

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel : +86-0755-27521059 Fax: +86-0755-27521011 http://www.sz-ctc.org.cn

Т	EST REPORT				
Report No. ······:	CTC20220238E01				
FCC ID	2A3QHM7				
Applicant:	Shenzhen Boruite Technology Co.,	Ltd.			
Address	B201, Ganghong Complex, building 2, Xialilang community, South Bend Stree				
Manufacturer:	Shenzhen Boruite Technology Co., Ltc	I.			
Address	B201, Ganghong Complex, building 2, Xialilang community, South Bend Stree				
Product Name:	Bluetooth speaker				
Trade Mark·····:	sanag				
Model/Type reference······:	M7				
Listed Model(s) ······:	See page 6 of the report.				
Standard:	FCC CFR Title 47 Part 15 Subpart C	Section 15.247			
Date of receipt of test sample:	Feb. 24, 2022				
Date of testing	Feb. 24, 2022 to Mar. 10, 2022				
Date of issue:	Mar. 10, 2022				
Result	PASS				
Compiled by:		T. Jiang			
(Printed name+signature)	Jim Jiang	Jin)iong			
Supervised by:		noillair Ma			
(Printed name+signature)	Miller Ma				
	Totti Zhao				
Approved by:					
(Printed name+signature)	Totti Zhao				
	completely for legal use with the appre				

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TEST	SUMMARY	3
1.	1.	Test Standards	3
1.	2.	REPORT VERSION	3
1.	3.	TEST DESCRIPTION	3
1.	4.	TEST FACILITY	4
1.	5.	MEASUREMENT UNCERTAINTY	4
1.	6.	Environmental Conditions	5
2.	GEN	ERAL INFORMATION	6
2.	1.	CLIENT INFORMATION	6
2.	2.	GENERAL DESCRIPTION OF EUT	6
2.	3.	ACCESSORY EQUIPMENT INFORMATION	7
2.	4.	OPERATION STATE	
2.	5.	Measurement Instruments List	9
3.	TEST	ITEM AND RESULTS	11
3.	1.	CONDUCTED EMISSION	.11
3.	2.	RADIATED EMISSION	
3.	3.	BAND EDGE EMISSIONS (RADIATED)	
3.	4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
3.	5.	Bandwidth	56
3.	6.	CHANNEL SEPARATION	63
3.	7.	NUMBER OF HOPPING CHANNEL	
3.	8.	DWELL TIME	
3.	9.	PEAK OUTPUT POWER	
3.	10.	ANTENNA REQUIREMENT	73

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS-247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description	
01	Mar. 10, 2022	Original	

1.3. Test Description

FCC Part 15 Subpart C (15.247)/ RSS-247 Issue 2					
Test Item	Standard	Decult	Test Engi-		
rest nem	FCC IC		Result	neer	
Antenna Requirement	15.203	/	Pass	Jim Jiang	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang	
Restricted Bands	15.205	RSS-Gen 8.10	Pass	Jim Jiang	
Hopping Channel Separation	15.247(a)(1)	RSS-247 5.1 (b) Pass		Jim Jiang	
Dwell Time	15.247(a)(iii)	RSS-247 5.1 (d)	Pass	Jim Jiang	
Peak Output Power	15.247(b)(1)	RSS-247 5.4 (b)	Pass	Jim Jiang	
Number of Hopping Frequency	15.247(a)(iii)	RSS-247 5.1 (d)	Pass	Jim Jiang	
Band Edge Emissions	15.247(d)	RSS-247 5.5	Pass	Jim Jiang	
Radiated Spurious Emission	15.247(d)&15.209	RSS-247 5.5& RSS-Gen 8.9	Pass	Jim Jiang	
20dB Bandwidth	15.247(a)	RSS-247 5.1 (b)	Pass	Jim Jiang	

Note: The measurement uncertainty is not included in the test result.

CTC Laboratories, Inc.

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C~27°C
Relative Humidity:	40%~60%
Atmospheric Pressure:	101kPa

ΕN

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Boruite Technology Co., Ltd.	
Address:	Iress: B201, Ganghong Complex, building 2, No.7, Xiangye Road, Xialilang com- munity, South Bend Street, Shenzhen China	
Manufacturer: Shenzhen Boruite Technology Co., Ltd.		
Address:	B201, Ganghong Complex, building 2, No.7, Xiangye Road, Xialilang com- munity, South Bend Street, Shenzhen China	

2.2. General Description of EUT

Product Name:	Bluetooth speaker		
Trade Mark:	sanag		
Model/Type reference:	M7		
Listed Model(s):	V6, M7, M7S, M7S Pro, M7P, M8, M8P, M10, M13, M13S, M13S Pro, M14, M14S, M14S Pro, M15, M15S, M15S Pro, M16, M16S, M16S Pro, M17, M17S, M17S Pro, M18, M18S, M18S Pro, M19, M19S, M19S Pro, M20, M20S, M20S Pro, M21, M21S, M21S Pro, M22, M22S, M22S Pro, M23, M23S, M23S Pro, M24, M24S, M24S Pro, M25, M25S, M25S Pro, X6, X6P, X6S, X6S Plus, X6S Pro, X6S ProMax, X6S II		
Model Difference:	All these models are identical in the same PCB, layout and electrical circuit. The difference is the model name and exterior color.		
Power supply:	DC5V 1A from External adapter DC3.7V 1800mAh from Battery		
Hardware version:	V1.1		
Software version:	V10		
Bluetooth 5.0/ EDR			
Modulation:	GFSK, π/4-DQPSK, 8-DPSK		
Operation frequency:	2402MHz~2480MHz		
Channel number:	79		
Channel separation:	1MHz		
Antenna type:	PCB Antenna		
Antenna gain:	1.7dBi		

2.3. Accessory Equipment Information

Equipment Information						
Name	Model	S/N	Manufacturer			
Notebook	ThinkPad T460s	/	Lenovo			
Cable Information	Cable Information					
Name	Shielded Type	Ferrite Core	Length			
USB Cable	Unshielded	NO	100cm			
Test Software Information						
Name	Version	/	/			
BT_Tool	V1.0.5	1	/			

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
:	:
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

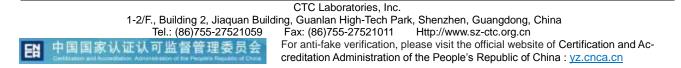
For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:


The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.5. Measurement Instruments List

Tonsc	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 23, 2022	
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 15, 2022	
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 23, 2022	
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 23, 2022	
5	Power Sensor	Agilent	U2021XA	MY5365004	Mar. 15, 2022	
6	Power Sensor	Agilent	U2021XA	MY5365006	Mar. 15, 2022	
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Mar. 15, 2022	
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 23, 2022	
9	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 23, 2022	
10	Climate Chamber	ESPEC	MT3065	/	Dec. 23, 2022	
11	300328 v2.2.2 test system	TONSCEND	v2.6	/	/	

Radia	Radiated Emission and Transmitter spurious emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-759	Nov. 09, 2022	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 23, 2022	
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 23, 2022	
4	Broadband Premplifier	SCHWARZBECK	BBV9743B	259	Dec. 23, 2022	
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 23, 2022	
6	3m chamber 3	YIHENG	EE106	/	Sep. 09, 2023	

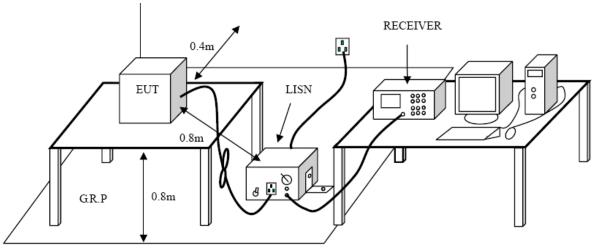
Condu	ucted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 23, 2022
2	LISN	R&S	ENV216	101113	Dec. 23, 2022
3	EMI Test Re- ceiver	R&S	ESCS30	100353	Dec. 23, 2022
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 23, 2022
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 23, 2022

Note:

1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3.1. Conducted Emission


<u>Limit</u>

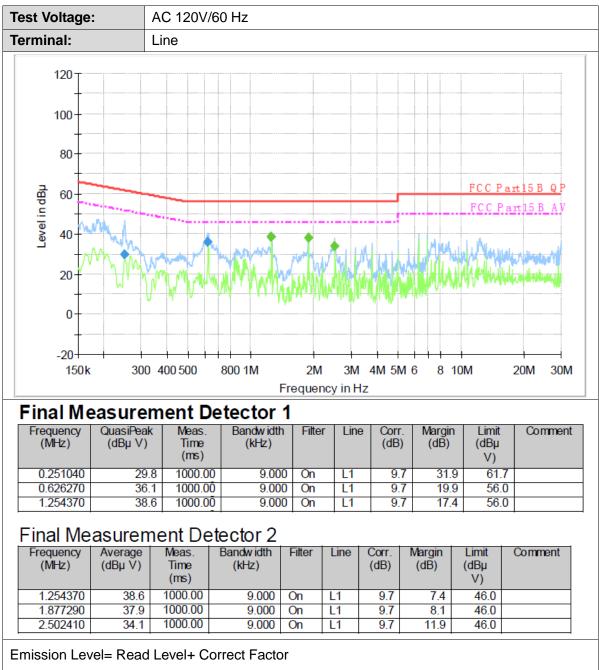
FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

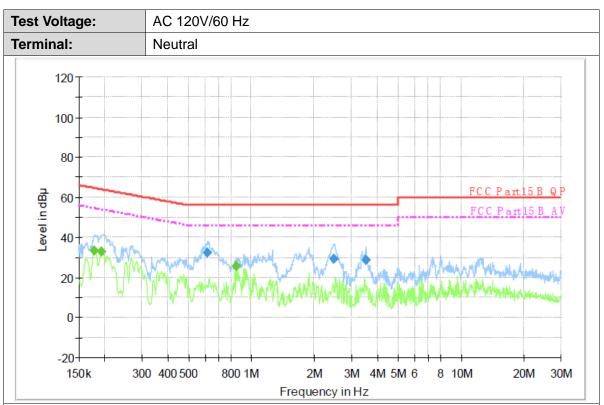
* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure


- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode


Please refer to the clause 2.4.

Test Results

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.616350	32.6	1000.00	9.000	On	N	10.0	23.4	56.0	
2.472620	29.2	1000.00	9.000	On	N	10.0	26.8	56.0	
3.513380	29.0	1000.00	9.000	On	N	10.0	27.0	56.0	

Final Measurement Detector 2

	Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
ſ	0.178090	33.2	1000.00	9.000	On	Ν	10.0	21.4	54.6	
ſ	0.192120	33.1	1000.00	9.000	On	Ν	10.0	20.9	53.9	
	0.844870	25.6	1000.00	9.000	On	Ν	10.0	20.4	46.0	

Emission Level= Read Level+ Correct Factor

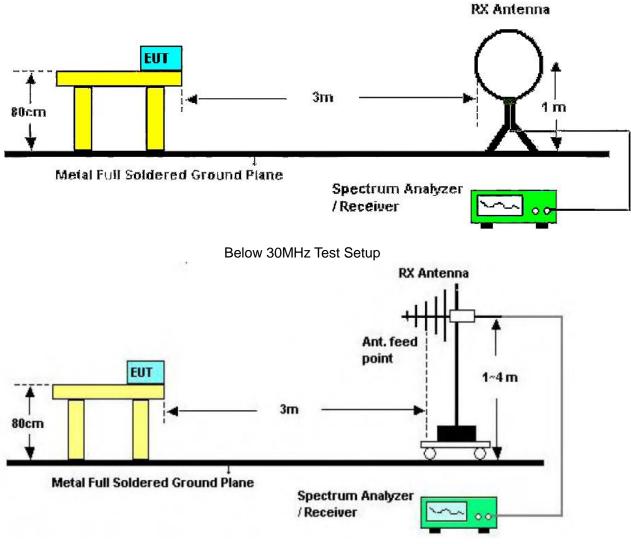
3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9

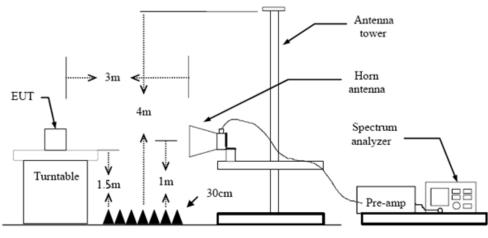
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

	dB(uV/m) (at 3 meters)			
Frequency (MHz)	Peak	Average		
Above 1000	74	54		


Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration

30-1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10^{th} harmonic:

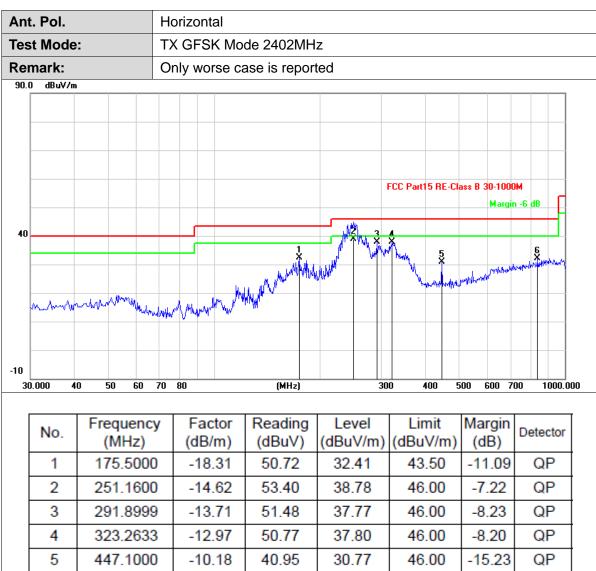
RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

Please refer to the clause 2.4.

Test Result


9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

QP

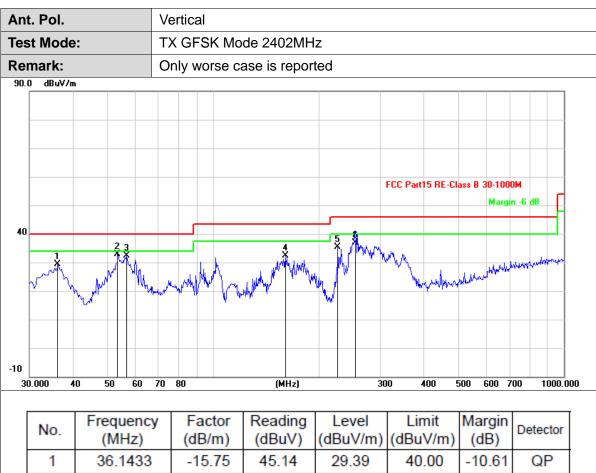
-13.90

Remarks:

6

838.6566

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value


35.62

32.10

46.00

-3.52

No.	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	36.1433	-15.75	45.14	29.39	40.00	-10.61	QP
2	53.6033	-14.88	47.74	32.86	40.00	-7.14	QP
3	56.8365	-15.39	47.70	32.31	40.00	-7.69	QP
4	161.2733	-19.14	51.47	32.33	43.50	-11.17	QP
5	227.5567	-15.28	50.54	35.26	46.00	-10.74	QP
6	255.0400	-14.53	51.33	36.80	46.00	-9.20	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX GFSK Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the pre- scribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4803.689	2.56	41.55	44.11	74.00	-29.89	peak
2	4804.420	2.56	29.49	32.05	54.00	-21.95	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX GFSK Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the pre- scribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4803.680	2.56	30.07	32.63	54.00	-21.37	AVG
2	4804.403	2.56	41.28	43.84	74.00	-30.16	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

pre-

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4882.001	2.79	39.88	42.67	74.00	-31.33	peak
2	4882.126	2.79	28.40	31.19	54.00	-22.81	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Pol.		N	Vertical					
Tes	TX GFSK Mode 2441MHz							
Remark: No report for the emission which more than 20 dB below the prescribed limit.					the pre-			
Г		Frequency	Factor	Reading	Level	Limit	Margin	
[No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	No. 1						-	Delector

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX GFSK Mode 2480MHz
Remark:	No report for the emission which more than 20 dB below the pre- scribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4959.769	3.04	39.25	42.29	74.00	-31.71	peak
2	4960.004	3.04	27.94	30.98	54.00	-23.02	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Pol.			Vertical					
Test Mode: TX GFSK Mode 2480MHz								
Remark: No report for the emission which more than 20 dB below the pre- scribed limit.								
	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	No. 1							Detector

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX π/4-DQPSK Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the pre- scribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4804.204	2.56	41.23	43.79	74.00	-30.21	peak
2	4804.612	2.56	29.88	32.44	54.00	-21.56	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.		Vertical					
est Mode: TX 11/4-DQPSK Mode 2402MHz							
Remark: No report for the emission which more than 20 dB below the pre- scribed limit.							
		- Factor	Destruction		1 * *4		
No.	Frequency (MHz)	/ Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.		(dB/m)					Delector

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

AVG

peak

-21.64

-30.23

54.00

74.00

An	nt. Pol.	F	Horizontal						
Tes	st Mode	: T	TX π/4-DQPSK Mode 2441MHz						
Re	emark:		No report for the emission which more than 20 dB below the pre- scribed limit.						
									_
No. Frequency (MHz) Factor Reading (dB/m) Level (dBuV) Limit (dBuV/m) Margin (dB)					Detector	-			

32.36

43.77

29.57

40.98

Remarks:

1

2

4881.678

4882.123

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

2.79

2.79

Ant. Pol.			Vertical					
Test Mode: TX π/4-DQPSK Mode 2441MHz								
Remark: No report for the emission which more than 20 dB below the pre- scribed limit.					the pre-			
		-				1.1.11		
	No.	Frequency (MHz)	y Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 4881.65		4881.655	5 2.79	28.65	31.44	54.00	-22.56	AVG
2 4882.140					1			

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX π/4-DQPSK Mode 2480MHz
Remark:	No report for the emission which more than 20 dB below the pre- scribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4959.779	3.04	40.35	43.39	74.00	-30.61	peak
2	4959.853	3.04	28.85	31.89	54.00	-22.11	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

\nt	nt. Pol. Vertical							
Test Mode: TX π/4-DQPSK Mode 2480MHz								
Remark: No report for the emission which more than 20 dB below the p scribed limit.					the pre-			
1		Fraguana	Fastar	Deading	Loval	Limit	Morgin	
	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	No. 1						-	Detector AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Horizontal
Test Mode:	TX 8-DPSK Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the pre- scribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4804.113	2.56	29.69	32.25	54.00	-21.75	AVG
2	4804.247	2.56	40.82	43.38	74.00	-30.62	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant	t. Pol.		Vertical					
Tes	st Mode	:	TX 8-DPSK N	/lode 2402N	lHz			
Rer	mark:		No report for scribed limit.	the emissio	n which mor	e than 20 d	B below	the pre-
F								
ſ	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	No.						-	Detector AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Po	l.	Horizontal						
Test Mo	ode:	TX 8-DPSK Mode 2441MHz						
Remarl	c :	No report for scribed limit.	the emissio	n which mor	re than 20 c	B below	the pre-	
No	Frequenc	y Factor	Reading	Level	Limit	Margin	Detector	

No.	(MHz)	(dB/m)	(dBuV)	(dBuV/m)		(dB)	Detector
1	4881.884	2.79	29.32	32.11	54.00	-21.89	AVG
2	4882.024	2.79	40.20	42.99	74.00	-31.01	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

nt. Pol.		Vertical					
Test Mode: TX 8-DPSK Mode 2441MHz							
emark:		No report for scribed limit.	the emissio	n which mor	e than 20 d	B below	the pre-
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.			· · ·				Detector

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.	Ho	Horizontal					
Test Mode:	Tک	TX 8-DPSK Mode 2480MHz					
Remark:		report for t ribed limit.	he emissior	which mor	e than 20 d	dB below	the pre-
						_	

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4959.951	3.04	29.20	32.24	54.00	-21.76	AVG
2	4960.122	3.04	39.96	43.00	74.00	-31.00	peak

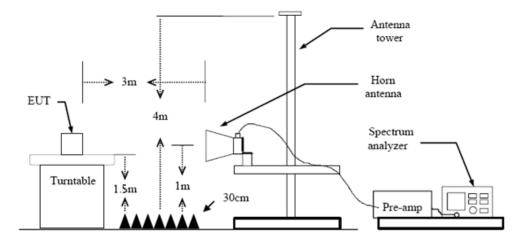
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Pol. Ve			/ertical						
Test Mode: TX 8-DPSK Mode 2480MHz					lHz				
emark	k:			report for tribed limit.	the emissio	n which mor	e than 20 d	B below	the pre-
No	D .	Frequenc	y	Factor	Reading	Level	Limit	Margin	Detector
No	D .	Frequenc (MHz)	y	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)		Detector
No 1								- U	Detector peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3.3. Band Edge Emissions (Radiated)


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

Restricted Frequency Band	(dBuV/m)(at 3m)				
(MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

Conducted band edge limit: The highest point of the operating frequency waveform down 20dB

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.9 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

(1) Radiation Test

Ant. Pol.		Hor	Horizontal									
est Mod	e:	GF	SK Mode 2	2402MHz								
:0.0 dBuV/	m											
								Λ				
					FCC	Part15 RE-Class I	8 Above 16 P	ж ()				
60												
					FCC	Part15 RE-Class	B Above 1G A 1					
							×					
							\$	and the				
. 0												
.0 2285.000 2	297.00 2309.0	10 23	21.00 233	3.00 2345.00	2357.00	2369.00 2381	.00	2405.00 M				
	297.00 2309.0	10 23	21.00 233	3.00 2345.00	2357.00	2369.00 2381	.00	2405.00 M				
	297.00 2309.0	10 23	121.00 233	3.00 2345.00	2357.00	2369.00 2381	.00	2405.00 M				
	297.00 2309.0	10 23	121.00 233	3.00 2345.00	2357.00	2369.00 2381	.00	2405.00 M				
2285.000 2	Frequence		Factor	Reading	Level	Limit	Margin					
								2405.00 M				
2285.000 2	Frequence	cy	Factor	Reading	Level	Limit	Margin					
No.	Frequence (MHz)	cy 10	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
2285.000 2 No.	Frequent (MHz) 2390.00	cy 10	Factor (dB/m) 30.84	Reading (dBuV) 17.94	Level (dBuV/m) 48.78	Limit (dBuV/m) 74.00	Margin (dB) -25.22	Detector peak				
2285.000 2 No.	Frequent (MHz) 2390.00	cy 10	Factor (dB/m) 30.84	Reading (dBuV) 17.94	Level (dBuV/m) 48.78	Limit (dBuV/m) 74.00	Margin (dB) -25.22	Detector peak				
2285.000 2 No.	Frequent (MHz) 2390.00	cy 10	Factor (dB/m) 30.84	Reading (dBuV) 17.94	Level (dBuV/m) 48.78	Limit (dBuV/m) 74.00	Margin (dB) -25.22	Detector peak				
No.	Frequent (MHz) 2390.00	cy 10	Factor (dB/m) 30.84	Reading (dBuV) 17.94	Level (dBuV/m) 48.78	Limit (dBuV/m) 74.00	Margin (dB) -25.22	Detector peak				
2285.000 2 No. 1 2 emarks:	Frequent (MHz) 2390.00	cy 10 10	Factor (dB/m) 30.84 30.84	Reading (dBuV) 17.94 4.58	Level (dBuV/m) 48.78 35.42	Limit (dBuV/m) 74.00 54.00	Margin (dB) -25.22 -18.58	Detector peak				

nt. Pol.		Vertical									
st Mode	:	GFSK Mod	de 2402MHz								
).0 dBu∀/m											
				FCC	Part15 RE-Class	B Above 1G F	K				
				FCC	Part15 RE-Class	B Above 1G A	v				
						1 X					
				. h. ik i sahari basa bida ata		ł	un luci				
Colorest Constrained (1998)											
0 2286.200 22	98.20 2310.20	2322.20	2334.20 2346.20	2358.20	2370.20 2382	2.20	2406.20 M				
	Eroquone	v Facto	r Reading	Level	Limit	Margin					
No.	Frequenc (MHz)	(dB/m	-	(dBuV/m)	(dBuV/m)		Detector				
No.		(dB/m) (dBuV)	(dBuV/m) 48.66	(dBuV/m) 74.00		peak				

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

nt. Pol.		Horizo	Horizontal									
est Mode	:	GFSK	Mode 2	2480 MHz								
20.0 dBuV/m	I											
60	87.80 2499.80) 2511.		3.80 2535.80	2547.	FCC	Part 15 RE-Class	B Above 1G A				
No.	Frequence (MHz)	-	actor	Reading (dBuV)	Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Detector			
1	2483.50		31.24	15.28	46.		74.00	-27.48	peak			
2	2483.50		31.24	3.80	35.0		54.00	-18.96	AVG			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Pol.		Vertical									
Fest Mode	:	GFS	K Mode 2	2480 MH	Z						
20.0 dBu∀/m											
										ļ	
A						FCC	Part15 RE-Class	D About 10 1	V		
						FLL	Partio RE-Class	B ADOVE TO F	~ K	1	
60						500					
						FLL	Part15 RE-Class	B Above Tu A			
11/ L 2 -	man for the second state of the	an and a second s	ward we wanted a second	and an approximate and an	anandagi kanan daga san	a	****		and an address of the second		
0.0											
2475.200 24	87.20 2499.2	20 251	.20 252	3.20 2535	.20 2547	.20	2559.20 2571	.20	2595.20	MH	
No.	Frequen (MHz)	-	Factor dB/m)	Readin (dBuV	-	vel V/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	2483.50)0	31.24	17.00	48	24	74.00	-25.76	peak	†	
2	2483.50	00	31.24	3.51	34	75	54.00	-19.25	AVG	†	
										-	

nt.	Pol.		Horiz	zontal						
est	Mode:	:	π /4-	DQPSK I	Mode 2402	MHz				
20.0	dBuV/m									
									Δ	
						FCC	Part15 RE-Class I	3 Above 1G P	ĸ	
60							Part15 RE-Class			
	Amountain					FLL	Partio RE-Class	1	<u> </u>	
								Ť		
		An mar and a mar and a mar		anne-levenstrane			and the second second second		and have	
0.0										
228	6.200 229	8.20 2310.2	0 232	2.20 2334	.20 2346.20	2358.20	2370.20 2382	20	2406.20 M	
Г	No.	Frequen		Factor	Reading	Level	Limit	Margin	Detector	
		(KALL_)		dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	Detector	
	NO.	(MHz)	(abiniy	(/					
	1	(MHZ) 2390.00		30.84	17.40	48.24	74.00	-25.76	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

\nt	. Pol.		Ve	ertical					
es	t Mode	:	π	/4-DQPSK	Mode 240	2MHz			
20.0	dBuV/m								
						FCC	Part15 RE-Class I	R Above 16 F	
ł						- FUL	, Failt 5 NE-Ciass	D ADUVE TO I	
60									
ou -						FCC	Part15 RE-Class	8 Above 1G A	N I
								1 X	
								2	-++
	(nekerendeneden	where any and a second	usrawall-arms		alered the second se	an a	~~~~~** \$ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	an a	and have
).O									
- L	86.200 22	98.20 23	310.20	2322.20 23	34.20 2346.2	0 2358.20	2370.20 2382	2.20	2406.20 Mi
Г		Frequ	ency	Factor	Reading	Level	Limit	Margin	гт
	No.	(MF	-	(dB/m)	(dBuV)		(dBuV/m)	(dB)	Detector
	1	2390	.000	30.84	16.41	47.25	74.00	-26.75	peak
	2	2390	.000	30.84	3.94	34.78	54.00	-19.22	AVG

nt. Pol.		Horizontal								
st Mode	:	π /4-DQ	PSK Mode	2480N	lHz					
.0 dBuV/m										
Δ										
\square					FCC	Part15 RE-Class	3 Above 1G P	K		
0					FCC	Part15 RE-Class	About 1C A	v		
					r	Failing HE-Ciass	S ADOVE TO A	•		
J izm		and and a second se	www.sp.tor.or.downer.org	-	an and a second s	and makes many sources and a second		mannature		
D										
2475.800 24	87.80 2499.80	2511.80	2523.80	2535.80	2547.80	2559.80 2571	.80	2595.80 ₩		
	Frequenc	y Fac	tor Rea	ding	Level	Limit	Margin			
No.	(MHz)	(dB/		_		(dBuV/m)	_	Detector		
1	2483.50	0 31.3	24 14	.18	45.42	74.00	-28.58	peak		
2	2483.50	0 31.3	24 3.	36	34.60	54.00	-19.40	AVG		
				I						

Ant. Pol.		Ve	Vertical										
est Mode	:	π/	4-DQP	SK	Mode 2	2480	MHz						
20.0 dBu∀/m	ı _.												_
													1
								FCC	Part15 RE-	Class	B Above 1G P	ĸ	
60								FCC	Part15 BE-	Class	B Above 1G A	v	
												-	
und 👫	mananahiranta mananana	general strange	where and a state of the state	Al-Malana	/websternet.com	en man	hasharan dhu		www.	*****	ale have been a second	haran daga sa	~
													1
D.0 2475.200 24	87.20 2499	.20 2	511.20	2523	3.20 2	535.20	2547	.20 2	2559.20	2571	.20	2595.20	_
	Freque		Fact	or	Read	lina	Le	vel	Lim	it	Margin		_
No.	(MHz		(dB/n		(dBu		1		(dBuV		(dB)	Detecto	r
1	2483.5	00	31.2	4	14.	53	45.	.77	74.(00	-28.23	peak	
2	2483.5	00	31.2	4	3.9	0	35	.14	54.0	00	-18.86	AVG	
emarks:													

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

t. Pol.		Horizontal									
st Mode):	8-DPSK Mode 2402MHz									
0 dBuV/n	n										
							0				
				FCC	Part15 RE-Class I	3 Above 1G P	K				
				FCC	Part15 RE-Class	3 Above 16 A	×				
						×					
and the second				- manageria and a state of the state of the	mannen	and the second	mu U				
286.200 22	298.20 2310.20	2322.20 233	4.20 2346.20	2358.20	2370.20 2382	.20	2406.20				
[Frequency	Factor	Reading	Level	Limit	Margin					
No.	(MHz)	(dB/m)	(dBuV)		(dBuV/m)	(dB)	Detector				
1	2390.000	30.84	17.01	47.85	74.00	-26.15	peak				
2	2390.000	30.84	3.68	34.52	54.00	-19.48	AVG				

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

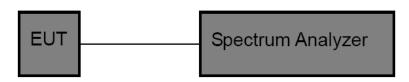
八
2406.20 M
etector
peak
AVG
e

		Horiz	zontal							
est Mode	:	8-DPSK Mode 2480MHz								
20.0 dBuV/m										
$ \square \square $						FCC	Part15 RE-Class	R Above 16 F	<u>к</u>	
50										
						FCC	Part15 RE-Class	B Above 1G A	N	
1 ×										
3	a de da una contra de ser		an and the second		1		AN ALL AND ALL AND ALL AND A	an a		
.0										
2475.200 24	87.20 2499.2	0 251	1.20 2523	3.20 2535.	20 2547	7.20 2	559.20 2571	.20	2595.20 M	
No.	Frequent (MHz)	-	Factor (dB/m)	Readin (dBuV)		vel V/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	2483.50	0	31.24	14.16	45	45.40		-28.60	peak	
	2483.50	0	31.24	3.71	34	.95	54.00	-19.05	AVG	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

nt. Pol. Vertical													
est Mod	e:	8-	DPSK N	Node	e 2480N	1Hz							
0.0 dBuV/n	n				1							1	-
													1
-								FCC	Part15 RE	-Class	B Above 1G F	эκ	
50								FCC	Part15 DE	-Class	B Above 1G A	w.	
								100		-Ciass	D ADOVE TO A		
X													
L.	(many all because front years	++++++++++++++++++++++++++++++++++++++				•••••••	hangu manaka	nather from a const	molandar		age means the host of	an a	
													1
						_							
.0 2475.200 2	487 20 24	99.20	2511.20	252	3.20 253	35.20	2547	7 20	2559.20	2571	20	2595.20	_ MP
No.	Frequency		y Factor		Reading		Level		Limit		Margin	Detecto	tor
NO.	(MF	lz)	(dB/n	n)	(dBu\	/)	(dBu	V/m)	(dBuV/m)		(dB)	Delector	<u> </u>
1	2483	.500	31.2	4	15.05		46.29		74.00		-27.71	peak	
2	2483	.500	31.2	.4	4.34	ł	35	.58	54.	00	-18.42	AVG	
			•		•						•		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value



3.4. Band edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic.
 - Sweep = auto, Detector function = peak, Trace = max hold
- Measure and record the results in the test report.

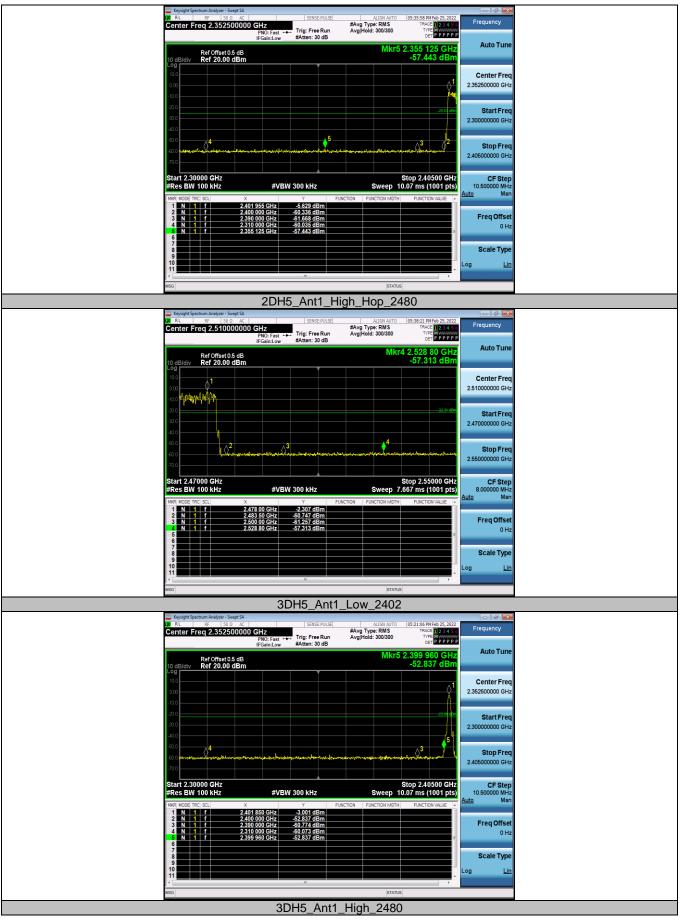
Test Mode

Please refer to the clause 2.4.

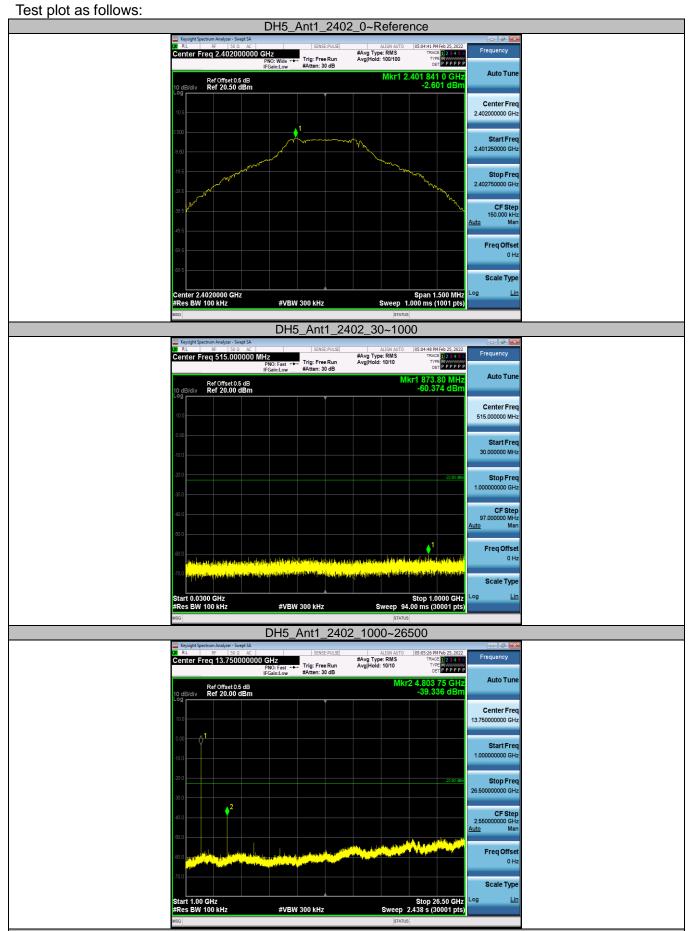
Test Results

(1) Band edge Conducted Test

Test Mode	Antenna	ChName	Frequency (MHz)	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict	
DH5		Low	2402	-2.62	-52.19	<=-22.62	PASS	
	Ant1	High	2480	-1.97	-56.98	<=-21.97	PASS	
	AIIU	Low	Hop_2402	-2.98	-57.36		PASS	
		High	Hop_2480	-1.99	-56.36	<=-21.99	PASS	
	Ant1	Low	2402	-2.81	-48.91	<=-22.81	PASS	
2DH5		A nt1	High	2480	-2.00	-54.18	<=-22.00	PASS
2005		Low	Hop_2402	-5.63	-57.44	<=-25.63	PASS	
		High	Hop_2480	-2.31	-57.31	<=-22.31	PASS	
	Ant1	A ==+1	Low	2402	-3.00	-52.84	<=-23.00	PASS
			High	2480	-1.80	-56.64	<=-21.80	PASS
3DH5		Low	Hop_2402	-4.97	-57.69	<=-24.97	PASS	
		High	Hop_2480	-3.34	-57.57	<=-23.34	PASS	

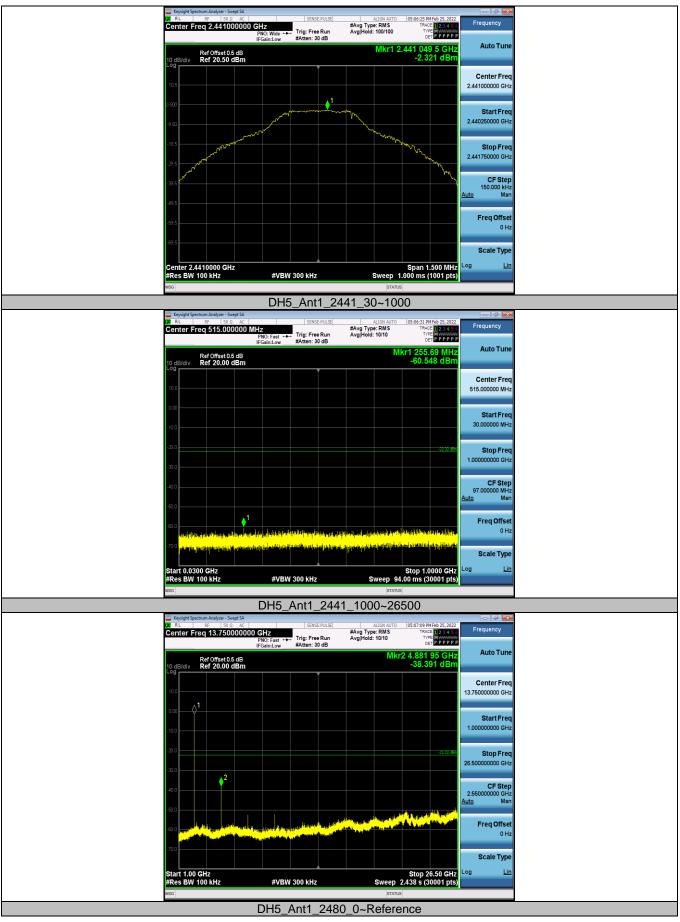


1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-cto.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

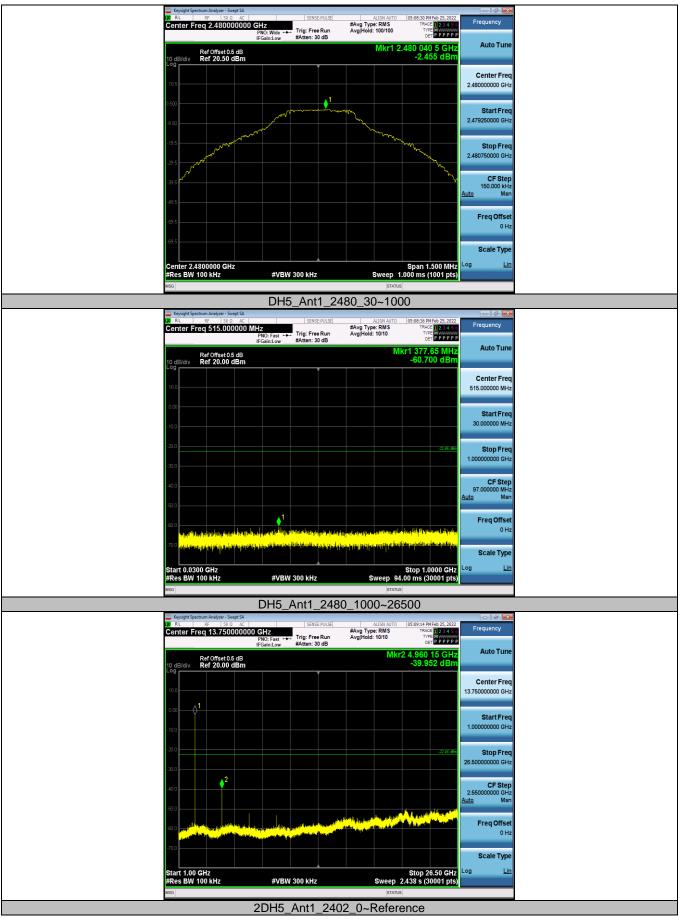


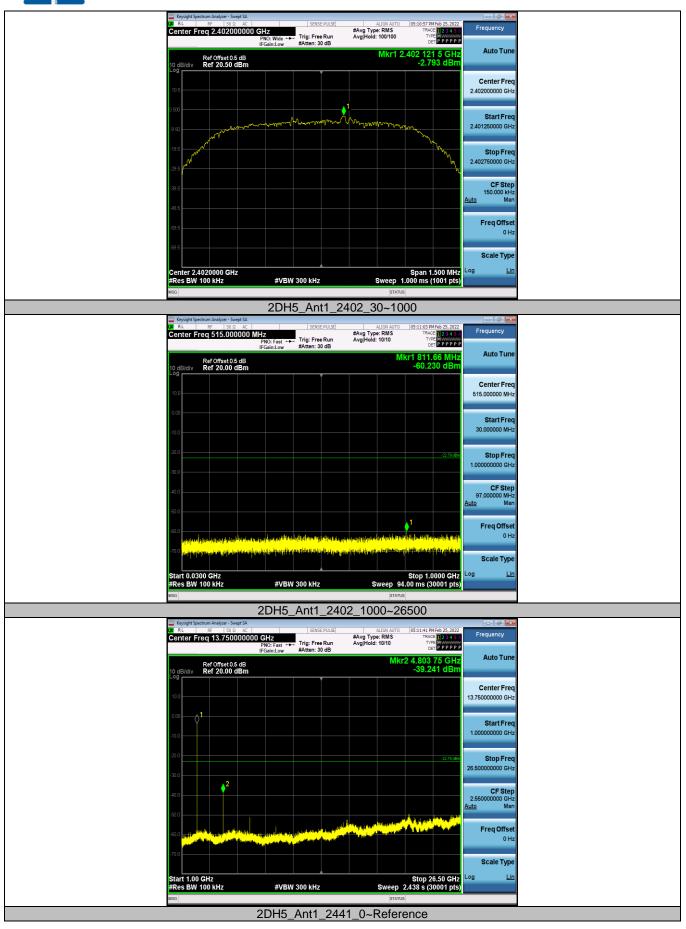
(2) Conducted Spurious Emissions Test

Test Mode	Antenna	Frequency (MHz)	FreqRange [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	-2.60	-2.60	lapini	PASS
		2402					
		2402	30~1000	-2.60	-60.37	<=-22.60	PASS
			1000~26500	-2.60	-39.34	<=-22.60	PASS
DUIE			Reference	-2.32	-2.32		PASS
DH5	Ant1	2441	30~1000	-2.32	-60.55	<=-22.32	PASS
			1000~26500	-2.32	-38.39	<=-22.32	PASS
			Reference	-2.46	-2.46		PASS
		2480	30~1000	-2.46	-60.70	<=-22.46	PASS
			1000~26500	-2.46	-39.95	<=-22.46	PASS
	Ant1		Reference	-2.79	-2.79		PASS
		2402 2441 2480	30~1000	-2.79	-60.23	<=-22.79	PASS
			1000~26500	-2.79	-39.24	<=-22.79	PASS
			Reference	-2.22	-2.22		PASS
2DH5			30~1000	-2.22	-60.52	<=-22.22	PASS
			1000~26500	-2.22	-37.15	<=-22.22	PASS
			Reference	-2.10	-2.10		PASS
			30~1000	-2.10	-60.10	<=-22.10	PASS
			1000~26500	-2.10	-40.96	<=-22.10	PASS
			Reference	-3.03	-3.03		PASS
		2402	30~1000	-3.03	-59.51	<=-23.03	PASS
			1000~26500	-3.03	-38.10	<=-23.03	PASS
		2441	Reference	-2.40	-2.40		PASS
3DH5	Ant1		30~1000	-2.40	-60.34	<=-22.40	PASS
			1000~26500	-2.40	-41.01	<=-22.40	PASS
			Reference	-1.83	-1.83		PASS
		2480	30~1000	-1.83	-60.66	<=-21.83	PASS
			1000~26500	-1.83	-41.66	<=-21.83	PASS



DH5_Ant1_2441_0~Reference





For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

