

Shenzhen Huatongwei International Inspection Co.,Ltd. Huatongwei Building, keji'nan 12th Road, High-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China. Phone:86-755-26715499 E-mail: cs@szhtw.com.cn Website:http://www.szhtw.com.cn

Т	EST REPORT	
Report No	CHTEW22080291	Report Verification:
Project No	SHT2207087101EW	
FCC ID::	2A3OORB39	Reported CHTW220025
Applicant's name:	Shenzhen Ysair Technology Co	o., LTD
Address:	6/F, building 6, Yunli intelligent pa Yangmei community, Bantian str Shenzhen,Guangdong,China	ark, No. 3, Changfa Middle Road, eet, Longgang District,
Test item description:	Two Way Radio	
Trade Mark	RETEVIS	
Model/Type reference:	RB39	
Listed Model(s)		
Standard:	FCC CFR Title 47 Part 15 Subp	art B
Date of receipt of test sample	Aug.04, 2022	
Date of testing	Aug.04, 2022-Aug.23, 2022	
Date of issue	Aug.24, 2022	
Result:	PASS	
Compiled by (Position+Printed name+Signature):	File administrators: Fanghui Zhu	Jang Miri Zhu
Supervised by		Carpan Chan
(Position+Printed name+Signature):	Project Engineer Caspar Chen	Clog Du Crigi
Approved by		Caspar Chen Homstu
(position+printed name+signature):	RF Manager Hans Hu	
Testing Laboratory Name:	Shenzhen Huatongwei International Inspection Co., Ltd.	
Address	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China	

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	<u> 3</u>
1.1. 1.2.	Test Standards Report version	3 3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	6
3.4.	Testing Laboratory Information	7
<u>4.</u>	TEST CONFIGURATION	8
4.1.	EUT operation mode	8
4.2.	Support unit used in test configuration	8
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	<u>10</u>
5.1.	Conducted Emissions	10
5.2.	Radiated Emissions	12
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	<u>16</u>
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	<u>17</u>

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC CFR Title 47 Part 15 Subpart B - Unintentional Radiators

<u>ANSI C63.4: 2014</u> – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version

Revision No.	Date of issue	Description
N/A	2022-08-24	Original

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Emissions	15.107(a)	Pass	Pan Xie
Radiated Emissions	15.109(a)	Pass	Haoxin Luo

Note: The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	Shenzhen Ysair Technology Co., LTD	
Address:	6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Shenzhen,Guangdong,China	
Manufacturer:	Shenzhen Ysair Technology Co., LTD	
Address:	6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Shenzhen,Guangdong,China	

3.2. Product Description

Main unit		
Name of EUT:	Two Way Radio	
Trade Mark:	RETEVIS	
Model/Type reference:	RB39	
Listed Model(s)	-	
Power supply:	DC 3.7V from battery	
Hardware version:	V1.2	
Software version:	RB39-V303.04	
Ancillary unit		
Battery information:	3.7V/1000mAh/3.7Wh	
Model:DSA-5PF07-05 FUS 050100		
Adapter information:	Input:100-240Va.c., 50/60Hz 0.2A	
	Output: 5Vd.c., 1A	

3.3. Radio Specification Description

Operation Frequency Range: (Transmit unit) ^{#1}	Main channel: (462MHz)	462.5500, 462.5750, 462.6000, 462.6250, 462.6500, 462.6750, 462.7000, 462.7250MHz
	Interstitial channel: (462MHz)	462.5625, 462.5875, 462.6125, 462.6375, 462.6625, 462.6875, 462.7125 MHz
	Interstitial channel: (467MHz)	467.5675, 467.5875, 467.6125, 467.6375, 467.6625, 467.6875, 467.7125MHz
Operation Frequency Range:	Main channel: (462MHz)	462.5500, 462.5750, 462.6000, 462.6250, 462.6500, 462.6750, 462.7000, 462.7250MHz
(Receive unit) ^{#2}	Interstitial channel: (462MHz)	462.5625, 462.5875, 462.6125, 462.6375, 462.6625, 462.6875, 462.7125 MHz
	Interstitial channel: (467MHz)	467.5675, 467.5875, 467.6125, 467.6375, 467.6625, 467.6875, 467.7125MHz
Modulation Type:	FM	
Antenna Type:	Integral	

Note:

#1: Transmit unit of this two way radio, please refer to the FCC Part95 report.

#2: This report only evaluate the receive function of this two way radio.

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
	Tel: 86-755-26715499		
Connect information:	E-mail: <u>cs@szhtw.com.cn</u>		
	http://www.szhtw.com.cn		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

4. TEST CONFIGURATION

4.1. EUT operation mode

Describe
Keep the EUT in charging mode, but the EUT shut down.
Keep the EUT in receiving mode, but don't charging.

Receive frequency: 462.6375MHz.

Test item	Pretest mode	Worse case mode
Conducted emissions	Charging mode, Receive mode	Charging mode
Radiated emissions	Charging mode, Receive mode	Receive mode

Only show the test data for worse case mode on the test report.

4.2. Support unit used in test configuration

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whet	Whether support unit is used?				
✓	No				
Item	Equipment	Trade Name	Model No.	FCC ID	Power cord
1					
2					

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

Test	Frequency range	Measurement uncertainty		
Radiated Emission	30~1000MHz	4.90 dB		
Radiated Emission	1~18GHz	4.96 dB		
Conducted Disturbance	0.15~30MHz	3.02 dB		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

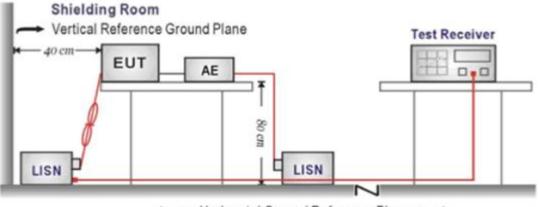
•	Conducted Emission						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2021/09/14	2022/09/13
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2021/09/17	2022/09/16
•	Pulse Limiter	R&S	HTWE0193	ESH3-Z2	101447	2021/09/16	2022/09/15
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2021/09/17	2022/09/16
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated Emission-6th test site						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2022/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2021/09/14	2022/09/13
•	Ultra-Broadband Antenna	SCHWARZBEC K	HTWE0119	VULB9163	546	2020/04/28	2023/04/27
•	Pre-Amplifer	SCHWARZBEC K	HTWE0295	BBV 9742	N/A	2021/11/05	2022/11/04
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-01	N/A	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-02	SUCOFLEX10 4	501184/4	2022/02/25	2023/02/24
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emission-7th test site						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2018/09/27	2022/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/09/13	2022/09/12
•	Horn Antenna	SCHWARZBE CK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27
•	RF Connection Cable	HUBER+SUH NER	HTWE0126-01	RE-7-FH	N/A	2022/03/04	2023/03/03
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart B Section 15.107:

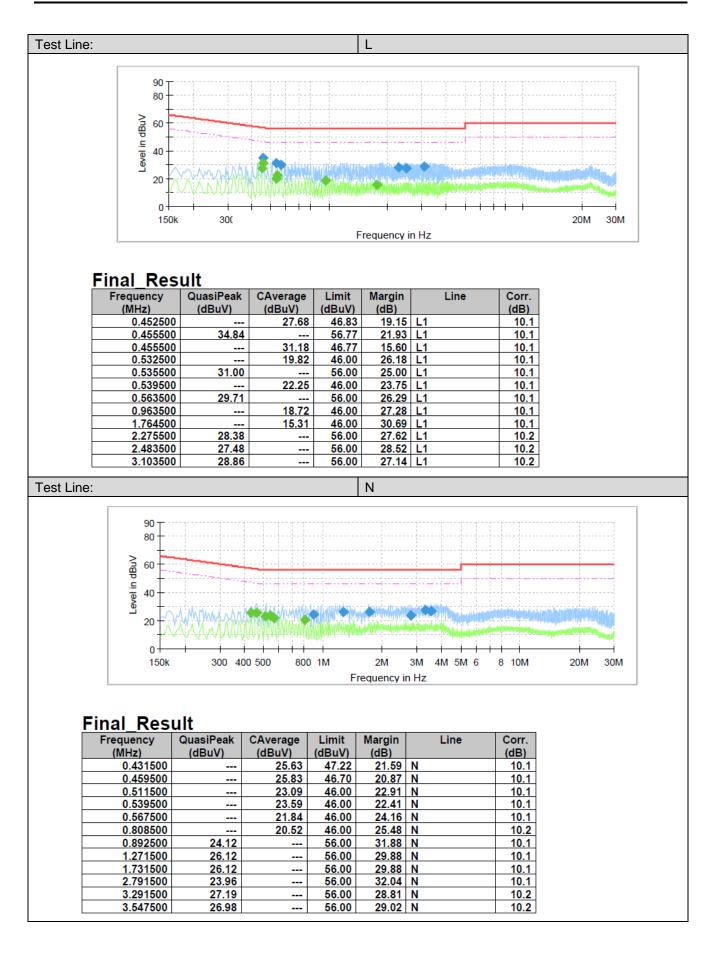
Frequency range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

Horizontal Ground Reference Plane +

TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

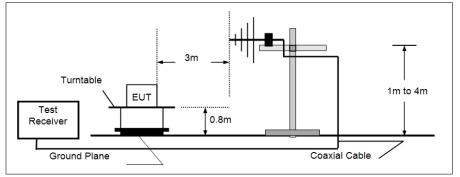
TEST MODE:

Please refer to the clause 4.1

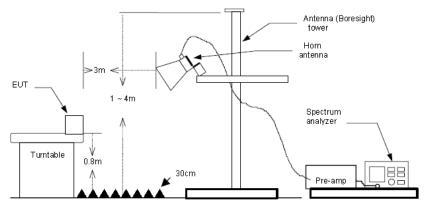
TEST RESULTS

☑ Passed □ Not Applicable

5.2. Radiated Emissions


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart B Section 15.109


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION

> 30MHz ~ 1GHz

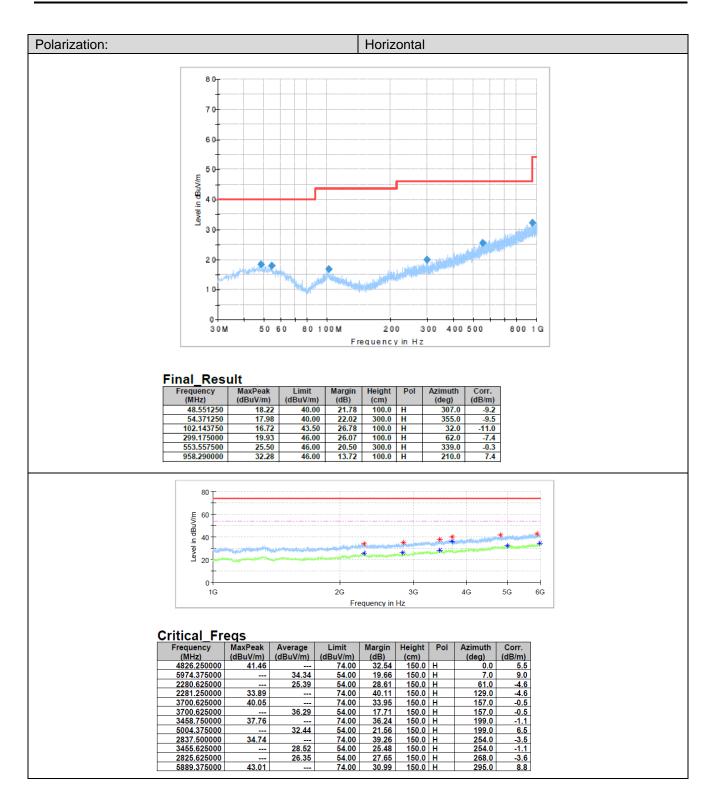
> Above 1GHz

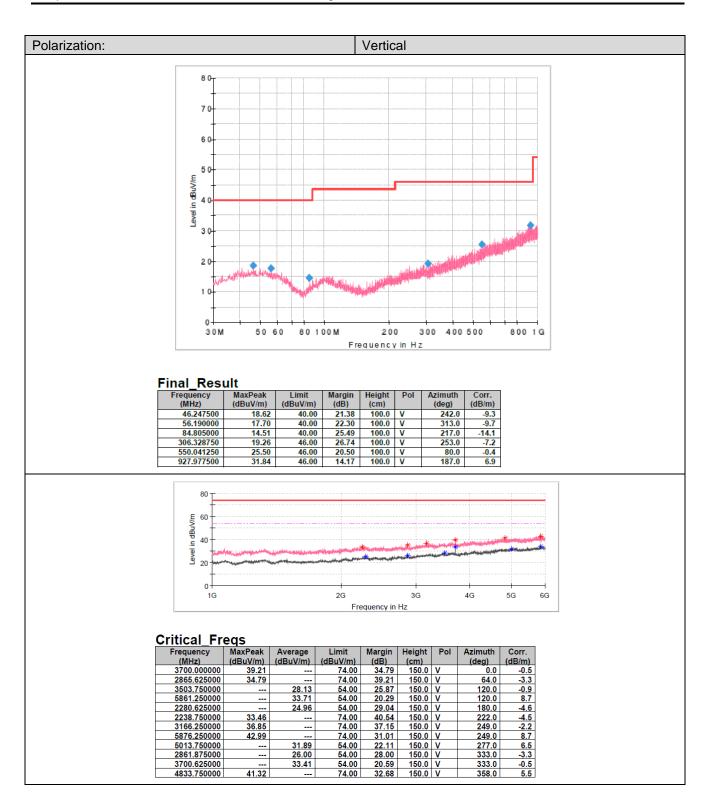
TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;(2) Below 1GHz,
 - RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz


TEST MODE:


Please refer to the clause 4.1

TEST RESULTS

☑ Passed □ Not Applicable

Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.

6. TEST SETUP PHOTOS OF THE EUT

Conducted Emissions (AC Mains)

Radiated Emissions

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Please refer to the test report No.: CHTEW22080290

-----End of Report------