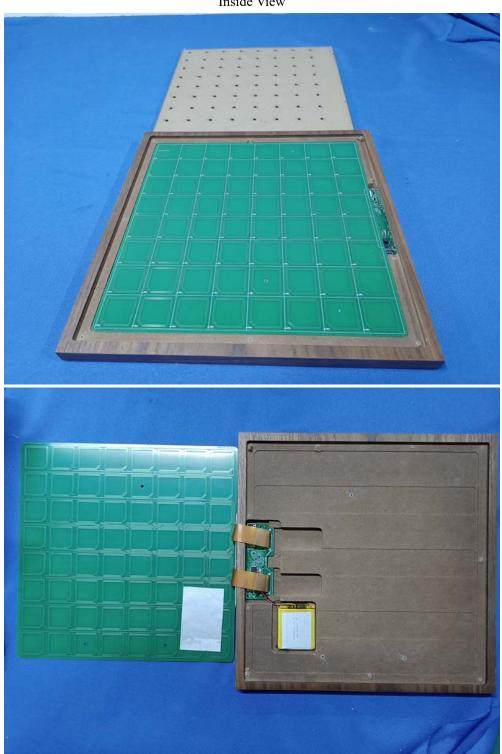
Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No.: TW2109244E Page 44 of 47

Outside View


Page 45 of 47

Report No.: TW2109244E

Date: 2021-10-29

Inside View

The report refers only to the sample tested and does not apply to the bulk.

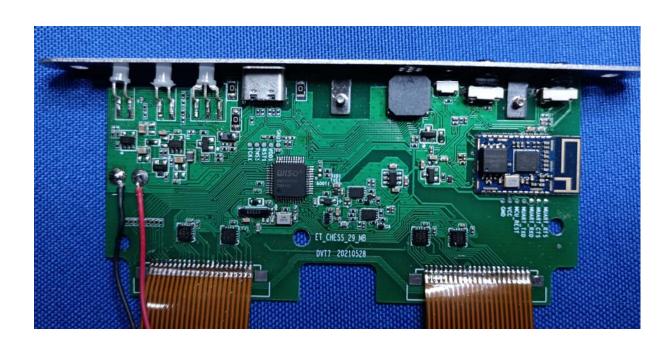
This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES.

will not, without the consent of the client enter into any

discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 46 of 47


Report No.: TW2109244E

Date: 2021-10-29

Inside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.


Page 47 of 47

Report No.: TW2109244E

Date: 2021-10-29

Inside View

-- End of the report--

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.