
Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	FCC PART 15.247	TING
Report Reference No	CTA22050500503 2A3OGESUNPANTHER-X2	ATESI
Compiled by (position+printed name+signature):	File administrators Kevin Liu	kening Lou
Supervised by (position+printed name+signature):	Project Engineer Kevin Liu	Revier Am
Approved by (position+printed name+signature):	RF Manager Eric Wang	approved Lvic A cong
Date of issue:	May 16, 2022	AIN
Testing Laboratory Name	Shenzhen CTA Testing Technology	Co., Ltd.
Address:	Room 106, Building 1, Yibaolai Industr Fuhai Street, Baoʻan District, Shenzhe	
Applicant's name:	E-sun Electronics Limited	
Address:	Rooms 1318-19, Hollywood Plaza, 610 Kowloon, Hong Kong) Nathan Road, Mongkok,
Test specification:	TESTINO	
Standard Shenzhen CTA Testing Technology	FCC Part 15.247 / Co., Ltd. All rights reserved.	TESTING
Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tecl	FCC Part 15.247	vner and source of the for and will not assume
Standard Shenzhen CTA Testing Technology This publication may be reproduced ir Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech iability for damages resulting from the	FCC Part 15.247 / Co., Ltd. All rights reserved. n whole or in part for non-commercial pur Co., Ltd. is acknowledged as copyright ov hnology Co., Ltd. takes no responsibility	vner and source of the for and will not assume
Standard Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech iability for damages resulting from the placement and context.	FCC Part 15.247 / Co., Ltd. All rights reserved. n whole or in part for non-commercial pur Co., Ltd. is acknowledged as copyright ow hnology Co., Ltd. takes no responsibility e reader's interpretation of the reproduced Panther X2 gateway N/A	vner and source of the for and will not assume
Standard Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech iability for damages resulting from the placement and context. Test item description	FCC Part 15.247 / Co., Ltd. All rights reserved. n whole or in part for non-commercial pur Co., Ltd. is acknowledged as copyright ow hnology Co., Ltd. takes no responsibility e reader's interpretation of the reproduced Panther X2 gateway N/A	vner and source of the for and will not assume d material due to its
Standard	FCC Part 15.247 / Co., Ltd. All rights reserved. n whole or in part for non-commercial pur Co., Ltd. is acknowledged as copyright ow hnology Co., Ltd. takes no responsibility e reader's interpretation of the reproduced Panther X2 gateway N/A	vner and source of the for and will not assume d material due to its
Standard Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech iability for damages resulting from the placement and context. Test item description Trade Mark	FCC Part 15.247 / Co., Ltd. All rights reserved. n whole or in part for non-commercial pur Co., Ltd. is acknowledged as copyright ow hnology Co., Ltd. takes no responsibility e reader's interpretation of the reproduced Panther X2 gateway N/A E-sun Electronics Limited	vner and source of the for and will not assume d material due to its
Standard Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech iability for damages resulting from the placement and context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models	FCC Part 15.247 / Co., Ltd. All rights reserved. n whole or in part for non-commercial pur Co., Ltd. is acknowledged as copyright ow hnology Co., Ltd. takes no responsibility e reader's interpretation of the reproduced Panther X2 gateway N/A E-sun Electronics Limited Panther X2 N/A	vner and source of the for and will not assume d material due to its
Standard	FCC Part 15.247 / Co., Ltd. All rights reserved. n whole or in part for non-commercial pur Co., Ltd. is acknowledged as copyright ow hnology Co., Ltd. takes no responsibility e reader's interpretation of the reproduced Panther X2 gateway N/A E-sun Electronics Limited Panther X2 N/A	vner and source of the for and will not assume

Contents

2.1 Gen 2.2 Proc 2.3 Equ 2.4 Sho 2.5 EU 2.6 Blo 2.7 Rel 2.8 Mo 3 TE 3.1 Ade 3.2 Tes 3.3 Env 3.4 Sun 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.3 Ma	<u>JMMARY</u> neral Remarks oduct Description uipment Under Te ort description of T operation mode ock Diagram of Te lated Submittal(s) difications <u>EST ENVIRON</u> dress of the test I st Facility vironmental cond mmary of measur itement of the measur	est the Equipment st Setup / Grant (s) IMENT aboratory	under Test (EU1	T)	A '	5 5 5 5 5 6 6 6
2.2 Pro 2.3 Equ 2.4 Sho 2.5 EU 2.6 Blo 2.7 Rel 2.8 Mo 3 TE 3.1 Ade 3.2 Tes 3.3 Env 3.4 Sui 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.2 Rac 4.3 Ma	oduct Description uipment Under Te ort description of T operation mode ock Diagram of Te lated Submittal(s) difications <u>EST ENVIRON</u> dress of the test la st Facility vironmental cond mmary of measur- itement of the mea	the Equipment st Setup / Grant (s)		CINCING		5 5 5 5 6 6 6
2.2 Pro 2.3 Equ 2.4 Sho 2.5 EU 2.6 Blo 2.7 Rel 2.8 Mo 3 TE 3.1 Ade 3.2 Tes 3.3 Env 3.4 Sui 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.2 Rac 4.3 Ma	oduct Description uipment Under Te ort description of T operation mode ock Diagram of Te lated Submittal(s) difications <u>EST ENVIRON</u> dress of the test la st Facility vironmental cond mmary of measur- itement of the mea	the Equipment st Setup / Grant (s)		T)		5 5 5 5 6 6 6
2.3 Equ 2.4 Sho 2.5 EU 2.6 Blo 2.7 Rel 2.8 Mo 3 TE 3.1 Ade 3.2 Tes 3.3 Env 3.4 Sui 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.2 Rac 4.3 Ma	uipment Under Te ort description of T operation mode ock Diagram of Te lated Submittal(s) difications <u>EST ENVIRON</u> dress of the test la st Facility vironmental cond mmary of measur- itement of the mea	the Equipment st Setup / Grant (s)		T		5 5 6 6 6
2.4 Show 2.5 EU 2.6 Blow 2.7 Rel 2.7 Rel 2.8 Mo 3 TE 3.1 Ade 3.2 Tes 3.3 Env 3.4 Sun 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.2 Rac 4.3 Ma	ort description of T operation mode ock Diagram of Te lated Submittal(s) difications <u>EST ENVIRON</u> dress of the test l st Facility vironmental cond mmary of measur itement of the mea	the Equipment st Setup / Grant (s)		T) TESTING		5 6 6
2.5 EU 2.6 Blo 2.7 Rel 2.7 Rel 2.8 Mo 3 TE 3.1 Ade 3.2 Tes 3.3 Env 3.4 Sun 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.2 Rac 4.3 Ma	T operation mode ock Diagram of Te lated Submittal(s) difications EST ENVIRON dress of the test l st Facility vironmental cond mmary of measur itement of the mea	st Setup / Grant (s) IMENT aboratory		T)		5 6 6
2.6 Blo 2.7 Rel 2.8 Mo 3 TE 3.1 Ada 3.2 Tes 3.3 Envi 3.4 Sui 3.5 Sta 3.6 Equi 4 TE 4.1 AC 4.2 Rad 4.3 Mathematical	ock Diagram of Te lated Submittal(s) difications EST ENVIRON dress of the test l st Facility vironmental cond mmary of measur itement of the mea	st Setup / Grant (s) IMENT aboratory	CTA CTA	TESTING		6 6 6
2.7 Rel 2.8 Mo 3.1 Ado 3.1 Ado 3.2 Tes 3.3 Env 3.4 Sui 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.2 Rao 4.3 Ma	lated Submittal(s) difications EST ENVIRON dress of the test last Facility vironmental cond mmary of measur itement of the mea	/ Grant (s)	CTA CTA	TESTING		6 6
2.8 Mo 3.1 Ado 3.1 Ado 3.2 Tes 3.3 Env 3.4 Sur 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.2 Rao 4.3 Ma	difications EST ENVIRON dress of the test l st Facility vironmental cond mmary of measur itement of the mea	IMENT	CTA CTA	TESTING		6
3.1 Add 3.1 Add 3.2 Tes 3.3 Env 3.4 Sun 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.2 Rad 4.3 Mat	EST ENVIRON dress of the test lest facility vironmental cond mmary of measur itement of the measure	aboratory	CTA CTA	resting		
3.1 Ade 3.2 Tes 3.3 Envi 3.4 Sui 3.5 Sta 3.6 Equi 4 TE 4.1 AC 4.2 Rac 4.3 Mat	dress of the test last Facility vironmental cond mmary of measur itement of the mea	aboratory	CTP CTP	resting		
3.1 Ade 3.2 Tes 3.3 Envi 3.4 Sui 3.5 Sta 3.6 Equi 4 TE 4.1 AC 4.2 Rac 4.3 Mat	dress of the test last Facility vironmental cond mmary of measur itement of the mea	aboratory	COM CITA	TES''		
3.1 Ade 3.2 Tes 3.3 Envi 3.4 Sui 3.5 Sta 3.6 Equi 4 TE 4.1 AC 4.2 Rac 4.3 Ma	dress of the test last Facility vironmental cond mmary of measur itement of the mea	aboratory	COL CIT			
3.2 Tes 3.3 Envi 3.4 Sui 3.5 Sta 3.6 Equi 1 TE 4.1 AC 4.2 Rac 4.3 Ma	st Facility vironmental cond mmary of measur itement of the mea	-	GIN U.			
3.2 Tes 3.3 Envi 3.4 Sui 3.5 Sta 3.6 Equi 4 TE 4.1 AC 4.2 Rac 4.3 Mat	st Facility vironmental cond mmary of measur itement of the mea	-				-ESTI
3.3 Env 3.4 Sui 3.5 Sta 3.6 Equ 4 TE 4.1 AC 4.2 Rad 4.3 Mat	vironmental cond mmary of measur itement of the mea	itions				A1- 7
3.4 Sun 3.5 Sta 3.6 Equ <u>4 TE</u> 4.1 AC 4.2 Rac 4.3 Ma	mmary of measur itement of the me	itions			G	7
3.5 Sta 3.6 Equ 4.1 AC 4.2 Rac 4.3 Ma	tement of the me				GM CT	7
3.6 Equ 4 <u>TE</u> 4.1 AC 4.2 Rad 4.3 Ma						
4 <u>TE</u> 4.1 AC 4.2 Rad 4.3 Ma	uipments Used du		ertainty			8
4.1 AC 4.2 Rad 4.3 Ma		uring the Test				9
1.1 AC 1.2 Rad 1.3 Ma	ST CONDITI	ONS AND R	ESULTS			
4.2 Rad 4.3 Mai			-cSIV			
4.2 Rad 4.3 Mai					ATESTING	
4.3 Ma	Power Conducte	d Emission				1
	diated Emission					1
4 4 00-	ximum Peak Outp	out Power		CT		1
	B Bandwidth					2
	quency Separatio					2
	mber of hopping					2
	ne of Occupancy (2
	t-of-band Emissio					2
	tenna Requiremer					3
<u>5 TE</u>	ST SETUP P	HOTOS OF	<u>THE EUT</u>	<u></u>		<u></u>
	CTA .					
<u>6 PH</u>	IOTOS OF TH	<u>IE EUT</u>				<u>3</u>
			GIN CIT			TEST
					CC	
					GA CT	
	TESTING					
CTA	2	GA CTA	STING			
					ATESTING	
		C'n				

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

2 SUMMARY

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample		May 03, 2022
Testing commenced on		May 03, 2022
Testing concluded on	:	May 16, 2022

2.2 **Product Description**

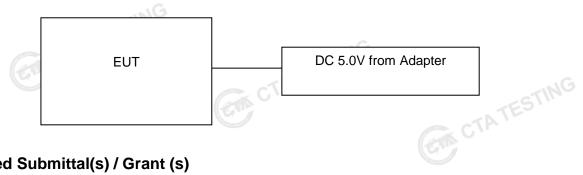
Product Description:	Panther X2 gateway
Model/Type reference:	Panther X2
Power supply:	DC 12.0V From Adapter
Adapter information:	Model:GA-1202000C Input:AC 100-240V 50/60Hz 0.6A Output:DC 12V / 2000mA
Testing sample ID:	CTA2205005-1# (Engineer sample), CTA2205005-2# (Normal sample)
Lora	
Modulation Technology:	Hybrid system
Operation frequency:	902.3MHz-914.9MHz
Channel spacing:	200KHz
Channel number:	64 CT
Antenna type:	External antenna
Antenna gain:	3.00 dBi

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage		0	230V / 50 Hz	0	120V / 60Hz
TES			12 V DC	0	24 V DC
GIN		0	Other (specified in blank be	low)
		<u>[</u>	DC 12.0V From Adapter		
2.4 Short description of the	Ec	qui	pment under Test (EU	T)	
This is a PANTHER-X2 gateway For more details, refer to the user's n	nanı	ual	of the EUT.		GMCI

2.4 Short description of the Equipment under Test (EUT)


2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing . There are 64 channels CTATESTING provided to the EUT and Channel 00/31/63 were selected to test.

Frequency (MHz)
902.3
902.5
(Ire
908.3
908.5
908.7
914.7
914.9

Block Diagram of Test Setup 2.6

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Rac	liated	Emission:	

Temperature:	24 ° C
	ATA
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
INO	
Humidity:	46 %
	-ING
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	25 ° C
	G
Humidity:	44 %
	and the second sec
Atmospheric pressure:	950-1050mbar

3.4 Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
	§15.247(a)(1)	Carrier Frequency separation	Hybrid system	⊠ Lowest ⊠ Middle ⊠ Highest	Hybrid system	Middle	Compliant
	§15.247(a)(1)	Number of Hopping channels	Hybrid system	I Full	Hybrid system	🛛 Full	Compliant
	§15.247(a)(1)	Time of Occupancy (dwell time)	Hybrid system	 ☑ Lowest ☑ Middle ☑ Highest 	Hybrid system	⊠ Middle	Compliant
CTATE	§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	Hybrid system	 ☑ Lowest ☑ Middle ☑ Highest 	Hybrid system	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
	§15.247(b)(1)	Maximum output peak power	Hybrid system	 ☑ Lowest ☑ Middle ☑ Highest 	Hybrid system	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
	§15.247(d)	Band edgecompliance conducted	Hybrid system	Lowest	Hybrid system	 ☑ Lowest ☑ Highest 	Compliant
ĮG	§15.205	Band edgecompliance radiated	Hybrid system	⊠ Lowest ⊠ Highest	Hybrid system	⊠ Lowest ⊠ Highest	Compliant
	§15.247(d)	TX spuriousemissions conducted	Hybrid system	⊠ Lowest ⊠ Middle ⊠ Highest	Hybrid system	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
	§15.247(d)	TX spuriousemissions radiated	Hybrid system	Lowest Middle	Hybrid system	 ☑ Lowest ☑ Middle ☑ Highest 	Compliant
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	Hybrid system	Lowest Middle	Hybrid system	Middle	Compliant
	§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	Hybrid system	 ☑ Lowest ☑ Middle ☑ Highest 	Hybrid system	⊠ Middle	Compliant

Remark:

1. The measurement uncertainty is not included in the test result.

2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

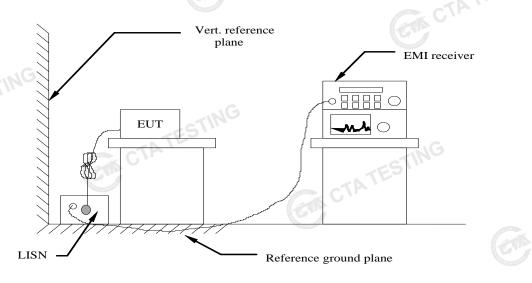
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

<p< th=""><th>Test</th><th>Range</th><th>Measurement Uncertainty</th><th>Notes</th></p<>	Test	Range	Measurement Uncertainty	Notes
	Radiated Emission	30~1000MHz	4.06 dB	(1)
	Radiated Emission	1~18GHz	5.14 dB	(1)
	Radiated Emission	18-40GHz	5.38 dB	(1)
	Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn


3.6 Equipments Used during the Test

	-251"			F		
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
TE	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
CTA'	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
G	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
	Ultra-Broadband Antenna	G Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
CTATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
G			GA CTA		GTA CT	2022/06/03

4 TEST CONDITIONS AND RESULTS

AC Power Conducted Emission 4.1

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

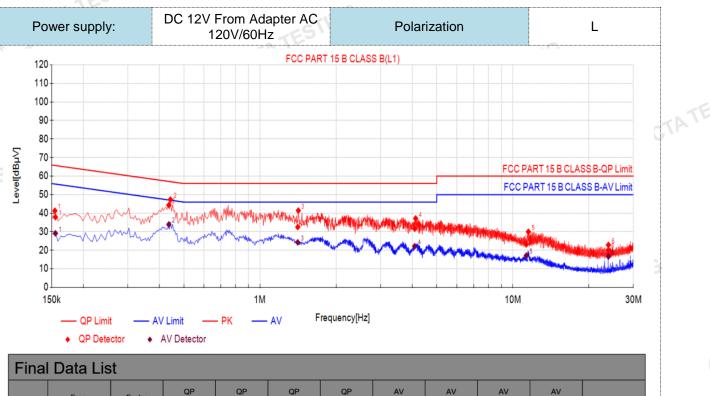
7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit	(dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* De serve se suidh dhe ble se sidh as af dhe fas asse	- NG	

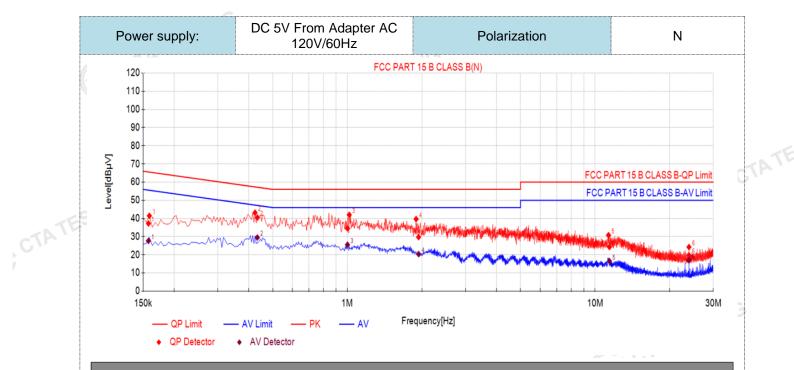

* Decreases with the logarithm of the frequency.

TEST RESULTS

Remark:

1. Lora were test at Low, Middle, and High channel; only the worst result of Lora Middle Channel was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

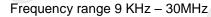

NO.	Freq. [MHz]	Factor [dB]	Reading[dB µV]	Value [dBµV]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Value [dBµV]	Limit [dBµV]	Margin [dB]	Verdict	
1	0.1553	10.50	27.38	37.88	65.71	27.83	18.64	29.14	55.71	26.57	PASS	
2	0.4363	10.50	33.86	44.36	57.13	12.77	23.43	33.93	47.13	13.20	PASS	
3	1.4115	10.50	22.04	32.54	56.00	23.46	13.79	24.29	46.00	21.71	PASS	
4	4.0946	10.50	21.17	31.67	56.00	24.33	11.69	22.19	46.00	23.81	PASS	
5	11.3068	10.50	12.69	23.19	60.00	36.81	6.60	17.10	50.00	32.90	PASS	
6	23.8893	10.50	9.63	20.13	60.00	39.87	6.15	16.65	50.00	33.35	PASS	- TE
).QP Value tor (dB)=ir	· · · /		0 (• •	•	,				CIA	CVA

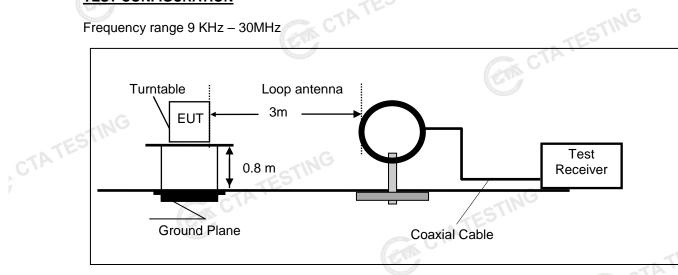
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) GA CTATESTING

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

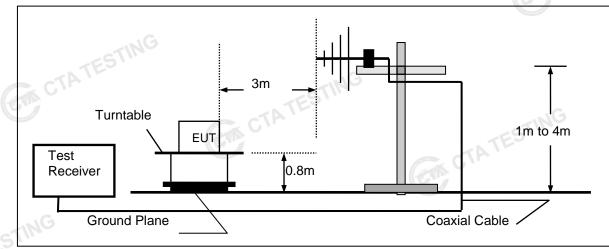
CTATE

Page 12 of 32


Final Data List


D. Freq. [MHz] Factor [dB] QP Reading[dB] QP Value [dBµV] QP Limit [dBµV] QP Margin [dBµV] AV Reading [dBµV] AV AV AV AV 1 0.1577 10.50 26.74 37.24 65.58 28.34 17.20 27.70 55.58 27.88 2 0.4336 10.50 29.98 40.48 57.18 16.70 19.01 29.51 47.18 17.67	Verdict
	PASS
2 0.4336 10.50 29.98 40.48 57.18 16.70 19.01 29.51 47.18 17.67	
	PASS
3 1.0021 10.50 24.02 34.52 56.00 21.48 15.05 25.55 46.00 20.45	PASS
1.9404 10.50 19.26 29.76 56.00 26.24 9.91 20.41 46.00 25.59	PASS
5 11.4277 10.50 13.81 24.31 60.00 35.69 5.96 16.46 50.00 33.54	PASS
<u>3</u> 23.9280 10.50 9.24 19.74 60.00 40.26 6.46 16.96 50.00 33.04	PASS

4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) A CON CIATESTING


4.2 **Radiated Emission**

TEST CONFIGURATION



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

6.

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.

. The	e distance between test a	e states:	
Tes	st Frequency range	Test Antenna Type	Test Distance
9KI	Hz-30MHz	Active Loop Antenna	3
301	MHz-1GHz	Ultra-Broadband Antenna	3
1G	Hz-18GHz	Double Ridged Horn Antenna	3
180	GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states: 7.

Setting test receiver/spectrum as following table states.							
Test Frequency range	Test Receiver/Spectrum Setting	Detector					
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP					
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP					
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP					
	Peak Value: RBW=1MHz/VBW=3MHz,						
1GHz-40GHz	Sweep time=Auto	Peak					
1912-40912	Average Value: RBW=1MHz/VBW=10Hz,	геак					
	Sweep time=Auto						

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

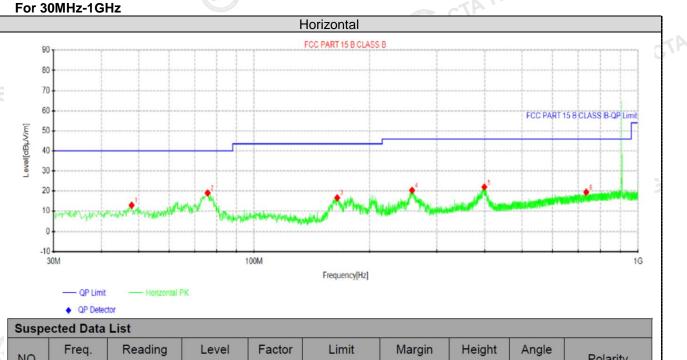
sample calculation is as follows.	STINE
FS = RA + AF + CL - AG	CTATES
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	57

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

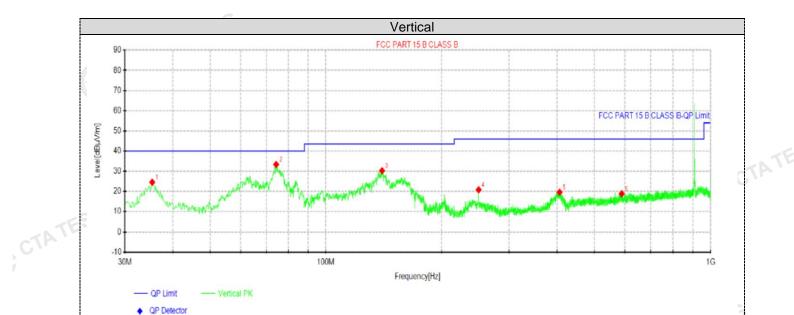

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

GAA CTATES

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- For below 1GHz testing recorded worst at Lora middle channel. 2.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.



(NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
	1	47.945	29.15	12.93	-16.22	40.00	27.07	100	139	Horizontal
	2	75.7113	40.12	18.98	-21.14	40.00	21.02	100	115	Horizontal
	3	164.83	37.91	16.57	-21.34	43.50	26.93	100	220	Horizontal
	4	258.313	38.11	20.32	-17.79	46.00	25.68	100	310	Horizontal
	5	398.842	37.50	21.98	-15.52	46.00	24.02	100	310	Horizontal
	6	735.553	30.40	19.38	-11.02	46.00	26.62	100	353	Horizontal

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

GM CTATE

Suspected Data List

Ju	Suspected Data List										
N	D.	req. /IHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	35	.335	42.31	24.51	-17.80	40.00	15.49	100	13	Vertical	
2	2 74.	2562	54.43	33.36	-21.07	40.00	6.64	100	310	Vertical	
3	3 140	0.095	52.06	30.27	-21.79	43.50	13.23	100	20	Vertical	
4	249	9.947	38.74	20.76	-17.98	46.00	25.24	100	357	Vertical	
5	40	5.996	35.02	19.54	-15.48	46.00	26.46	100	3	Vertical	
6	589	9.205	31.35	18.81	-12.54	46.00	27.19	100	59	Vertical	

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

For 1GHz to 10GHz

For 1GHz	to 10GHz								
Freque	ency(MHz)	:	90	2.3	Pola	arity:	н	ORIZONTA	AL.
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1804.6	59.50	PK	74	14.50	71.77	25.46	3.6	41.33	-12.27
1804.6	42.18	AV	54	11.82	54.45	25.46	3.6	41.33	-12.27
2706.9	50.67	PK	74	23.33	59.83	28.32	5.12	42.6	-9.16
2706.9	40.96	AV	54	13.04	50.12	28.32	5.12	42.6	-9.16
									617

Frequency(MHz):			902	2.3	Pola	arity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
1804.6	59.39	PK	74	14.61	71.66	25.46	3.6	41.33	-12.27		
1804.6	42.01	AV	54	11.99	54.28	25.46	3.6	41.33	-12.27		
2706.9	50.57	PK	74	23.43	59.73	28.32	5.12	42.6	-9.16		
2706.9	40.94	AV	54	13.06	50.10	28.32	5.12	42.6	-9.16		

Frequency(MHz):		908.5		Polarity:		HORIZONTAL		\L	
Frequency (MHz)	Emis Lev (dBu ^v	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1817.00	59.99	PK	74	14.01	72.24	25.49	3.6	41.34	-12.25
1817.00	41.94	AV	54	12.06	654.19	25.49	3.6	41.34	-12.25
2725.50	50.95	PK	74	23.05	60.11	28.34	5.12	42.62	-9.16
2725.50	40.85	AV	54	13.15	50.01	28.34	5.12	6 42.62	-9.16
							STIN		

Frequency(MHz): 908.5				Pol	arita.		VERTICAL		
Fieque		•	908.5		FUId	Polarity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1817.00	59.79	PK	74	14.21	72.04	25.49	3.6	41.34	-12.25
1817.00	41.89	AV	54	12.11	54.14	25.49	3.6	41.34	-12.25
2725.50	50.90	PK	74	23.10	60.06	28.34	5.12	42.62	-9.16
2725.50	40.78	AV	54	13.22	49.94	28.34	5.12	42.62	-9.16

Frequency(MHz):			914.9		Polarity:		HORIZONTAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1810.6	59.14	PK	74	14.86	71.42	25.45	3.6	41.33	-12.28
1810.6	41.81	AV	54	12.19	54.09	25.45	3.6	41.33	-12.28
2715.9	49.99	PK	74	24.01	59.16	28.3	5.12	42.59	-9.17
2715.9	40.75	PK	54	13.25	49.92	28.3	5.12	42.59	-9.17
	-11	1G							

Frequency(MHz):		914.9		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1810.6	59.10	PK	74	14.90	71.38	25.45	3.6	41.33	-12.28
1810.6	41.74	AV	54	12.26	54.02	25.45	3.6	41.33	-12.28
2715.9	49.89	PK	74	24.11	59.06	28.3	5.12	42.59	-9.17
2715.9	40.68	PK	54	13.32	49.85	28.3	5.12	42.59	-9.17

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

4.3 Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

<u>Test Configuration</u>

Test Configuration

Test Results

		263.	
Channel	Output power (dBm)	Limit (dBm)	Result
CH00	18.680		TATES
CH31	18.514	20.97	Pass
CH63	18.761		

Note: 1.The test results including the cable lose.

20dB Bandwidth 4.4

Limit

For frequency hopping systems operating in the 902MHz-928MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Test Results	ANALYZER	CTA TESTING
Channel	20dB bandwidth (MHz)	Result
CH00	0.1796	
CH31	0.1786	Pass
CH63	0.1773	
Test plot as follows:	GA CTATES	CTATESTING

Test plot as follows:

Page 21 of 32

Frequency Separation 4.5

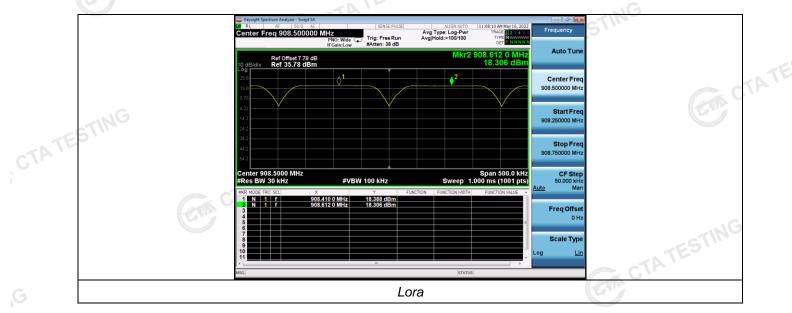
LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

TEST CONFIGURATION


TEST RESULTS

TEST RESULTS	CT CT	TESTING	
Channel	Channel Separation (MHz)	Limit(MHz)	Result
CH30	0.202	25KHz or 2/3*20dB	Pass
CH31	0.202	bandwidth	Fass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

Number of hopping frequency 4.6

Limit C

≥15 For Frequency hopping systems in the 902–928MHz band

Test Procedure

TATESTING GTA CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 903MHz to 906MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration CTATES

Test Results

		591"
Number of Hopping Channel	Limit	Result
64	≥15	Pass

Test plot as follows:

551		
CTA TE	Knowing Start Frac 9002.0000000 MHz PNO: Fast PNO: Fast	222 Frequency
S	Ref Offset 7.73 dB Mkr2 914.964 MH 10 dB/dlw Ref 35.78 dBm 14.126 dBr 14.126 dBr	Auto Tune
		Center Freq 509.000000 MHz
		Start Freq 902.000000 MHz
		Start Freq 902.00000 MHz Stop Freq 916.00000 MHz
ESTING	Start 902.000 MHz Stop 916.000 MH #Res BW 30 kHz #VBW 100 kHz #Sweep 14.80 ms (1001 pt	2 CF Step s) 1.400000 MHz
ED	MRR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION WIDTH 1 N 1 f 902.238 MHz 15.615 dBm FUNCTION WIDTH FUNCTION WIDTH 2 N 1 f 914.964 MHz 14.126 dBm FUNCTION	Freq Offset
		0 Hz Scale Type
(et		Log Lin
	Lora	TING
	(ST)	CTA TESTING
		Gan C

4.7 Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration



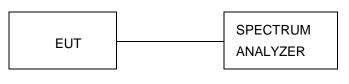
Test Results

СН	Burst time (ms)	Dwell time (s)	Limit (s)	Result
31	0.334	0.334	0.40	Pass

Note:We have tested all mode at high,middle and low channel,and recoreded worst case at middle channel. Test plot as follows:

Report No.: CTA22050500503

Out-of-band Emissions 4.8

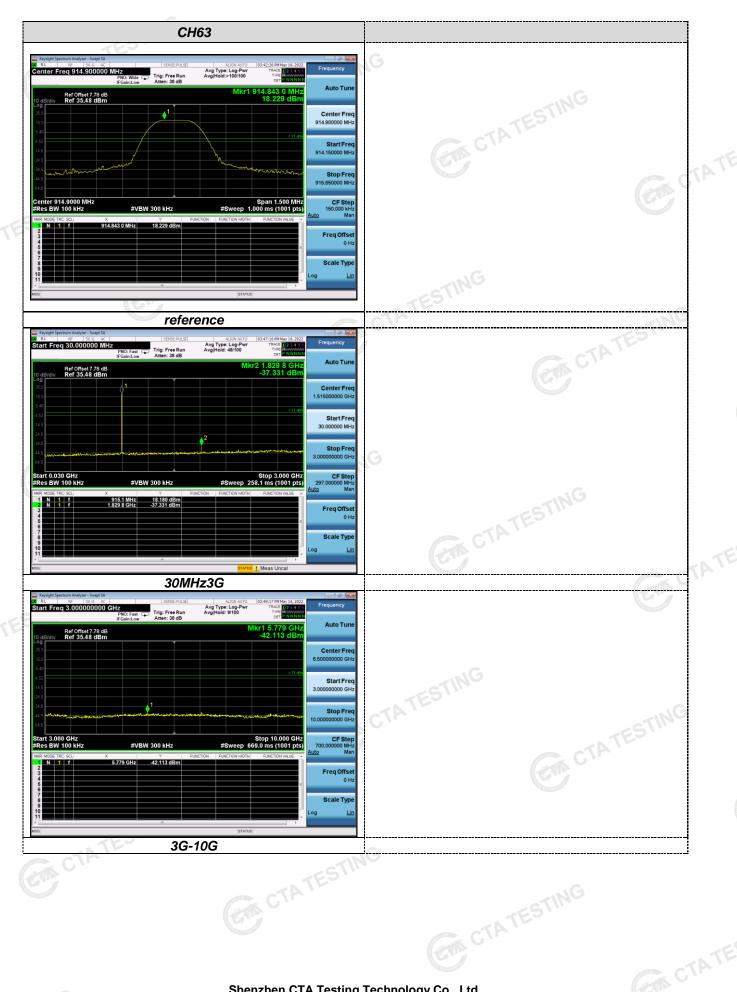

Limit C

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are GTA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows:

Band-edge Measurements for RF Conducted Emissions:

4.9 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 3.00 dBi. Antenna interface type is SMA reverse interface.

Remark:The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT

GTA CTATESTING

6 Photos of the EUT Reference to the test report No. CTA220500501