

Engineering Test Report No. 2103822-01

Report Date	January 17, 2022	
Manufacturer Name	Otto Engineering	
Manufacturer Address	10 W Main Street Carpentersville, IL 60110	
Product Name Brand/Model No.	Lynq Rapid Deployment Kit	
Date Received	January 10, 2021	
Test Dates	January 10, 2021	
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B Innovation, Science, and Economic Development Canada, ICES-003	
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107
Signature		
Tested by	Tested By	
Signature		
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894	
PO Number	PO00070642	

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B and Innovation, Science, and Economic Development Canada, ICES-003 test specifications. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	4
3.	Power Input	4
4.	Grounding	4
5.	Support Equipment	4
6.	Interconnect Leads.....	4
7.	Modifications Made to the EUT	4
8.	Modes of Operation.....	4
8.1.	Charging, radios not transmitting	4
9.	Test Specifications	5
10.	Test Plan	5
11.	Deviation, Additions to, or Exclusions from Test Specifications	5
12.	Laboratory Conditions	5
13.	Summary	5
14.	Sample Calculations	5
15.	Statement of Conformity	6
16.	Certification	6
17.	Photographs of EUT.....	7
18.	Equipment List	8
19.	Block Diagram of Test Setup	9
20.	RF Conducted Emissions (AC Mains)	10
21.	RF Radiated Emissions.....	17
22.	Scope of Accreditation	27

**This report shall not be reproduced, except in full,
without the written approval of Elite Electronic Engineering Inc.**

1. Report Revision History

Revision	Date	Description
–	17 JAN 2022	Initial Release of Engineering Test Report No. 2103822-01

2. Introduction

This document presents the results of a series of electromagnetic compatibility (EMC) tests that were performed on one (1) Lynq Rapid Deployment Kit (hereinafter referred to as the Equipment Under Test (EUT)). The EUT is a network management kit for up to twelve (12) Lynq Pro handheld GPS/LoRa/BLE devices.

The EUT was identified as follows:

EUT Identification	
Model/Part No.	Lynq Rapid Deployment Kit
Serial No.	8
Software/Firmware Version	Lynq Rapid Deployment Kit: V1.0.0 Lynq Pro: Host: v1.0.1.0 Lynq Mod.: v1.1.0.1 BLE: v1.0.1 IAP: v1.0.0.0
Number of Interconnection Wires	None
Type of Interconnection Wires	N/A
Highest Internal Frequency of the EUT	2480MHz

The EUT listed above was used throughout the test series.

3. Power Input

The EUT obtained 115V 60Hz power via a 3-wire, unshielded power cord.

4. Grounding

The EUT was connected to ground through the third wire of its input power cord.

5. Support Equipment

The EUT was submitted for testing along with the following support equipment:

Description	Model #
Twelve (12) each: Handheld GPS/LoRa/BLE devices	Lynq Pro

6. Interconnect Leads

No interconnect leads were used during the tests.

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Modes of Operation

The EMC tests were performed with the EUT operating in one or more of the test modes described below. See the specific test section for the applicable test modes.

8.1. Charging, radios not transmitting

This mode was achieved by applying power to the device. The twelve (12) handheld GPS/LoRa/BLE devices were inserted into the EUT for charging. The radios on the handheld devices were placed in the standby mode.

9. Test Specifications

The tests were performed to selected portions of, and in accordance with the following test specifications:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart B
- ICES-003, Issue 7, October 15, 2020, "Information Technology Equipment (including Digital Apparatus)"
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Otto Engineering and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B, Innovation, Science, and Economic Development Canada, ICES-003, and ANSI C63.4-2014 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The following were the laboratory conditions while the EMC tests were performed:

Ambient Parameters	Value
Temperature	21°C
Relative Humidity	17%
Atmospheric Pressure	1025mb

13. Summary

The following EMC tests were performed, and the results are shown below:

Test Description	Test Requirements	Test Methods	Equipment Class	EUT S/N	Results
RF Conducted Emissions (AC Mains)	FCC 15B 15.107 ISED ICES-003, Section 3.2.1	ANSI C63.4:2014	A	8	Conforms
RF Radiated Emissions	FCC 15B 15.109 ISED ICES-003, Section 3.2.2	ANSI C63.4:2014	A	8	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

$$\text{Formula 1: } VL (\text{dB}\mu\text{V}) = MTR (\text{dB}\mu\text{V}) + CF (\text{dB}).$$

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

$$\text{Formula 1: FS (dB}\mu\text{V/m)} = \text{MTR (dB}\mu\text{V)} + \text{AF (dB/m)} + \text{CF (dB)} + (-\text{PA (dB)}) + \text{DC (dB)}$$

To convert the Field Strength $\text{dB}\mu\text{V/m}$ term to $\mu\text{V/m}$, the $\text{dB}\mu\text{V/m}$ is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in $\mu\text{V/m}$ terms.

$$\text{Formula 2: FS } (\mu\text{V/m}) = \text{AntiLog } [(FS \text{ (dB}\mu\text{V/m)})/20]$$

15. Statement of Conformity

The Otto Engineering Lynq Rapid Deployment Kit, Model No. Lynq Rapid Deployment Kit, Serial No. 8, did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B and Innovation, Science, and Economic Development Canada, ICES-003.

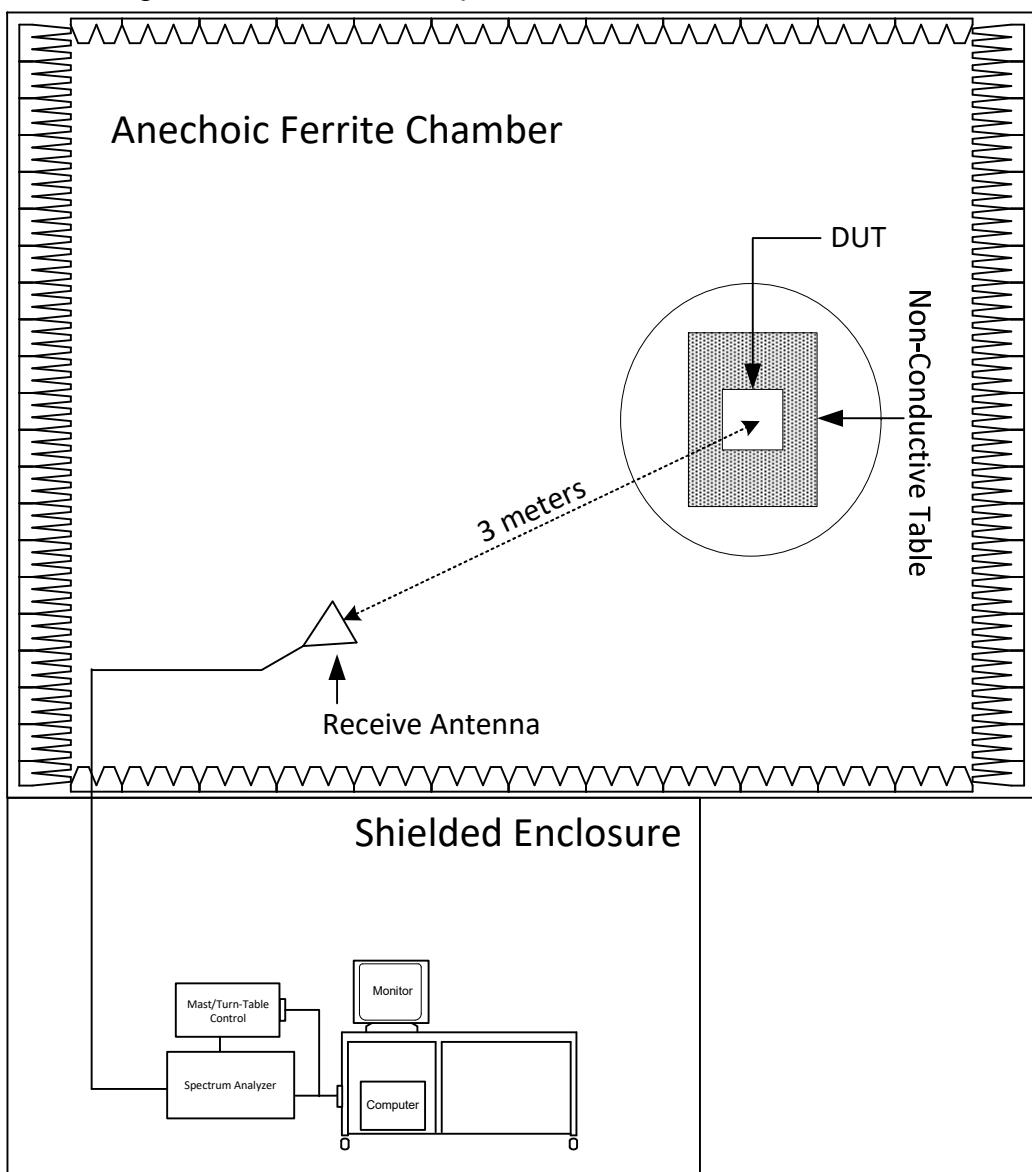
16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B and Innovation, Science, and Economic Development Canada, ICES-003 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW14	PREAMPLIFIER	PLANAR	PE2-35-120-5R0-10-12-SFF	PL22671	1-20GHz	9/21/2021	9/21/2022
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
NTA3	BILOG ANTENNA	TESEQ	6112D	32853	25-1000MHz	10/20/2020	10/20/2022
NWQ2	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66659	1GHZ-18GHZ	4/7/2020	4/7/2022
PLF2	CISPR16 50UH LISN	ELITE	CISPR16/70A	002	.15-30MHz	4/7/2021	4/7/2022
PLF4	CISPR16 50UH LISN	ELITE	CISPR16/70A	003	.15-30MHz	4/7/2021	4/7/2022
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	3/11/2021	3/11/2022
T1EP	10DB 25W ATTENUATOR	WEINSCHEL	46-10-34	CD6792	DC-18GHZ	3/11/2020	3/11/2022
VBR8	CISPR EN FCC CE VOLTAGE.exe					N/A	
VBV2	CISPR EN FCC ICES RE.EXE	ELITE	CISPR EN FCC ICES RE.EXE	---	---	N/A	


N/A: Not Applicable

I/O: Initial Only

CNR: Calibration Not Required

NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. RF Conducted Emissions (AC Mains)

EUT Information	
Manufacturer	Otto Engineering
Product	Lynq Rapid Deployment Kit
Serial No.	8
Mode	Charging, radios not transmitting

Test Site Information	
Setup Format	Tabletop
Height of Support	N/A
Type of Test Site	Semi-Anechoic
Test Site Used	Room 29
Note	N/A

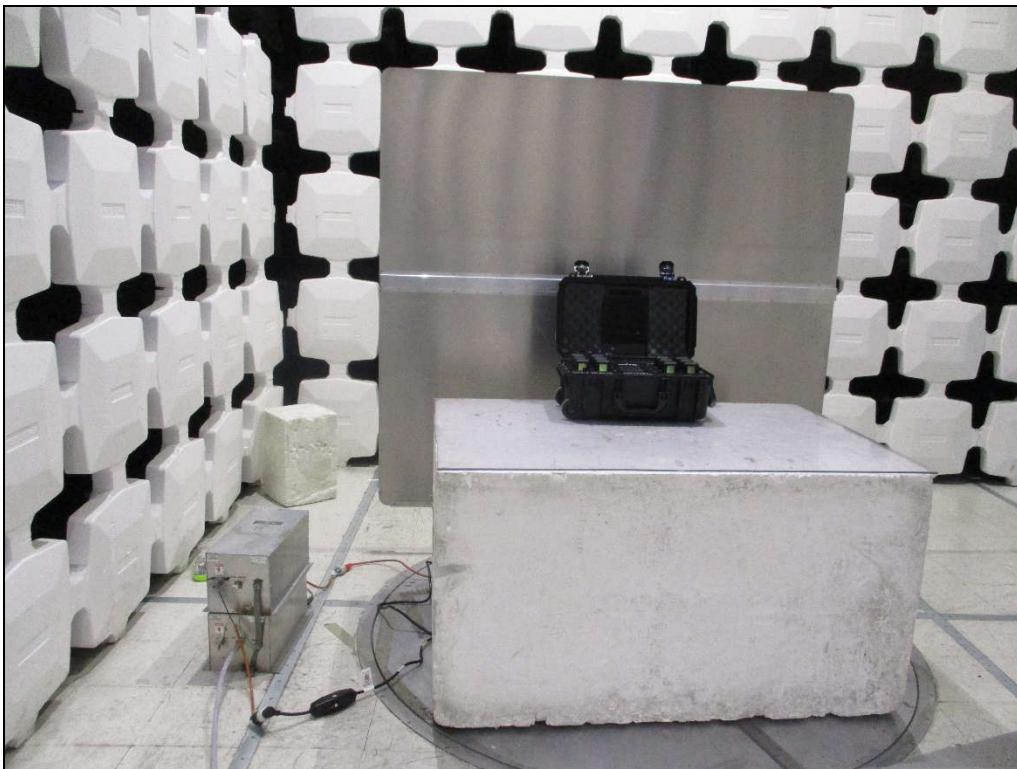
Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Conducted disturbance (mains port) (150 kHz – 30 MHz)	2.7

Requirements	
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150kHz to 30MHz shall not exceed the limits in the following table.	

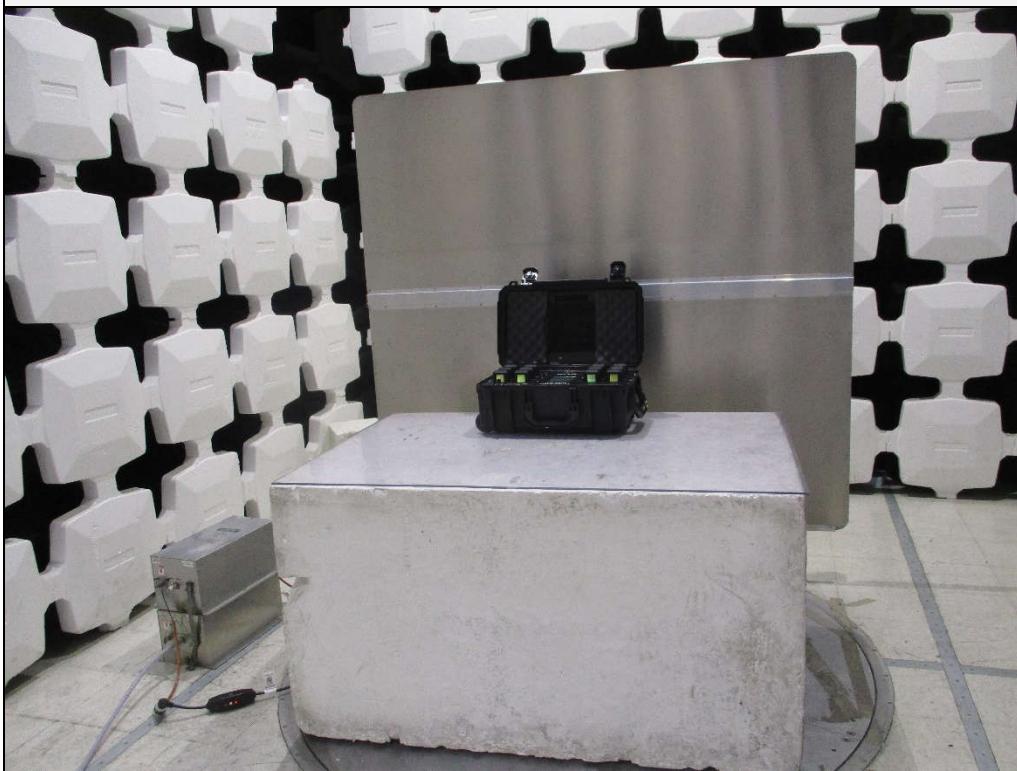
Conducted Emissions Class A Limits		
Frequency (MHz)	Conducted limit (dB μ V)	
	Quasi-Peak	Average
0.15 – 0.5	79	66
0.5 – 30	73	60

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: If the levels measured using the QP detector meet both the QP and the Average limits, the EUT is considered to have met both requirements and measurements do not need to be performed using the Average detector.


Procedure

The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50 ohms.


- 1) The EUT was operated in the Charging, radios not transmitting mode.
- 2) Measurements were first made on the 120V, 60Hz high line.
- 3) The frequency range from 150kHz to 30MHz was broken up into smaller frequency sub-bands.
- 4) Conducted emissions measurements were taken on the first frequency sub-band using a peak detector.
- 5) The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 4dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 10dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.)
- 6) Steps (4) and (5) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits. The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

$$\text{Formula 1: } VL \text{ (dB}\mu\text{V)} = MTR \text{ (dB}\mu\text{V)} + CF \text{ (dB)}$$

- 7) Steps (3) through (6) were repeated on the 120V, 60Hz return line.

Test Setup for RF Conducted Emissions (AC Mains)

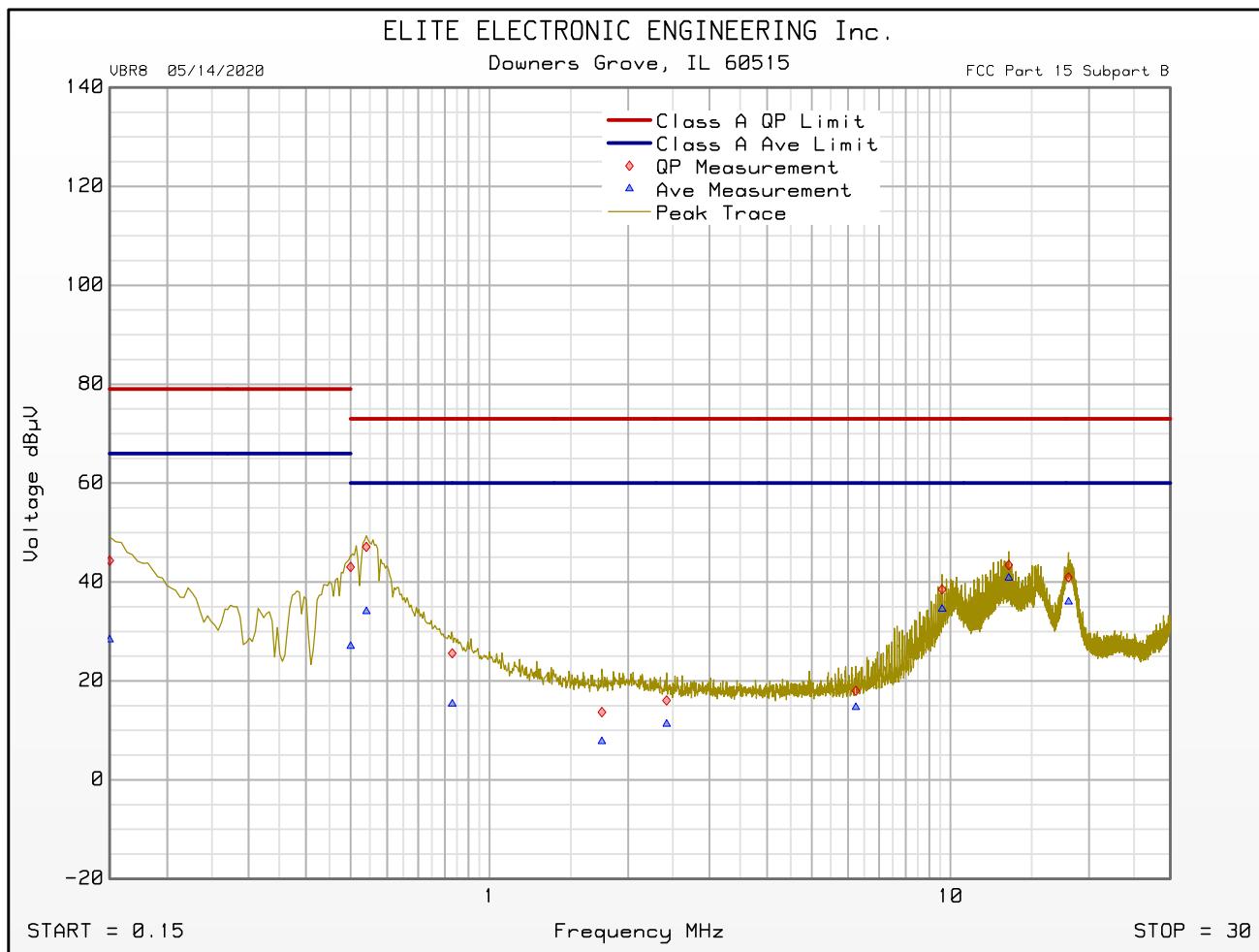
Test Setup for RF Conducted Emissions (AC Mains)

FCC Part 15 Subpart B Conducted Emissions Test

Significant Emissions Data

VBR8 05/14/2020

Manufacturer : Otto Engineering
 Model : Lynq Rapid Deployment Kit
 DUT Revision :
 Serial Number : 8
 DUT Mode : Charging (radios not transmitting)
 Line Tested : 120V, 60Hz High
 Scan Step Time [ms] : 30
 Meas. Threshold [dB] : -4
 Notes :
 Test Engineer : M. Longinotti
 Limit : Class A
 Test Date : Jan 10, 2022 09:50:23 AM
 Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 4 dB margin below limit


Freq MHz	Quasi-peak Level dB μ V	Quasi-peak Limit dB μ V	Excessive Quasi-peak Emissions	Average Level dB μ V	Average Limit dB μ V	Excessive Average Emissions
0.150	44.3	79.0		28.4	66.0	
0.500	43.0	79.0		27.0	66.0	
0.541	47.1	73.0		34.1	60.0	
0.830	25.6	73.0		15.4	60.0	
1.754	13.7	73.0		7.8	60.0	
2.422	16.0	73.0		11.3	60.0	
6.230	18.0	73.0		14.7	60.0	
9.596	38.5	73.0		34.6	60.0	
13.377	43.4	73.0		40.8	60.0	
18.033	40.9	73.0		36.0	60.0	

FCC Part 15 Subpart B Conducted Emissions Test

Cumulative Data

VBR8 05/14/2020

Manufacturer : Otto Engineering
 Model : Lynq Rapid Deployment Kit
 DUT Revision :
 Serial Number : 8
 DUT Mode : Charging (radios not transmitting)
 Line Tested : 120V, 60Hz High
 Scan Step Time [ms] : 30
 Meas. Threshold [dB] : -4
 Notes :
 Test Engineer : M. Longinotti
 Limit : Class A
 Test Date : Jan 10, 2022 09:50:23 AM

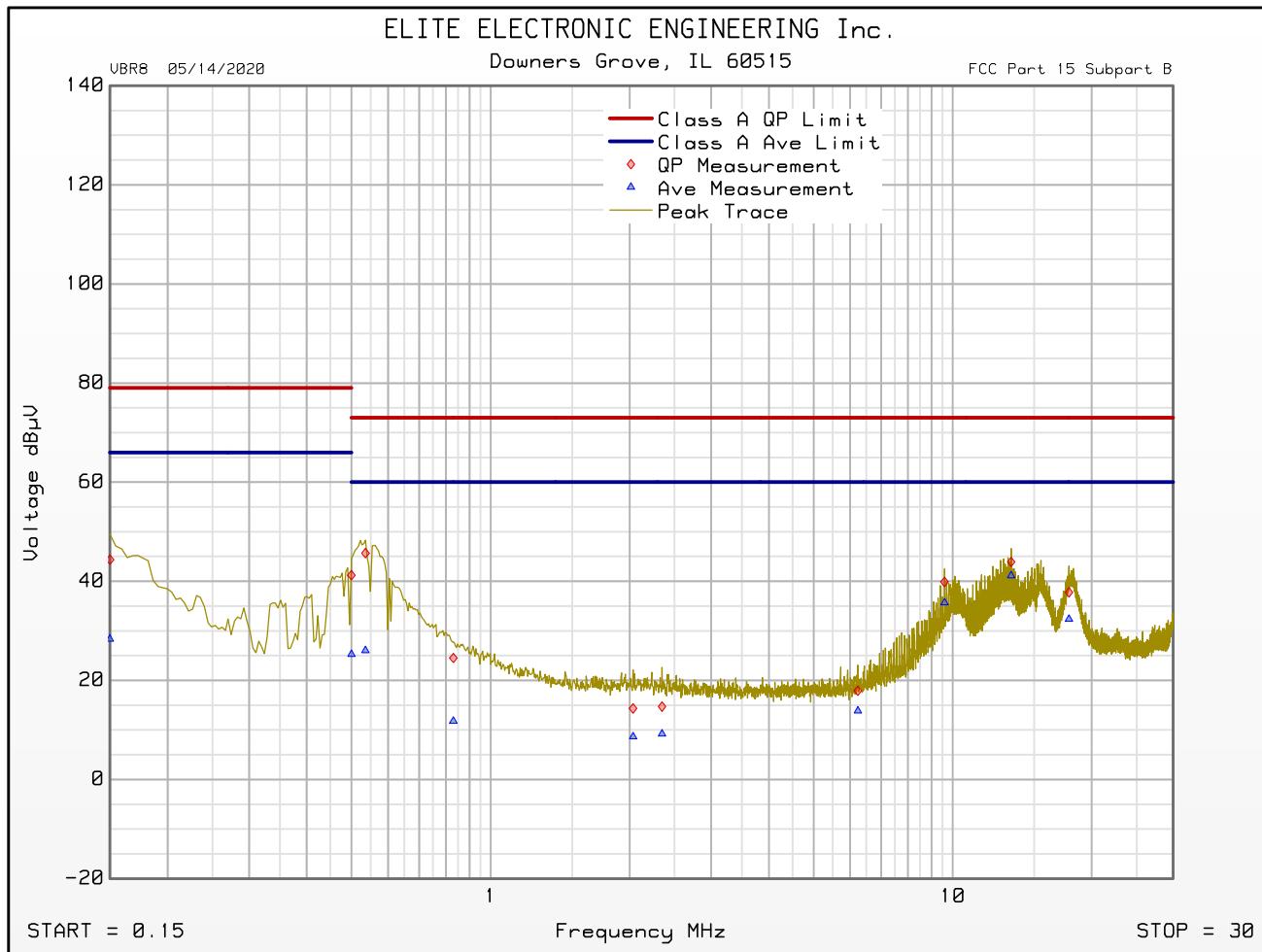
Emissions Meet QP Limit
 Emissions Meet Ave Limit

FCC Part 15 Subpart B Conducted Emissions Test

Significant Emissions Data

VBR8 05/14/2020

Manufacturer : Otto Engineering
 Model : Lynq Rapid Deployment Kit
 DUT Revision :
 Serial Number : 8
 DUT Mode : Charging (radios not transmitting)
 Line Tested : 120V, 60Hz Return
 Scan Step Time [ms] : 30
 Meas. Threshold [dB] : -4
 Notes :
 Test Engineer : M. Longinotti
 Limit : Class A
 Test Date : Jan 10, 2022 09:57:10 AM
 Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 4 dB margin below limit


Freq MHz	Quasi-peak Level dB μ V	Quasi-peak Limit dB μ V	Excessive Quasi-peak Emissions	Average Level dB μ V	Average Limit dB μ V	Excessive Average Emissions
0.150	44.4	79.0		28.3	66.0	
0.500	41.2	79.0		25.3	66.0	
0.536	45.7	73.0		26.0	60.0	
0.830	24.5	73.0		11.8	60.0	
2.033	14.3	73.0		8.7	60.0	
2.350	14.7	73.0		9.2	60.0	
6.230	17.9	73.0		13.8	60.0	
9.601	39.9	73.0		35.7	60.0	
13.381	43.9	73.0		41.1	60.0	
17.844	37.8	73.0		32.3	60.0	

FCC Part 15 Subpart B Conducted Emissions Test

Cumulative Data

VBR8 05/14/2020

Manufacturer : Otto Engineering
 Model : Lynq Rapid Deployment Kit
 DUT Revision :
 Serial Number : 8
 DUT Mode : Charging (radios not transmitting)
 Line Tested : 120V, 60Hz Return
 Scan Step Time [ms] : 30
 Meas. Threshold [dB] : -4
 Notes :
 Test Engineer : M. Longinotti
 Limit : Class A
 Test Date : Jan 10, 2022 09:57:10 AM

Emissions Meet QP Limit
 Emissions Meet Ave Limit

21. RF Radiated Emissions

EUT Information	
Manufacturer	Otto Engineering
Product	Lynq Rapid Deployment Kit
Serial No.	8
Mode	Charging, radios not transmitting

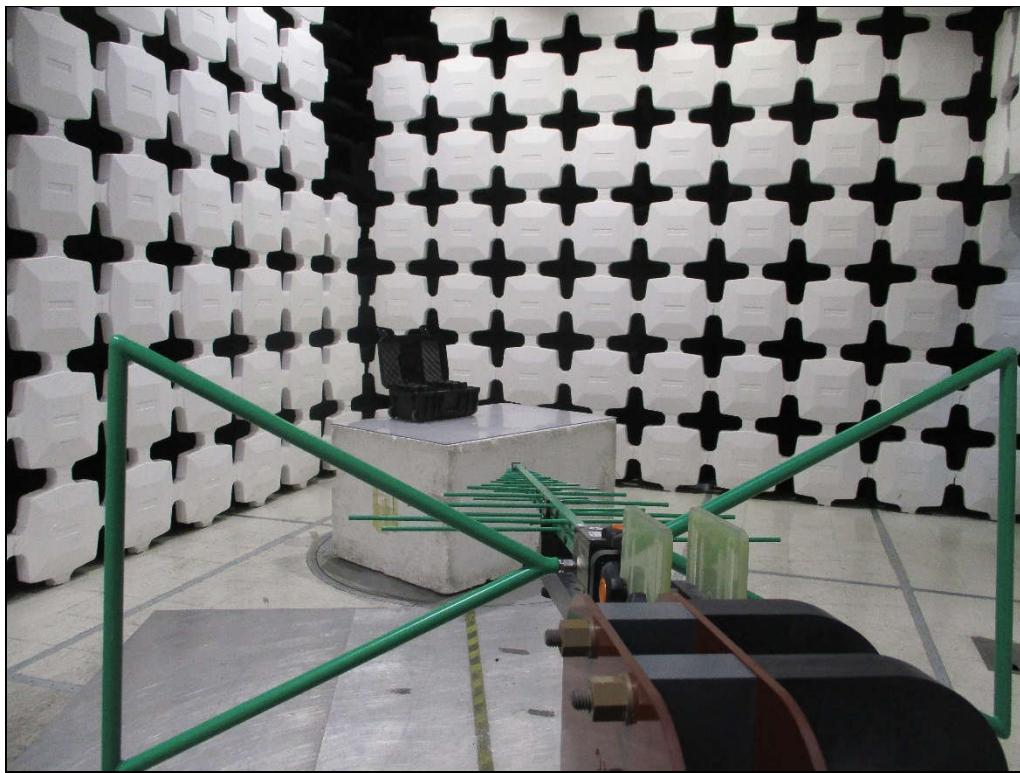
Test Site Information	
Setup Format	Tabletop
Height of Support	N/A
Type of Test Site	Semi-Anechoic Chamber
Test Site Used	Room 29
Type of Antennas Used	Below 1GHz: Bilog (or equivalent) Above 1GHz: Double-ridged waveguide (or equivalent)
Highest Internal Frequency	2480MHz
Highest Measurement Frequency	13GHz
Notes	The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst-case emissions was utilized.

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

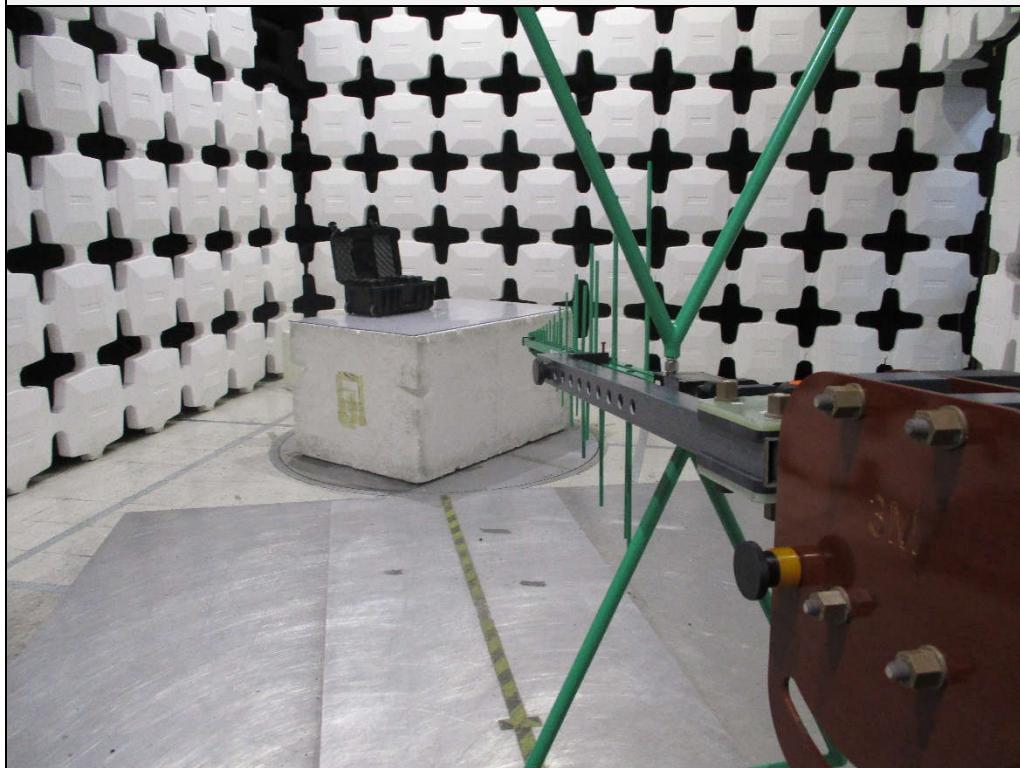
Requirements
The field strength of radiated emissions from unintentional radiators at a distance of 10 meters shall not exceed the values in the following table:

FCC Part 15 Class A Radiated Emissions Limits (30MHz to 1GHz) – 10 meter test distance		
Frequency of Emission (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)
30 – 88	90	39
88 – 216	150	43.5
216 – 960	210	46.5
Above 960	300	49.5

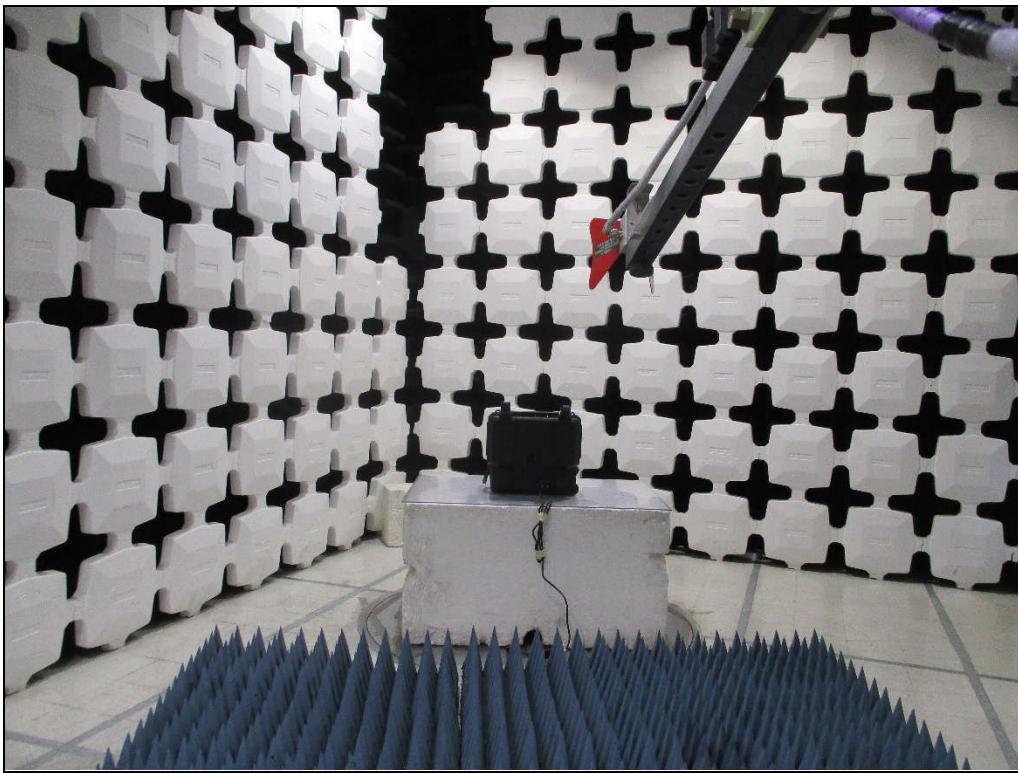
FCC Part 15 Class A Radiated Emissions Limits (Above 1GHz)		
Frequency of Emission (MHz)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)
Above 1000	69.5	49.5

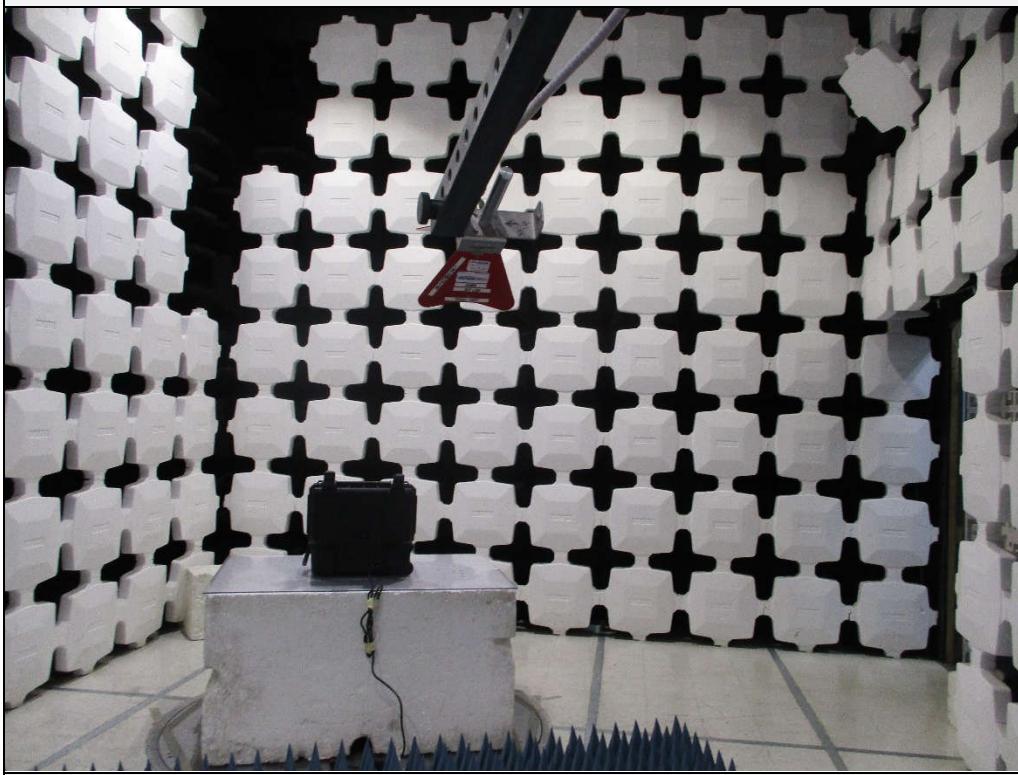

Procedure

Since a quasi-peak detector and an average detector require long integration times, it is not practical to automatically sweep through the quasi-peak and average levels. Therefore, radiated emissions from the EUT were first scanned using a peak detector and automatically plotted. The frequencies where significant emission levels were noted were then remeasured using the quasi-peak detector or average detector.


The EUT and all peripheral equipment were placed on an 80cm high non-conductive stand. The broadband measuring antenna was positioned at a 3 meter distance from the EUT. The frequency range from 30MHz to 1GHz was investigated using a peak detector function with the bilog antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The frequency range from 1GHz to 13GHz was investigated using a peak detector function with the double ridged waveguide antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The maximum levels for each antenna polarization were plotted. The data was then processed by the computer to equivalent field intensity at 10 meters using linear extrapolation. A -10.5dB (-10.5dB = $20 * \log (3m/10m)$) distance correction factor has automatically been applied to the plotted emissions data.

Final radiated emissions were performed on all significant broadband and narrowband emissions found in the exploratory sweeps using the following methods:


- 1) Measurements from 30MHz to 1GHz were made using a quasi-peak detector and a broadband bilog antenna. Measurements above 1GHz were made using an average detector and a broadband double ridged waveguide antenna.
- 2) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:
 - a) The EUT was rotated so that all sides were exposed to the receiving antenna.
 - b) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - c) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.


Test Setup for Radiated Emissions: 30MHz to 1GHz, Horizontal Polarization

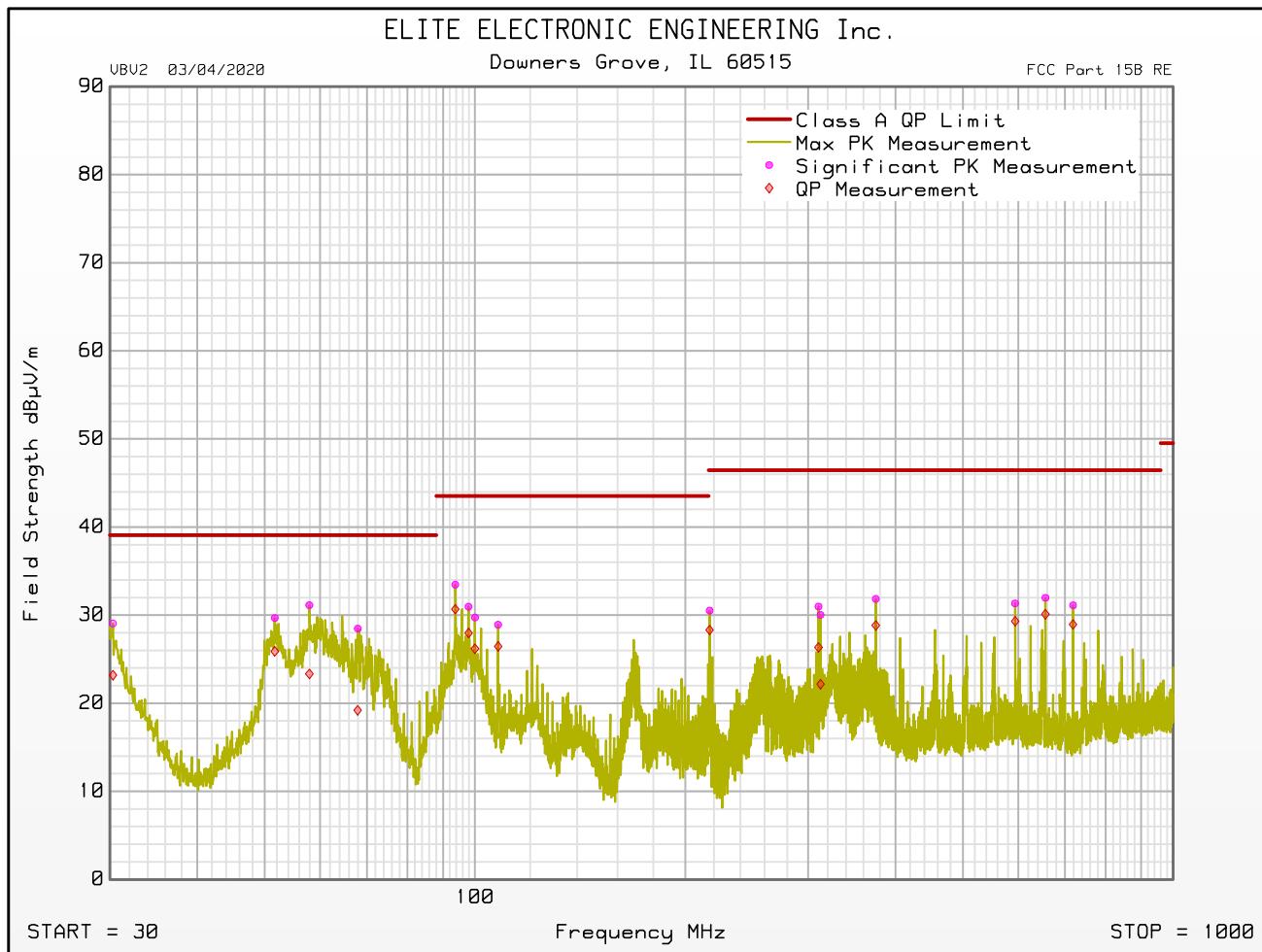
Test Setup for Radiated Emissions: 30MHz to 1GHz, Vertical Polarization

Test Setup for Radiated Emissions: Above 1GHz, Horizontal Polarization

Test Setup for Radiated Emissions: Above 1GHz, Vertical Polarization

FCC Part 15B Class A Radiated RF Emissions Test

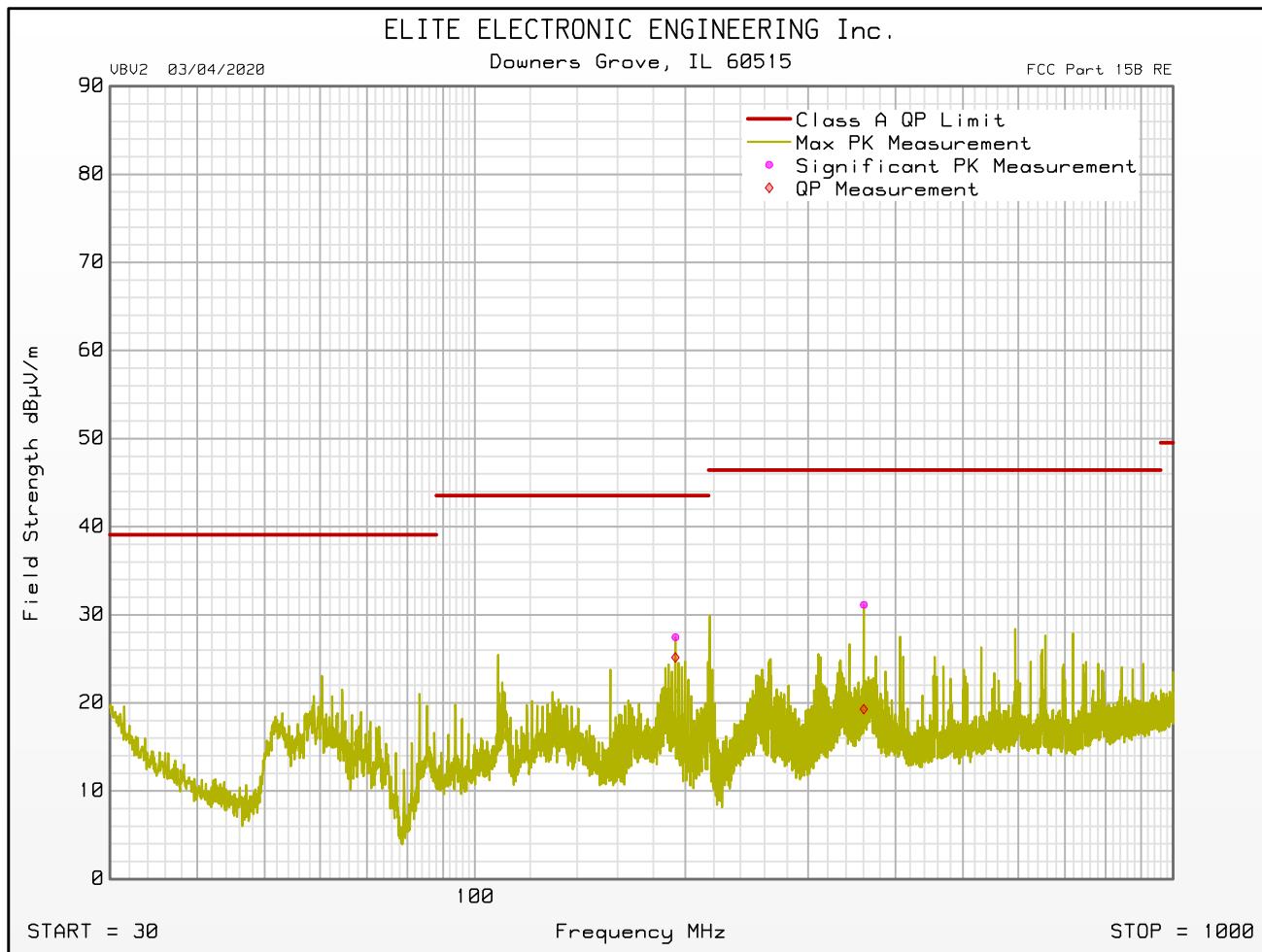
SW ID/Rev: VBV2 03/04/2020


Manufacturer : Otto Engineering
 Model : Lynq Rapid Deployment Kit
 Serial Number : 8
 DUT Mode : Charging (radios not transmitting)
 Scan Type : Stepped Scan
 Test RBW : 120 kHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Jan 10, 2022 09:02:05 AM

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBuV/m	QP Total dBuV/m	QP Limit dBμV/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
30.300	14.8	8.9	24.3	0.0	0.4	-10.5	29.0	23.2	39.1	-15.9	V	120	0
51.660	26.2	22.4	13.6	0.0	0.4	-10.5	29.7	25.9	39.1	-13.2	V	120	45
57.900	28.7	20.9	12.5	0.0	0.4	-10.5	31.1	23.3	39.1	-15.8	V	120	0
67.920	26.3	17.0	12.3	0.0	0.4	-10.5	28.5	19.2	39.1	-19.9	V	120	45
93.700	27.8	25.0	15.7	0.0	0.4	-10.5	33.5	30.7	43.5	-12.8	V	120	180
97.900	24.5	21.5	16.5	0.0	0.4	-10.5	31.0	28.0	43.5	-15.5	V	120	270
100.000	22.9	19.4	16.9	0.0	0.4	-10.5	29.7	26.2	43.5	-17.3	V	120	315
107.920	21.2	18.7	17.8	0.0	0.4	-10.5	28.9	26.5	43.5	-17.1	V	200	180
193.660	22.1	19.8	15.1	0.0	0.7	-10.5	27.5	25.2	43.5	-18.4	H	120	225
216.780	25.1	22.9	15.1	0.0	0.8	-10.5	30.5	28.3	46.4	-18.1	V	340	225
310.440	21.4	16.8	19.2	0.0	0.8	-10.5	31.0	26.3	46.4	-20.1	V	200	135
312.540	20.4	12.6	19.2	0.0	0.8	-10.5	30.0	22.2	46.4	-24.3	V	200	135
360.480	19.8	7.9	20.8	0.0	1.0	-10.5	31.1	19.3	46.4	-27.1	H	340	270
375.000	20.5	17.5	20.8	0.0	1.1	-10.5	31.8	28.8	46.4	-17.6	V	200	45
593.760	16.1	14.1	24.5	0.0	1.1	-10.5	31.3	29.3	46.4	-17.1	V	340	270
656.280	16.3	14.5	24.8	0.0	1.3	-10.5	32.0	30.1	46.4	-16.3	V	340	225
718.740	15.2	13.1	25.0	0.0	1.4	-10.5	31.1	29.0	46.4	-17.5	V	200	225

FCC Part 15B Class A Radiated RF Emissions Test

SW ID/Rev: VBV2 03/04/2020


Manufacturer : Otto Engineering
 Model : Lynq Rapid Deployment Kit
 Serial Number : 8
 DUT Mode : Charging (radios not transmitting)
 Ant. Polarization(s) : Vertical
 Scan Type : Stepped Scan
 Test RBW : 120 kHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Jan 10, 2022 09:02:05 AM

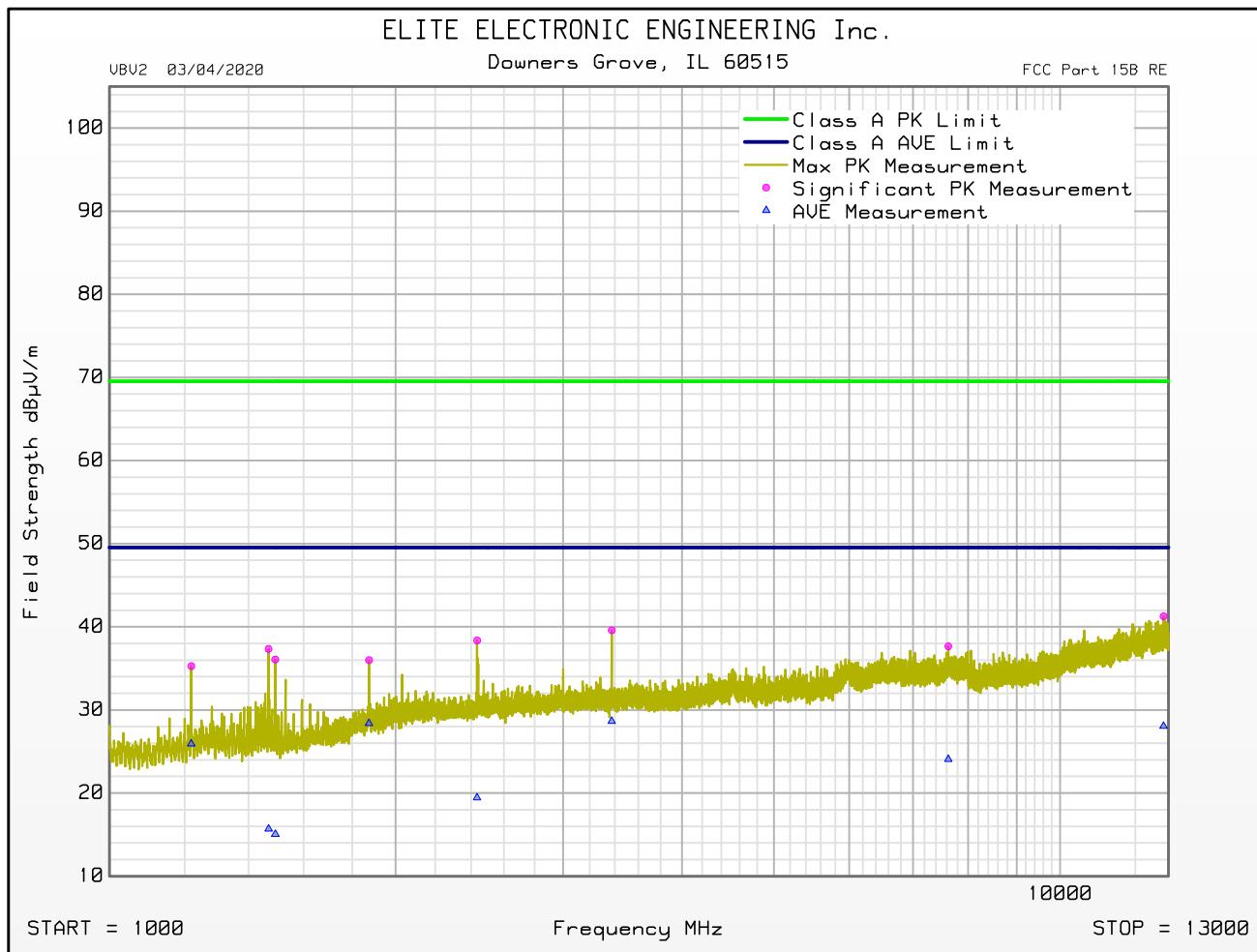
FCC Part 15B Class A Radiated RF Emissions Test

SW ID/Rev: VBV2 03/04/2020

Manufacturer : Otto Engineering
Model : Lynq Rapid Deployment Kit
Serial Number : 8
DUT Mode : Charging (radios not transmitting)
Ant. Polarization(s) : Horizontal
Scan Type : Stepped Scan
Test RBW : 120 kHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Jan 10, 2022 09:02:05 AM

FCC Part 15B Class A Radiated RF Emissions Test

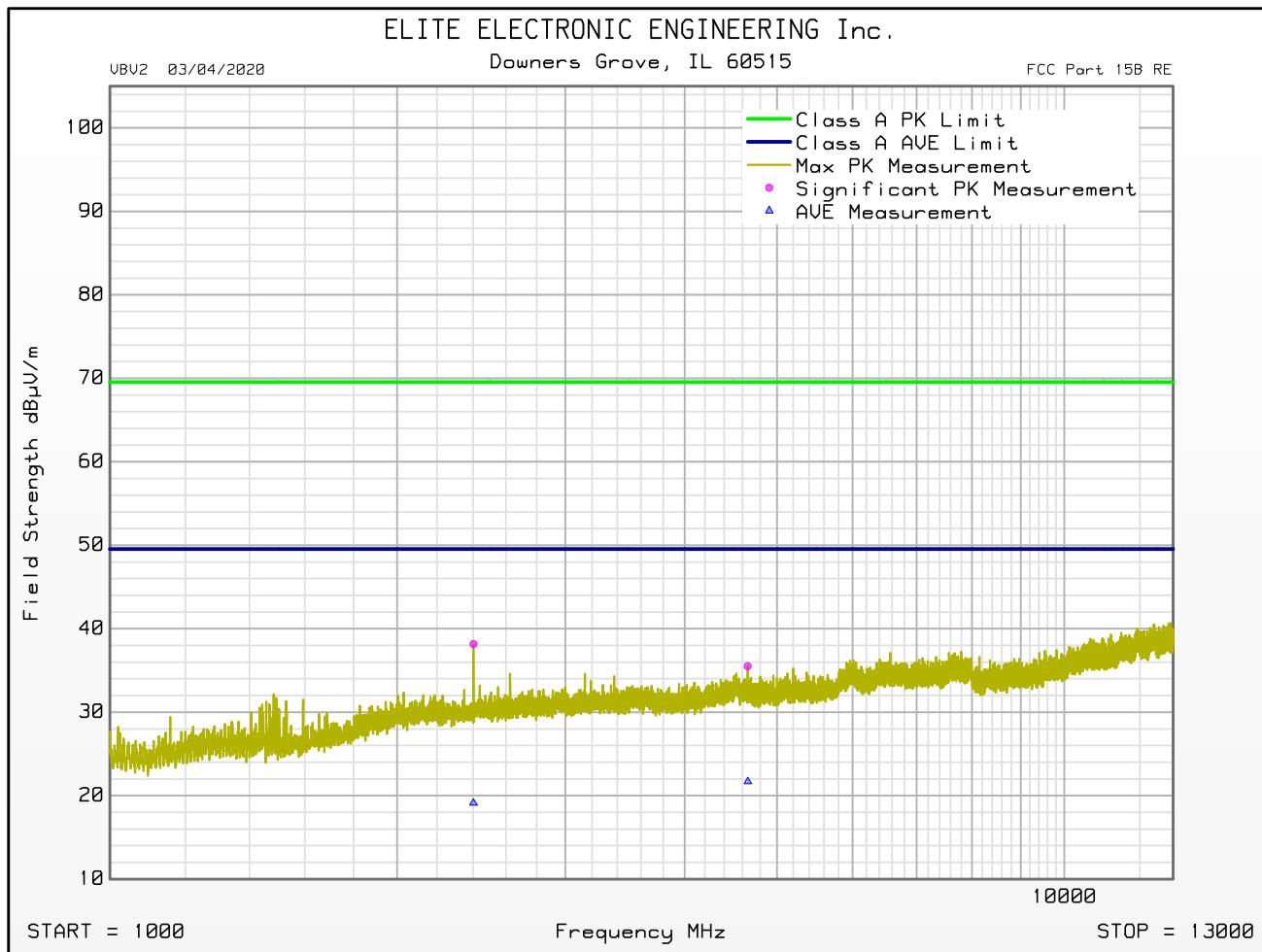
SW ID/Rev: VBV2 03/04/2020


Manufacturer : Otto Engineering
 Model : Lynq Rapid Deployment Kit
 Serial Number : 8
 DUT Mode : Charging (radios not transmitting)
 Scan Type : Stepped Scan
 Test RBW : 1 MHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Jan 10, 2022 01:34:36 PM

Freq MHz	Peak Mtr Rdg dBuV	Average Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dB μ V/m	Peak Limit dB μ V/m	Peak Lim Mrg dB	Average Total dB μ V/m	Average Limit dB μ V/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
1219.000	56.0	46.6	28.8	-40.8	1.7	-10.5	35.3	69.5	-34.3	25.9	49.5	-23.6	V	120	0
1470.000	58.0	36.3	28.2	-40.3	1.9	-10.5	37.3	69.5	-32.2	15.7	49.5	-33.8	V	200	0
1494.000	56.8	35.8	28.0	-40.3	2.0	-10.5	36.1	69.5	-33.5	15.0	49.5	-34.5	V	340	135
1875.000	53.1	45.5	31.2	-40.1	2.2	-10.5	36.0	69.5	-33.6	28.4	49.5	-21.1	V	120	45
2403.500	54.0	35.0	32.2	-40.2	2.6	-10.5	38.2	69.5	-31.4	19.1	49.5	-30.4	H	120	180
2436.000	54.2	35.2	32.2	-40.2	2.6	-10.5	38.4	69.5	-31.2	19.4	49.5	-30.1	V	120	135
3375.500	53.6	42.6	32.9	-39.6	3.1	-10.5	39.6	69.5	-30.0	28.6	49.5	-20.9	V	200	45
4658.000	47.6	33.8	34.3	-39.6	3.7	-10.5	35.5	69.5	-34.0	21.7	49.5	-27.8	H	120	135
7626.000	46.9	33.3	35.8	-39.5	4.8	-10.5	37.7	69.5	-31.9	24.1	49.5	-25.6	V	200	180
12846.500	45.4	32.2	38.8	-38.5	6.1	-10.5	41.3	69.5	-28.3	28.1	49.5	-21.5	V	200	180

FCC Part 15B Class A Radiated RF Emissions Test

SW ID/Rev: VBV2 03/04/2020


Manufacturer : Otto Engineering
 Model : Lynq Rapid Deployment Kit
 Serial Number : 8
 DUT Mode : Charging (radios not transmitting)
 Ant. Polarization(s) : Vertical
 Scan Type : Stepped Scan
 Test RBW : 1 MHz
 Prelim Dwell Time (s) : 0.0001
 Notes :
 Test Engineer : M. Longinotti
 Test Date : Jan 10, 2022 01:34:36 PM

FCC Part 15B Class A Radiated RF Emissions Test

SW ID/Rev: VBV2 03/04/2020

Manufacturer : Otto Engineering
Model : Lynq Rapid Deployment Kit
Serial Number : 8
DUT Mode : Charging (radios not transmitting)
Ant. Polarization(s) : Horizontal
Scan Type : Stepped Scan
Test RBW : 1 MHz
Prelim Dwell Time (s) : 0.0001
Notes :
Test Engineer : M. Longinotti
Test Date : Jan 10, 2022 01:34:36 PM

22. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC.

1516 Centre Circle

Downers Grove, IL 60515

Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168

Email: rbugielski@elitetest.com

Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112

Email: cfanning@elitetest.com

Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163

Email: blugo@elitetest.com

Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123

Email: reking@elitetest.comWebsite: www.elitetest.com

ELECTRICAL

Valid to: June 30, 2021

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following automotive electromagnetic compatibility and other electrical tests:

Test Technology:**Test Method(s)¹:*****Transient Immunity***

ISO 7637-2 (including emissions); ISO 7637-3;
ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;
CS-11979, Section 6.4; CS.00054, Section 5.9;
EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);
GMW 3097, Section 3.5;
SAE J1113-11; SAE J1113-12;
ECE Regulation 10.06 Annex 10

Electrostatic Discharge (ESD)

ISO 10605 (2001, 2008);
CS-11979 Section 7.0; CS.00054, Section 5.10;
EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13;
GMW 3097 Section 3.6

Conducted Emissions

CISPR 25 (2002, 2008), Sections 6.2 and 6.3;
CISPR 25 (2016), Sections 6.3 and 6.4;
CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2;
GMW 3097, Section 3.3.2;
EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Page 1 of 8

Test Technology:

Radiated Emissions Anechoic

Test Method(s)¹:

CISPR 25 (2002, 2008), Section 6.4;
 CISPR 25 (2016), Section 6.5;
 CS-11979, Section 5.3; CS.00054, Section 5.6.3;
 GMW 3097, Section 3.3.1;
 EMC-CS-2009.1 (RE 310); FMC1278 (RE310);
 ECE Regulation 10.06 Annex 7 (Broadband)
 ECE Regulation 10.06 Annex 8 (Narrowband)

Vehicle Radiated Emissions

CISPR 12; ICES-002; ECE Regulation 10.06 Annex 5

Bulk Current Injection (BCI)

ISO 11452-4;
 CS-11979, Section 6.1; CS.00054, Section 5.8.1;
 GMW 3097, Section 3.4.1;
 SAE J1113-4;
 EMC-CS-2009.1 (RI112); FMC1278 (RI112);
 ECE Regulation 10.06 Annex 9

***Bulk Current Injections (BCI)
(Closed Loop Method)***

ISO 11452-4; SAE J1113-4

***Radiated Immunity Anechoic
(Including Radar Pulse)***

ISO 11452-2; ISO 11452-5;
 CS-11979, Section 6.2; CS.00054, Section 5.8.2;
 GMW 3097, Section 3.4.2;
 EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21;
 ECE Regulation 10.06 Annex 9

Radiated Immunity Magnetic Field

ISO 11452-8

Radiated Immunity Reverb

ISO/IEC 61000-4-21;
 GMW 3097, Section 3.4.3;
 EMC-CS-2009.1 (RI114); FMC1278 (RI114);
 ISO 11452-11

***Radiated Immunity
(Portable Transmitters)***

ISO 11452-9;
 EMC-CS-2009.1 (RI115); FMC1278 (RI115)

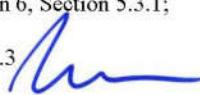
Vehicle Radiated Immunity (ALSE)

ISO 11451-2; ECE Regulation 10.06 Annex 6

Electrical Loads

ISO 16750-2, Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,
 4.8, 4.9, 4.11, and 4.12

Dielectric Withstand Voltage


MIL-STD-202, Method 301;
 EIA-364-20D

Insulation Resistance

MIL-STD-202, Method 302;
 SAE/USCAR-2, Revision 6, Section 5.5.1;
 EIA-364-21D

Contact Resistance

MIL-STD-202, Method 307;
 SAE/USCAR-2, Revision 6, Section 5.3.1;
 EIA-364-23C;
 USCAR21-3 Section 4.5.3

Test Technology:

DC Resistance

Test Method(s):

MIL-STD-202, Method 303

Contact Chatter

MIL-STD-202, Method 310;
SAE/USCAR-2, Revision 6, Section 5.1.9

Voltage Drop

SAE/USCAR-2, Revision 6, Section 5.3.2;
USCAR21-3 Section 4.5.6

Emissions

Radiated and Conducted
(3m Semi-anechoic chamber,
up to 40 GHz)

47 CFR, FCC Part 15 B (using ANSI C63.4:2014);
47 CFR, FCC Part 18 (using FCC MP-5:1986);
ICES-001; ICES-003; ICES-005;
IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004);
IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010);
KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008);
CISPR 11; EN 55011; KN 11; CNS 13803 (1997, 2003);
CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; KN 14-1;
IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000);
EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006);
IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004);
AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz);
CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz);
CISPR 32; EN 55032; KN 32; ECE Regulation 10.06 Annex 14

Current Harmonics

IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2;
ECE Regulation 10.06 Annex 11

Flicker and Fluctuations

IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3;
ECE Regulation 10.06 Annex 12

Immunity

Electrostatic Discharge

IEC 61000-4-2, Ed. 1.2 (2001);
IEC 61000-4-2 (1995) + A1(1998) + A2(2000);
EN 61000-4-2 (1995); EN 61000-4-2 (2009-05);
KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2;
IEEE C37.90.3 2001

Radiated Immunity

IEC 61000-4-3 (1995) + A1(1998) + A2(2000);
IEC 61000-4-3, Ed. 3.0 (2006-02);
IEC 61000-4-3, Ed. 3.2 (2010);
KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3;
IEEE C37.90.2 2004

Electrical Fast Transient/Burst

IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011);
IEC 61000-4-4 (1995) + A1(2000) + A2(2001);
KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008);
IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4;
ECE Regulation 10.06 Annex 15

Test Technology:
Test Method(s)¹:
Immunity (cont'd)

Surge

IEC 61000-4-5 (1995) + A1(2000);
 IEC 61000-4-5, Ed 1.1 (2005-11);
 EN 61000-4-5 (1995) + A1(2001);
 KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
 IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5;
 IEEE C37.90.1 2012; IEEE STD C62.41.2 2002;
 ECE Regulation 10.06 Annex 16

Conducted Immunity

IEC 61000-4-6 (1996) + A1(2000);
 IEC 61000-4-6, Ed 2.0 (2006-05);
 IEC 61000-4-6 Ed. 3.0 (2008);
 KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
 EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6;
 KN 61000-4-6

 Power Frequency Magnetic Field
 Immunity

IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009);
 EN 61000-4-8 (1994) + A1(2000);
 KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
 IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8

 Voltage Dips, Short Interrupts, and Line
 Voltage Variations

IEC 61000-4-11, Ed. 2 (2004-03);
 KN 61000-4-11 (2008-5);
 RRL Notice No. 2008-4 (May 20, 2008);
 IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11

Ring Wave

IEC 61000-4-12, Ed. 2 (2006-09);
 EN 61000-4-12:2006;
 IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12;
 IEEE STD C62.41.2 2002

 Generic and Product Specific EMC
 Standards

IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1;
 IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2;
 IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3;
 IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4;
 EN 50130-4; EN 61326-1;
 IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2;
 IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24;
 IEC 60601-1-2; JIS T0601-1-2

TxRx EMC Requirements

EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17;
 EN 301 489-19

European Radio Test Standards

ETSI EN 300 086-1; ETSI EN 300 086-2;
 ETSI EN 300 113-1; ETSI EN 300 113-2;
 ETSI EN 300 220-1; ETSI EN 300 220-2;
 ETSI EN 300 330-1; ETSI EN 300 330-2;
 ETSI EN 300 440-1; ETSI EN 300 440-2;
 ETSI EN 300 422-1; ETSI EN 300 422-2;

Test Technology:

***European Radio Test Standards
(cont'd)***

Test Method(s)¹:

ETSI EN 300 328; ETSI EN 301 893;
ETSI EN 301 511; ETSI EN 301 908-1;
ETSI EN 908-2; ETSI EN 908-13;
ETSI EN 303 413; ETSI EN 302 502

Canadian Radio Tests

RSS-102 (RF Exposure Evaluation only); RSS-111; RSS-112;
RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130;
RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137;
RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181;
RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196;
RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215;
RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243;
RSS-244; RSS-247; RSS-251; RSS-252; RSS-287;
RSS-288; RSS-310; RSS-GEN

Mexico Radio Tests

IFT-008-2015; NOM-208-SCFI-2016

Japan Radio Tests

Radio Law No. 131, Ordinance of MPT No. 37, 1981,
MIC Notification No. 88:2004, Table No. 22-11;
ARIB STD-T66, Regulation 18

Taiwan Radio Tests

LP-0002

Australia/New Zealand Radio Tests

AS/NZS 4268; Radiocommunications (Short Range Devices)
Standard (2014)

Hong Kong Radio Tests

HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7;
HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057;
HKCA 1073

Korean Radio Test Standards

KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17;
KN 301 489-52

***Unlicensed Radio Frequency Devices
(3 Meter Semi-Anechoic Room)***

47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H
(using ANSI C63.10:2013, ANSI C63.17:2013 and
FCC KDB 905462 D02 (v02))

Licensed Radio Service Equipment

47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87,
90, 95, 96, 97, 101;
ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015;

OTA (Over the Air) Performance

GSM, GPRS, EGPRS
UMTS (W-CDMA)
LTE including CAT M1
A-GPS for UMTS/GSM
LTS A-GPS, A-GLONASS,
SIB8/SIB16
Large Device/Laptop/Tablet Testing
Integrated Device Testing
WiFi 802.11 a/b/g/n/a

CTIA Test Plan for Wireless Device Over-the-Air Performance
(Method for Measurement for Radiated Power and Receiver
Performance) V3.8.2;
CTIA Test Plan for RF Performance Evaluation of WiFi Mobile
Converged Devices V2.1.0

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Page 5 of 8

Test Technology: **Test Method(s):**

Electrical Measurements and Simulation

AC Voltage / Current

(1mV to 5kV) 60 Hz
 (0.1V to 250V) up to 500 MHz
 (1µA to 150A) 60 Hz

FAA AC 150/5345-10H

FAA AC 150/5345-43J

FAA AC 150/5345-44K

FAA AC 150/5345-46E

DC Voltage / Current

(1mV to 15kV) / (1µA to 10A)

FAA AC 150/5345-47C

FAA EB 67D

Power Factor / Efficiency / Crest Factor

(Power to 30kW)

Resistance

(1mΩ to 4000MΩ)

Surge

(Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹ When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is expected to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA R101 - *General Requirements - Accreditation of ISO-IEC 17025 Laboratories*.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u>		
Part 15B	ANSI C63.4:2014	40000
<u>Industrial, Scientific, and Medical Equipment</u>		
Part 18	FCC MP-5 (February 1986)	40000
<u>Intentional Radiators</u>		
Part 15C	ANSI C63.10:2013	40000
<u>Unlicensed Personal Communication Systems Devices</u>		
Part 15D	ANSI C63.17:2013	40000

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Page 6 of 8

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>U-NII without DFS Intentional Radiators</u> Part 15E	ANSI C63.10:2013	40000
<u>U-NII with DFS Intentional Radiators</u> Part 15E	FCC KDB 905462 D02 (v02)	40000
<u>UWB Intentional Radiators</u> Part 15F	ANSI C63.10:2013	40000
<u>BPL Intentional Radiators</u> Part 15G	ANSI C63.10:2013	40000
<u>White Space Device Intentional Radiators</u> Part 15H	ANSI C63.10:2013	40000
<u>Commercial Mobile Services (FCC Licensed Radio Service Equipment)</u> Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>General Mobile Radio Services (FCC Licensed Radio Service Equipment)</u> Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Citizens Broadband Radio Services (FCC Licensed Radio Service Equipment)</u> Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Maritime and Aviation Radio Services</u> Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
<u>Microwave and Millimeter Bands Radio Services</u> Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Broadcast Radio Services</u> Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Signal Boosters</u>		
Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

²Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (<https://apps.fcc.gov/oetcf/eas/>) for a listing of FCC approved laboratories.

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 8th day of August 2019.

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 1786.01
Valid to June 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.