TEST REPORT

Report No....:: CHTEW22060053 Report vertification:

Project No....: SHT2205110602EW

FCC ID:: 2A3OORM01

Applicant's name: Shenzhen Ysair Technology Co., LTD

6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Address:

Shenzhen, Guangdong, China

Test item description....:: **Two Way Radio**

Trade Mark....:: RETEVIS

Model/Type reference..... RM01

Listed Model(s):

FCC 47 CFR Part2.1093

IEEE Std C95.1, 1999 Edition Standard::

IEEE 1528: 2013

Date of receipt of test sample...... May. 31, 2022

Date of testing..... Jun. 01, 2022- Jun. 09, 2022

Date of issue....: Jun. 10, 2022

PASS Result:

Compiled by

(position+printed name+signature).: File administrators: Silvia Li

Supervised by

(position+printed name+signature).: Test Engineer: Weiyang Xiang

Approved by

(position+printed name+signature).: Manager: Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao,

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Page: 1 of 25

Report No.: CHTEW22060053 Page: 2 of 25 Issued: 2022-06-10

Contents

<u>1.</u>	Statement of Compliance	3
<u>2.</u>	Test Standards and Report version	4
2.1.	Test Standards	4
2.2.	Report version	4
<u>3.</u>	Summary	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Test frequency list	6
3.5.	Testing Laboratory Information	7
3.6.	Environmental conditions	7
<u>4.</u>	Equipments Used during the Test	8
<u>5.</u>	Measurement Uncertainty	9
<u>6.</u>	SAR Measurements System Configuration	10
6.1.	SAR Measurement Set-up	10
6.2.	DASY5 E-field Probe System	11
6.3.	Phantoms	12
6.4.	Device Holder	12
<u>7.</u>	SAR Test Procedure	13
7.1.	Scanning Procedure	13
7.2.	Data Storage and Evaluation	15
<u>8.</u>	Position of the wireless device in relation to the phantom	17
8.1.	Front-of-face	17
8.2.	Body Position	17
<u>9.</u>	Dielectric Property Measurements & System Check	18
9.1.	Tissue Dielectric Parameters	18
9.2.	SAR System Validation	19
9.3.	System Check	20
<u>10.</u>	SAR Exposure Limits	23
<u>11.</u>	Conducted Power Measurement Results and Tune-up	24
<u>12.</u>	SAR Measurement Results	24
<u>13.</u>	Test Setup Photos	25
14	External and Internal Photos of the FUT	25

Report No.: CHTEW22060053 Page: 3 of 25 Issued: 2022-06-10

1. Statement of Compliance

Maximum Reported SAR (W/kg @1g)			
RF Exposure Conditions TNF			
Head(Dist.= 25mm)	0.301		
Body-worn(Dist.= 0mm)	0.325		

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

Report No.: CHTEW22060053 Page: 4 of 25 Issued: 2022-06-10

2. Test Standards and Report version

2.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093: Radiofrequency Radiation Exposure Evaluation: Portable Devices

<u>IEEE Std C95.1, 1999 Edition:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

<u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 447498 D04 Interim General RF Exposure Guidance v01: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

<u>KDB 643646 D01:SAR Test for PTT Radios v01r03:</u> SAR Test Reduction Considerations for Occupational PTT Radios

TCB workshop: April, 2019; Page 19, Tissue Simulating Liquids (TSL)

2.2. Report version

Revision No.	Date of issue	Description
N/A	2022-06-10	Original

Report No.: CHTEW22060053 Page: 5 of 25 Issued: 2022-06-10

3. Summary

3.1. Client Information

Applicant:	Shenzhen Ysair Technology Co., LTD
Address:	6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Ysair Technology Co., LTD
Address:	6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Shenzhen, Guangdong, China

3.2. Product Description

Main unit				
Name of EUT:	Two Way Radio			
Trade Mark:	RETEVIS			
Model No.:	RM01			
Listed Model(s):	-			
Power supply:	DC1.2V*5 from battery			
	AC 120V from adapter			
Hardware version:	6PM7-5841-HMB			
Software version:	V1.01			
Device Dimension:	Length x Width x Thickness (mm): 110 x 60 x 45			
Device Category:	Portable			
Product stage:	Production unit			
RF Exposure Environment:	General Population/Uncontrolled			
HTW test sample No.:	YPHT22051106001			

Note:

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.

3.3. Radio Specification Description

Operation Frequency Range:	156.025~163.275	MHz	
Rated Output Power:	☐ High Power: 3W		
Modulation Type:	Analog: FM		
Channel Bandwidth:	Analog: 🔀 25kHz		
Antenna Type:	Detachable antenna		

Remark:

- The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.
- 2. EUT supports VOX functionality.

Report No.: CHTEW22060053 Page: 6 of 25 Issued: 2022-06-10

3.4. Test frequency list

When the frequency channels required for SAR testing are not specified, the following should be applied to determine the number of required test channels. The test channels should be evenly spread across the transmission frequency band of each wireless mode.

$$N_c = Round \{ [100(f_{high} - f_{low})/f_c]^{0.5} \times (f_c/100)^{0.2} \},$$

 N_c is the number of test channels, rounded to the nearest integer, $f_{\rm high}$ and $f_{\rm low}$ are the highest and lowest channel frequencies within the transmission band, $f_{\rm c}$ is the mid-band channel frequency, all frequencies are in MHz.

Operation	Test Frequency	
Start Frequency	number	
156.8000	156.8000	1

Modulation Type	Channel	Test Channel	Test Frequency (MHz)
,,	Bandwidth		TX
Analog	25kHz	CH16	156.8000

Report No.: CHTEW22060053 Page: 7 of 25 Issued: 2022-06-10

3.5. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn		
Qualifications	Type Accreditation Number		
Qualifications	FCC	762235	

3.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature	18 °C to 25 °C
Ambient humidity	30%RH to 70%RH
Air Pressure	950-1050mbar

Report No.: CHTEW22060053 Page: 8 of 25 Issued: 2022-06-10

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
•	Data Acquisition Electronics DAEx	SPEAG	DAE4	1549	2022/04/12	2023/04/11
•	E-field Probe	SPEAG	ES3DV3	3304	2021/09/21	2022/09/20
0	Universal Radio Communication Tester	R&S	CMW500	137681	2022/05/12	2023/05/11
• T	issue-equivalent liquids Va	lidation				
0	Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	N/A	N/A
•	Dielectric Assessment Kit	SPEAG	DAK-12	1130	N/A	N/A
•	Network analyzer	Keysight	E5071C	MY46733048	2021/09/17	2022/09/16
O S	ystem Validation					
•	System Validation Antenna	SPEAG	CLA-150	4024	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	D450V3	1102	2021/01/20	2024/01/19
0	System Validation Dipole	SPEAG	D750V3	1180	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D835V2	4d238	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D1750V2	1164	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D1900V2	5d226	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D2450V2	1009	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	D2600V2	1150	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	D5GHzV2	1273	2021/01/26	2024/01/25
•	Signal Generator	R&S	SMB100A	114360	2021/08/05	2022/08/04
•	Power Viewer for Windows	R&S	N/A	N/A	N/A	N/A
•	Power sensor	R&S	NRP18A	101010	2021/08/05	2022/08/04
•	Power sensor	R&S	NRP18A	101386	2022/05/12	2023/05/12
•	Power Amplifier	BONN	BLWA 0160-2M	1811887	2021/11/11	2022/11/10
•	Dual Directional Coupler	Mini-Circuits	ZHDC-10-62-S+	F975001814	2021/11/11	2022/11/10
•	Attenuator	Mini-Circuits	VAT-3W2+	1819	2021/11/11	2022/11/10
•	Attenuator	Mini-Circuits	VAT-10W2+	1741	2021/11/11	2022/11/10

Note:

Report Template Version: V03 (2021-01)

^{1.} The Probe, Dipole and DAE calibration reference to the Appendix E and F.

^{2.} Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

Report No.: CHTEW22060053 Page: 9 of 25 Issued: 2022-06-10

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

Report No.: CHTEW22060053 Page: 10 of 25 Issued: 2022-06-10

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

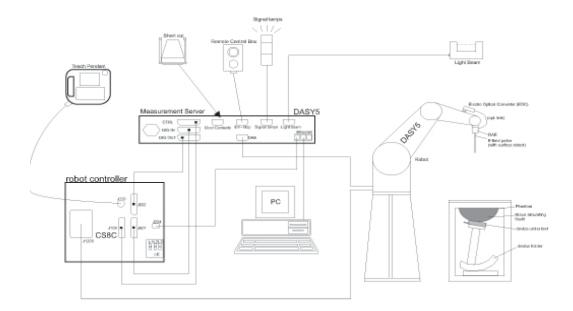
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

Report No.: CHTEW22060053 Page: 11 of 25 Issued: 2022-06-10

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency 10 MHz to 10 GHz;

Linearity: ± 0.2 dB (30 MHz to 10 GHz)

Directivity ± 0.1 dB in TSL (rotation around probe axis)

 ± 0.3 dB in TSL (rotation normal to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g;

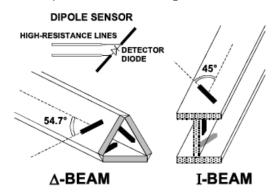
Linearity: ± 0.2 dB

Dimensions Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 10 GHz


Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Compatibility DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

Report No.: CHTEW22060053 Page: 12 of 25 Issued: 2022-06-10

6.3. Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

Report No.: CHTEW22060053 Page: 13 of 25 Issued: 2022-06-10

7. SAR Test Procedure

7.1. Scanning Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Resolutions per FCC KDB Publication 865664 D01v04

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \hat{\delta} \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orienta above, the measurement re corresponding x or y dimen at least one measurement p	tion, is smaller than the solution must be ≤ the asion of the test device with

Report No.: CHTEW22060053 Page: 14 of 25 Issued: 2022-06-10

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$						
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz}: \le 4 \text{ mm}$ $4 - 5 \text{ GHz}: \le 3 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$						
	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz}$: $\leq 3 \text{ mm}$ $4 - 5 \text{ GHz}$: $\leq 2.5 \text{ mm}$ $5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$						
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$							
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm						

Note: \hat{o} is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. The SAR drift shall be kept within ± 5 %.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: CHTEW22060053 Page: 15 of 25 Issued: 2022-06-10

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: Sensitivity: Normi, ai0, ai1, ai2

Conversion factor: ConvFi
Diode compression point: Dcpi

Device parameters: Frequency: f

Crest factor: cf
Media parameters: Conductivity: σ

Density: ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter) dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – field
probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$\mbox{H} - \mbox{fieldprobes}: \qquad \ \ \, H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1} f + a_{i2} f^2}{f}$$

Vi: compensated signal of channel (i = x, y, z) Normi: sensor sensitivity of channel (i = x, y, z),

Serisor sensitivity of charmer (T = X, y, Z

[mV/(V/m)2] for E-field Probes

ConvF: sensitivity enhancement in solution

aij: sensor sensitivity factors for H-field probes

f: carrier frequency [GHz]

Ei: electric field strength of channel i in V/m
Hi: magnetic field strength of channel i in A/m

16 of 25 Report No.: CHTEW22060053 Page: Issued: 2022-06-10

The RSS value of the field components gives the total field strength (Hermitian magnitude):

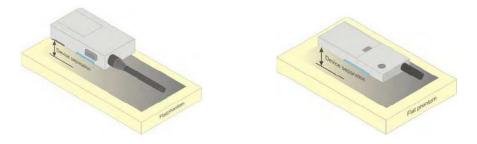
$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.
$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

local specific absorption rate in mW/g SAR:

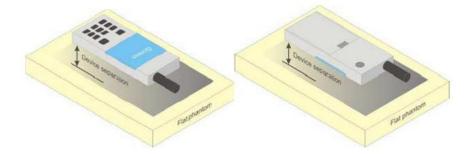
total field strength in V/m Etot:

conductivity in [mho/m] or [Siemens/m] σ: equivalent tissue density in g/cm3 ρ:


Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

Report No.: CHTEW22060053 Page: 17 of 25 Issued: 2022-06-10

8. Position of the wireless device in relation to the phantom


8.1. Front-of-face

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

8.2. Body Position

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Report No.: CHTEW22060053 Page: 18 of 25 Issued: 2022-06-10

9. Dielectric Property Measurements & System Check

9.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm 2^{\circ}\text{C}$ of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The dielectric constant (ε_r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ε_r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Tissue dielectric parameters for Head and Body								
Target Frequency	He	ad	Body					
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)				
150	52.3	0.76	61.9	0.80				

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

Dielectric F	Toperty IV	leasurement	.s Results	•							
	Dielectric performance of Head tissue simulating liquid										
Frequency	ε _r		σ(S/m)		Delta	Delta		Temp			
(MHz)	Target	Measured	Target	Measured	(ε _r)	(σ)	Limit	(°C)	Date		
150	52.30	51.44	0.760	0.762	-1.64%	0.26%	±5%	22.3	2022/6/6		

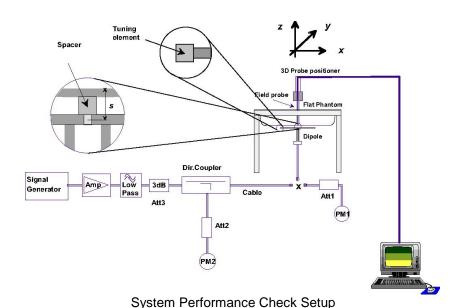
Report No.: CHTEW22060053 Page: 19 of 25 Issued: 2022-06-10

9.2. SAR System Validation

Per FCC KDB 865664 D02,SAR system validadion status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Test	Probe	Calibration	Dielectric Parameters		CW Validation			Modulation Validation				
	Date	S/N	Point		Conductivity	Permittivity	Sensitivity	Probe linearity	Probe Isotropy	Moduation type	Duty factor	PAR
	2022-06-06	3304	Head	150	0.76	51.44	PASS	PASS	PASS	FM	PASS	PASS


Report No.: CHTEW22060053 Page: 20 of 25 Issued: 2022-06-10

9.3. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of
 the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz)
 from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- The results are normalized to 1 W input power.

Report No.: CHTEW22060053 Page: 21 of 25 Issued: 2022-06-10

Photo of Dipole Setup

System Check Result:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within ±10% of the manufacturer calibrated dipole SAR target.

	Head										
Frequency	1g SAR			10g SAR			- Delta	Delta		Temp	
(MHz)	Target 1W	Normalize to 1W	Measured 1W	Target 1W	Normalize to 1W	Measured 1W	(1g)	(10g)	Limit	(℃)	Date
150	3.77	3.87	3.87	2.52	2.55	2.55	2.65%	1.19%	±10%	22.2	2022/6/6

Note:

1. the graph results see follow.

Report No.: CHTEW22060053 Page: 22 of 25 Issued: 2022-06-10

Plots of System Performance Check

SystemPerformanceCheck-150MHz

Communication System: UID 0, A-CW (0); Frequency: 150 MHz;Duty Cycle: 1:1 Medium parameters used: f = 150 MHz; σ = 0.762 S/m; ϵ_r = 51.439; ρ = 1000 kg/m³

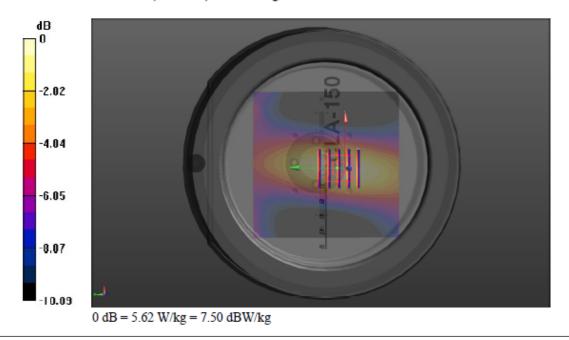
Phantom section: Flat Section

Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

DASY Configuration:

- Probe: ES3DV3 SN3304; ConvF(7.39, 7.39, 7.39) @ 150 MHz; Calibrated: 9/21/2021
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=0mm, Pin=1W, dist=1.4mm (EX-Probe)/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 5.63 W/kg

Head/d=0mm, Pin=1W, dist=1.4mm (EX-Probe)/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 82.75 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 7.12 W/kg

SAR(1 g) = 3.87 W/kg; SAR(10 g) = 2.55 W/kgMaximum value of SAR (measured) = 5.62 W/kg

Report No.: CHTEW22060053 Page: 23 of 25 Issued: 2022-06-10

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

	Limit (W/kg)						
Type Exposure	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment					
Spatial Average SAR (whole body)	0.08	0.4					
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0					
Spatial Peak SAR (10g for limb)	4.0	20.0					

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

Report No.: CHTEW22060053 Page: 24 of 25 Issued: 2022-06-10

11. Conducted Power Measurement Results and Tune-up

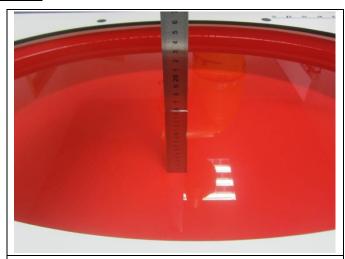
Please refer to Appendix Report

12. SAR Measurement Results

Measurement Results:

Please refer to Appendix Report

Measurement data plots:


Please refer to Appendix D

Note:

- 1. The distance of the front-of-face test is 25mm, the distance of the Body-worn test is 0mm.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. The Body-worn SAR evaluation was performed with the Leather Case body-worn accessory attached to the DUT and touching the outer surface of the planar phantom.
- 4. When the SAR for all antennas tested using the default battery is ≤ 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.
- 5. When the SAR of an antenna tested on the highest output power using the default battery is > 3.5 W/Kg and ≤ 4.0 W/Kg (50% PTT duty factor), testing of the immediately adjacent channel(s) is not necessary, but testing of other required channels may still be required.
- 6. SAR Test Data Plots to the Appendix A.

Report No.: CHTEW22060053 Page: 25 of 25 Issued: 2022-06-10

13. Test Setup Photos

Liquid depth in the flat Phantom

Front-of-face(25mm)

Body-worn(0mm)

14. External and Internal Photos of the EUT

Please refer to the test report No.: CHTEW22060067

-----End of Report-----

Appendix Report

Project No.	SHT2205110602EW		
Test sample No.	YPHT22051106001	Model No.	RM01
Start test date	2022/6/6	Finish date	2022/6/6
Temperature	22.3℃	Humidity	22.10%
Test Engineer	Bo Wang	Auditor	Xiaodong Zheo

Appendix clause	Test Item	Result
Α	Conducted Power Measurement Results	PASS
В	SAR Measurement Results	PASS

Appendix A: ERP Measurement Results

		Pov	ver			
Mada	Channel	Frequ	uency	Conducted	Tune up limit	
Mode	Separation	Channel	MHz	Power (dBm)	(dBm)	
Analog	25kHz	CH16	156.8	34.82	35.00	

Appendix B: SAR Measurement Results

Front-of-face											
Mode Channel		Frequency		Conducte d Power	Tune up		Power	Measured SAR(1g)	Report SAR(1g)	50% Duty SAR(1g)	Plot No.
Mode	Separation	СН	MHz	(dBm)	(dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	(W/kg)	FIOLINO.
Analog	25kHz	CH16	156.8	34.82	35.00	1.042	0.17	0.577	0.601	0.301	1

Body-worn											
Mode	Channel Separation	Free	Frequency Conducte		Tune up Tune up	Power	Measured SAR(1g)	Report SAR(1g)	50% Duty SAR(1g)	Plot No.	
Wode		СН	MHz	d Power (dBm)	limit (dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	(W/kg)	i lot ivo.
Analog	25kHz	CH16	156.8	34.82	35.00	1.042	-0.14	0.623	0.649	0.325	2

Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab

Date: 6/6/2022

Analog CH16-25k-Head

Communication System: UID 0, Analog (0); Frequency: 156.8 MHz; Duty Cycle: 1:1 Medium parameters used: f = 157 MHz; $\sigma = 0.765$ S/m; $\varepsilon_r = 49.627$; $\rho = 1000$ kg/m³

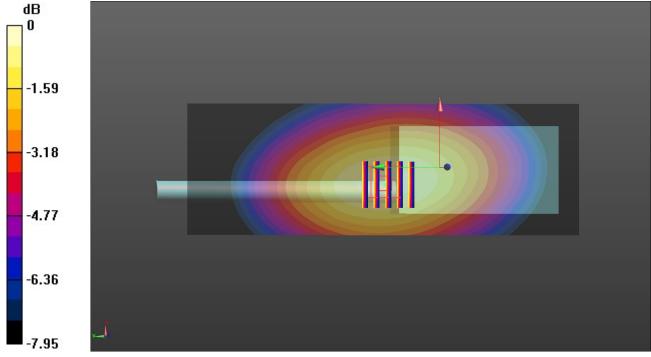
Phantom section: Flat Section

Ambient Temperature:22.2°C;Liquid Temperature:22.0°C;

DASY Configuration:

- Probe: ES3DV3 SN3304; ConvF(7.39, 7.39, 7.39) @ 156.8 MHz; Calibrated: 9/21/2021
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front/CH 16/Area Scan (61x181x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.779 W/kg


Front/CH 16/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.23 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.832 W/kg

SAR(1 g) = 0.577 W/kg; SAR(10 g) = 0.272 W/kg

Maximum value of SAR (measured) = 0.736 W/kg

0 dB = 0.736 W/kg = -10.17 dBW/kg

Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab Date: 6/6/2022

Analog CH16-25k-Body

Communication System: UID 0, Analog (0); Frequency: 156.8 MHz; Duty Cycle: 1:1 Medium parameters used: f = 157 MHz; $\sigma = 0.765$ S/m; $\epsilon_r = 49.627$; $\rho = 1000$ kg/m³

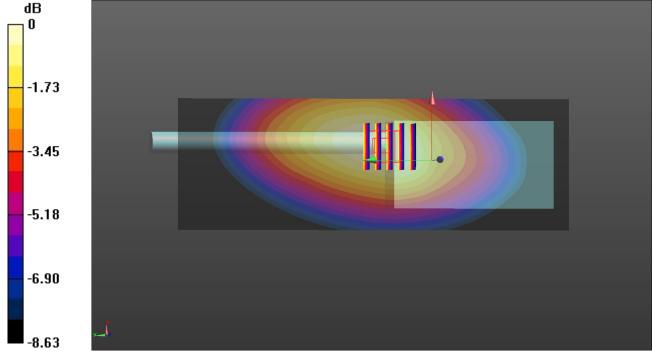
Phantom section: Flat Section

Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

DASY Configuration:

- Probe: ES3DV3 SN3304; ConvF(7.39, 7.39, 7.39) @ 156.8 MHz; Calibrated: 9/21/2021
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 16/Area Scan (61x181x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.896 W/kg


Rear/CH 16/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.63 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.623 W/kg; SAR(10 g) = 0.373 W/kg

Maximum value of SAR (measured) = 0.829 W/kg

0 dB = 0.829 W/kg = -10.07 dBW/kg

1.1. DAE4 Calibration Certificate

Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

中国认可 CAICT 国际互认 CAICT 国际互认 CAICT CAIBRATION CNAS LOS70

Client : HTW Certificate No: Z22-60121

CAL	IRRA	TION	CERT	IFIC.	ATE
UAL	IDITA		OLIVI	11 10/	

Object DAE4 - SN: 1549

Calibration Procedure(s) FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date: April 12, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Process Calibrator 753 1971018 15-Jun-21 (CTTL, No.J21X04465) Jun-22

Name Function Signature
Calibrated by: Yu Zongying SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: April 16, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail; cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

the second section of the second section of the parties

the Control of the State of the

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

E-mail: cttl@chinattl.com

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV , full range = -100. .+300 mV 61nV . Low Range: 1LSB = full range = -1....+3mV

3.98608 ± 0.7% (k=2)

DASY measurement para	ameters: Auto Zero Time: 3 t	sec; Measuring time: 3 sec	
Calibration Factors	x	Y	z
High Range	406.337 ± 0.15% (k=2)	406.020 ± 0.15% (k=2)	406 173 ± 0.15% (k=2

3.99378 ± 0.7% (k=2)

3.99433 ± 0.7% (k=2)

Connector Angle

Low Range

Connector Angle to be used in DASY system	18.5° ± 1 °
---	-------------

1.2. Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Client UL-CN (Auden)

Certificate No: ES3-3304_Sep21

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3304

Multilateral Agreement for the recognition of calibration certificates

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date: September 21, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 680	23-Dec-20 (No. DAE4-660_Dec20)	Dec-21
Reference Probe ES3DV2	SN: 3013	30-Dec-20 (No. ES3-3013_Dec20)	Dec-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

Name Function Signature
Calibrated by: Jeffrey Katzman Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: September 25, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

September 21, 2021 ES3DV3 - SN:3304

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	1.10	1.29	1.29	± 10.1 %	
DCP (mV) ^B	104.0	104.2	102.6		

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc (k=2)
0	CW	X	0.0	0.0	1.0	0.00	198.0	±3.0 %	± 4.7 %
		Y	0.0	0.0	1.0		210.3		
		Z	0.0	0.0	1.0		218.0		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^h The uncertainties of Norm X,Y,Z do not affect the E¹-field uncertainty inside TSL (see Page 5).
^B Numerical linearization parameter; uncertainty not required.
^C Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-151.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^C	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	7.39	7.39	7.39	0.00	1.00	± 13.3 %
450	43.5	0.87	6.92	6.92	6.92	0.16	1.30	± 13.3 %


Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (s and σ) can be relaxed to ± 10% if figuid compensation formula is applied to

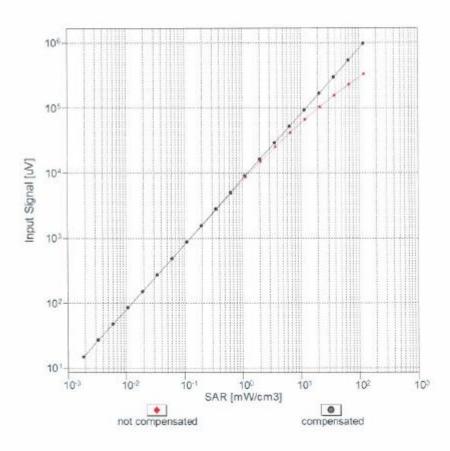
At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

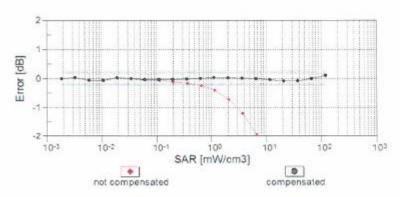
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (\$\phi\$), \$\partial = 0°


f=1800 MHz,R22



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

September 21, 2021 ES3DV3-SN:3304 Conversion Factor Assessment f = 450 MHz, WGLS Flat Phantom 4.4 f = 150 MHz, WGLS Flat Phantom 4.4 6.0 5.5 5.5 5.0 50 4.5 4.0 4.0 SAR [Whg]W 10 3.0 2.0 0.5 0.5 0.0 Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz 1.0 0.8 0.6 Deviation O O O O O 0.4 -0.4 -0.6 -0.8 -1.0 0 45 90 135 180 225 40 50 270 y Ideal 315 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

1.1. CLA150 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

HTW (Auden)

Certificate No: CLA150-4024_Jan21

Calibration procedure(s) Calibration Procedure for SAR Validation Sources below 700 MHz Calibration Procedure for SAR Validation Sources below 700 MHz Calibration date: January 25, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100)/03101) Apr-21 Prower sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03100) Apr-21 SN: 103245 01-Apr-20 (No. 217-03100) Apr-21 SN: 103245 SN: 053245 S				
Calibration Procedure for SAR Validation Sources below 700 MHz Calibration date: January 25, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Apr-21 Sh: 103245 01-Apr-20 (No. 217-03100) Apr-21 Primary Standards Sh: Cc2552 (20x) 31-Mar-20 (No. 217-03101) Apr-21 Primary Standards Sh: Cc2552 (20x) 31-Mar-20 (No. 217-03104) Apr-21 Primary Standards Sh: Cc2552 (20x) 31-Mar-20 (No. 217-03104) Apr-21 Primary Standards Sh: Sh: 3877 Sh: 30-Dec-20 (No. EX3-3877, Dec20) Dec-21 DAE4 Sh: GB41293874 Of-Apr-16 (In house check Jun-20) In house check: Jun-20 Primary Standards Sh: Cr26412A Sh: MY41498087 Of-Apr-16 (In house check Jun-20) In house check: Jun-20 Primary Standards Sh: US364201700 Of-Apr-16 (In house check Jun-20) In house check: Jun-20 Primary Standards Sh: US41080477 31-Mar-14 (In house check Jun-20) In house check: Jun-20 Primary Standards Sh: US41080477 31-Mar-14 (In house check Oct-20) In house check: Jun-20 Primary Standards Sh: US41080477 31-Mar-14 (In house check Oct-20) In house check: Jun-20 Primary Standar	Object	CLA150 - SN: 40	024	
Calibration date: January 25, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Scheduled Calibration Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Scheduled Calibration Apr-21 Apr-22 (No. 217-03100) Apr-21 Apr-21 SN: 103244 01-Apr-20 (No. 217-03101) Apr-21 Apr-21 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: 205252 (20x) 31-Mar-20 (No. 217-03106) Apr-21 Reference Probe EX3DV4 SN: 3877 30-Dec-20 (No. 217-03104) Apr-21 Apr-21 SN: 654 26-Jun-20 (No. DAE4-654_Jun-20) Jun-21 Secondary Standards ID # Check Date (in house check Jun-20) In house check: Jun-20 Apr-21 SN: 054124 SN: 06327 06-Apr-16 (in house check Jun-20) In house check: Jun-20 Apr-21 SN: US3642U01700 06-Apr-16 (in house check Jun-20) In house check: Jun-20 Apr-21 SN: US3642U01700 04-Aug-99 (in house check Jun-20) In house check: Jun-20 Apr-21 SN: US3642U01700 04-Aug-99 (in house check Jun-20) In house check: Jun-20 Calibrated by: Jan-20 Signature Jan-20 Signature Jan-20 Signature Jan-20 Signature Jan-20 Signature	Calibration procedure(s)			
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed faboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Apr-21 Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: CC2552 (20x) 31-Mar-20 (No. 217-03104) Apr-21 Type-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 3877 30-Dec-20 (No. EX3-3877_Dec20) Dec-21 DAE4 SN: 654 26-Jun-20 (No. DAE4-654_Jun-20) Jun-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Oewer sensor E4412A SN: 000110210 06-Apr-16 (in hous		Calibration Proce	edure for SAR Validation Sources	s below 700 MHz
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03101) Apr-21 Power sensor NRP-291 SN: 103245 01-Apr-20 (No. 217-03106) Apr-21 Power sensor NRP-291 SN: 30345 01-Apr-20 (No. 217-03104) Apr-21 Power sensor NRP-291 SN: 30982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Power sensor NRP-291 SN: 30982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Power sensor RRP-291 SN: 3877 30-Dec-20 (No. EX3-3877_Dec20) Dec-21 DoAE4 SN: 654 26-Jun-20 (No. DAE4-654_Jun-20) Jun-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor E4412A SN: MY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Power sensor E4412A SN: MY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Power sensor E4412A SN: MY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Power sensor E4412A SN: WY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Power sensor E4412A SN: WY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Power sensor E4412A SN: WY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Power sensor E4412A SN: WY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Power sensor E4412A SN: WY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-2 Power sensor E4412A SN: WY41498087 06-Apr-16 (in				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Apr-21 Sover sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Prover sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03101) Apr-21 Primary Standards SN: CC2552 (20x) 31-Mar-20 (No. 217-03101) Apr-21 Primary Standards SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Primary Standards ID # Check Date (In house) Scheduled Check Prover sensor E4412A SN: GB41293874 06-Apr-16 (In house check Jun-20) In house check: Jun-20 Primary Standards SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 Primary Standards SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 Primary Standards SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 Primary Standards SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 Primary Standards SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 Primary Standards SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 Primary Standards SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 Primary Standards SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 Primary Standards SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 Primary Standards SN				
he measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. Il calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. alibration Equipment used (M&TE critical for calibration) firmary Standards ID # Cal Date (Certificate No.) Scheduled Calibration ower meter NRP SN: 104778 01-Apr-20 (No. 217-03100)03101) Apr-21 ower sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 eference 20 dB Attenuator SN: CC2552 (20x) 31-Mar-20 (No. 217-03101) Apr-21 eference 20 dB Attenuator SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 spe-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 AE4 SN: 654 26-Jun-20 (No. DAE4-654_Jun20) Jun-21 secondary Standards D# Check Date (in house) Scheduled Check Dower sensor E4412A SN: 381293874 06-Apr-16 (in house check Jun-20) In house check: Jun-20 ower sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (in house check Jun-20) In house check: Jun-20 setwork Analyzer Agilent E8358A Name Function Signature laboratory Technician	alibration date:	January 25, 202		
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Apr-21 SN: 104778 01-Apr-20 (No. 217-03100)03101) Apr-21 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 SN: 103245 01-Apr-20 (No. 217-03100) Apr-21 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 SN: 3877 30-Dec-20 (No. EX3-3877_Dec20) Dec-21 SN: 654 26-Jun-20 (No. DAE4-654_Jun20) Jun-21 SN: 654 26-Jun-20 (No. DAE4-654_Jun20) Jun-21 Secondary Standards ID # Check Date (In house) Scheduled Check SN: MY41499087 06-Apr-16 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 06-Apr-16 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (In house check Jun-20) In house check: Oct-20 Name Function Signature Signature	his calibration certificate docume	nts the tracophility to not	ional atandarda which seeling the about all a	
Ill calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) In a Calibration Calibration Scheduled Calibration Scheduled Calibration Sover meter NRP SN: 104778 O1-Apr-20 (No. 217-03100) Apr-21 SN: 103244 O1-Apr-20 (No. 217-03100) Apr-21 SN: 103245 O1-Apr-20 (No. 217-03101) Apr-21 SN: 103245 O1-Apr-20 (No. 217-03101) Apr-21 SN: 103245 SN: 103245 O1-Apr-20 (No. 217-03101) Apr-21 SN: 20552 (20x) 31-Mar-20 (No. 217-03104) Apr-21 SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 SN: 3877 30-Dec-20 (No. EX3-3877, Dec20) Dec-21 IAE4 SN: 654 Check Date (in house) Scheduled Check Sover sensor E4412A SN: 06-Apr-16 (in house check Jun-20) In house check: Jun-20 Oe-Apr-16 (in house check Jun-20) In house check: Jun-20 SN: US364201700 O6-Apr-16 (in house check Jun-20) In house check: Jun-20 SN: US364201700 O6-Apr-16 (in house check Jun-20) In house check: Jun-20 In house check: Jun-20 SN: US364201700 O4-Aug-99 (in house check Jun-20) In house check: Jun-20 In house check: Jun-20 SN: US364201700 O4-Aug-99 (in house check Jun-20) In house check: Jun-20 In house check: Jun-20 SN: US364201700 O4-Aug-99 (in house check Jun-20) In house check: Jun-20 In house check: Jun-20 SN: US364201700 O4-Aug-99 (in house check Oct-20) Name Function Signature	he measurements and the uncert	ainties with confidence of	robability are given on the following pages as	nits of measurements (SI). nd are part of the certificate
Calibration Equipment used (M&TE critical for calibration) Primary Standards				
Cal Date (Certificate No.) Scheduled Calibration	all calibrations have been conduct	ed in the closed laborato	ry facility: environment temperature (22 \pm 3) $^{\circ}$	C and humidity < 70%.
Cal Date (Certificate No.) Scheduled Calibration	Calibration Equipment used (M&T)	critical for calibration)		
Secondary Standards				
Secondary Standards				Scheduled Calibration
SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: CC2552 (20x) 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 3877 30-Dec-20 (No. EX3-3877_Dec20) Dec-21 Reference Probe EX3DV4 SN: 3877 30-Dec-20 (No. DAE4-654_Jun20) Jun-21 Reference Probe EX3DV4 SN: 3877 30-Dec-20 (No. DAE4-654_Jun20) Jun-21 Reference Probe EX3DV4 SN: 3877 30-Dec-20 (No. DAE4-654_Jun20) Jun-21 Reference Probe EX3DV4 SN: 3877 30-Dec-20 (No. DAE4-654_Jun20) Jun-21 Reference Probe EX3DV4 SN: 3877 30-Dec-20 (No. DAE4-654_Jun20) Jun-21 Reference Probe EX3DV4 SN: 3877 30-Dec-20 (No. DAE4-654_Jun20) Jun-21 Reference Probe EX3DV4 SN: GB41293874 06-Apr-16 (in house) Scheduled Check Reference Probe EX3DV4 SN: GB41293874 06-Apr-16 (in house check Jun-20) In house check: Jun-20 Reference Probe EX3DV4 SN: WY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-20 Reference Probe EX3DV4 SN: US3642U01700 04-Aug-99 (in house check Jun-20) In house check: Jun-20 Reference Probe EX3DV4 SN: US3642U01700 04-Aug-99 (in house check Jun-20) In house check: Jun-20 Reference Probe EX3DV4 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Reference Probe EX3DV4 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Reference Probe EX3DV4 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Reference Probe EX3DV4 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Reference Probe EX3DV4 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Reference Probe EX3DV4 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Reference Probe EX3DV4 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Reference Probe EX3DV4 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Reference Probe EX3DV4 SN: 200-20 Probe EX3DV		SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr. Ot
Sh: CC2552 (20x) 31-Mar-20 (No. 217-03106) Apr-21				Apr-21
SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21	ower sensor NRP-Z91		01-Apr-20 (No. 217-03100)	(C. W.C. C.)
SN: 3877 30-Dec-20 (No. EX3-3877_Dec20) Dec-21 AE4	ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	Apr-21 Apr-21
SN: 654 SN: 654 26-Jun-20 (No. DAE4-654_Jun20) Jun-21 Scheduled Check Sower meter E4419B SN: GB41293874 SN: GB41293874 SN: My41498087 SN: Apr-16 (in house check Jun-20) In house check: Jun-20 In house check: Jun	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103245 SN: CC2552 (20x)	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Apr-21 Apr-21
Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB41293874 O6-Apr-16 (in house check Jun-20) In house check: Jun-2 In house check: Jun-2 SN: MY41498087 O6-Apr-16 (in house check Jun-20) In house check: Jun-2 In house check: Oct-2 Name Function Signature Jeffrey Katzman Laboratory Technician	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Apr-21 Apr-21 Apr-21
SN: GB41293874 06-Apr-16 (in house check Jun-20) In house check: Jun-20 In house check: Jun	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Apr-21 Apr-21 Apr-21 Apr-21
SN: MY41499087 06-Apr-16 (in house check Jun-20) In house check: Jun-2 SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-2 SN: US3642U01700 04-Aug-99 (in house check Jun-20) In house check: Jun-2 In	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21
SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-20 SN: US3642U01700 04-Aug-99 (in house check Jun-20) In house check: Jun-20 In house check:	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards	SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21
SR: US3642U01700 O4-Aug-99 (in house check Jun-20) In house check: Jun-2 O4-Aug-99 (in	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B	SN: 103245 SN: CC2552 (20x) SN: 310962 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check
SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Name Function Signature Jeffrey Katzman Laboratory Technician	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator ypps-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Rower meter E4419B Rower sensor E4412A	SN: 103245 SN: CC2552 (20x) SN: 310962 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22
Name Function Signature alibrated by: Jeffrey Katzman Laboratory Technician	ower sensor NRP-Z91 lower sensor NRP-Z91 leference 20 dB Attenuator leference 20 dB Attenuator leference Probe EX3DV4 lAE4 lecondary Standards lower meter E4419B lower sensor E4412A	SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41496087	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-2: In house check: Jun-2:
Jeffrey Katzman Laboratory Technician	ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor E4412A F generator HP 8648C	SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (In house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-2: In house check: Jun-2: In house check: Jun-2:
J. Lyton	rower sensor NRP-Z91 rower sensor E4419B rower sensor E4412A rower sensor E4412A rower sensor E4412A regenerator HP 8648C	SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (In house) 06-Apr-16 (In house check Jun-20) 06-Apr-16 (In house check Jun-20) 06-Apr-16 (In house check Jun-20) 04-Aug-99 (In house check Jun-20)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-2: In house check: Jun-2: In house check: Jun-2: In house check: Jun-2:
pproved by: Katja Pokovic Technical Manager	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Power sensor NRP-Z91 Reference 20 dB Attenuator Power sensor E43DV4 Reference Probe EX3DV4	SN: 103245 SN: CC2552 (20x) SN: 310962 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41496087 SN: 000110210 SN: US3642U01700 SN: US3642U01700	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Jun-20)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-2: In house check: Jun-2: In house check: Jun-2: In house check: Oct-2: In house check: Oct-2:
pproved by: Katja Pokovic Technical Manager	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe EX3DV4 Reference Probe Ex	SN: 103245 SN: CC2552 (20x) SN: 310962 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41496087 SN: 000110210 SN: US3642U01700 SN: US41080477	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Oct-21
	Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	SN: 103245 SN: CC2552 (20x) SN: 310962 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41496087 SN: 000110210 SN: US3642U01700 SN: US41080477	01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Oct-21

Certificate No: CLA150-4024_Jan21

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA150-4024_Jan21

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	150 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	0.76 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.77 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	2.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	2.52 W/kg ± 18.0 % (k=2)

Certificate No: CLA150-4024_Jan21

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$44.2 \Omega + 4.8 j\Omega$	
Return Loss	- 21.9 dB	

Additional EUT Data

Manufactured by	SPEAG

Certificate No: CLA150-4024_Jan21

DASY5 Validation Report for Head TSL

Date: 25.01.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4024

Communication System: UID 0 - CW; Frequency: 150 MHz

Medium parameters used: f = 150 MHz; $\sigma = 0.76 \text{ S/m}$; $\epsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

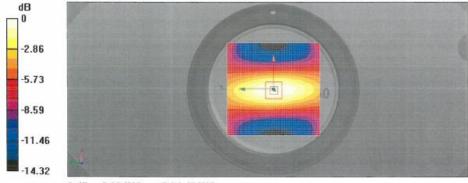
DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(12.11, 12.11, 12.11) @ 150 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 26.06.2020
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan,

dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 83.48 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 7.12 W/kg

SAR(1 g) = 3.79 W/kg; SAR(10 g) = 2.53 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30mm)

Ratio of SAR at M2 to SAR at M1 = 80.6%

Maximum value of SAR (measured) = 5.32 W/kg

0 dB = 5.32 W/kg = 7.26 dBW/kg

Certificate No: CLA150-4024_Jan21

Page 5 of 6

Impedance Measurement Plot for Head TSL

File Yiew Channel Sweep Calibration Trace Scale Marker System Window Help 44 153 Ω 4.9366 Ω 5.1317 nH Ch 1 Avg = 20 Eh1: Start 100,000 MHz Stop 200,000 MHz .00 1.00 4.00 7.00 10.00 13.00 16.00 19.00 22.08 Stop: 200 000 MHz Status CH 1: 511 C* 1-Port Avg≈20 LCL

Certificate No: CLA150-4024_Jan21

1.2. D450V3 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION C	RTIFICATE		
Object	D450V3 - SN:110)2	
Calibration procedure(s)	QA CAL-15.v9 Calibration Proce	dure for SAR Validation Sources	below 700 MHz
Calibration date:	January 20, 2021		
All calibrations have been conducted Calibration Equipment used (M&TE		y facility: environment temperature $(22 \pm 3)^{\circ}$	and humidity < 70%.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	
		전에 하는 10 10 10 10 10 10 10 10 10 10 10 10 10	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Type-N mismatch combination Reference Probe EX3DV4	SN: 310982 / 06327 SN: 3877	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20)	Apr-21 Dec-21
Type-N mismatch combination Reference Probe EX3DV4	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 310982 / 06327 SN: 3877	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20)	Apr-21 Dec-21 Jun-21 Scheduled Check
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20)	Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A Calibrated by:	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Jun-20)	Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Oct-21
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Oct-21

Certificate No: D450V3-1102_Jan21

Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1102_Jan21

Page 2 of 6

Measurement Conditions
DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

no following parameters and a second	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.7 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.60 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.771 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.09 W/kg ± 17.6 % (k=2)

Page 3 of 6 Certificate No: D450V3-1102_Jan21

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.4 Ω - 3.8 jΩ	
Return Loss	- 22.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.346 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D450V3-1102_Jan21 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 20.01.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1102

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.87 \text{ S/m}$; $\epsilon_r = 43.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 26.06.2020

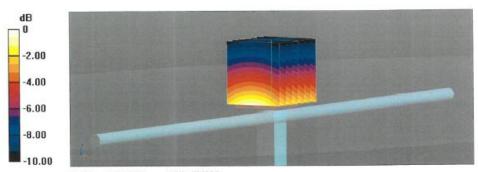
Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

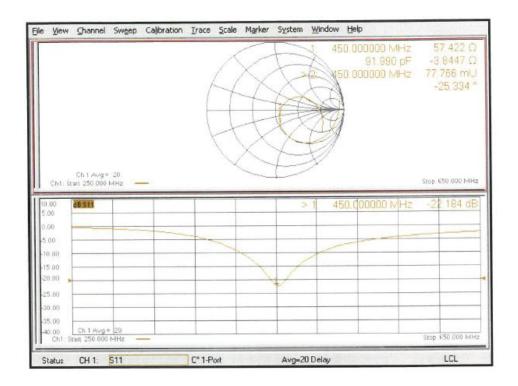
Reference Value = 39.07 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 1.78 W/kg

SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.771 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30mm)

Ratio of SAR at M2 to SAR at M1 = 64.6%


Maximum value of SAR (measured) = 1.55 W/kg

0 dB = 1.55 W/kg = 1.90 dBW/kg

Certificate No: D450V3-1102_Jan21

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1102_Jan21