

MEASUREMENT REPORT

FCC PART 15.247 Bluetooth

Report No.: S20221129093605

Issue Date: 04-20-2023

Applicant: SBOT Technologies LLC
Address: 230 W 39th St, 8th FL, New York United States 10018
FCC ID: 2A3Q4-CA03AN
Product: Caper Cart M3 Android board
Model No.: PCBA-CAP-CA03AN-RK39
FCC Classification: FCC Part 15 Spread Spectrum Transmitter (DSS)
FCC Rule Part(s): Part 15 Subpart C (15.247)
Test Procedure(s): ANSI C63.10-2013, KDB 558074 D01v05r02
Result: Pass
Item Receipt Date: Feb 08, 2023
Test Date: Feb 19, 2023

Compiled By

(Amos Xia)

Senior Test Engineer

Approved By

(Line Chen)

Engineer Manager

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. Test results reported herein relate only to the item(s) tested. The test report shall not be reproduced except in full without the written approval of Fangguang Inspection & Testing Co., Ltd. Wuxi Branch

The test report must not be used by the client to claim product certifications, approval, or endorsement by NVLAP, NIST or any agency of U.S. Government.

Revision History

Report No.	Version	Description	Issue Date
S20221129093605	Rev. 01	/	04-20-2023

CONTENTS

Description	Page
§2.1033 General Information	6
1. INTRODUCTION	7
1.1. Scope	7
1.2. FANGGUANG Test Location	7
2. PRODUCT INFORMATION	8
2.1. Equipment Description	8
2.2. Product Specification Subjective to this Standard	8
2.3. Operation Frequency / Channel List	9
2.4. Pseudorandom Frequency Hopping Sequence	10
2.5. Device Capabilities	10
2.6. Description of Test Software	10
2.7. Test Configuration	11
2.8. EMI Suppression Device(s)/Modifications	11
2.9. Labeling Requirements	11
2.10. Calculation with all conversion and correction factors used	11
3. DESCRIPTION of TEST	13
3.1. Evaluation Procedure	13
3.2. AC Line Conducted Emissions	13
3.3. Radiated Emissions	14
4. ANTENNA REQUIREMENTS	15
5. TEST EQUIPMENT CALIBRATION DATE	16
6. MEASUREMENT UNCERTAINTY	17
7. TEST RESULT	18
7.1. Summary	18
7.2. 20dB Bandwidth Measurement	19
7.2.1. Test Limit	19
7.2.2. Test Procedure used	19
7.2.3. Test Setting	19
7.2.4. Test Setup	19
7.2.5. Test Result	20
7.3. Output Power Measurement	25
7.3.1. Test Limit	25

7.3.2. Test Procedure Used	25
7.3.3. Test Setting	25
7.3.4. Test Setup	26
7.3.5. Test Result	27
7.4. Carrier Frequency Separation Measurement	32
7.4.1. Test Limit	32
7.4.2. Test Procedure Used	32
7.4.3. Test Setting	32
7.4.4. Test Setup	33
7.4.5. Test Result	34
7.5. Number of Hopping Channels Measurement	36
7.5.1. Test Limit	36
7.5.2. Test Procedure Used	36
7.5.3. Test Setting	36
7.5.4. Test Setup	36
7.5.5. Test Result	37
7.6. Time of Occupancy Measurement	39
7.6.1. Test Limit	39
7.6.2. Test Procedure Used	39
7.6.3. Test Setting	39
7.6.4. Test Setup	40
7.6.5. Test Result	41
7.7. Band-edge Compliance Measurement	51
7.7.1. Test Limit	51
7.7.2. Test Procedure Used	51
7.7.3. Test Setting	51
7.7.4. Test Setup	52
7.7.5. Test Result	53
7.8. Conducted Spurious Emissions Measurement	60
7.8.1. Test Limit	60
7.8.2. Test Procedure Used	60
7.8.3. Test Setting	60
7.8.4. Test Setup	61
7.8.5. Test Result	62
7.9. Radiated Spurious Emission Measurement	77
7.9.1. Test Limit	77
7.9.2. Test Procedure Used	77
7.9.3. Test Setting	78

7.9.4. Test Setup	80
7.9.5. Test Result	81
7.10. Radiated Restricted Band Edge Measurement	92
7.10.1. Test Procedure Used	95
7.10.2. Test Setting	95
7.10.3. Test Setup	96
7.10.4. Test Result	97
7.11. AC Conducted Emissions Measurement	121
7.11.1. Test Limit	121
7.11.2. Test Setup	121
7.11.3. Test Result	121
8. CONCLUSION	122

§2.1033 General Information

Applicant:	SBOT Technologies LLC
Applicant Address:	230 W 39th St, 8th FL, New York United States 10018
Manufacturer:	SBOT Technologies LLC
Manufacturer Address:	230 W 39th St, 8th FL, New York United States 10018
Test Site:	Fangguang Inspection & Testing Co., Ltd.
LAB ID:	CN5037
Test Site Address:	G9 Building, China Sensor Network International Innovation Park No.200, Linghu Avenue Wuxi, Jiangsu 214000 China
FCC Rule Part(s):	Part 15 Subpart C (15.247)
FCC ID:	2A3Q4-CA03AN
Test Device Serial No.:	S/N.: CAM3ANDV02.01.01.000089YX23300104 <input type="checkbox"/> Production <input checked="" type="checkbox"/> Pre-Production <input type="checkbox"/> Engineering
FCC Classification:	FCC Part 15 Spread Spectrum Transmitter (DSS)

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2. FANGGUANG Test Location

These measurement tests were performed at the Fangguang Inspection and testing Co.,LTD located at 200 Linghu Avenue, Xinwu District, Wuxi City. The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

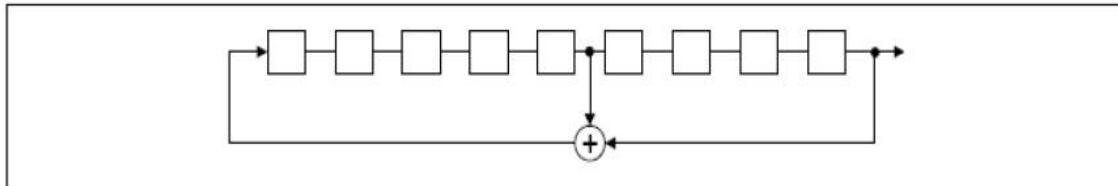
Product Name:	Caper Cart M3 Android board
Model Name:	PCBA-CAP-CA03AN-RK39
Trade Mark:	/
Input Voltage Range:	DC 24V
Bluetooth Version:	5.0

2.2. Product Specification Subjective to this Standard

Operating Frequency:	2402~2480MHz
Channel Number:	79
Type of modulation:	GFSK, $\Pi/4$ DQPSK, 8DPSK
Data Rate:	1Mbps(GFSK), 2Mbps($\Pi/4$ DQPSK), 3Mbps (8DPSK)
Antenna Type:	FPC Antenna
Antenna Gain:	6.22dBi

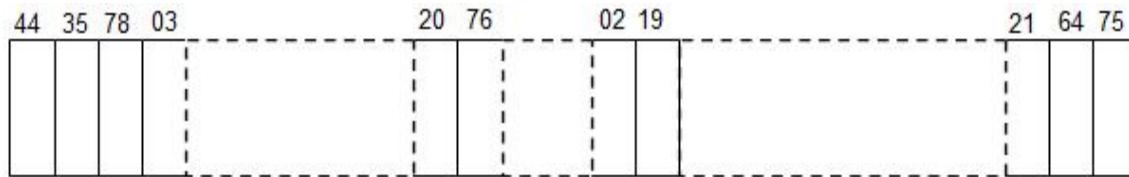
The equipment under test (EUT) is the **Caper Cart M3 Android board**. The test data contained in this report pertains only to the emissions due to the EUT's Bluetooth transmitter.

- 15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.
- 15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.


2.3. Operation Frequency / Channel List

Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	01	2403 MHz	02	2404 MHz
03	2405 MHz	04	2406 MHz	05	2407 MHz
06	2408 MHz	07	2409 MHz	08	2410 MHz
09	2411 MHz	10	2412 MHz	11	2413 MHz
12	2414 MHz	13	2415 MHz	14	2416 MHz
15	2417 MHz	16	2418 MHz	17	2419 MHz
18	2420 MHz	19	2421 MHz	20	2422 MHz
21	2423 MHz	22	2424 MHz	23	2425 MHz
24	2426 MHz	25	2427 MHz	26	2428 MHz
27	2429 MHz	28	2430 MHz	29	2431 MHz
30	2432 MHz	31	2433 MHz	32	2434 MHz
33	2435 MHz	34	2436 MHz	35	2437 MHz
36	2438 MHz	37	2439 MHz	38	2440 MHz
39	2441 MHz	40	2442 MHz	41	2443 MHz
42	2444 MHz	43	2445 MHz	44	2446 MHz
45	2447 MHz	46	2448 MHz	47	2449 MHz
48	2450 MHz	49	2451 MHz	50	2452 MHz
51	2453 MHz	52	2454 MHz	53	2455 MHz
54	2456 MHz	55	2457 MHz	56	2458 MHz
57	2459 MHz	58	2460 MHz	59	2461 MHz
60	2462 MHz	61	2463 MHz	62	2464 MHz
63	2465 MHz	64	2466 MHz	65	2467 MHz
66	2468 MHz	67	2469 MHz	68	2470 MHz
69	2471 MHz	70	2472 MHz	71	2473 MHz
72	2474 MHz	73	2475 MHz	74	2476 MHz
75	2477 MHz	76	2478 MHz	77	2479 MHz
78	2480 MHz	-	-	-	-

2.4. Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 - 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

2.5. Device Capabilities

This device contains the following capabilities: Bluetooth (5.0)

Note: The maximum achievable duty cycle was determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle
DH5	76.80%
2DH5	77.07%
3DH5	77.07%

2.6. Description of Test Software

The test utility software used during testing was “Ampak RFTestTool”, the version was v 7.0, and the

emission setting value is the software default value.

2.7. Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.8. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.9. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

RSP-100 Issue 11 Section 3

The manufacturer, importer or distributor shall meet the labelling requirements set out in this section for every unit:

- (i) prior to marketing in Canada, for products manufactured in Canada
- (ii) prior to importation into Canada, for imported products

For information regarding the e-labelling option, see Notice 2014-DRS1003. The label for the certified product represents the manufacturer's or importer's compliance with Innovation, Science and Economic Development Canada's (ISED) regulatory requirements.

Please see attachment for IC label and label location.

2.10. Calculation with all conversion and correction factors used

For AC Line Conducted Emissions Test:

Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

For Radiated Emissions Below 1GHz Test:

Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

For Radiated Emissions Above 1GHz Test:

Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the “Filing were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 9'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω/50uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions were used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. The turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beamwidth of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

“An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.”

- Use a unique coupling to the intentional radiator.

5. TEST EQUIPMENT CALIBRATION DATE

Radiated Emission

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Loop Antenna	Schwarzbeck	FMZB 1519B	FWXGJC-2018-015	3 year	2024/08/13
Bi-Log Antenna	R&S	HL562E	FWXGJC-2016-267-06	3 year	2023/03/30
Broadband Horn Antenna	R&S	HF907	FWXGJC-2016-267-07	1 year	2023/03/12
Broadband Horn Antenna	Schwarzbeck	BBHA9170	FWXGJC-2018-016	3 year	2024/06/04
EMI Receiver	R&S	ESR26	FWXGJC-2016-267-01	1 year	2023/11/08
Pre-Amplifier	R&S	SCU-18D	FWXGJC-2016-267-05	1 year	2023/11/17
Pre-Amplifier	R&S	EMC184055 SE	FWXGJC-2018-018	3 year	2025/04/13
Thermohygrometer	Yuhuaze	HTC-1	FWXDA-2016-386	1 year	2023/11/21
Anechoic Chamber	Aimuke	EMCCT-3	FWXGJC-2016-270	1 year	2023/04/07

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Keysight	N9010B	FWXGJC-2018-010	1 year	2023/04/13
RF Control Unit	Toncend	JS0806-2	FWXGJC-2018-013	1 year	2023/06/30
Thermohygrometer	Yuhuaze	HTC-1	FWXDA-2016-385	1 year	2023/11/21

Test Software	Manufacturer	Version	Asset No.	Function
EMI Test Software	toncend	/	/	/

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

AC Conducted Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 2.05dB
Radiated Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 30MHz-1GHz: 3.06dB 1GHz-12.75GHz: 4.13dB
Spurious Emissions, Conducted
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 30MHz-1GHz: 1.00 dB 1GHz-26.5GHz: 1.30 dB
Output Power
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 0.60dB
Power Spectrum Density
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 0.80dB
Occupied Bandwidth
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 0.20MHz

7. TEST RESULT

7.1. Summary

FCC Part Section(s)	IC Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(1)	RSS-247 [5.1]	20dB Bandwidth	N/A	Conducted	PASS	Section 7.2
15.247(b)(1)	RSS-247 [5.4(b)]	Peak Transmitter Output Power	<0.125 Watt if > 75 non- overlapping channels used		PASS	Section 7.3
15.247(a)(1)	RSS-247 [5.1]	Channel Separation	> 2/3 of 20 dB BW for systems with Output Power < 125mW		PASS	Section 7.4
15.247(a)(1)(i ii)	RSS-247 [5.1]	Number of Channels	> 15 Channels		PASS	Section 7.5
15.247(a)(1)(i ii)	RSS-247 [5.1]	Time of Occupancy	< 0.4 sec in 31.6 sec period		PASS	Section 7.6
15.247(d)	RSS-247 [5.5]	Band Edge / out-of-Band Emissions	Conducted \geq 20dBc		PASS	Section 7.7 Section 7.8
15.205, 15.209	RSS-247 [5.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	PASS	Section 7.9 Section 7.10
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	N/A	Section 7.11

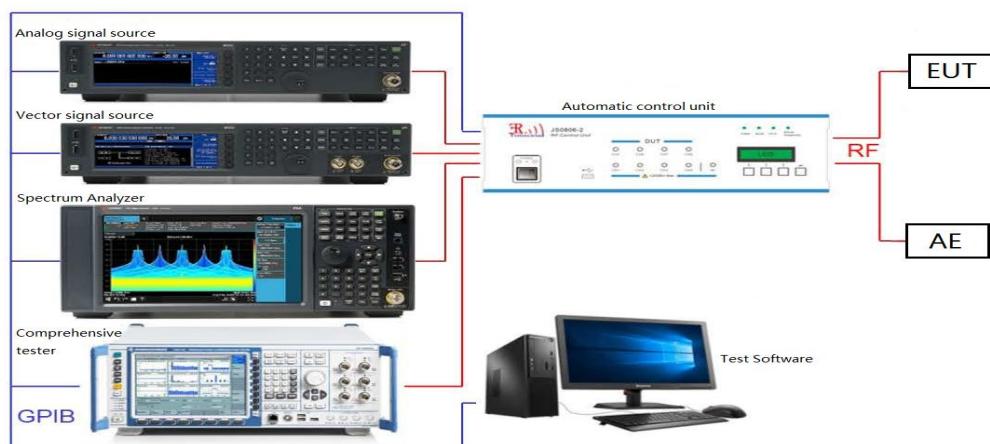
Notes:

- 1) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

7.2. 20dB Bandwidth Measurement

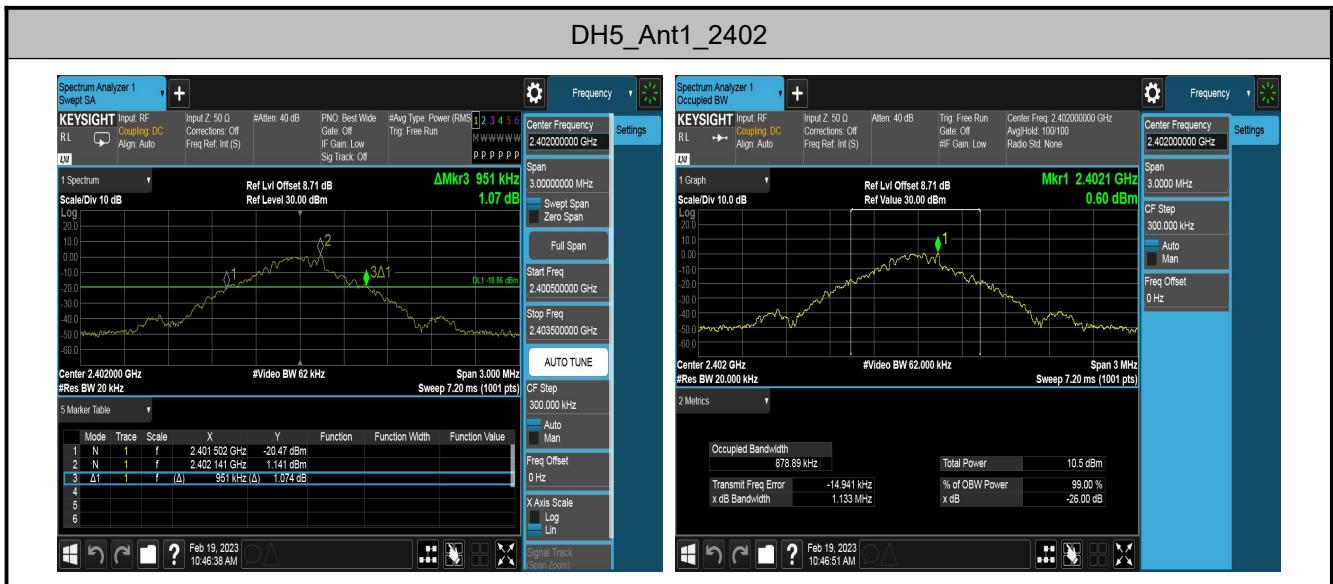
7.2.1. Test Limit

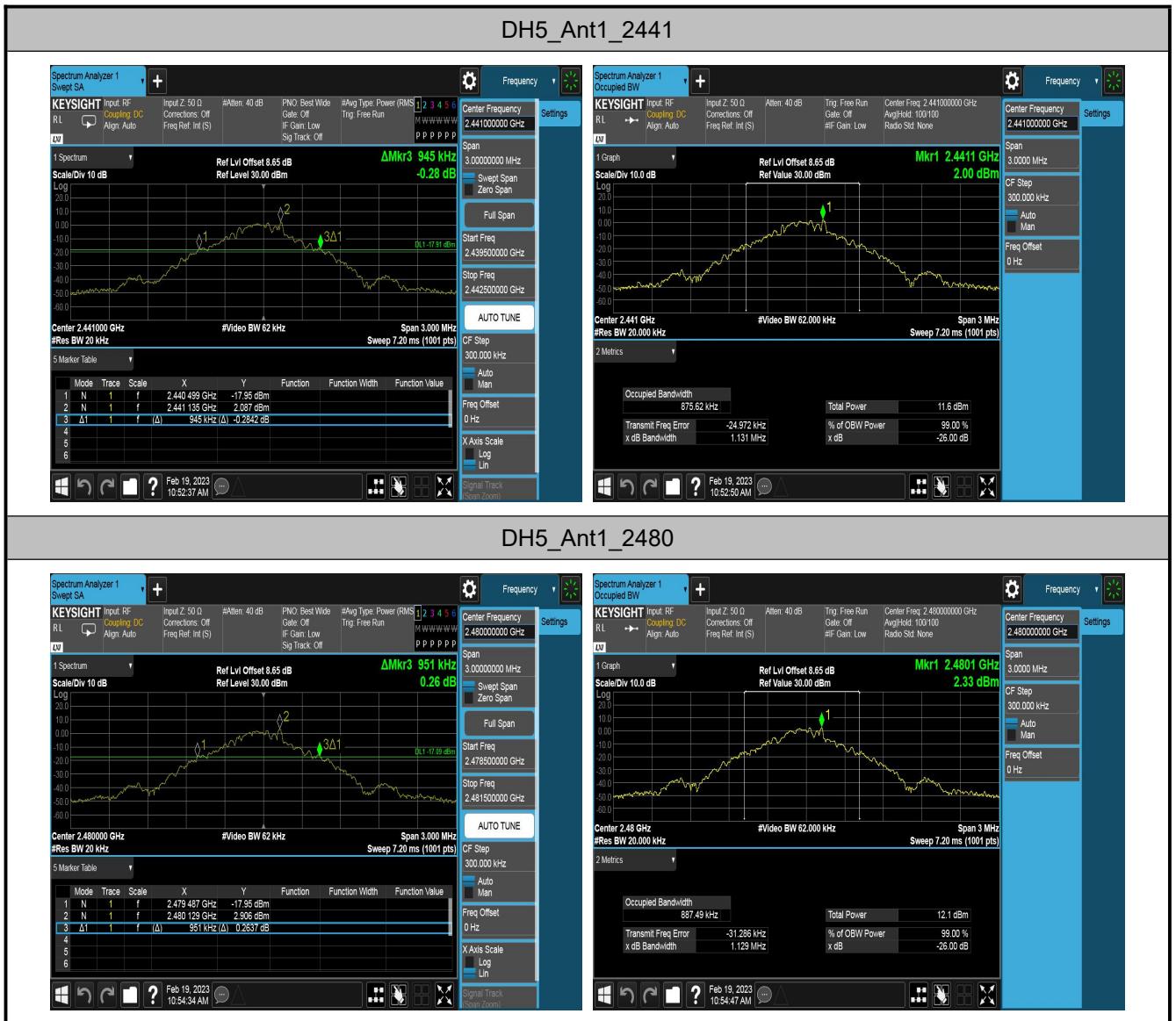
N/A


7.2.2. Test Procedure used

ANSI C63.10-2013 - Section 6.9.2

7.2.3. Test Setting


1. Set RBW \geq 1% to 5% of the 20dB bandwidth
2. VBW = approximately three times RBW
3. Span = approximately 2 to 5 times the 20dB bandwidth, centered on a hopping channel
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. Allow the trace to stabilize
8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.


7.2.4. Test Setup

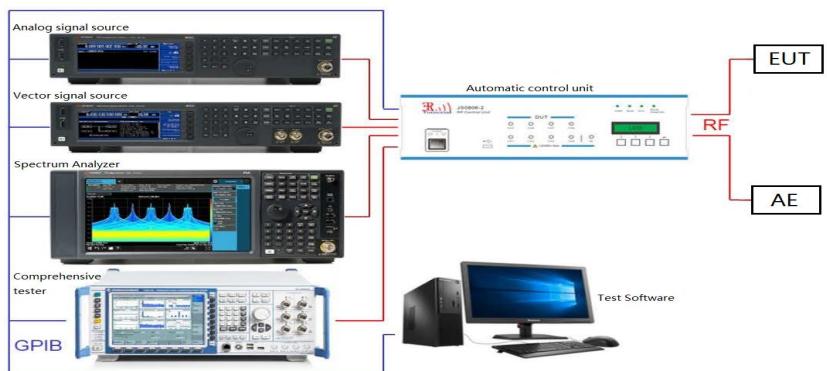
7.2.5. Test Result


Test Mode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	99% BW (MHz)	Verdict
DH5	Ant1	2402	0.951	2401.502	2402.453	0.87889	PASS
		2441	0.945	2440.499	2441.444	0.87562	PASS
		2480	0.951	2479.487	2480.438	0.88749	PASS
2DH5	Ant1	2402	1.329	2401.319	2402.648	1.2050	PASS
		2441	1.329	2440.313	2441.642	1.1998	PASS
		2480	1.335	2479.304	2480.639	1.2063	PASS
3DH5	Ant1	2402	1.305	2401.331	2402.636	1.2080	PASS
		2441	1.302	2440.325	2441.627	1.2078	PASS
		2480	1.305	2479.319	2480.624	1.2114	PASS

7.3. Output Power Measurement

7.3.1. Test Limit

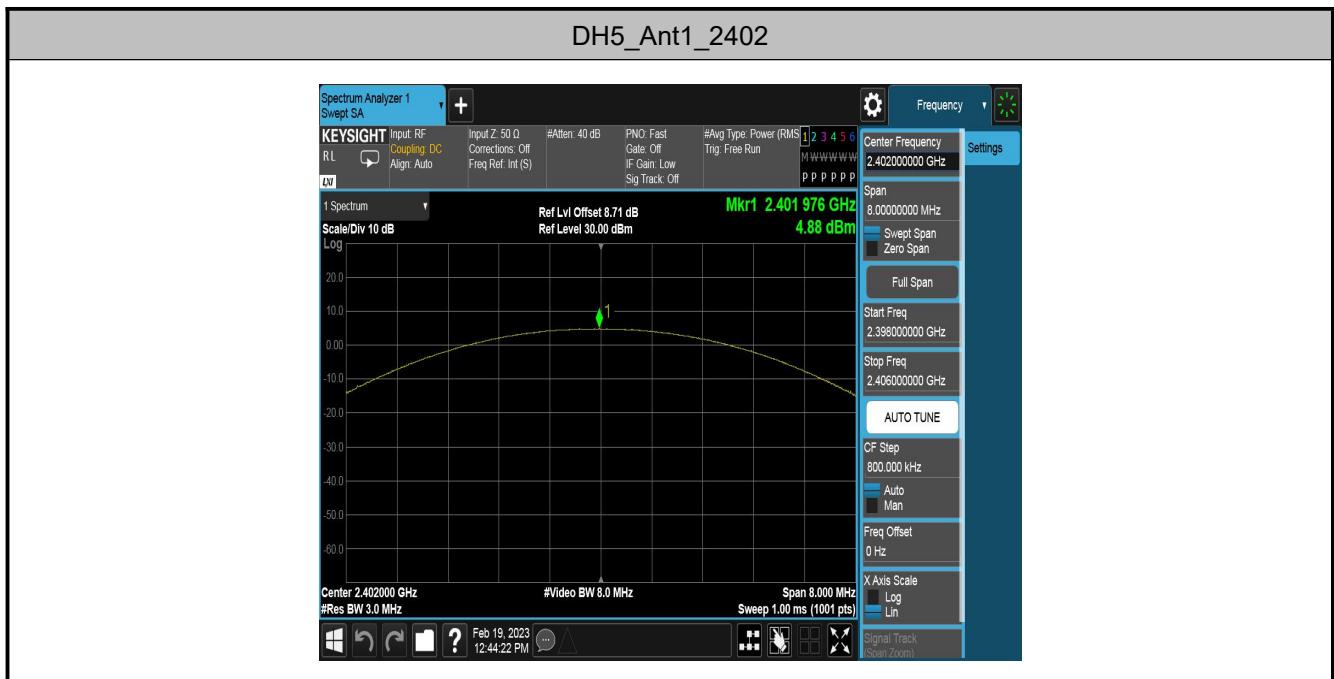
The maximum out power permissible output power is 1 Watt for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band. And for antenna gain greater than 6dBi the limit shall reduce by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

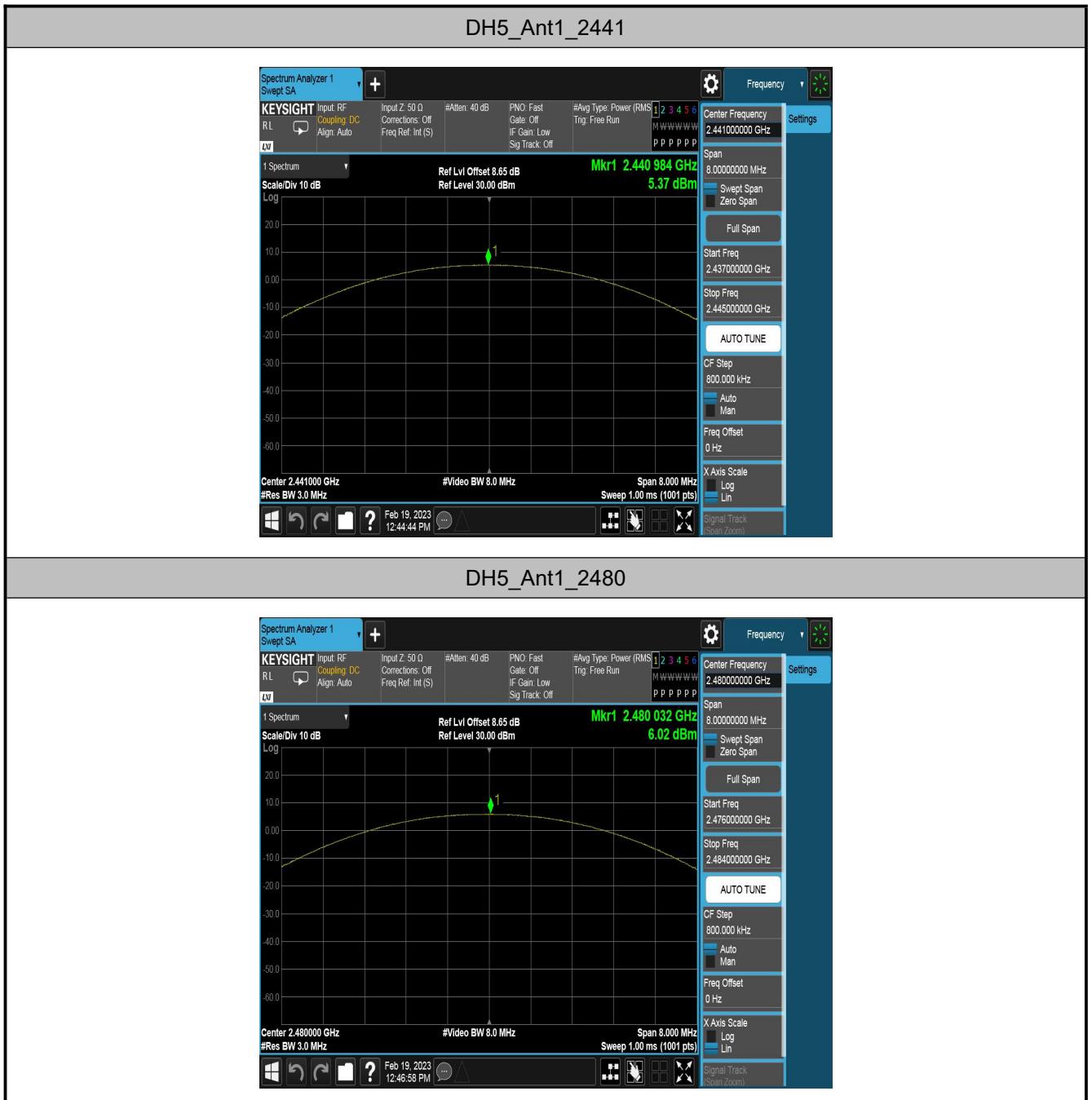

7.3.2. Test Procedure Used

ANSI C63.10-2013 - Section 7.8.5

7.3.3. Test Setting

1. Set RBW \geq the 20 dB bandwidth of the emission being measured.
2. VBW \geq RBW
3. Span = approximately five times the 20dB bandwidth, centered on a hopping channel
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. Allow the trace to stabilize, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power (don't forget added the external attenuation and cable loss)

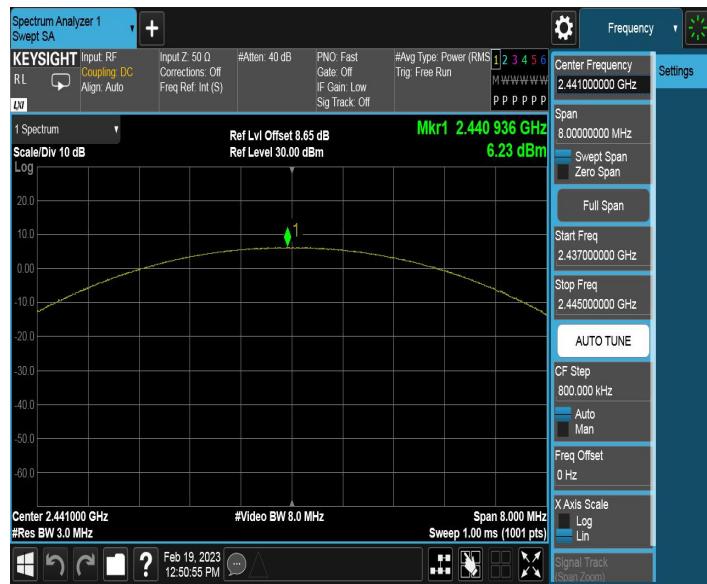

7.3.4. Test Setup



7.3.5. Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
DH5	Ant1	2402	4.88	≤29.78	PASS
		2441	5.37	≤29.78	PASS
		2480	6.02	≤29.78	PASS
2DH5	Ant1	2402	5.65	≤29.78	PASS
		2441	6.23	≤29.78	PASS
		2480	6.71	≤29.78	PASS
3DH5	Ant1	2402	6.23	≤29.78	PASS
		2441	6.79	≤29.78	PASS
		2480	7.16	≤29.78	PASS

Limit=30-(6.22-6)=29.78dBm



2DH5_Ant1_2402

2DH5_Ant1_2441

2DH5_Ant1_2480

3DH5_Ant1_2402

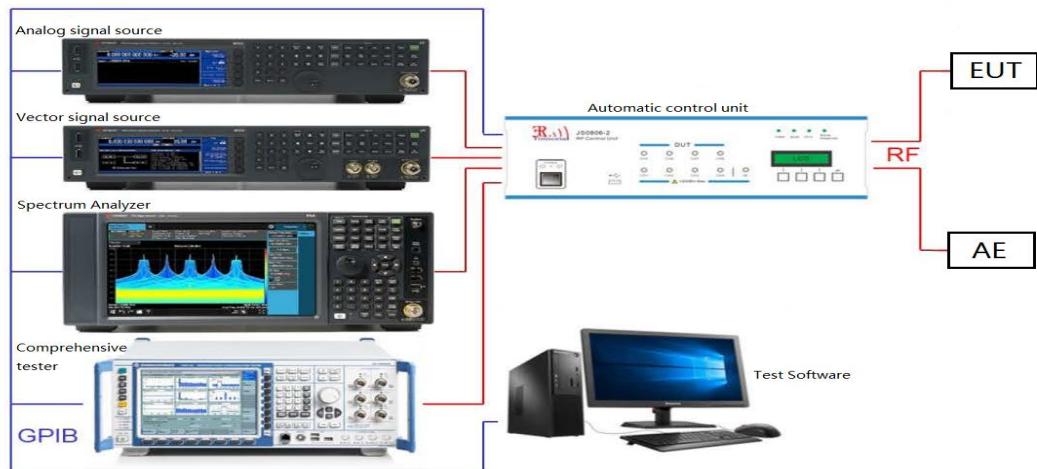
3DH5_Ant1_2441

3DH5_Ant1_2480

7.4. Carrier Frequency Separation Measurement

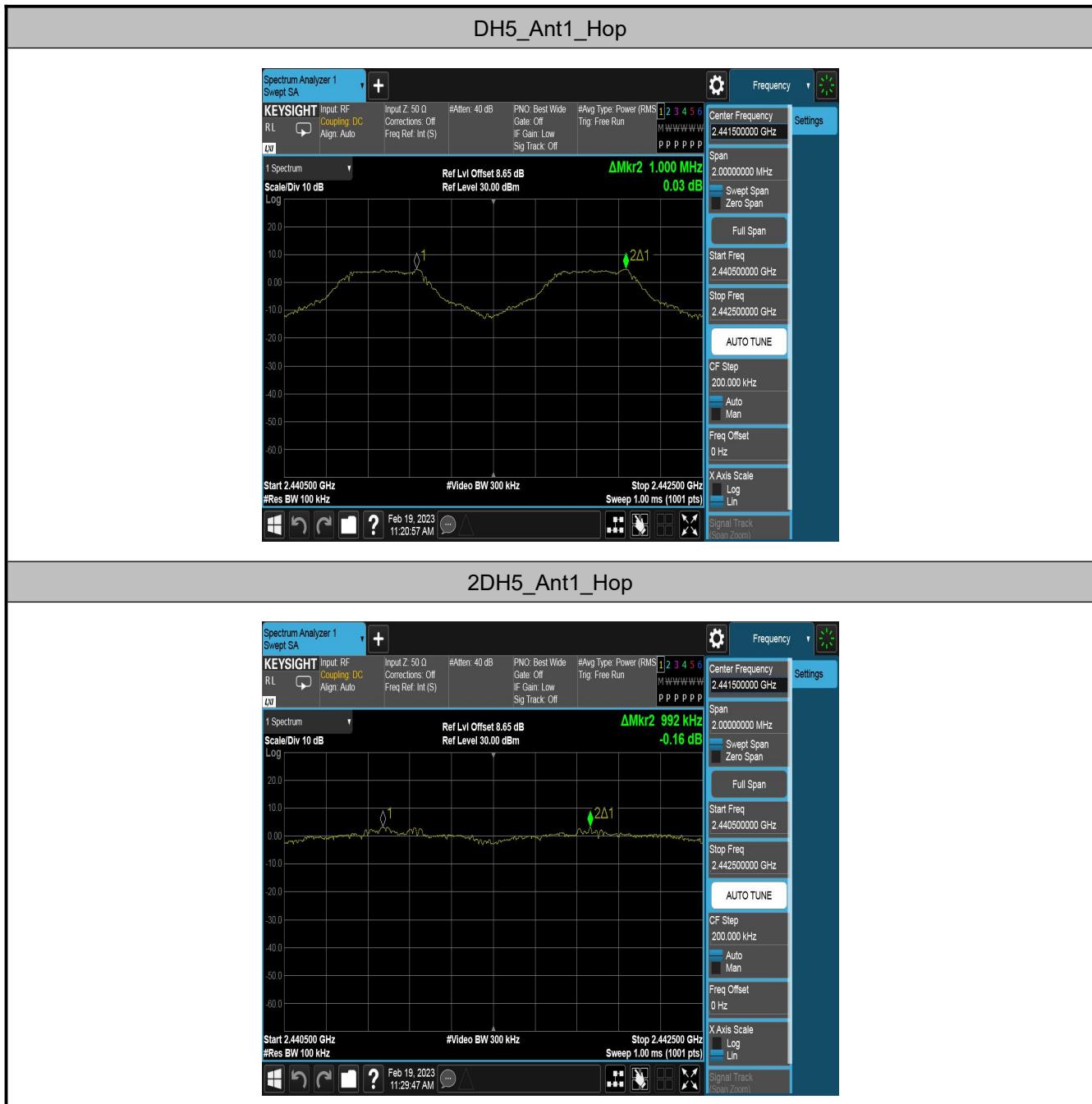
7.4.1. Test Limit

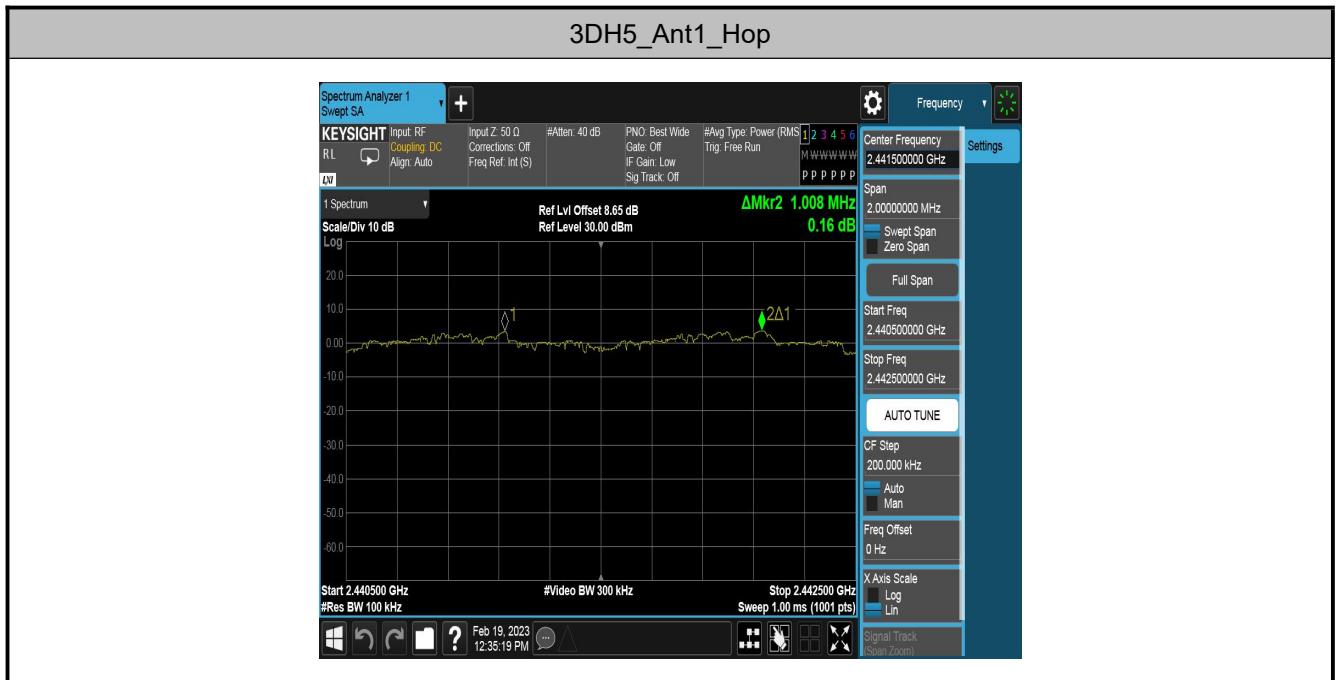
For BDR Mode, the minimum permissible channel separation for this system is the value of the 20dB BW. For EDR Mode, the minimum permissible channel separation for this system is 2/3 the value of the 20dB BW.


7.4.2. Test Procedure Used

ANSI C63.10-2013 - Section 7.8.2

7.4.3. Test Setting


1. Span = wide enough to capture the peaks of two adjacent channels.
2. Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
3. VBW \geq RBW
4. Sweep time = Auto couple
5. Detector = Peak
6. Trace mode = Max hold
7. Allowed the trace to stabilize
8. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.


7.4.4. Test Setup

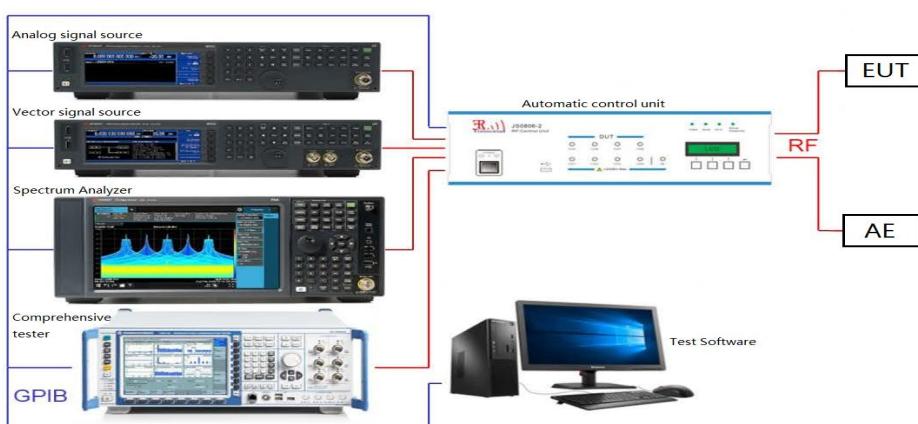
7.4.5. Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
DH5	Ant1	Hop	1	≥0.951	PASS
2DH5	Ant1	Hop	0.992	≥0.890	PASS
3DH5	Ant1	Hop	1.008	≥0.870	PASS

7.5. Number of Hopping Channels Measurement

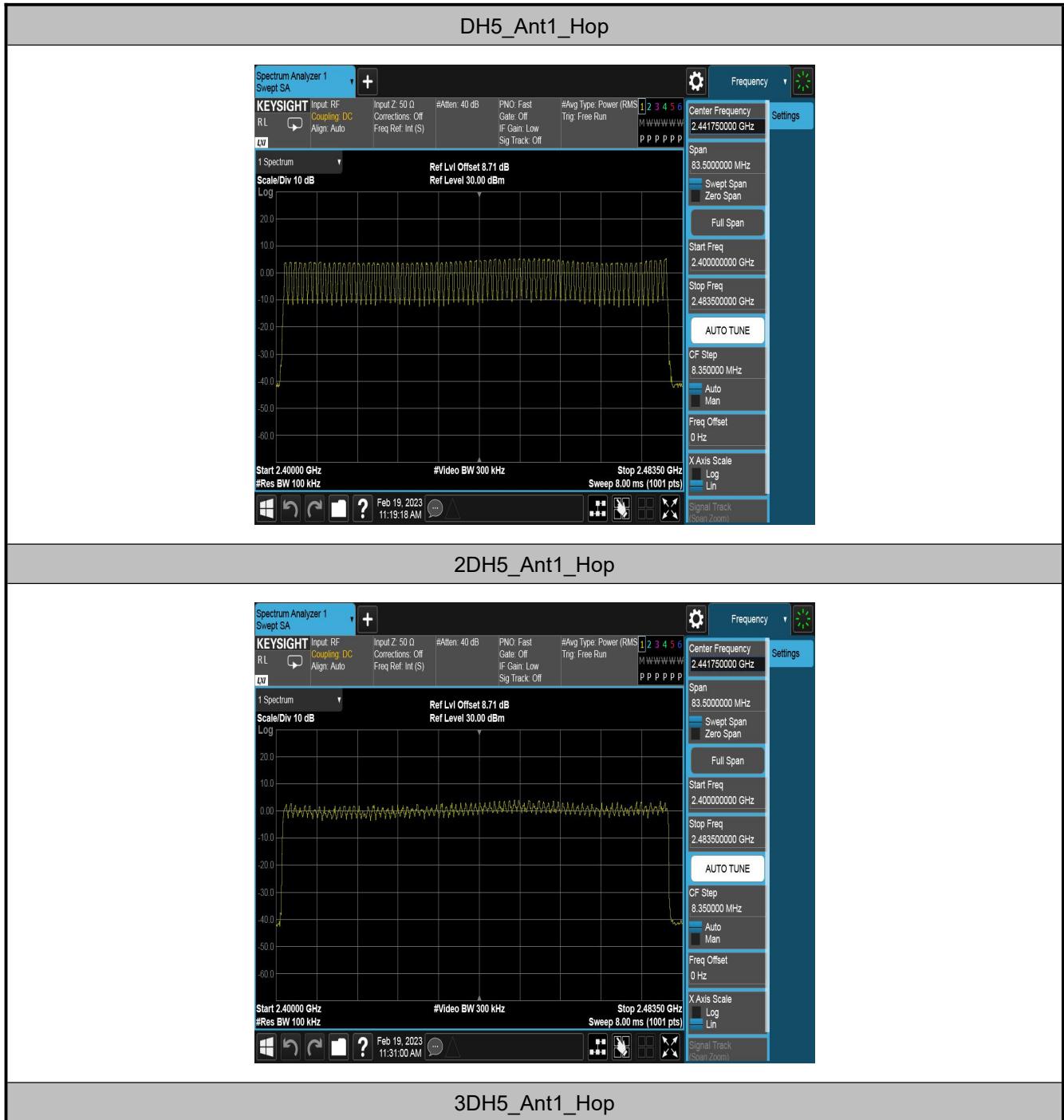
7.5.1. Test Limit

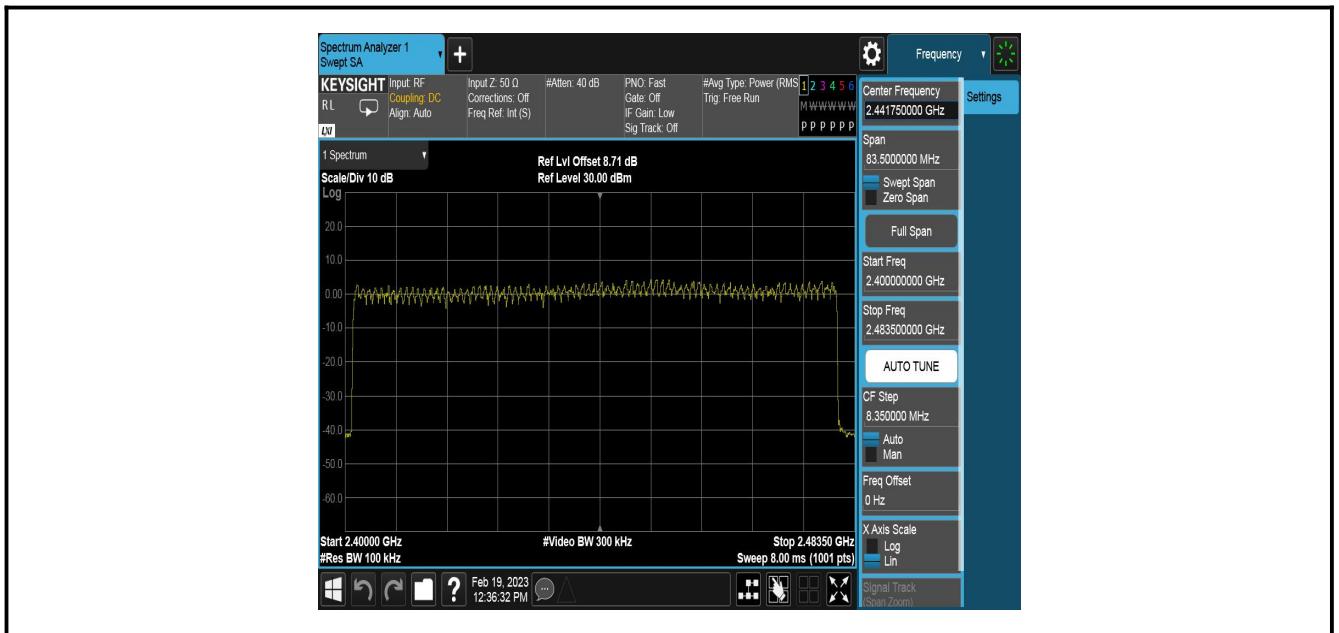
This frequency hopping system must employ a minimum of 15 hopping channels.


7.5.2. Test Procedure Used

ANSI C63.10-2013 - Section 7.8.3

7.5.3. Test Setting


1. Span = the frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
2. To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
3. VBW \geq RBW
4. Sweep time = Auto couple
5. Detector = Peak
6. Trace mode = Max hold
7. Allow the trace to stabilize


7.5.4. Test Setup

7.5.5. Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Hop	79	>=15	PASS
2DH5	Ant1	Hop	79	>=15	PASS
3DH5	Ant1	Hop	79	>=15	PASS

