Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA21112200104

FCC ID.....: 2A3OG-ESUNPANTHERX2

Compiled by

(position+printed name+signature)... File administrators Kevin Liu

ministrators Kevin Liu Kevim . Lim

CTATESTIN

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Nov. 23, 2021

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name..... E-sun Electronics Limited

Kowloon, Hong Kong

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Panther X2 gateway

Trade Mark N/A

Manufacturer E-sun Electronics Limited

Model/Type reference...... Panther X2

Listed Models N/A

Frequency...... From 902.3MHz to 914.9MHz

Rating DC 12.0V From external circuit

Result...... PASS

Page 2 of 34 Report No.: CTA21112200104

TEST REPORT

Equipment under Test Panther X2 gateway

Model /Type Panther X2

N/A Listed Models

Applicant E-sun Electronics Limited

Rooms 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Address

Kowloon, Hong Kong

Manufacturer E-sun Electronics Limited

Address Rooms 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok,

Kowloon, Hong Kong

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: CTA21112200104 Page 3 of 34

Contents

		Contents	
	1	TEST STANDARDS	4
	A STANTANTANTANTANTANTANTANTANTANTANTANTANT	TEST STANDARDS	-iNG
	<u>2</u>	SUMMARY	5
			CIA
	2.1	General Remarks	5
	2.2	Product Description	5
	2.3	Equipment Under Test	5 5
	2.4	Short description of the Equipment under Test (EUT)
	2.5	EUT operation mode	5
	2.6	Block Diagram of Test Setup	6
, 0 .	2.7	Related Submittal(s) / Grant (s)	6
1	2.8	Modifications	6
		C	
	<u>3</u>	TEST ENVIRONMENT	7
	_	CIL	
	3.1	Address of the test laboratory	CTATESTING 7
	3.2	Test Facility	7
	3.3	Environmental conditions	7
	3.4	Summary of measurement results	8
	3.5	Statement of the measurement uncertainty	8
	3.6	Equipments Used during the Test	9
	5.0	Equipments osculuting the rest	3
	_	-ATE	
	<u>4</u>	TEST CONDITIONS AND RESULTS	
	4.1	AC Power Conducted Emission	10
	4.2	Radiated Emission	10 13 19 20 22
	4.3	Maximum Peak Output Power	19
	4.4	Power Spectral Density	20
	4.5	20dB Bandwidth	22
	4.6	Frequency Separation	24
	4.7	Number of hopping frequency	25
	4.8	Time of Occupancy (Dwell Time)	26
	4.9	Out-of-band Emissions	28
CTA	4.10	Antenna Requirement	32
		ESTIN	
	5	TEST SETUP PHOTOS OF THE EUT	G
	<u>5</u>	IEST SETUP PHOTOS OF THE EUT	33
	<u>6</u>	PHOTOS OF THE EUT	
			CTATES!
G			

Page 4 of 34 Report No.: CTA21112200104

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 34 Report No.: CTA21112200104

SUMMARY

General Remarks

Date of receipt of test sample	are to	Nov. 01, 2021
Testing commenced on	No.	Nov. 01, 2021
Testing concluded on	:	Nov. 23, 2021

2.2 Product Description

Product Description:	Panther X2 gateway
Model/Type reference:	Panther X2
Power supply:	DC 12.0V From external circuit
Adapter:	Model:GA-1202000C Input:AC 100-240V 50/60Hz 0.6A Output:DC 12V / 2000mA
Testing comple ID	CTA211122001-1# (Engineer sample),
Testing sample ID:	CTA211122001-2# (Normal sample)
Lora	
Modulation Technology:	Hybrid system
Operation frequency:	902.3MHz-914.9MHz
Channel spacing:	200KHz
Channel number:	64 C
Antenna type:	External antenna
Antenna gain:	3.00 dBi

2.3 Equipment Under Test

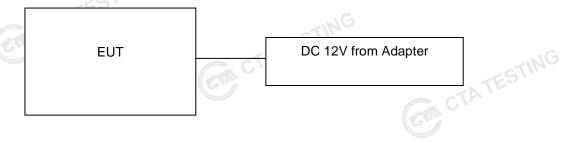
Power supply system utilised

Power supply voltage	-671	0	230V / 50 Hz	0	120V / 60Hz	ì
- 1	ES	•	12 V DC	0	24 V DC	l
Other (specified in blank below))	}	
		DC	12.0V From external circuit			(11)
2.4 Short description o	f the E	qui	pment under Test (El	JT)	CTA	
This is a Panther X2 gateway	or's mar	aual	of the ELIT			

Short description of the Equipment under Test (EUT)

This is a Panther X2 gateway For more details, refer to the user's manual of the EUT.

2.5 **EUT operation mode**


The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 64 channels provided to the EUT and Channel 00/31/63 were selected to test.

Page 6 of 34 Report No.: CTA21112200104

Operation Frequency:

-0	Channel	Frequency (MHz)		
	00	902.3		
To to	01	902.5		
	TATES	a)G		
	30	908.3		
	31	908.5		
	32	908.7		
	:			
	62	914.7		
	63	914.9		

2.6 **Block Diagram of Test Setup**

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

Modifications 2.8

No modifications were implemented to meet testing criteria.

Report No.: CTA21112200104 Page 7 of 34

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges: CTATESTING Radiated Emission:

Temperature:	Ltd	24 ° C
		0.
Humidity:		45 %
Atmospheric pressure:		950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
Humidity:	46 %
759	1,,
Atmospheric pressure:	950-1050mbar

Conducted testing:

950-1050mbar
ESTIN
25 ° C
Gar
44 %
950-1050mbar
CTATESTING

Report No.: CTA21112200104 Page 8 of 34

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	Hybrid system	☑ Lowest☑ Middle☑ Highest	Hybrid system		Compliant
§15.247(a)(1)	Number of Hopping channels	Hybrid system	⊠ Full	Hybrid system	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	Hybrid system	☑ Lowest☑ Middle☑ Highest	Hybrid system		Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	Hybrid system	☑ Lowest☑ Middle☑ Highest	Hybrid system	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	Hybrid system	✓ Lowest✓ Middle✓ Highest	Hybrid system	✓ Lowest✓ Middle✓ Highest	Compliant
§15.247(f)	Power Spectral Density	Hybrid system	✓ Lowest✓ Middle✓ Highest	Hybrid system	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	Hybrid system	☑ Lowest☑ Highest	Hybrid system	☑ Lowest☑ Highest	Compliant
§15.205	Band edgecompliance radiated	Hybrid system	☑ Lowest☑ Highest	Hybrid system	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	Hybrid system	✓ Lowest✓ Middle✓ Highest	Hybrid system	☐ Lowest☐ Middle☐ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	Hybrid system	✓ Lowest✓ Middle✓ Highest	Hybrid system	✓ Lowest✓ Middle✓ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	Hybrid system	✓ Lowest✓ Middle✓ Highest	Hybrid system	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	Hybrid system	☑ Lowest☑ Middle☑ Highest	Hybrid system		Compliant

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report 2.

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

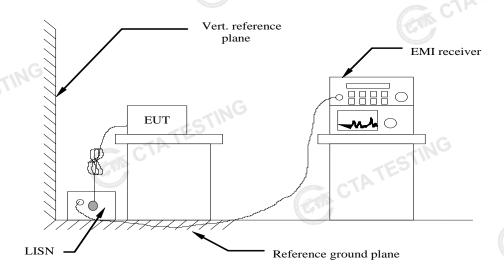
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

Report No.: CTA21112200104 Page 9 of 34

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


	23 max 1 mm		7 12		-1810	
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
TE	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
CTATE	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
,	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
G	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
TE	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
CTATE	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
*	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
I .		L	1	1		

Page 10 of 34 Report No.: CTA21112200104

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

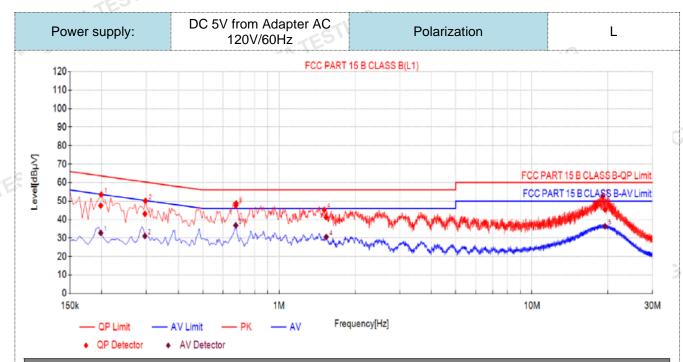
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

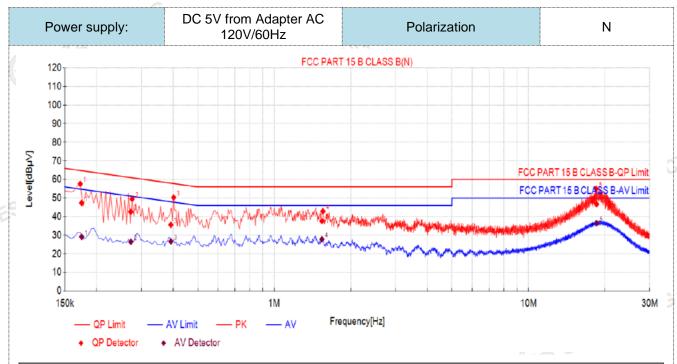
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:


Eroquonov rongo (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the freque	ncy.		

TEST RESULTS

1. Lora were test at Low, Middle, and High channel; only the worst result of Lora Middle Channel was reported as below:

Report No.: CTA21112200104


2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

nal	Data Lis	st										
0.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
1	0.1986	10.50	37.01	47.51	63.67	16.16	22.27	32.77	53.67	20.90	PASS	
2	0.2969	10.50	32.54	43.04	60.33	17.29	20.59	31.09	50.33	19.24	PASS	
3	0.6743	10.50	37.08	47.58	56.00	8.42	26.34	36.84	46.00	9.16	PASS	
1	1.5360	10.50	30.68	41.18	56.00	14.82	20.13	30.63	46.00	15.37	PASS	
5	19.4710	10.50	34.87	45.37	60.00	14.63	25.84	36.34	50.00	13.66	PASS	
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)												TATE
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												
QPI	Margin(dB) = QP L	imit (dBµ	V) - QP	Value (di	BμV)						
	e:1	D. Freq. [MHz] 1 0.1986 2 0.2969 3 0.6743 4 1.5360 5 19.4710 e:1).QP Value Factor (dB)=ii	MHz [dB] (dB] (dB] (dB] (dB] (dB] (dB) (D. Freq. [MHz] Factor [dB] Peading[dB μV] 1 0.1986 10.50 37.01 2 0.2969 10.50 32.54 3 0.6743 10.50 37.08 4 1.5360 10.50 30.68 5 19.4710 10.50 34.87 e:1).QP Value (dBμV)= QP Re Factor (dB)=insertion loss of LI	D. Freq. [MHz] Factor [dB] Peading[dB Value [dBμV]] 1 0.1986 10.50 37.01 47.51 2 0.2969 10.50 32.54 43.04 3 0.6743 10.50 37.08 47.58 4 1.5360 10.50 30.68 41.18 5 19.4710 10.50 34.87 45.37 e:1).QP Value (dBμV)= QP Reading (dI) Factor (dB)=insertion loss of LISN (dB)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D. Freq. [MHz] Factor [dB] Reading[dB μ V] [dB	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

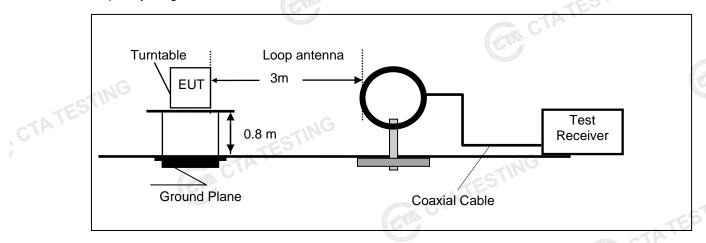
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

Page 12 of 34 Report No.: CTA21112200104

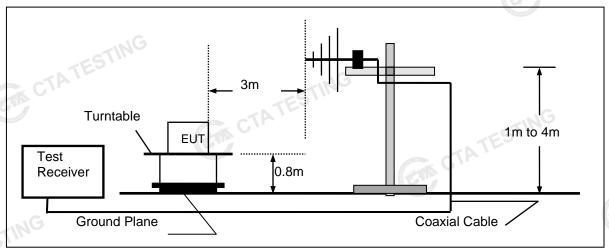
Final Data List													
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict		
1	0.1747	10.50	36.91	47.41	64.74	17.33	18.63	29.13	54.74	25.61	PASS		
2	0.2728	10.50	32.09	42.59	61.03	18.44	15.93	26.43	51.03	24.60	PASS		
3	0.3920	10.50	25.12	35.62	58.02	22.40	16.15	26.65	48.02	21.37	PASS		
4	1.5405	10.50	27.15	37.65	56.00	18.35	17.31	27.81	46.00	18.19	PASS		
5	18.5590	10.50	36.21	46.71	60.00	13.29	25.90	36.40	50.00	13.60	PASS		

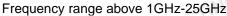
CTATE

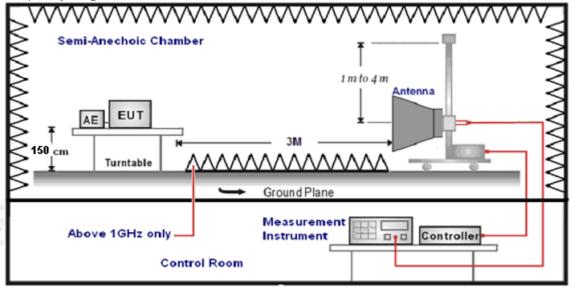
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATESTING

Page 13 of 34 Report No.: CTA21112200104


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Page 14 of 34 Report No.: CTA21112200104

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
_ , ,	71	1 COL BISTAINEC	73 uses
9KHz-30MHz	Active Loop Antenna	3	
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:		
FS = RA + AF + CL - AG	CTATES	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable	e Loss)
RA = Reading Amplitude	AG = Amplifier Gain	Silter ted
AF = Antenna Factor		

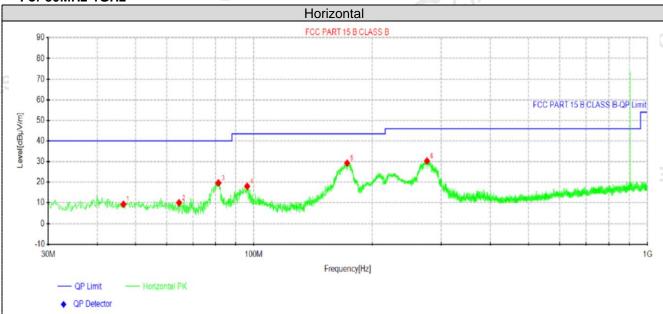
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

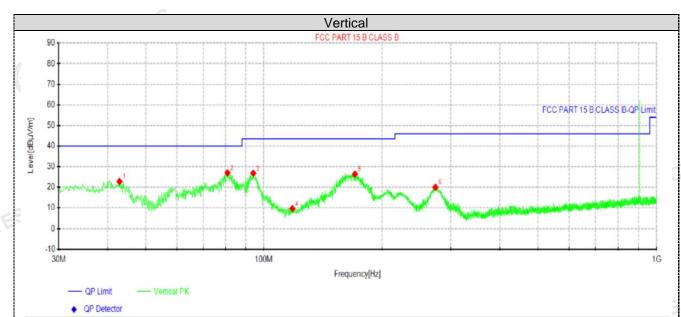

Page 15 of 34 Report No.: CTA21112200104

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- For below 1GHz testing recorded worst at Lora middle channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority.
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	46.6112	25.54	9.22	-16.32	40.00	30.78	100	196	Horizontal
2	64.5562	29.38	9.95	-19.43	40.00	30.05	100	360	Horizontal
3	81.2887	40.77	19.62	-21.15	40.00	20.38	100	111	Horizontal
4	96.2025	36.96	18.00	-18.96	43.50	25.50	100	359	Horizontal
5	172.832	50.13	29.23	-20.90	43.50	14.27	100	281	Horizontal
6	275.895	47.98	30.28	-17.70	46.00	15.72	100	71	Horizontal

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

Report No.: CTA21112200104 Page 16 of 34

Suspe	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovity
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	42.8525	39.49	22.74	-16.75	40.00	17.26	100	164	Vertical
2	80.8037	48.15	26.93	-21.22	40.00	13.07	100	296	Vertical
3	94.02	46.04	26.74	-19.30	43.50	16.76	100	360	Vertical
4	118.27	29.66	9.62	-20.04	43.50	33.88	100	3	Vertical
5	170.771	47.31	26.31	-21.00	43.50	17.19	100	242	Vertical
6	273.833	37.64	19.95	-17.69	46.00	26.05	100	358	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V/m$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

For 1GHz to 25GHz

Freque	ncy(MHz)):	90	2.3	Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1804.6	58.98	PK	74	15.02	71.25	25.46	3.6	41.33	-12.27
1804.6	43.35	AV	54	10.65	55.62	25.46	3.6	41.33	-12.27
2706.9	50.73	PK	74	23.27	59.89	28.32	5.12	42.6	-9.16
2706.9	41.31	AV	54	12.69	50.47	28.32	5.12	42.6	-9.16

	Frague	nov/MU=)		90:	2 2	Pole	>ri4./.	VERTICAL			
L	Frequency(MHz):			90	2.3	Pola	arity:	VERTICAL			
	Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
	1804.6	59.06	PK	74	14.94	71.33	25.46	3.6	41.33	-12.27	
	1804.6	42.75	AV	54	11.25	55.02	25.46	3.6	41.33	-12.27	
	2706.9	50.96	PK	74	23.04	60.12	28.32	5.12	42.6	-9.16	
	2706.9	40.89	AV	54	13.11	50.05	28.32	5.12	42.6	-9.16	

Freque	ncy(MHz)	:	908	8.5	Pola	arity:	HORIZONTAL		
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1817.00			74	15.22	71.03	25.49	3.6	41.34	-12.25
1817.00	43.51	AV	54	10.49	55.76	25.49	3.6	41.34	-12.25
2725.50	51.48	PK	74	22.52	60.64	28.34	5.12	42.62	-9.16
2725.50	42.42	AV	54	11.58	51.58	28.34	5.12	3 42.62	-9.16
			Carlo U				-5711		

Freque	ncy(MHz)	:	908.5		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1817.00	59.96	PK	74	14.04	72.21	25.49	3.6	41.34	-12.25
1817.00	42.71	AV	54	11.29	54.96	25.49	3.6	41.34	-12.25
2725.50	51.16	PK	74	22.84	60.32	28.34	5.12	42.62	-9.16
2725.50	41.48	AV	54	12.52	50.64	28.34	5.12	42.62	-9.16

Frequency(MHz):		914.9		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1810.6	59.73	PK	74	14.27	72.01	25.45	3.6	41.33	-12.28
1810.6	42.90	AV	54	11.10	55.18	25.45	3.6	41.33	-12.28
2715.9	51.30	PK	74	22.70	60.47	28.3	5.12	42.59	-9.17
2715.9	41.68	AV	54	12.32	50.85	28.3	5.12	42.59	-9.17

Frequency(MHz):		914.9		Polarity:		VERTICAL			
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1810.6	58.95	PK	74	15.05	71.23	25.45	3.6	41.33	-12.28
1810.6	43.48	AV	54	10.52	55.76	25.45	3.6	41.33	-12.28
2715.9	51.66	PK	74	22.34	60.83	28.3	5.12	42.59	-9.17
2715.9	42.30	AV	54	11.70	51.47	28.3	5.12	42.59	-9.17

Page 18 of 34 Report No.: CTA21112200104

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 19 of 34 Report No.: CTA21112200104

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Channel	Output power (dBm)	Limit (dBm)	Result
CH00	8.345		TATES
CH31	8.753	20.97	Pass
CH63	8.852		

Note: 1.The test results including the cable lose. SURESTIN

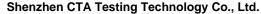
Page 20 of 34 Report No.: CTA21112200104

Power Spectral Density

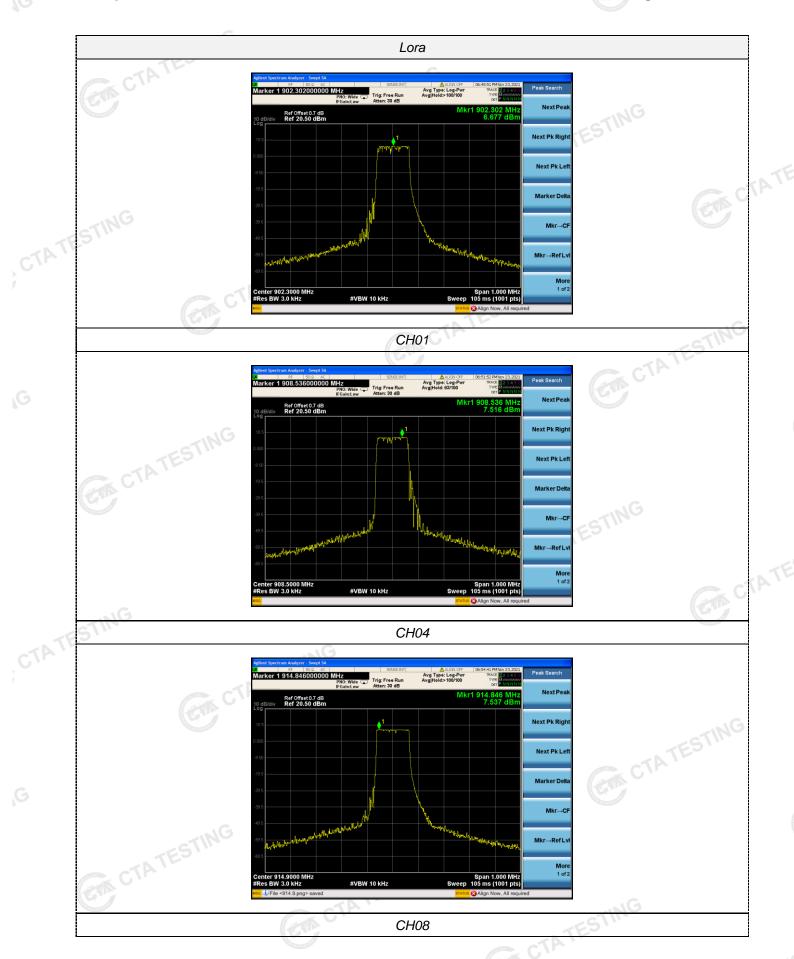
Limit _

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure


- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration



Test Results

	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	CH00	6.677		D2 untur
TE	CH31	7.516	8.00	Pass
CIL	CH63	7.537		
i	Test plot as follows:	TATES		- CTATESTING

Report No.: CTA21112200104

Page 22 of 34 Report No.: CTA21112200104

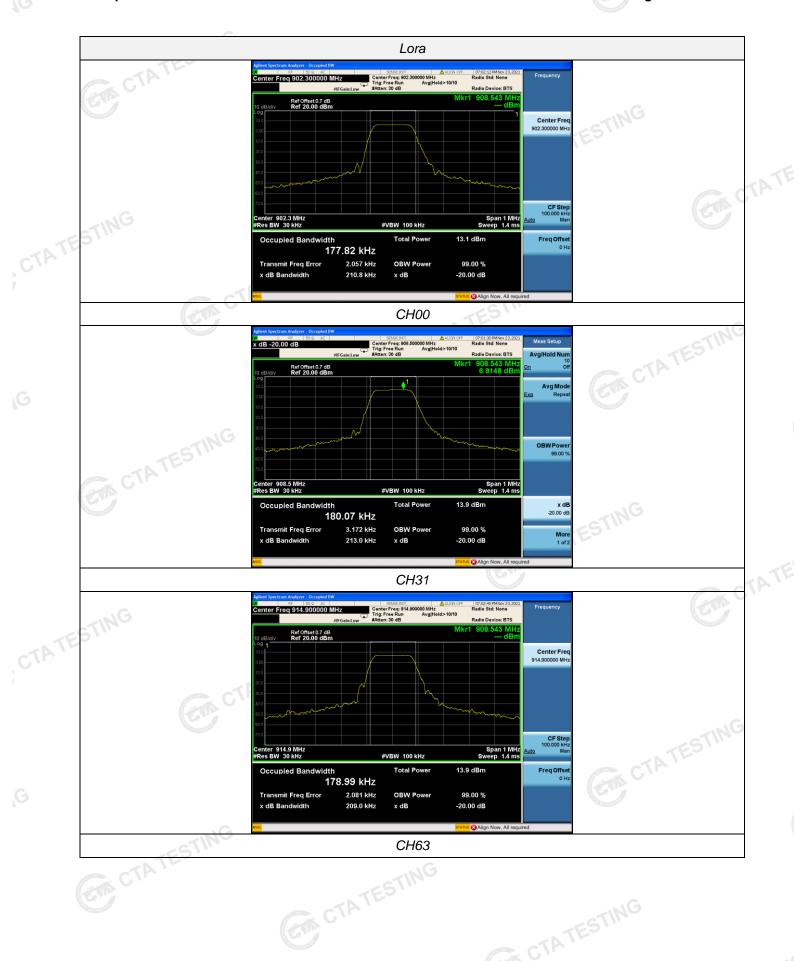
20dB Bandwidth

Limit

For frequency hopping systems operating in the 902MHz-928MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.


The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

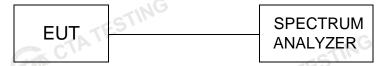
Test Configuration

Test Results

st Results	CTATE CTATE	CTATESTI
Channel	20dB bandwidth (MHz)	Result
CH00	0.2108	
CH31	0.2130	Pass
CH63	0.2090	
est plot as follows:	CTATESTING	CTATESTING

Page 24 of 34 Report No.: CTA21112200104

Frequency Separation

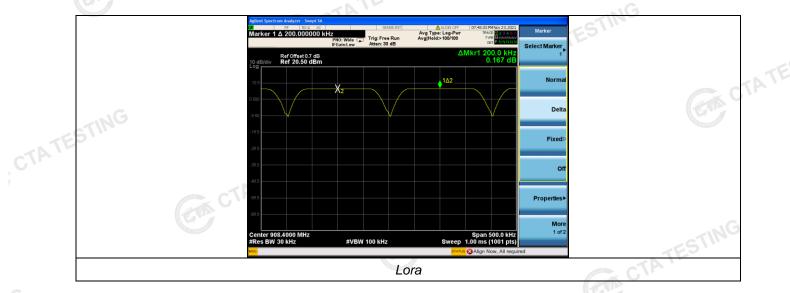

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

TEST CONFIGURATION



TEST RESULTS

TEST RESULTS	CT CT	CTATES			
Channel	Channel Separation (MHz)	Limit(MHz)	Result		
CH30	0.200	25KHz or 2/3*20dB	Doop		
CH31	0.200	bandwidth	Pass		

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

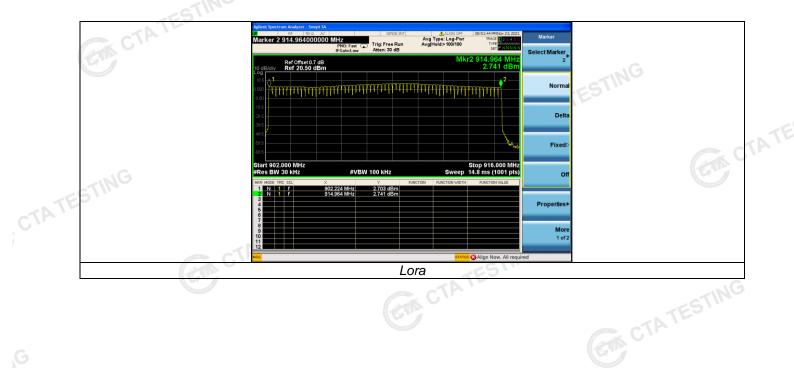
Page 25 of 34 Report No.: CTA21112200104

Number of hopping frequency

Limit C

≥15 For Frequency hopping systems in the 902–928MHz band

Test Procedure


TATESTING CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 903MHz to 906MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

Test Results

Test Results	CTATES	
Number of Hopping Channel	Limit	Result
64	≥15	Pass

Page 26 of 34 Report No.: CTA21112200104

Time of Occupancy (Dwell Time)

Limit C

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

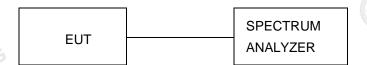
Test Results			CTATES		TESTING	
СН	Burst time (ms)	Dwell time (s)	Limit (s)	Result	C/L	
31	0.3707	0.3707	0.40	Pass		

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel. CHAITESTING Test plot as follows:

Report No.: CTA21112200104

Page 28 of 34 Report No.: CTA21112200104

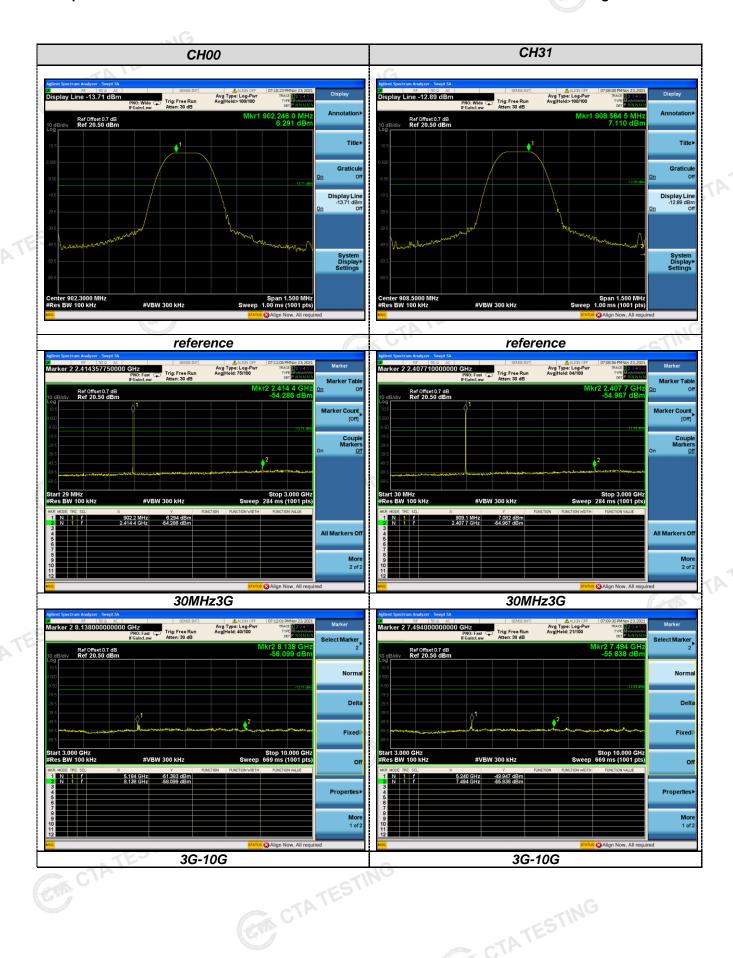
Out-of-band Emissions 4.9


Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.


Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Report No.: CTA21112200104 Page 31 of 34

Band-edge Measurements for RF Conducted Emissions: Avg Type: Log-Pw Avg|Hold>100/100 Avg Type: Log-Pwr Avg|Hold>100/100 PNO: Fast Trig: Free Run
Atten: 30 dB PNO: Fast Trig: Free Run Ref Offset 0.7 dB Ref 20.50 dBm Display Line -12.75 dBm Stop 1.00000 GHz Sweep 9.47 ms (1001 pts) #VBW 300 kHz Off 914.860 MHz 7.246 dBm 928.000 MHz -60.616 dBm 960.000 MHz -62.467 dBm System Display Settings Left Band edge hoping off Right Band edge hoping off splay Line -12.19 de Trig: Free Run Trig: Free Run Ref Offset 0.7 dB Ref 20.50 dBm Ref Offset 0.7 dB Ref 20.50 dBm Display Line Fixed er 863.50 MHz Off 7.837 dBn -60.616 dBn -60.997 dBn System Display Settings

Left Band edge hoping on

CTA TESTING

Right Band edge hoping on

Page 32 of 34 Report No.: CTA21112200104

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

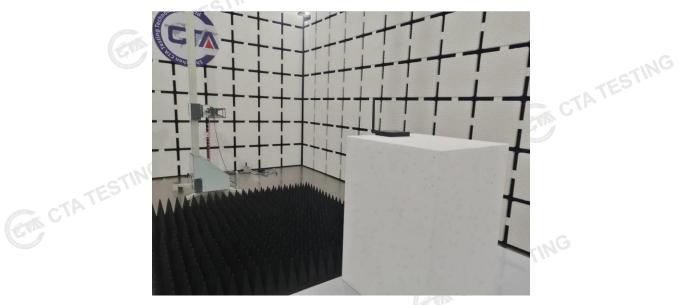
And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 3.00 dBi.


Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATEST

Report No.: CTA21112200104 Page 33 of 34

Test Setup Photos of the EUT

Page 34 of 34 Report No.: CTA21112200104

Photos of the EUT

Reference to the test report No. CTA21112200101 CTATESTING ******************** End of Report ***************