

## CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 3 (DTS)

## **TEST REPORT**

For

## Smart LED downlight /Spot LED intelligent

## MODEL NUMBER: R1, R2

### **REPORT NUMBER: E04A23120598F00101**

## ISSUE DATE: Feb. 23, 2024

## FCC ID: 2A3MAR2

## IC: 27538-R2

### Prepared for

## Lepro Innovation INC

## 3651 Lindell Road Suite D1048, Las Vegas, NV 89103, USA

Prepared by

## Guangdong Global Testing Technology Co., Ltd.

### Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned Product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval ofGuangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B Web: www.gtggroup.com

TRF Originator: GTG E-mail: info@gtggroup.com

TRF Date: 2023-12-13 Tel.: 86-400 755 8988

# **Revision History**

| Rev. | Issue Date    | Revisions     | Revised By |
|------|---------------|---------------|------------|
| V0   | Feb. 23, 2024 | Initial Issue |            |

| Test Item                     | Clause                           | Limit/Requirement                  | Result    |
|-------------------------------|----------------------------------|------------------------------------|-----------|
| Antenna                       | N/A                              | FCC Part 15.203/15.247 (c)         | Complianc |
| Requirement                   |                                  | RSS-GEN Clause 6.8                 | е         |
| AC Power Line                 | ANSI C63.10-2013, Clause         | FCC Part 15.207                    | Pass      |
| Conducted Emission            | 6.2                              | RSS-GEN Clause 8.8                 | F d S S   |
| Conducted Output              | ANSI C63.10-2013, Clause         | FCC Part 15.247 (b)(3)             | Pass      |
| Power                         | 11.9.1.3                         | RSS-247 Clause 5.4 (d)             | rass      |
| 6dB Bandwidth and             | ANSI C63.10-2013, Clause         | FCC Part 15.247 (a)(2)             |           |
| 99% Occupied                  | 11.8.1                           | RSS-247 Clause 5.2 (a)             | Pass      |
| Bandwidth                     | 11.0.1                           | ISED RSS-Gen Clause 6.7            |           |
| Power Spectral                | ANSI C63.10-2013, Clause         | FCC Part 15.247 (e)                | Pass      |
| Density                       | 11.10.2                          | RSS-247 Clause 5.2 (b)             | F d S S   |
| Conducted Band                | ANSI C63.10-2013, Clause         | FCC Part 15.247(d)                 |           |
| edge and spurious<br>emission | 11.11                            | RSS-247 Clause 5.5                 | Pass      |
| Dedicted Pand edge            |                                  | FCC Part 15.247 (d)                |           |
| Radiated Band edge            | ANSI C63.10-2013, Clause         | FCC Part 15.205/15.209             | Pass      |
| and Spurious<br>Emission      | 11.11 & Clause 11.12             | RSS-247 Clause 5.5                 | Pass      |
|                               |                                  | RSS-GEN Clause 8.9                 |           |
| Duty Cycle                    | ANSI C63.10-2013, Clause<br>11.6 | None; for reporting purposes only. | Pass      |

## Summary of Test Results

\*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

\*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C

ISED RSS-247 ISSUE 3 (DTS)> when <Accuracy Method> decision rule is applied.

# CONTENTS

| 1.                                                               | ATTES                                                                   | TATION OF TEST RESULTS                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                      |
|------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 2.                                                               | TEST                                                                    | IETHODOLOGY                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                      |
| 3.                                                               | FACILI                                                                  | TIES AND ACCREDITATION                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                      |
| 4.                                                               | CALIB                                                                   | RATION AND UNCERTAINTY                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                      |
| 4                                                                | 4.1.                                                                    | MEASURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                      |
| 4                                                                | 4.2.                                                                    | MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                      |
| 5.                                                               | EQUIP                                                                   | MENT UNDER TEST                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                      |
| 5                                                                | 5.1.                                                                    | DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                      |
| 5                                                                | 5.2.                                                                    | CHANNEL LIST                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                      |
| 5                                                                | 5.3.                                                                    | MAXIMUM AVERAGE EIRP                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                      |
| 5                                                                | 5.4.                                                                    | TEST CHANNEL CONFIGURATION                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                      |
| 5                                                                | 5.5.                                                                    | THE WORSE CASE POWER SETTING PARAMETER                                                                                                                                                                                                                                                                                                               | 9                                                                                                                      |
| 5                                                                | 5.6.                                                                    | DESCRIPTION OF AVAILABLE ANTENNAS                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                     |
| 5                                                                | 5.7.                                                                    | SUPPORT UNITS FOR SYSTEM TEST                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                     |
| 5                                                                | 5.8.                                                                    | SETUP DIAGRAM                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                     |
|                                                                  |                                                                         |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |
| 6.                                                               | MEASU                                                                   | JRING EQUIPMENT AND SOFTWARE USED                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                     |
| 6.<br>7.                                                         |                                                                         | JRING EQUIPMENT AND SOFTWARE USED                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |
| 7.                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                     |
| <b>7</b> .<br>7                                                  | ANTEN                                                                   | INA PORT TEST RESULTS                                                                                                                                                                                                                                                                                                                                | <b>14</b><br>14                                                                                                        |
| <b>7</b> .<br>7<br>7                                             | <b>ANTEN</b><br>7.1.                                                    | NA PORT TEST RESULTS<br>Conducted Output Power                                                                                                                                                                                                                                                                                                       | <b>14</b><br>14<br>15                                                                                                  |
| <b>7</b> .<br>7<br>7<br>7                                        | <b>ANTEN</b><br>7.1.<br>7.2.                                            | NA PORT TEST RESULTS<br>Conducted Output Power<br>6dB Bandwidth and 99% Occupied Bandwidth                                                                                                                                                                                                                                                           | <b>14</b><br>14<br>15<br>17                                                                                            |
| <b>7</b> .<br>7<br>7<br>7<br>7                                   | <b>ANTEN</b><br>7.1.<br>7.2.<br>7.3.                                    | NA PORT TEST RESULTS<br>Conducted Output Power<br>6dB Bandwidth and 99% Occupied Bandwidth<br>Power Spectral Density                                                                                                                                                                                                                                 | <b>14</b><br>14<br>15<br>17<br>18                                                                                      |
| <b>7</b> .<br>7<br>7<br>7<br>7                                   | ANTEN<br>7.1.<br>7.2.<br>7.3.<br>7.4.<br>7.5.                           | NA PORT TEST RESULTS<br>Conducted Output Power<br>6dB Bandwidth and 99% Occupied Bandwidth<br>Power Spectral Density<br>Conducted Band edge and spurious emission                                                                                                                                                                                    | <b>14</b><br>15<br>17<br>18<br>20                                                                                      |
| 7.<br>7<br>7<br>7<br>7<br>7<br>8.                                | ANTEN<br>7.1.<br>7.2.<br>7.3.<br>7.4.<br>7.5.                           | NA PORT TEST RESULTS<br>Conducted Output Power<br>6dB Bandwidth and 99% Occupied Bandwidth<br>Power Spectral Density<br>Conducted Band edge and spurious emission<br>Duty Cycle                                                                                                                                                                      | <b>14</b><br>15<br>17<br>18<br>20<br><b>21</b>                                                                         |
| 7.<br>7<br>7<br>7<br>7<br>7<br>8.                                | ANTEN<br>7.1.<br>7.2.<br>7.3.<br>7.4.<br>7.5.<br>RADIA<br>8.1.          | INA PORT TEST RESULTS<br>Conducted Output Power<br>6dB Bandwidth and 99% Occupied Bandwidth<br>Power Spectral Density<br>Conducted Band edge and spurious emission<br>Duty Cycle<br>TED TEST RESULTS                                                                                                                                                 | 14<br>15<br>17<br>18<br>20<br>21<br>27                                                                                 |
| 7.<br>7<br>7<br>7<br>7<br>7<br>7<br>8.<br>8.                     | ANTEN<br>7.1.<br>7.2.<br>7.3.<br>7.4.<br>7.5.<br>RADIA<br>8.1.<br>ANTEN | INA PORT TEST RESULTS         Conducted Output Power                                                                                                                                                                                                                                                                                                 | <ol> <li>14</li> <li>15</li> <li>17</li> <li>18</li> <li>20</li> <li>21</li> <li>27</li> <li>39</li> </ol>             |
| 7.<br>7<br>7<br>7<br>7<br>7<br>8.<br>8.<br>8.<br>8.              | ANTEN<br>7.1.<br>7.2.<br>7.3.<br>7.4.<br>7.5.<br>RADIA<br>8.1.<br>ANTEN | INA PORT TEST RESULTS         Conducted Output Power         6dB Bandwidth and 99% Occupied Bandwidth         Power Spectral Density         Conducted Band edge and spurious emission         Duty Cycle         TED TEST RESULTS         Radiated Band edge and Spurious Emission         INA REQUIREMENT                                          | <ol> <li>14</li> <li>15</li> <li>17</li> <li>18</li> <li>20</li> <li>21</li> <li>27</li> <li>39</li> <li>40</li> </ol> |
| 7.<br>7<br>7<br>7<br>7<br>7<br>8.<br>8.<br>8<br>9.<br>10.<br>11. | ANTEN<br>7.1.<br>7.2.<br>7.3.<br>7.4.<br>7.5.<br>RADIA<br>8.1.<br>ANTEN | INA PORT TEST RESULTS         Conducted Output Power         6dB Bandwidth and 99% Occupied Bandwidth         Power Spectral Density         Conducted Band edge and spurious emission         Duty Cycle         TED TEST RESULTS         Radiated Band edge and Spurious Emission         INA REQUIREMENT         AC POWER LINE CONDUCTED EMISSION | 14<br>14<br>15<br>17<br>18<br>20<br>21<br>27<br>39<br>40<br>43                                                         |

# 1. ATTESTATION OF TEST RESULTS

#### **Applicant Information** Company Name: Lepro Innovation INC Address: 3651 Lindell Road Suite D1048, Las Vegas, NV 89103, USA Manufacturer Information Company Name: Lepro Innovation INC Address: 3651 Lindell Road Suite D1048, Las Vegas, NV 89103, USA **Factory Information** Company Name: Xiamen Yiyuanyuan Technology Ltd 3/F No.78, Meixi Road Siming Zone, Tongan District, Xiamen, Address: Fujian, China **EUT Information** Product Description: Smart LED downlight /Spot LED intelligent Model: R2 R1 Series Model: Brand: Lepre Jan. 17, 2024 Sample Received Date: Sample Status: Normal Sample ID: A23120598 001 Date of Tested: Jan. 17, 2024 to Feb. 20, 2024

| APPLICABLE STANDARDS         |              |  |
|------------------------------|--------------|--|
| STANDARD                     | TEST RESULTS |  |
| CFR 47 FCC PART 15 SUBPART C | Page         |  |
| ISED RSS-247 ISSUE 3 (DTS)   | Pass         |  |

Prepared By: Checked By: lan / Ce pool then CALAN He clob Poal Chen **Project Engineer** aboratory Leader gdon Approved By: CERTIFIC Shawn Wen Laboratory Manager

# 2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 3 (DTS)

# 3. FACILITIES AND ACCREDITATION

|                           | A2LA (Certificate No.: 6947.01)<br>Guangdong Global Testing Technology Co., Ltd.<br>has been assessed and proved to be in compliance with A2LA. |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | FCC (FCC Designation No.: CN1343)<br>Guangdong Global Testing Technology Co., Ltd.                                                              |
|                           | has been recognized to perform compliance testing on equipment                                                                                  |
| Accreditation Certificate | subject to Supplier's Declaration of Conformity (SDoC) and<br>Certification rules                                                               |
|                           | ISED (Company No.: 30714)                                                                                                                       |
|                           | Guangdong Global Testing Technology Co., Ltd.                                                                                                   |
|                           | has been registered and fully described in a report filed with ISED.                                                                            |
|                           | The Company Number is 30714 and the test lab Conformity                                                                                         |
|                           | Assessment Body Identifier (CABID) is CN0148.                                                                                                   |

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

# 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

# 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Test Items                                                                                                                                       | k    | Uncertainty                                                                                                 |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| DTS Bandwidth                                                                                                                                    | 1.96 | ±9.2 PPM                                                                                                    |  |  |  |
| 20dB Emission Bandwidth                                                                                                                          | 1.96 | ±9.2 PPM                                                                                                    |  |  |  |
| Carrier Frequency Separation                                                                                                                     | 1.96 | ±9.2 PPM                                                                                                    |  |  |  |
| Time of Occupancy                                                                                                                                | 1.96 | ±0.57%                                                                                                      |  |  |  |
| Conducted Output Power                                                                                                                           | 1.96 | ±1.5 dB                                                                                                     |  |  |  |
| Power Spectral Density Level                                                                                                                     | 1.96 | ±1.9 dB                                                                                                     |  |  |  |
| Conducted Spurious Emission                                                                                                                      | 1.96 | 9 kHz-30 MHz: ± 0.95 dB<br>30 MHz-1 GHz: ± 1.5 dB<br>1GHz-12.75GHz: ± 1.8 dB<br>12.75 GHz-26.5 GHz: ± 2.1dB |  |  |  |
| Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96. |      |                                                                                                             |  |  |  |

| Test Item                                                                                                                                     | Measurement Frequency Range | К | U(dB) |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---|-------|--|--|
| Conducted emissions from the AC mains power ports (AMN)                                                                                       | 150 kHz ~ 30 MHz            | 2 | 3.37  |  |  |
| Radiated emissions                                                                                                                            | 9 kHz ~ 30 MHz              | 2 | 4.16  |  |  |
| Radiated emissions                                                                                                                            | 30 MHz ~ 1 GHz              | 2 | 3.79  |  |  |
| Radiated emissions                                                                                                                            | 1 GHz ~ 18 GHz              | 2 | 5.62  |  |  |
| Radiated emissions                                                                                                                            | 18 GHz ~ 40 GHz             | 2 | 5.54  |  |  |
| Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. |                             |   |       |  |  |

# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

| EUT Name         |    | Smart LED downlight /Spot LED intelligent |  |
|------------------|----|-------------------------------------------|--|
| Model            |    | R2                                        |  |
| Series Model     |    | ۲۱                                        |  |
| Hardware Version |    | V1.0                                      |  |
| Software Version |    | V1.0                                      |  |
| Ratings          |    | AC 120V 60Hz                              |  |
| Power Supply     | AC | AC 120V 60Hz                              |  |
|                  | DC |                                           |  |

| Frequency Band:      | 2400 MHz to 2483.5 MHz                                                                    |
|----------------------|-------------------------------------------------------------------------------------------|
| Frequency Range:     | 2412 MHz to 2462 MHz                                                                      |
| Support Standards:   | IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20                                             |
| Type of Modulation:  | IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK)<br>IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK) |
| Data Rate:           | IEEE 802.11b: Up to 11 Mbps<br>IEEE 802.11g: Up to 54 Mbps<br>IEEE 802.11n: Up to MCS7    |
| Number of Channels:  | IEEE 802.11b/g/n-HT20                                                                     |
| Maximum Peak Power:  | IEEE 802.11b: : 14.95 dBm<br>IEEE 802.11g: 18.58 dBm<br>IEEE 802.11n-HT20: 16.45 dBm      |
| Antenna Type:        | PCB Antenna                                                                               |
| Antenna Gain:        | 4.16 dBi                                                                                  |
| Normal Test Voltage: | 5 Vdc                                                                                     |
| EUT Test software:   | XCOM V2.0                                                                                 |

## 5.2. CHANNEL LIST

|         | Channel List for 802.11b/g/n (20 MHz) |         |                    |         |                    |         |                    |  |
|---------|---------------------------------------|---------|--------------------|---------|--------------------|---------|--------------------|--|
| Channel | Frequency<br>(MHz)                    | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |
| 1       | 2412                                  | 4       | 2427               | 7       | 2442               | 10      | 2457               |  |
| 2       | 2417                                  | 5       | 2432               | 8       | 2447               | 11      | 2462               |  |
| 3       | 2422                                  | 6       | 2437               | 9       | 2452               | /       | /                  |  |

# 5.3. MAXIMUM AVERAGE EIRP

| IEEE Std. 802.11 | Frequency<br>(MHz) | Channel Number | Maximum Conducted PK<br>Output Power<br>(dBm) | Maximum<br>EIRP<br>(dBm) |
|------------------|--------------------|----------------|-----------------------------------------------|--------------------------|
| b                | 2412 ~ 2462        | 1-11[11]       | 14.95                                         | 19.11                    |

TRF No.: 04-E001-0BGlobal Testing , Great Quality.

| g      | 2412 ~ 2462 | 1-11[11] | 18.58 | 22.74 |
|--------|-------------|----------|-------|-------|
| n HT20 | 2412 ~ 2462 | 1-11[11] | 16.45 | 20.61 |

## 5.4. TEST CHANNEL CONFIGURATION

| IEEE Std. 802.11 | Test Channel Number                                          | Frequency                    |
|------------------|--------------------------------------------------------------|------------------------------|
| b                | CH 1(Low Channel), CH 6(MID Channel),<br>CH 11(High Channel) | 2412 MHz, 2437 MHz, 2462 MHz |
| g                | CH 1(Low Channel), CH 6(MID Channel),<br>CH 11(High Channel) | 2412 MHz, 2437 MHz, 2462 MHz |
| n HT20           | CH 1(Low Channel), CH 6(MID Channel),<br>CH 11(High Channel) | 2412 MHz, 2437 MHz, 2462 MHz |

## 5.5. THE WORSE CASE POWER SETTING PARAMETER

| The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band |                    |      |           |        |            |         |      |  |
|--------------------------------------------------------------------|--------------------|------|-----------|--------|------------|---------|------|--|
| Test Softw                                                         | Test Software XCOM |      |           | M V2.0 |            |         |      |  |
|                                                                    | Transmit           |      | Test C    |        |            | Channel |      |  |
| Modulation<br>Mode                                                 | Antenna            | ١    | NCB: 20MH | lz     | NCB: 40MHz |         |      |  |
| Wode                                                               | Number             | CH 1 | CH 6      | CH 11  | CH 3       | CH 6    | CH 9 |  |
| 802.11b                                                            | 1                  | 13   | 13        | 13     |            |         |      |  |
| 802.11g                                                            | 1                  | 7    | 7         | 7      | /          |         |      |  |
| 802.11n HT20                                                       | 1                  | 7    | 7         | 7      |            |         |      |  |

# WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

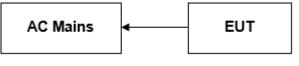
Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0

| Antenna                 | a           | Frequency (MHz)   |                                                      | Antenna Type | MAX Antenna Gain (dBi) |
|-------------------------|-------------|-------------------|------------------------------------------------------|--------------|------------------------|
| 1                       |             | 24                | 412-2462                                             | PCB          | 4.16                   |
|                         | Tusu        | i4                |                                                      |              |                        |
| Test Mode               |             | smit and ive Mode |                                                      | Description  | า                      |
| IEEE<br>802.11b         | $\boxtimes$ | TX, RX            | ANT 1 can be used as transmitting/receiving antenna. |              |                        |
| IEEE<br>802.11g         | $\boxtimes$ | TX, RX            | ANT 1 can be used as transmitting/receiving antenna. |              |                        |
| IEEE<br>802.11n<br>HT20 | X           | TX, RX            | ANT 1 can be used as transmitting/receiving antenna. |              |                        |
| Note:                   |             |                   |                                                      |              |                        |

## 5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Note: The value of the antenna gain was declared by customer.


# 5.7. SUPPORT UNITS FOR SYSTEM TEST

The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | Series No. | Note        |
|------|-----------|-----------|----------------|------------|-------------|
| E-1  | PC        | Lenovo    | B4650-D002     | M90601U3   | GTG Support |

## 5.8. SETUP DIAGRAM

## AC conducted emission



**Radiated Emission:** 



## **RF conducted:**



# 6. MEASURING EQUIPMENT AND SOFTWARE USED

|                                           | Test Equipment of Conducted RF |                         |             |            |            |  |
|-------------------------------------------|--------------------------------|-------------------------|-------------|------------|------------|--|
| Equipment                                 | Manufacturer                   | Model No.               | Serial No.  | Last Cal.  | Due Date   |  |
| Spectrum Analyzer                         | Rohde &<br>Schwarz             | FSV40                   | 102257      | 2023/09/18 | 2024/09/17 |  |
| Spectrum Analyzer                         | KEYSIGHT                       | N9020A                  | MY51285127  | 2023/09/18 | 2024/09/17 |  |
| EXG Analog Signal<br>Generator            | KEYSIGHT                       | N5173B                  | MY61253075  | 2023/09/18 | 2024/09/17 |  |
| Vector Signal<br>Generator                | Rohde &<br>Schwarz             | SMM100A                 | 101899      | 2023/09/18 | 2024/09/17 |  |
| RF Control box                            | MWRF-test                      | MW100-RFCB              | MW220926GTG | 2023/09/18 | 2024/09/17 |  |
| Wideband Radio<br>Communication<br>Tester | Rohde &<br>Schwarz             | CMW270                  | 102792      | 2023/09/18 | 2024/09/17 |  |
| Wideband Radio<br>Communication<br>Tester | Rohde &<br>Schwarz             | CMW500                  | 103235      | 2023/09/18 | 2024/09/17 |  |
| temperature humidity<br>chamber           | Espec                          | SH-241                  | SH-241-2014 | 2023/09/18 | 2024/09/17 |  |
| RF Test Software                          | MWRF-test                      | MTS8310E<br>(Ver. V2/0) | N/A         | N/A        | N/A        |  |

|                             | Test Equipment of Radiated emissions below 1GHz |                               |            |            |            |  |
|-----------------------------|-------------------------------------------------|-------------------------------|------------|------------|------------|--|
| Equipment                   | Manufacturer                                    | Model No.                     | Serial No. | Last Cal.  | Due Date   |  |
| 3m Semi-anechoic<br>Chamber | ETS                                             | 9m*6m*6m                      | Q2146      | 2022/08/30 | 2025/08/29 |  |
| EMI Test Receiver           | Rohde &<br>Schwarz                              | ESCI3                         | 101409     | 2023/09/18 | 2024/09/17 |  |
| Spectrum Analyzer           | KEYSIGHT                                        | N9020A                        | MY51283932 | 2023/09/18 | 2024/09/17 |  |
| Pre-Amplifier               | HzEMC                                           | HPA-9K0130                    | HYPA21001  | 2023/09/18 | 2024/09/17 |  |
| Biconilog Antenna           | Schwarzbeck                                     | VULB 9168                     | 01315      | 2022/10/10 | 2025/10/09 |  |
| Biconilog Antenna           | ETS                                             | 3142E                         | 00243646   | 2022/03/23 | 2025/03/22 |  |
| Loop Antenna                | ETS                                             | 6502                          | 243668     | 2022/03/30 | 2025/03/29 |  |
| Test Software               | Farad                                           | EZ-EMC<br>(Ver.FA-03A2<br>RE) | N/A        | N/A        | N/A        |  |

| Test Equipment of Radiated emissions above 1GHz |                    |            |            |            |            |
|-------------------------------------------------|--------------------|------------|------------|------------|------------|
| Equipment                                       | Manufacturer       | Model No.  | Serial No. | Last Cal.  | Due Date   |
| 3m Semi-anechoic<br>Chamber                     | ETS                | 9m*6m*6m   | Q2149      | 2022/08/30 | 2025/08/29 |
| Spectrum Analyzer                               | Rohde &<br>Schwarz | FSV40      | 101413     | 2023/09/18 | 2024/09/17 |
| Spectrum Analyzer                               | KEYSIGHT           | N9020A     | MY51283932 | 2023/09/18 | 2024/09/17 |
| Pre-Amplifier                                   | A-INFO             | HPA-1G1850 | HYPA21003  | 2023/09/18 | 2024/09/17 |
| Horn antenna                                    | A-INFO             | 3117       | 246069     | 2022/03/11 | 2025/03/10 |
| Pre-Amplifier                                   | ZKJC               | HPA-184057 | HYPA21004  | 2023/09/18 | 2024/09/17 |

TRF No.: 04-E001-0BGlobal Testing , Great Quality.

| Horn antenna  | ZKJC  | 3116C                          | 246265 | 2022/03/29 | 2025/03/28 |
|---------------|-------|--------------------------------|--------|------------|------------|
| Test Software | Farad | EZ-EMC<br>(Ver.FA-03A2<br>RE+) | N/A    | N/A        | N/A        |

| Test Equipment of Conducted emissions |                    |                                    |            |            |            |
|---------------------------------------|--------------------|------------------------------------|------------|------------|------------|
| Equipment                             | Manufacturer       | Model No.                          | Serial No. | Last Cal.  | Due Date   |
| Shielded Room                         | CHENG YU           | 8m*5m*4m                           | N/A        | 2022/10/29 | 2025/10/28 |
| EMI Test Receiver                     | Rohde &<br>Schwarz | ESR3                               | 102647     | 2023/09/18 | 2024/09/17 |
| LISN/AMN                              | Rohde &<br>Schwarz | ENV216                             | 102843     | 2023/09/18 | 2024/09/17 |
| NNLK 8129 RC                          | Schwarzbeck        | NNLK 8129 RC                       | 5046       | 2023/09/18 | 2024/09/17 |
| Test Software                         | Farad              | EZ-EMC (Ver.<br>EMC-con-3A1<br>1+) | N/A        | N/A        | N/A        |

# 7. ANTENNA PORT TEST RESULTS

## 7.1. CONDUCTED OUTPUT POWER

#### LIMITS

| CFR 47 FCC Part15 (15.247) Subpart C<br>ISED RSS-247 ISSUE 3 |                              |                  |             |  |  |
|--------------------------------------------------------------|------------------------------|------------------|-------------|--|--|
| Section Test Item Limit Frequency Range (MHz)                |                              |                  |             |  |  |
| CFR 47 FCC 15.247(b)(3)<br>ISED RSS-247 5.4 (d)              | Peak Conduct<br>Output Power | 1 watt or 30 dBm | 2400-2483.5 |  |  |

#### TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

#### TEST SETUP



#### **TEST ENVIRONMENT**

| Temperature         | <b>23.5℃</b> | Relative Humidity | 49% |
|---------------------|--------------|-------------------|-----|
| Atmosphere Pressure | 101kPa       |                   |     |

#### TEST RESULTS

Please refer to section "Test Data" - Appendix A

## 7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

#### <u>LIMITS</u>

| CFR 47 FCC Part15 (15.247) Subpart C<br>ISED RSS-247 ISSUE 3 |                            |                              |             |  |  |  |
|--------------------------------------------------------------|----------------------------|------------------------------|-------------|--|--|--|
| Section Test Item Limit Frequency Range (MHz)                |                            |                              |             |  |  |  |
| CFR 47 FCC 15.247(a)(2)<br>ISED RSS-247 5.2 (a)              | 6 dB Bandwidth             | ≥ 500 kHz                    | 2400-2483.5 |  |  |  |
| ISED RSS-Gen Clause 6.7                                      | 99 % Occupied<br>Bandwidth | For reporting purposes only. | 2400-2483.5 |  |  |  |

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

| Center Frequency | The center frequency of the channel under test                                                                                                                      |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Frequency Span   | For 6 dB Bandwidth: Enough to capture all products of the modulation<br>carrier emission<br>For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the<br>OBW |  |
| Detector         | Peak                                                                                                                                                                |  |
| IRR///           | For 6 dB Bandwidth: 100 kHz<br>For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth                                                                    |  |
| IVBW/            | For 6 dB Bandwidth: ≥3 × RBW<br>For 99 % Occupied Bandwidth:≥3 × RBW                                                                                                |  |
| Trace            | Max hold                                                                                                                                                            |  |
| Sweep            | Auto couple                                                                                                                                                         |  |

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

### TEST SETUP



#### **TEST ENVIRONMENT**

| Temperature         | <b>23.5℃</b> | Relative Humidity | 49% |
|---------------------|--------------|-------------------|-----|
| Atmosphere Pressure | 101kPa       |                   |     |

## TEST RESULTS

Please refer to section "Test Data" - Appendix A

# 7.3. POWER SPECTRAL DENSITY

### LIMITS

| CFR 47 FCC Part15 (15.247) Subpart C<br>ISED RSS-247 ISSUE 3          |  |                            |                          |
|-----------------------------------------------------------------------|--|----------------------------|--------------------------|
| Section Test Item Limit Frequency Rang (MHz)                          |  |                            | Frequency Range<br>(MHz) |
| CFR 47 FCC §15.247 (e)<br>ISED RSS-247 5.2 (b) Power Spectral Density |  | 8 dBm in any 3<br>kHz band | 2400-2483.5              |

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.

Connect the EUT to the spectrum analyser and use the following settings:

| Center Frequency | The center frequency of the channel under test     |  |
|------------------|----------------------------------------------------|--|
| Detector         | PEAK                                               |  |
| RBW              | $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$ |  |
| VBW              | ≥3 × RBW                                           |  |
| Span             | 1.5 xDTS bandwidth                                 |  |
| Trace            | Max hold                                           |  |
| Sweep time       | Auto couple                                        |  |

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

### TEST SETUP



#### TEST ENVIRONMENT

| Temperature         | <b>23.5</b> ℃ | Relative Humidity | 49% |
|---------------------|---------------|-------------------|-----|
| Atmosphere Pressure | 101kPa        |                   |     |

#### TEST RESULTS

Please refer to section "Test Data" - Appendix A

TRF No.: 04-E001-0BGlobal Testing , Great Quality.

## 7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

| CFR 47 FCC Part15 (15.247) Subpart C<br>ISED RSS-247 ISSUE 3 |  |                                                                                                                               |
|--------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------|
| Section Test Item Limit                                      |  |                                                                                                                               |
| ISED RSS-247 5 5 Bandedge and ba                             |  | at least 20 dB below that in the 100 kHz<br>bandwidth within the band that contains<br>the highest level of the desired power |

#### LIMITS

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

| Center Frequency | The center frequency of the channel under test |  |
|------------------|------------------------------------------------|--|
| Detector         | Peak                                           |  |
| RBW              | 100 kHz                                        |  |
| VBW              | ≥3 × RBW                                       |  |
| Span             | 1.5 xDTS bandwidth                             |  |
| Trace            | Max hold                                       |  |
| Sweep time       | Auto couple.                                   |  |

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

| 12040              | Set the center frequency and span to encompass frequency range to be measured |
|--------------------|-------------------------------------------------------------------------------|
| Detector           | Peak                                                                          |
| RBW                | 100 kHz                                                                       |
| VBW                | ≥3 × RBW                                                                      |
| measurement points | ≥span/RBW                                                                     |
| Trace              | Max hold                                                                      |
| Sweep time         | Auto couple.                                                                  |

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

#### TEST SETUP



#### **TEST ENVIRONMENT**

| Temperature         | <b>23.5℃</b> | Relative Humidity | 49% |
|---------------------|--------------|-------------------|-----|
| Atmosphere Pressure | 101kPa       |                   |     |

## TEST RESULTS

Please refer to section "Test Data" - Appendix A

## 7.5. DUTY CYCLE

## <u>LIMITS</u>

None; for reporting purposes only.

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

#### TEST SETUP



#### TEST ENVIRONMENT

| Temperature         | <b>23.5</b> ℃ | Relative Humidity | 49% |
|---------------------|---------------|-------------------|-----|
| Atmosphere Pressure | 101kPa        |                   |     |

#### TEST RESULTS

Please refer to section "Test Data" - Appendix A

# 8. RADIATED TEST RESULTS

### <u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

| Emissions radiated outside of the specified frequency bands above 30 MHz |                                       |                         |         |
|--------------------------------------------------------------------------|---------------------------------------|-------------------------|---------|
| Frequency Range<br>(MHz)                                                 | Field Strength Limit<br>(uV/m) at 3 m | Field Stren<br>(dBuV/m) | •       |
|                                                                          |                                       | Quasi-I                 | Peak    |
| 30 - 88                                                                  | 100                                   | 40                      |         |
| 88 - 216                                                                 | 150                                   | 43.                     | 5       |
| 216 - 960                                                                | 200                                   | 46                      |         |
| Above 960                                                                | 500                                   | 54                      |         |
| Above 1000                                                               | 500                                   | Peak                    | Average |
|                                                                          | 300                                   | 74                      | 54      |

| FCC Emissions radiated outside of the specified frequency bands below 30 MHz    |              |     |  |
|---------------------------------------------------------------------------------|--------------|-----|--|
| Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters) |              |     |  |
| 0.009-0.490                                                                     | 2400/F(kHz)  | 300 |  |
| 0.490-1.705                                                                     | 24000/F(kHz) | 30  |  |
| 1.705-30.0                                                                      | 30           | 30  |  |

#### ISED General field strength limits at frequencies below 30 MHz

| Table 6 – General field strength limits at frequencies below 30 MHz |                                                                     |     |  |  |  |  |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------|-----|--|--|--|--|--|
| Frequency                                                           | y Magnetic field strength (H-Field) (μA/m) Measurement distance (m) |     |  |  |  |  |  |
| 9 - 490 kHz <sup>Note 1</sup>                                       | 6.37/F (F in kHz)                                                   | 300 |  |  |  |  |  |
| 490 - 1705 kHz                                                      | 63.7/F (F in kHz)                                                   | 30  |  |  |  |  |  |
| 1.705 - 30 MHz                                                      | 0.08                                                                | 30  |  |  |  |  |  |

**Note 1:** The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

#### ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

| Table 7 – Restricted frequency bands <sup>Note 1</sup> |                       |               |  |  |  |
|--------------------------------------------------------|-----------------------|---------------|--|--|--|
| MHz                                                    | MHz                   | GHz           |  |  |  |
| 0.090 - 0.110                                          | 149.9 - 150.05        | 9.0 - 9.2     |  |  |  |
| 0.495 - 0.505                                          | 158.52475 - 158.52525 | 9.3 - 9.5     |  |  |  |
| 2.1735 - 2.1905                                        | 158.7 - 158.9         | 10.6 - 12.7   |  |  |  |
| 3.020 - 3.028                                          | 162.0125 - 167.17     | 13.25 - 13.4  |  |  |  |
| 4.125 - 4.128                                          | 167.72 - 173.2        | 14.47 - 14.5  |  |  |  |
| 4.17725 - 4.17775                                      | 240 - 285             | 15.35 - 16.2  |  |  |  |
| 4.20725 - 4.20775                                      | 322 - 335.4           | 17.7 - 21.4   |  |  |  |
| 5.677 - 5.683                                          | 399.9 - 410           | 22.01 - 23.12 |  |  |  |
| 8.215 - 6.218                                          | 608 - 614             | 23.6 - 24.0   |  |  |  |
| 8.26775 - 6.26825                                      | 960 - 1427            | 31.2 - 31.8   |  |  |  |
| 8.31175 - 6.31225                                      | 1435 - 1626.5         | 36.43 - 36.5  |  |  |  |
| 8.291 - 8.294                                          | 1645.5 - 1648.5       | Above 38.6    |  |  |  |
| 8.362 - 8.366                                          | 1680 - 1710           |               |  |  |  |
| 8.37625 - 8.38675                                      | 1718.8 - 1722.2       |               |  |  |  |
| 8.41425 - 8.41475                                      | 2200 - 2300           |               |  |  |  |
| 12.29 - 12.293                                         | 2310 - 2390           |               |  |  |  |
| 12.51975 - 12.52025                                    | 2483.5 - 2500         |               |  |  |  |
| 12.57675 - 12.57725                                    | 2655 - 2900           |               |  |  |  |
| 13.36 - 13.41                                          | 3260 - 3267           |               |  |  |  |
| 16.42 - 16.423                                         | 3332 - 3339           |               |  |  |  |
| 16.69475 - 16.69525                                    | 3345.8 - 3358         |               |  |  |  |
| 16.80425 - 16.80475                                    | 3500 - 4400           |               |  |  |  |
| 25.5 - 25.67                                           | 4500 - 5150           |               |  |  |  |
| 37.5 - 38.25                                           | 5350 - 5460           |               |  |  |  |
| 73 - 74.6                                              | 7250 - 7750           |               |  |  |  |
| 74.8 - 75.2                                            | 8025 - 8500           |               |  |  |  |

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

### FCC Restricted bands of operation refer to FCC §15.205 (a):

| MHz                      | MHz                 | MHz           | GHz              |
|--------------------------|---------------------|---------------|------------------|
| 0.090-0.110              | 16.42-16.423        | 399.9-410     | 4.5-5.15         |
| <sup>1</sup> 0.495-0.505 | 16.69475-16.69525   | 608-614       | 5.35-5.46        |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240      | 7.25-7.75        |
| 4.125-4.128              | 25.5-25.67          | 1300-1427     | 8.025-8.5        |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5   | 9.0-9.2          |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5 | 9.3-9.5          |
| 6.215-6.218              | 74.8-75.2           | 1660-1710     | 10.6-12.7        |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2 | 13.25-13.4       |
| 6.31175-6.31225          | 123-138             | 2200-2300     | 14.47-14.5       |
| 8.291-8.294              | 149.9-150.05        | 2310-2390     | 15.35-16.2       |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4        |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900     | 22.01-23.12      |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267     | 23.6-24.0        |
| 12.29-12.293             | 167.72-173.2        | 3332-3339     | 31.2-31.8        |
| 12.51975-12.52025        | 240-285             | 3345.8-3358   | 36.43-36.5       |
| 12.57675-12.57725        | 322-335.4           | 3600-4400     | ( <sup>2</sup> ) |
| 13.36-13.41              |                     |               |                  |

Note:<sup>1</sup>Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. <sup>2</sup>Above 38.6c

#### TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

| RBW   | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) |
|-------|------------------------------------------------------------------|
| VBW   | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) |
| Sweep | Auto                                                             |

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of  $377\Omega$ . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

| RBW      | 120 kHz  |
|----------|----------|
| VBW      | 300 kHz  |
| Sweep    | Auto     |
| Detector | Peak/QP  |
| Trace    | Max hold |

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

TRF No.: 04-E001-0BGlobal Testing , Great Quality.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

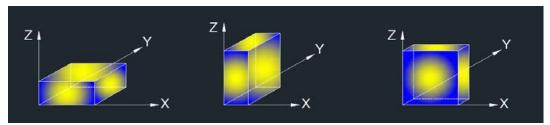
#### Above 1G

The setting of the spectrum analyser

| RBW      | MHz                        |  |  |
|----------|----------------------------|--|--|
| VBW      | AK: 3 MHz<br>G: see note 6 |  |  |
| Sweep    | Auto                       |  |  |
| Detector | eak                        |  |  |
| Trace    | lax hold                   |  |  |

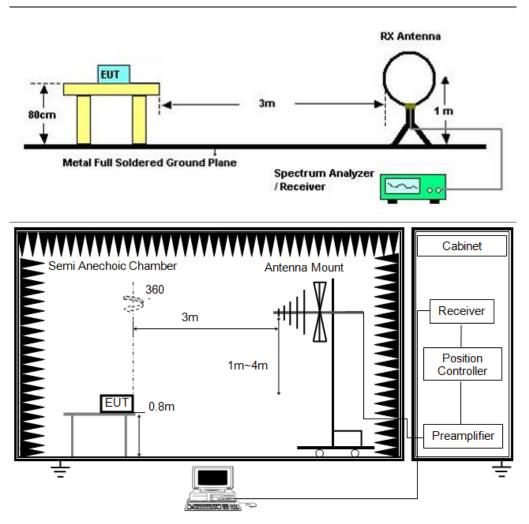
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

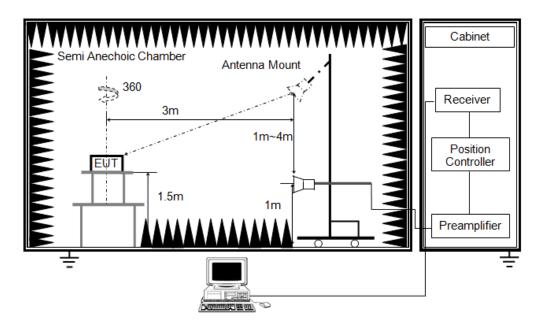
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.


6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


#### X axis, Y axis, Z axis positions:



Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

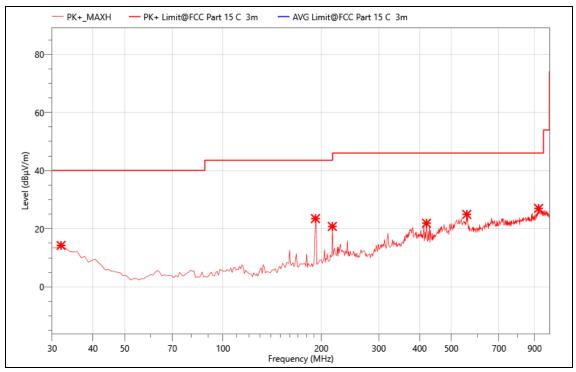
#### TEST SETUP





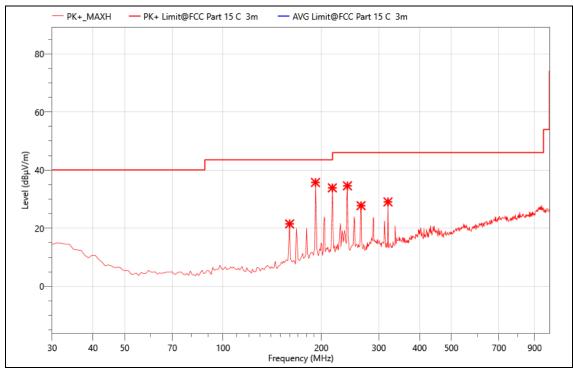
### TEST ENVIRONMENT

| Temperature         | <b>24.3</b> ℃ | Relative Humidity | 54% |
|---------------------|---------------|-------------------|-----|
| Atmosphere Pressure | 101kPa        |                   |     |


## TEST RESULTS

## 8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION

#### • 30MHz to 1GHz

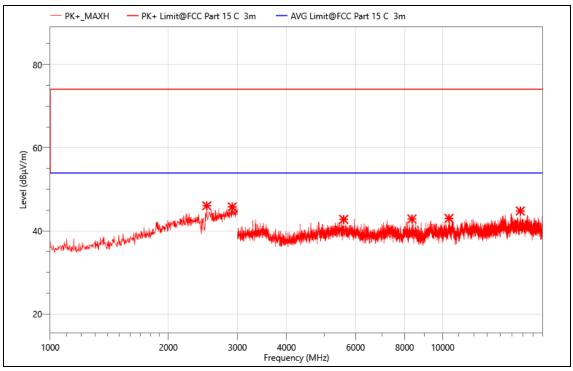

The worst result as bellow:

| worot roout a | Soliew.          |
|---------------|------------------|
| Mode:         | 11B 2412         |
| Power:        | AC120/60Hz       |
| TE:           | Big              |
| Date          | 2024/01/24       |
| T/A/P         | 24.3℃/54%/101Kpa |



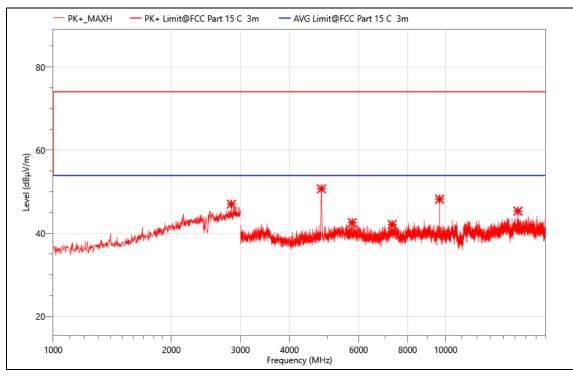
| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 31.940         | 29.58             | -15.33        | 14.25             | 40.00             | 25.75          | PK+  | V    |
| 2   | 191.990        | 46.08             | -22.57        | 23.51             | 43.50             | 19.99          | PK+  | V    |
| 3   | 216.240        | 41.74             | -20.95        | 20.79             | 46.00             | 25.21          | PK+  | V    |
| 4   | 419.940        | 35.80             | -13.89        | 21.91             | 46.00             | 24.09          | PK+  | V    |
| 5   | 557.680        | 35.10             | -10.16        | 24.94             | 46.00             | 21.06          | PK+  | V    |
| 6   | 925.310        | 30.23             | -3.22         | 27.01             | 46.00             | 18.99          | PK+  | V    |

| Mode:  | 11B 2412          |
|--------|-------------------|
| Power: | AC120/60Hz        |
| TE:    | Big               |
| Date   | 2024/01/24        |
| T/A/P  | 24.3°C/54%/101Kpa |



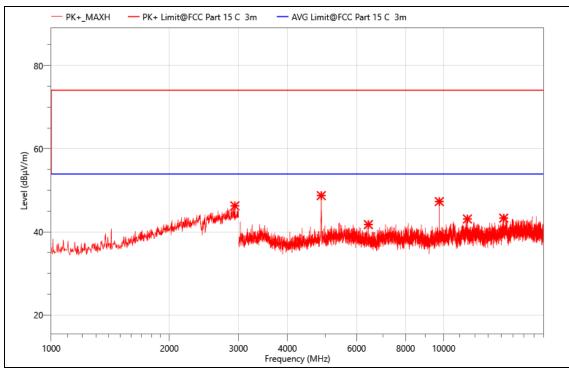

| No. | Freq.<br>(MHz) | Reading<br>(dB µV) | Corr.<br>(dB) | Meas.<br>(dB µV/m) | Limit<br>(dB µV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|--------------------|---------------|--------------------|--------------------|----------------|------|------|
| 1   | 159.980        | 43.32              | -             | 21.50              | 43.50              | 22.00          | PK+  | Н    |
| 2   | 191.990        | 58.32              | -             | 35.75              | 43.50              | 7.75           | PK+  | Н    |
| 3   | 216.240        | 54.84              | -             | 33.89              | 46.00              | 12.11          | PK+  | Н    |
| 4   | 240.490        | 54.18              | -             | 34.59              | 46.00              | 11.41          | PK+  | Н    |
| 5   | 264.740        | 46.02              | -             | 27.76              | 46.00              | 18.24          | PK+  | Н    |
| 6   | 320.030        | 46.96              | -17.9         | 29.06              | 46.00              | 16.94          | PK+  | Н    |

## • Above 1GHz


The worst result as bellow:

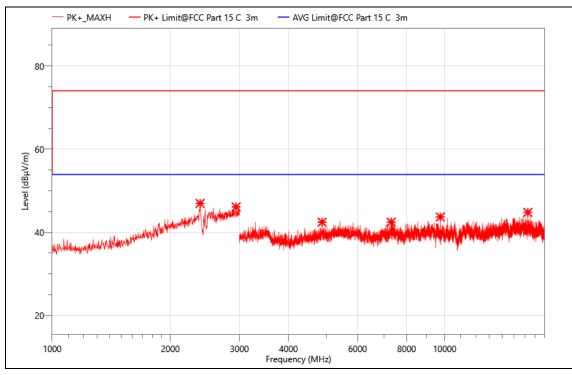
| Wordt robait do boi | iow.             |
|---------------------|------------------|
| Mode:               | 11G 2412         |
| Power:              | AC120/60Hz       |
| TE:                 | Big              |
| Date                | 2024/01/24       |
| T/A/P               | 24.3℃/54%/101Kpa |




| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2506.000       | 54.44             | -8.41         | 46.03             | 74.00             | 27.97          | PK+  | V    |
| 2   | 2910.000       | 53.46             | -7.69         | 45.77             | 74.00             | 28.23          | PK+  | V    |
| 3   | 5595.000       | 51.97             | -9.22         | 42.75             | 74.00             | 31.25          | PK+  | V    |
| 4   | 8350.500       | 50.76             | -7.91         | 42.85             | 74.00             | 31.15          | PK+  | V    |
| 5   | 10378.500      | 48.73             | -5.72         | 43.01             | 74.00             | 30.99          | PK+  | V    |
| 6   | 15772.500      | 47.05             | -2.28         | 44.77             | 74.00             | 29.23          | PK+  | V    |

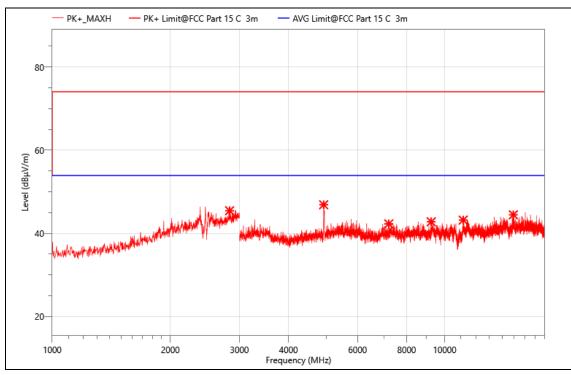
| Mode:  | 11G 2412         |
|--------|------------------|
| Power: | AC120/60Hz       |
| TE:    | Big              |
| Date   | 2024/01/24       |
| T/A/P  | 24.3℃/54%/101Kpa |




| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2844.000       | 55.00             | -7.98         | 47.02             | 74.00             | 26.98          | PK+  | Н    |
| 2   | 4825.500       | 62.20             | -11.48        | 50.72             | 74.00             | 23.28          | PK+  | Н    |
| 3   | 5781.000       | 51.67             | -9.08         | 42.59             | 74.00             | 31.41          | PK+  | Н    |
| 4   | 7308.000       | 49.69             | -7.56         | 42.13             | 74.00             | 31.87          | PK+  | Н    |
| 5   | 9648.000       | 55.01             | -6.78         | 48.23             | 74.00             | 25.77          | PK+  | Н    |
| 6   | 15279.000      | 48.26             | -2.92         | 45.34             | 74.00             | 28.66          | PK+  | Н    |

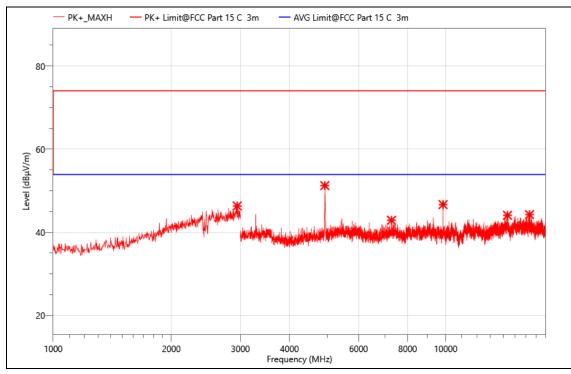
| Mode:  | 11G 2437         |
|--------|------------------|
| Power: | AC120/60Hz       |
| TE:    | Big              |
| Date   | 2024/01/24       |
| T/A/P  | 24.3℃/54%/101Kpa |




| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2938.000       | 53.74             | -7.49         | 46.25             | 74.00             | 27.75          | PK+  | Н    |
| 2   | 4876.500       | 59.86             | -11.15        | 48.71             | 74.00             | 25.29          | PK+  | Н    |
| 3   | 6429.000       | 49.86             | -8.12         | 41.74             | 74.00             | 32.26          | PK+  | Н    |
| 4   | 9748.500       | 53.87             | -6.59         | 47.28             | 74.00             | 26.72          | PK+  | Н    |
| 5   | 11496.000      | 47.71             | -4.62         | 43.09             | 74.00             | 30.91          | PK+  | Н    |
| 6   | 14224.500      | 46.98             | -3.69         | 43.29             | 74.00             | 30.71          | PK+  | Н    |

| Mode:  | 11G 2437         |
|--------|------------------|
| Power: | AC120/60Hz       |
| TE:    | Big              |
| Date   | 2024/01/24       |
| T/A/P  | 24.3℃/54%/101Kpa |




| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2382.000       | 55.49             | -8.53         | 46.96             | 74.00             | 27.04          | PK+  | V    |
| 2   | 2942.000       | 53.58             | -7.47         | 46.11             | 74.00             | 27.89          | PK+  | V    |
| 3   | 4872.000       | 53.60             | -11.16        | 42.44             | 74.00             | 31.56          | PK+  | V    |
| 4   | 7308.000       | 50.02             | -7.56         | 42.46             | 74.00             | 31.54          | PK+  | V    |
| 5   | 9748.500       | 50.28             | -6.59         | 43.69             | 74.00             | 30.31          | PK+  | V    |
| 6   | 16285.500      | 46.37             | -1.57         | 44.80             | 74.00             | 29.20          | PK+  | V    |

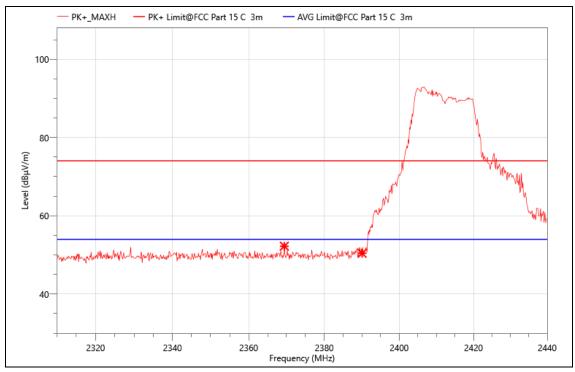
| Mode:  | 11G 2462         |
|--------|------------------|
| Power: | AC120/60Hz       |
| TE:    | Big              |
| Date   | 2024/01/24       |
| T/A/P  | 24.3℃/54%/101Kpa |



| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2832.000       | 53.17             | -7.73         | 45.44             | 74.00             | 28.56          | PK+  | V    |
| 2   | 4917.000       | 58.04             | -11.17        | 46.87             | 74.00             | 27.13          | PK+  | V    |
| 3   | 7204.500       | 50.29             | -8.02         | 42.27             | 74.00             | 31.73          | PK+  | V    |
| 4   | 9241.500       | 49.69             | -6.92         | 42.77             | 74.00             | 31.23          | PK+  | V    |
| 5   | 11148.000      | 47.43             | -4.25         | 43.18             | 74.00             | 30.82          | PK+  | V    |
| 6   | 14961.000      | 47.27             | -2.82         | 44.45             | 74.00             | 29.55          | PK+  | V    |

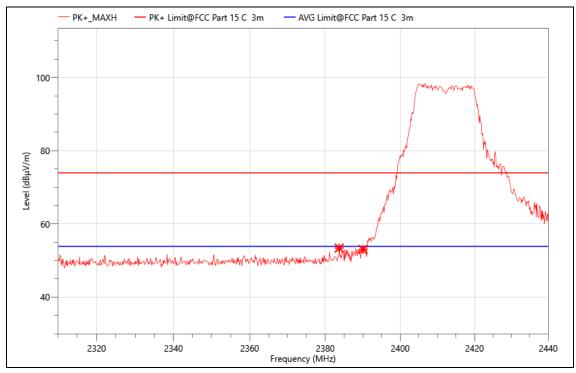
| Mode:  | 11G 2462         |
|--------|------------------|
| Power: | AC120/60Hz       |
| TE:    | Big              |
| Date   | 2024/01/24       |
| T/A/P  | 24.3℃/54%/101Kpa |




| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2944.000       | 53.80             | -7.46         | 46.34             | 74.00             | 27.66          | PK+  | Н    |
| 2   | 4921.500       | 62.36             | -11.13        | 51.23             | 74.00             | 22.77          | PK+  | Н    |
| 3   | 7276.500       | 50.84             | -7.95         | 42.89             | 74.00             | 31.11          | PK+  | Н    |
| 4   | 9849.000       | 53.58             | -6.9          | 46.68             | 74.00             | 27.32          | PK+  | Н    |
| 5   | 14368.500      | 47.10             | -3.01         | 44.09             | 74.00             | 29.91          | PK+  | Н    |
| 6   | 16353.000      | 45.94             | -1.68         | 44.26             | 74.00             | 29.74          | PK+  | Н    |

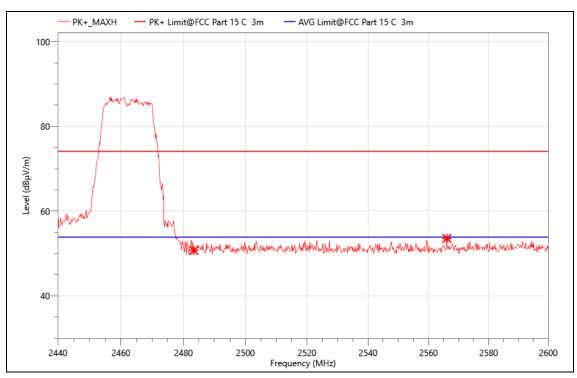
Note: 1. All the modes had been tested, but only the worst data was recorded in the report. 2.For the radiation test from 18 GHz to 26 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

## Band Edge


The worst result as bellow:

| Worot roout uo |                  |
|----------------|------------------|
| Mode:          | 11G 2412         |
| Power:         | AC120/60Hz       |
| TE:            | Big              |
| Date           | 2024/01/24       |
| T/A/P          | 24.3℃/54%/101Kpa |

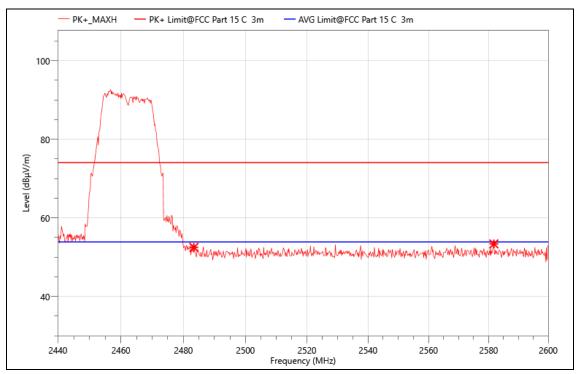



| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2369.410       | 19.85             | 32.38         | 52.23             | 74.00             | 21.77          | PK+  | Н    |
| 2   | 2390.080       | 17.96             | 32.46         | 50.42             | 74.00             | 23.58          | PK+  | Н    |

| Mode:  | 11G 2412         |
|--------|------------------|
| Power: | AC120/60Hz       |
| TE:    | Big              |
| Date   | 2024/01/24       |
| T/A/P  | 24.3℃/54%/101Kpa |



| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2383.710       | 21.05             | 32.34         | 53.39             | 74.00             | 20.61          | PK+  | V    |
| 2   | 2390.080       | 20.56             | 32.46         | 53.02             | 74.00             | 20.98          | PK+  | V    |


| Mode:  | 11G 2462         |
|--------|------------------|
| Power: | AC120/60Hz       |
| TE:    | Big              |
| Date   | 2024/01/24       |
| T/A/P  | 24.3℃/54%/101Kpa |



# Critical\_Freqs

| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2483.360       | 25.00             | 25.71         | 50.71             | 74.00             | 23.29          | PK+  | Н    |
| 2   | 2566.080       | 27.71             | 25.83         | 53.54             | 74.00             | 20.46          | PK+  | Н    |

| Mode:  | 11G 2462         |
|--------|------------------|
| Power: | AC120/60Hz       |
| TE:    | Big              |
| Date   | 2024/01/24       |
| T/A/P  | 24.3℃/54%/101Kpa |



## **Critical\_Freqs**

| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2483.360       | 26.77             | 25.71         | 52.48             | 74.00             | 21.52          | PK+  | V    |
| 2   | 2581.760       | 27.54             | 25.83         | 53.37             | 74.00             | 20.63          | PK+  | V    |

Note:

1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

## 9. ANTENNA REQUIREMENT

#### REQUIREMENT

#### Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### Please refer to FCC §15.247(b)(4),RSS-GEN Clause 6.8

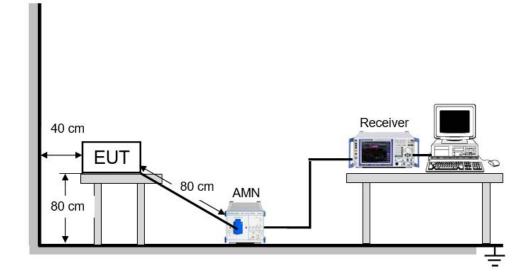
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### DESCRIPTION

Compliance

## **10. AC POWER LINE CONDUCTED EMISSION**

## LIMITS

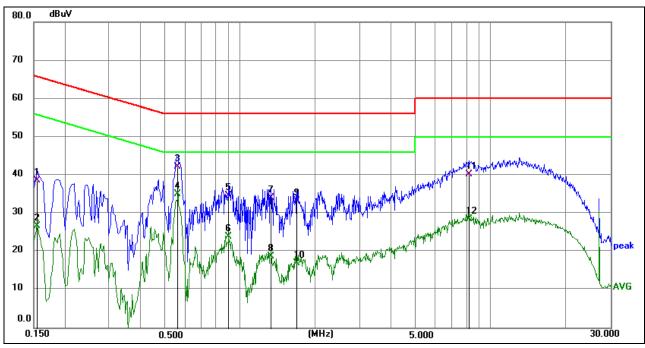

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

| FREQUENCY (MHz) | Quasi-peak | Average   |
|-----------------|------------|-----------|
| 0.15 -0.5       | 66 - 56 *  | 56 - 46 * |
| 0.50 -5.0       | 56.00      | 46.00     |
| 5.0 -30.0       | 60.00      | 50.00     |

## TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

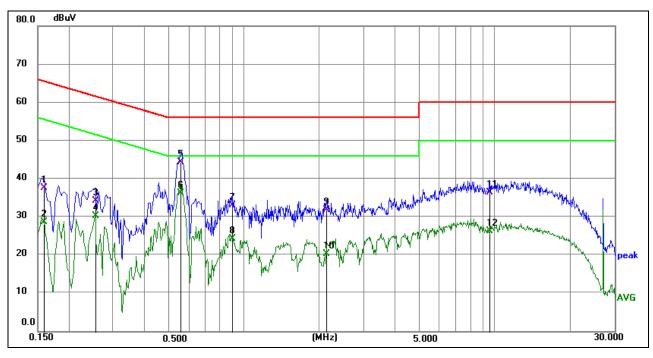
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.




## TEST SETUP

#### TEST ENVIRONMENT

| Temperature         | <b>24.3</b> ℃ | Relative Humidity | 52% |
|---------------------|---------------|-------------------|-----|
| Atmosphere Pressure | 101kPa        |                   |     |






| Phase: L1 | Μ |
|-----------|---|

## Mode: 11G 2412MHz

| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1544    | 28.65   | 9.90    | 38.55  | 65.76  | -27.21 | QP     |
| 2   | 0.1544    | 16.78   | 9.90    | 26.68  | 55.76  | -29.08 | AVG    |
| 3   | 0.5639    | 32.21   | 9.94    | 42.15  | 56.00  | -13.85 | QP     |
| 4   | 0.5639    | 25.14   | 9.94    | 35.08  | 46.00  | -10.92 | AVG    |
| 5   | 0.9014    | 24.57   | 10.05   | 34.62  | 56.00  | -21.38 | QP     |
| 6   | 0.9014    | 13.90   | 10.05   | 23.95  | 46.00  | -22.05 | AVG    |
| 7   | 1.3245    | 23.84   | 10.14   | 33.98  | 56.00  | -22.02 | QP     |
| 8   | 1.3245    | 8.65    | 10.14   | 18.79  | 46.00  | -27.21 | AVG    |
| 9   | 1.6890    | 23.01   | 10.24   | 33.25  | 56.00  | -22.75 | QP     |
| 10  | 1.6890    | 6.65    | 10.24   | 16.89  | 46.00  | -29.11 | AVG    |
| 11  | 8.1870    | 29.52   | 10.74   | 40.26  | 60.00  | -19.74 | QP     |
| 12  | 8.1870    | 17.81   | 10.74   | 28.55  | 50.00  | -21.45 | AVG    |



| Phase: N | Mode: 11G 2412MHz |
|----------|-------------------|
|          |                   |

| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1590    | 27.55   | 9.97    | 37.52  | 65.52  | -28.00 | QP     |
| 2   | 0.1590    | 18.66   | 9.97    | 28.63  | 55.52  | -26.89 | AVG    |
| 3   | 0.2535    | 24.35   | 9.91    | 34.26  | 61.64  | -27.38 | QP     |
| 4   | 0.2535    | 20.29   | 9.91    | 30.20  | 51.64  | -21.44 | AVG    |
| 5   | 0.5595    | 34.37   | 9.99    | 44.36  | 56.00  | -11.64 | QP     |
| 6   | 0.5595    | 26.17   | 9.99    | 36.16  | 46.00  | -9.84  | AVG    |
| 7   | 0.8970    | 23.10   | 10.05   | 33.15  | 56.00  | -22.85 | QP     |
| 8   | 0.8970    | 14.29   | 10.05   | 24.34  | 46.00  | -21.66 | AVG    |
| 9   | 2.1300    | 21.74   | 10.15   | 31.89  | 56.00  | -24.11 | QP     |
| 10  | 2.1300    | 10.13   | 10.15   | 20.28  | 46.00  | -25.72 | AVG    |
| 11  | 9.5639    | 25.45   | 10.89   | 36.34  | 60.00  | -23.66 | QP     |
| 12  | 9.5639    | 15.40   | 10.89   | 26.29  | 50.00  | -23.71 | AVG    |

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

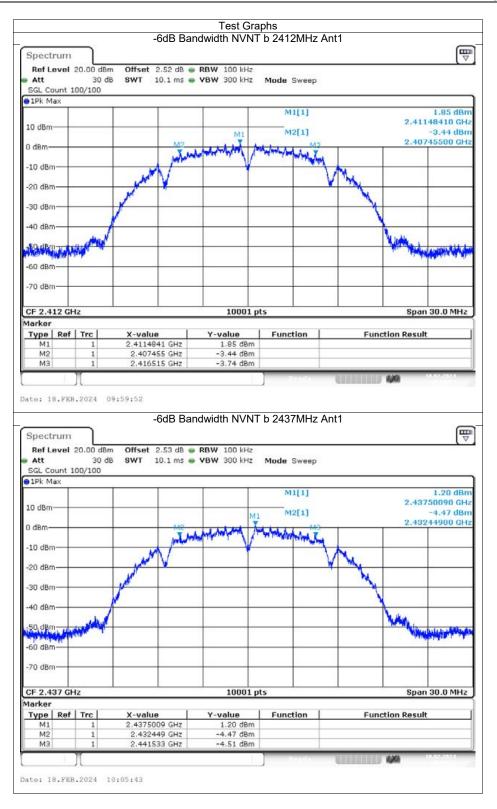
3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

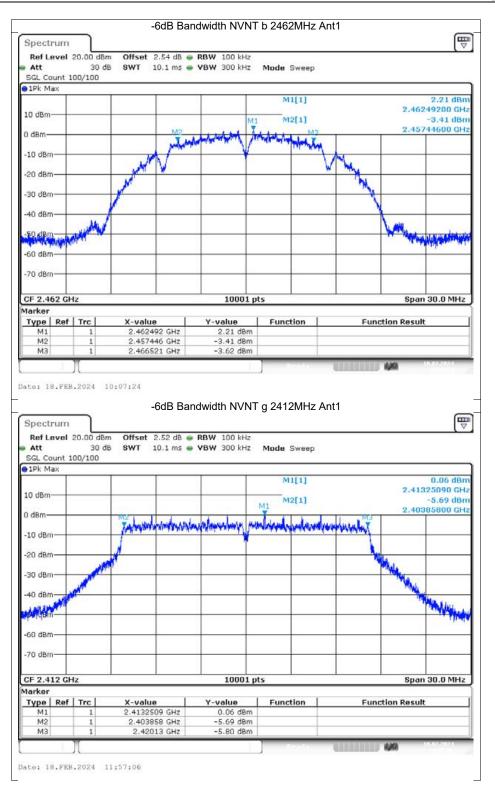
4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

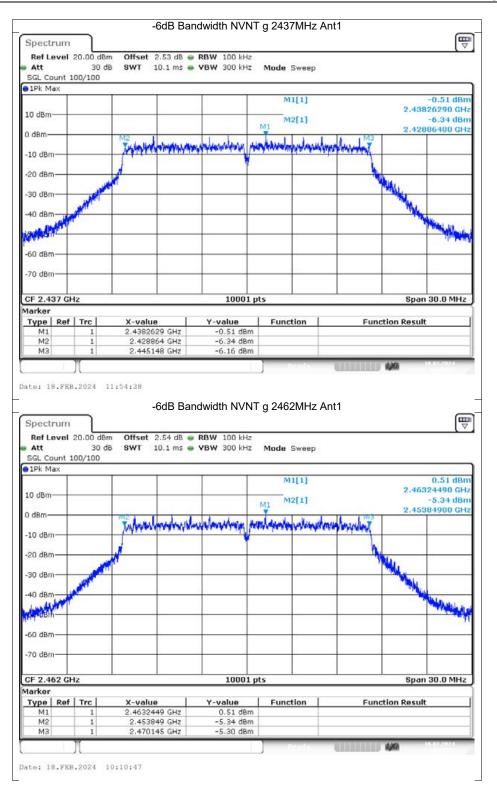
Note: All the modes have been tested, only the worst data was recorded in the report.

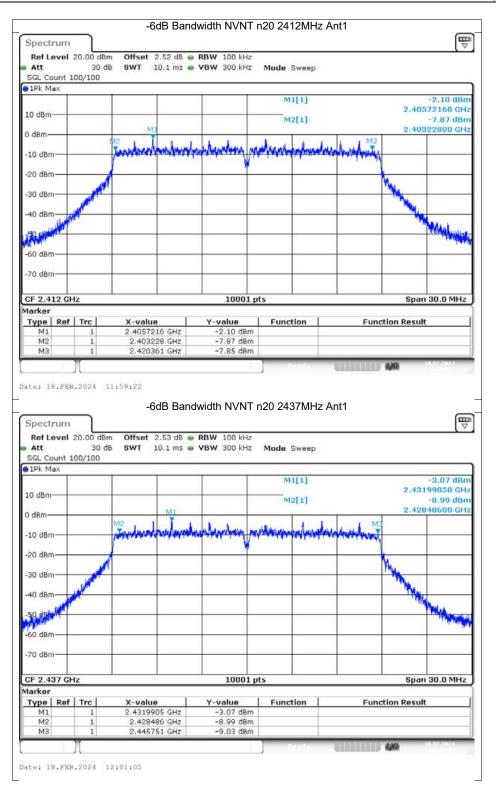
# 11. TEST DATA - Appendix A

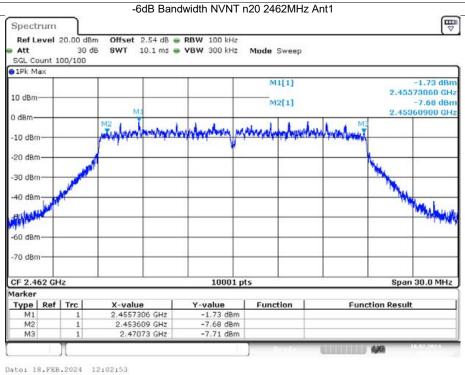
# **Duty Cycle**


| Condition | Mode | Frequency<br>(MHz) | Antenna | On Time<br>(ms) | Period<br>(ms) | Duty<br>Cycle (%) | Correction<br>Factor (dB) | 1/T<br>(kHz) | Final settingFor<br>VBW (kHz) |
|-----------|------|--------------------|---------|-----------------|----------------|-------------------|---------------------------|--------------|-------------------------------|
| NVNT      | b    | 2412               | Ant1    | 0.59            | 1.82           | 32.42             | 4.89                      | 1.68         | 1                             |
| NVNT      | b    | 2437               | Ant1    | 0.59            | 1.82           | 32.42             | 4.89                      | 1.68         | 1                             |
| NVNT      | b    | 2462               | Ant1    | 0.59            | 1.82           | 32.42             | 4.89                      | 1.68         | 1                             |
| NVNT      | g    | 2412               | Ant1    | 0.58            | 1.81           | 32.04             | 4.94                      | 1.71         | 1                             |
| NVNT      | g    | 2437               | Ant1    | 0.58            | 1.81           | 32.04             | 4.94                      | 1.71         | 1                             |
| NVNT      | g    | 2462               | Ant1    | 0.58            | 1.81           | 32.04             | 4.94                      | 1.71         | 1                             |
| NVNT      | n20  | 2412               | Ant1    | 0.56            | 1.79           | 31.28             | 5.05                      | 1.79         | 1                             |
| NVNT      | n20  | 2437               | Ant1    | 0.56            | 1.79           | 31.28             | 5.05                      | 1.79         | 1                             |
| NVNT      | n20  | 2462               | Ant1    | 0.56            | 1.79           | 31.28             | 5.05                      | 1.79         | 1                             |


# Maximum Conducted Output Power

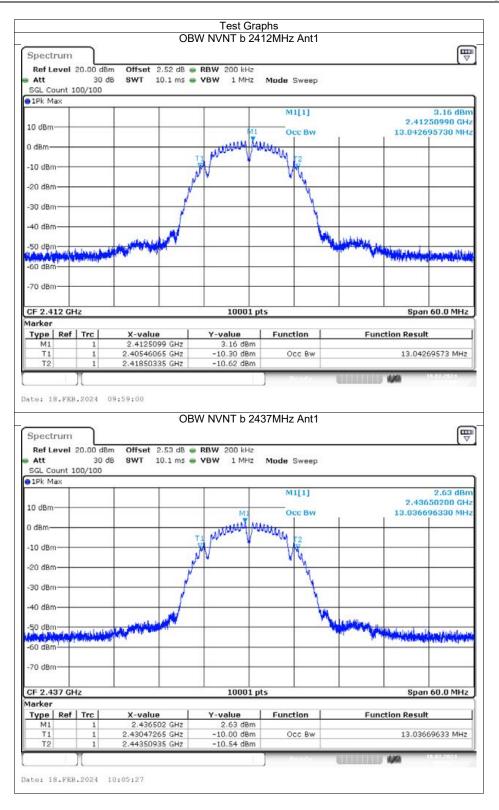

| Condition | Mode                                                                            | Frequency<br>(MHz) | Antenna | Conducted<br>Power (dBm) | Duty<br>Factor<br>(dB) | Total<br>Power<br>(dBm) | Limit<br>(dBm) | E.I.R.P<br>(dBm | E.I.R.P<br>Limit<br>(dBm) | Verdict |  |
|-----------|---------------------------------------------------------------------------------|--------------------|---------|--------------------------|------------------------|-------------------------|----------------|-----------------|---------------------------|---------|--|
| NVNT      | b                                                                               | 2412               | Ant1    | 14.55                    | 0                      | 14.55                   | 30             | 18.71           | <=36.02                   | Pass    |  |
| NVNT      | b                                                                               | 2437               | Ant1    | 14                       | 0                      | 14                      | 30             | 18.16           | <=36.02                   | Pass    |  |
| NVNT      | b                                                                               | 2462               | Ant1    | 14.95                    | 0                      | 14.95                   | 30             | 19.11           | <=36.02                   | Pass    |  |
| NVNT      | g                                                                               | 2412               | Ant1    | 18.26                    | 0                      | 18.26                   | 30             | 22.42           | <=36.02                   | Pass    |  |
| NVNT      | g                                                                               | 2437               | Ant1    | 17.51                    | 0                      | 17.51                   | 30             | 21.67           | <=36.02                   | Pass    |  |
| NVNT      | g                                                                               | 2462               | Ant1    | 18.58                    | 0                      | 18.58                   | 30             | 22.74           | <=36.02                   | Pass    |  |
| NVNT      | n20                                                                             | 2412               | Ant1    | 15.95                    | 0                      | 15.95                   | 30             | 20.11           | <=36.02                   | Pass    |  |
| NVNT      | n20                                                                             | 2437               | Ant1    | 15.19                    | 0                      | 15.19                   | 30             | 19.35           | <=36.02                   | Pass    |  |
| NVNT      | n20                                                                             | 2462               | Ant1    | 16.45                    | 0                      | 16.45                   | 30             | 20.61           | <=36.02                   | Pass    |  |
|           | Note1: Antenna Gain: 4.16dBi;<br>Note2: E.I.R.P = Measured Power + Antenna Gain |                    |         |                          |                        |                         |                |                 |                           |         |  |

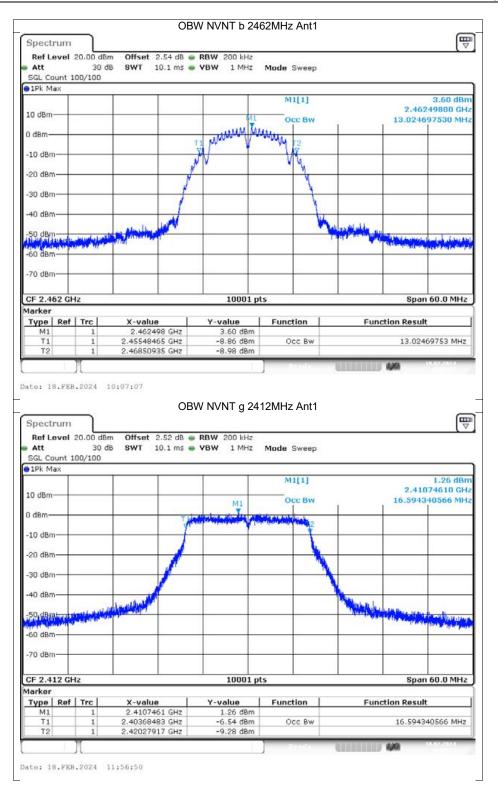

#### Condition Mode Frequency (MHz) -6 dB Bandwidth (MHz) Limit -6 dB Bandwidth (MHz) Antenna Verdict NVNT 2412 b Ant1 9.06 0.5 Pass NVNT b 2437 Ant1 9.08 0.5 Pass 2462 Pass NVNT b Ant1 9.07 0.5 NVNT 2412 Ant1 16.27 0.5 Pass g NVNT 2437 16.28 Pass g Ant1 0.5 0.5 Pass NVNT 2462 16.3 g n20 Ant1 NVNT Pass 2412 Ant1 17.13 0.5 Pass NVNT n20 2437 17.26 0.5 Ant1 NVNT n20 2462 Ant1 17.12 0.5 Pass

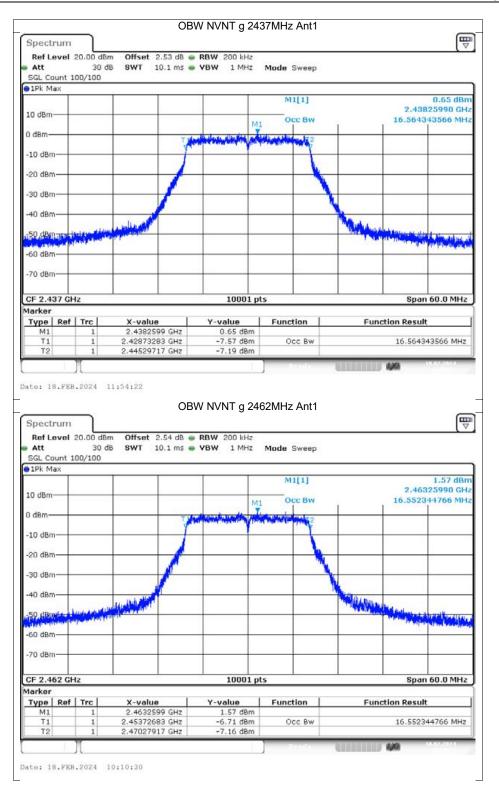

## -6dB Bandwidth

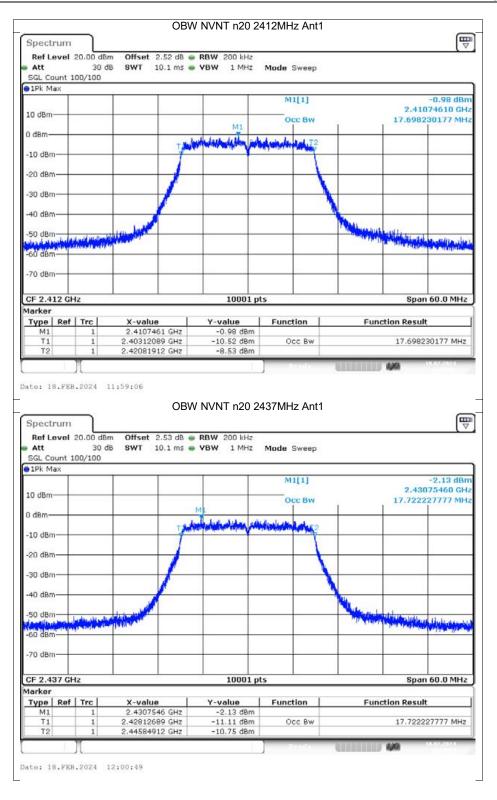


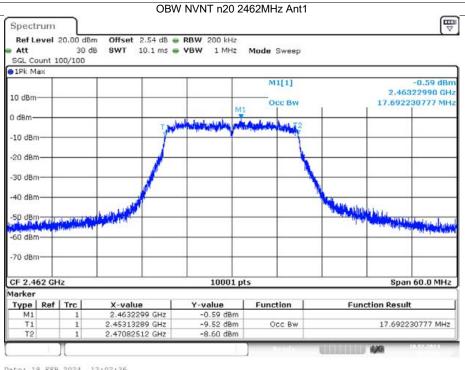




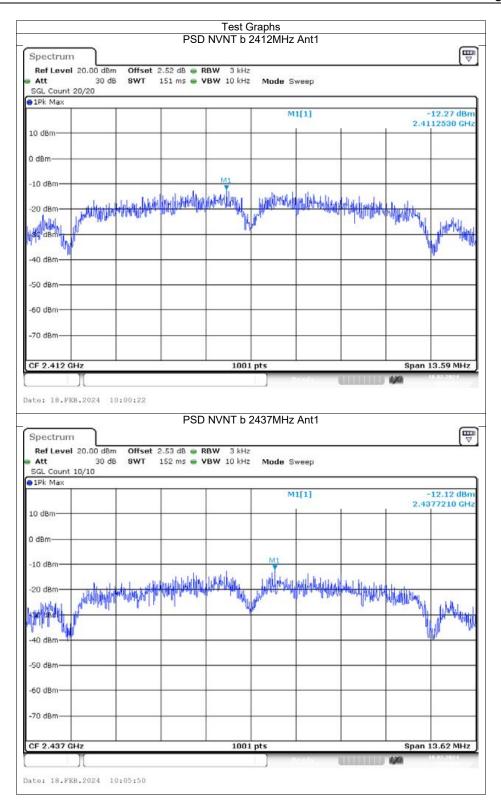


# **Occupied Channel Bandwidth**

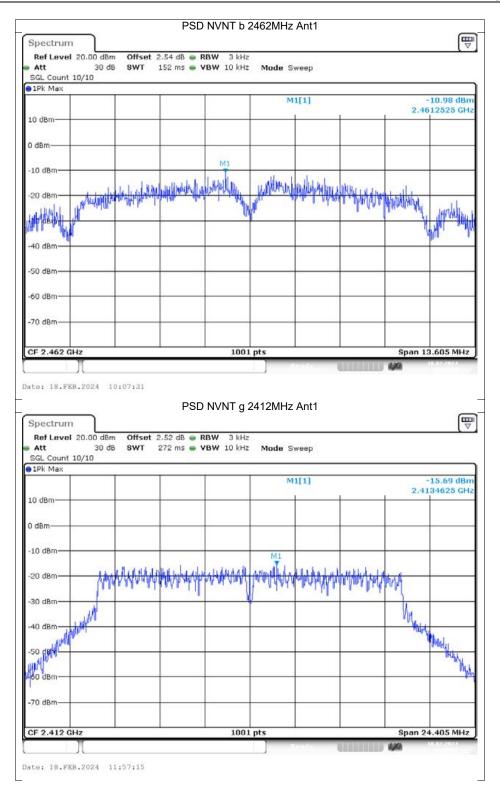

| Condition | Mode | Frequency (MHz) | Antenna | 99% OBW (MHz) |
|-----------|------|-----------------|---------|---------------|
| NVNT      | b    | 2412            | Ant1    | 13.043        |
| NVNT      | b    | 2437            | Ant1    | 13.037        |
| NVNT      | b    | 2462            | Ant1    | 13.025        |
| NVNT      | g    | 2412            | Ant1    | 16.594        |
| NVNT      | g    | 2437            | Ant1    | 16.564        |
| NVNT      | g    | 2462            | Ant1    | 16.552        |
| NVNT      | n20  | 2412            | Ant1    | 17.698        |
| NVNT      | n20  | 2437            | Ant1    | 17.722        |
| NVNT      | n20  | 2462            | Ant1    | 17.692        |

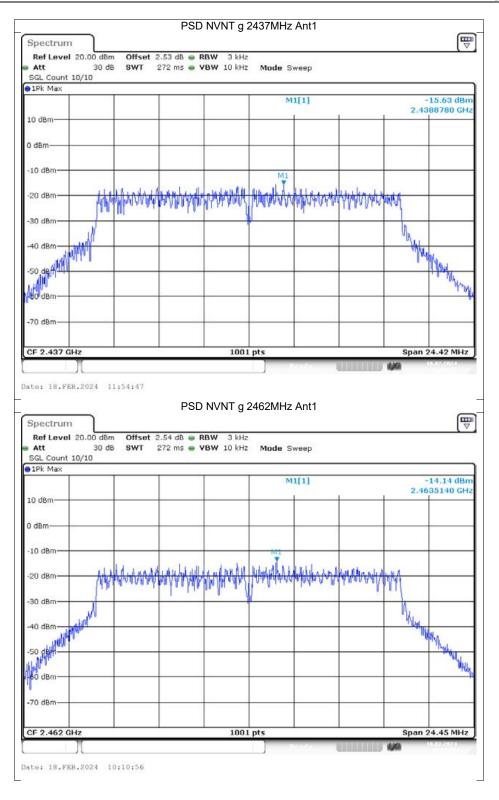


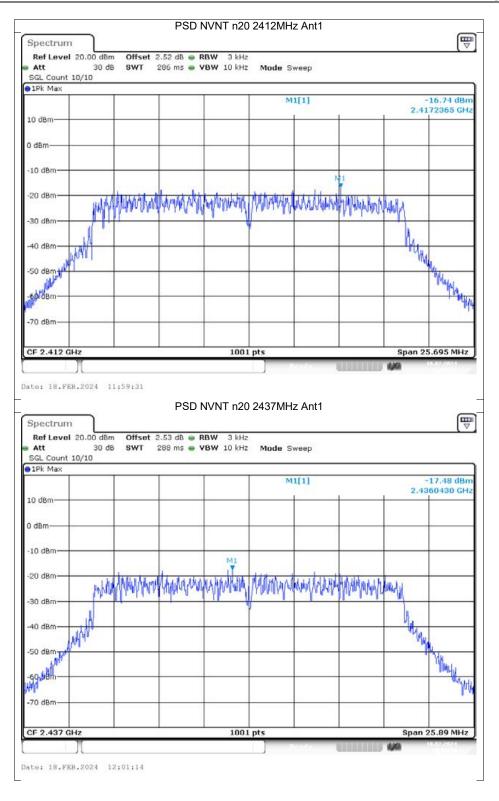


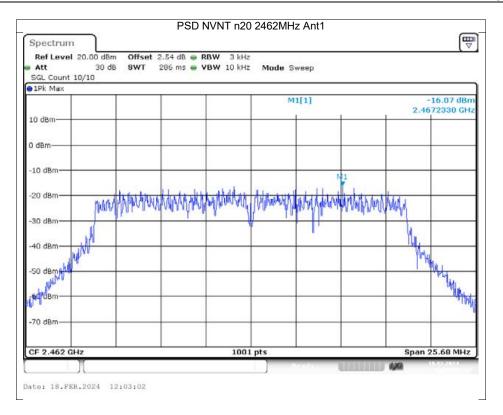






Date: 18.FEB.2024 12:02:36


# **Maximum Power Spectral Density Level**

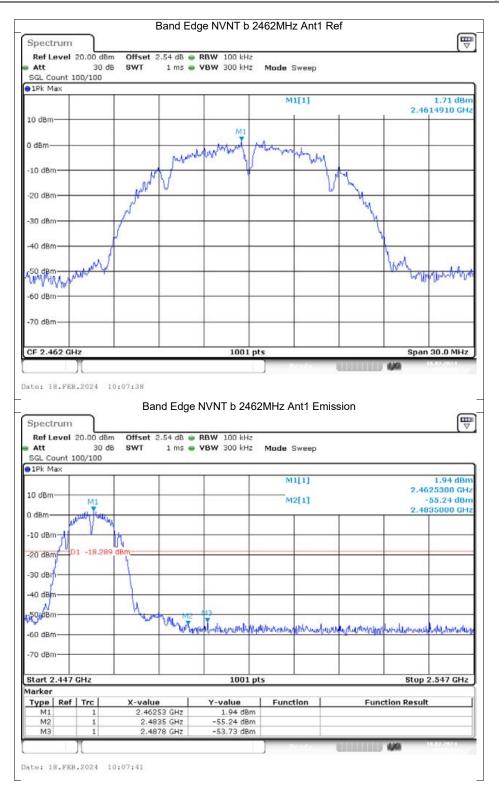

| Condition | Mode | Frequency<br>(MHz) | Antenna | Conducted PSD<br>(dBm/3kHz) | Duty Factor<br>(dB) | Total PSD<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Verdict |
|-----------|------|--------------------|---------|-----------------------------|---------------------|-------------------------|---------------------|---------|
| NVNT      | b    | 2412               | Ant1    | -12.27                      | 0                   | -12.27                  | 8                   | Pass    |
| NVNT      | b    | 2437               | Ant1    | -12.12                      | 0                   | -12.12                  | 8                   | Pass    |
| NVNT      | b    | 2462               | Ant1    | -10.98                      | 0                   | -10.98                  | 8                   | Pass    |
| NVNT      | g    | 2412               | Ant1    | -15.69                      | 0                   | -15.69                  | 8                   | Pass    |
| NVNT      | g    | 2437               | Ant1    | -15.63                      | 0                   | -15.63                  | 8                   | Pass    |
| NVNT      | g    | 2462               | Ant1    | -14.14                      | 0                   | -14.14                  | 8                   | Pass    |
| NVNT      | n20  | 2412               | Ant1    | -16.74                      | 0                   | -16.74                  | 8                   | Pass    |
| NVNT      | n20  | 2437               | Ant1    | -17.48                      | 0                   | -17.48                  | 8                   | Pass    |
| NVNT      | n20  | 2462               | Ant1    | -16.07                      | 0                   | -16.07                  | 8                   | Pass    |



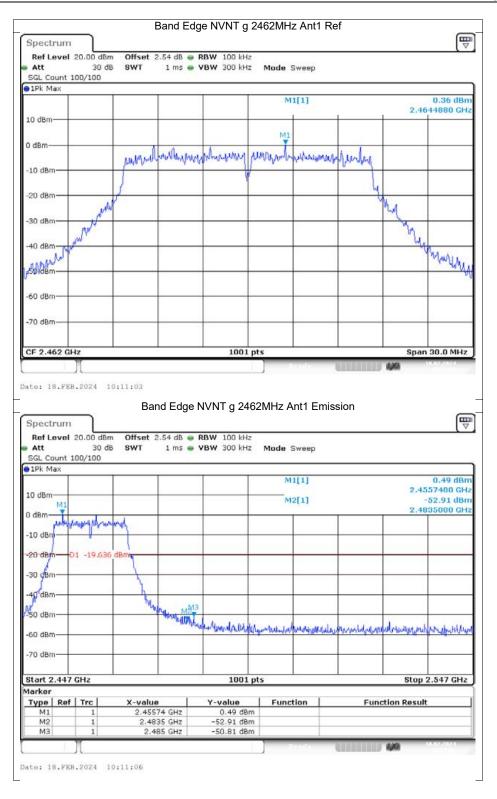


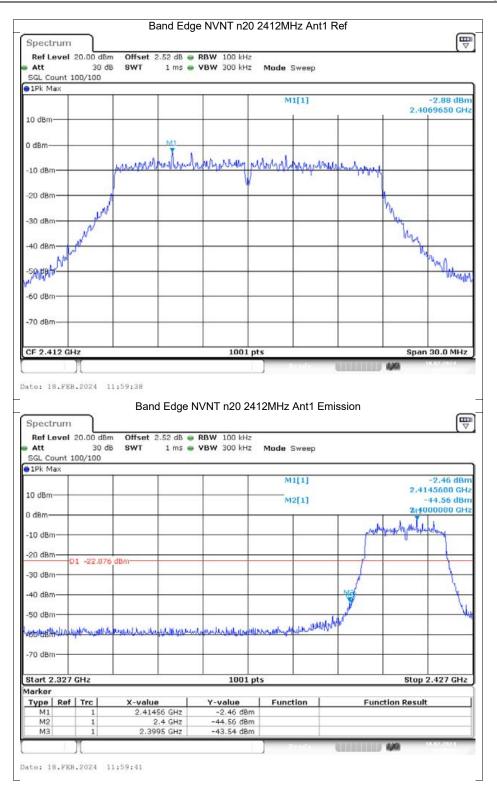


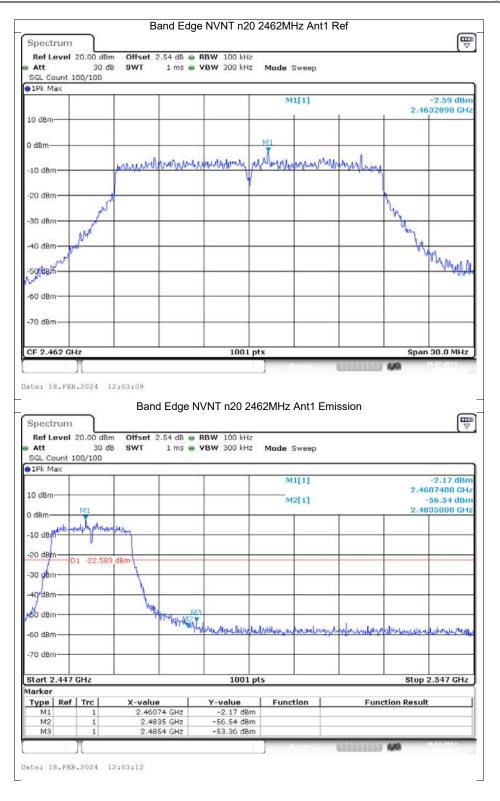





## REPORT NO.: E04A23120598F00101 Page 63 of 88

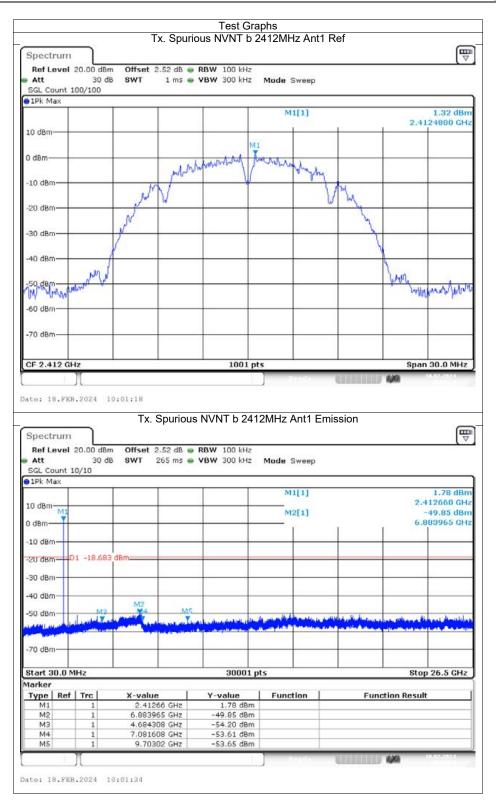

# Band Edge

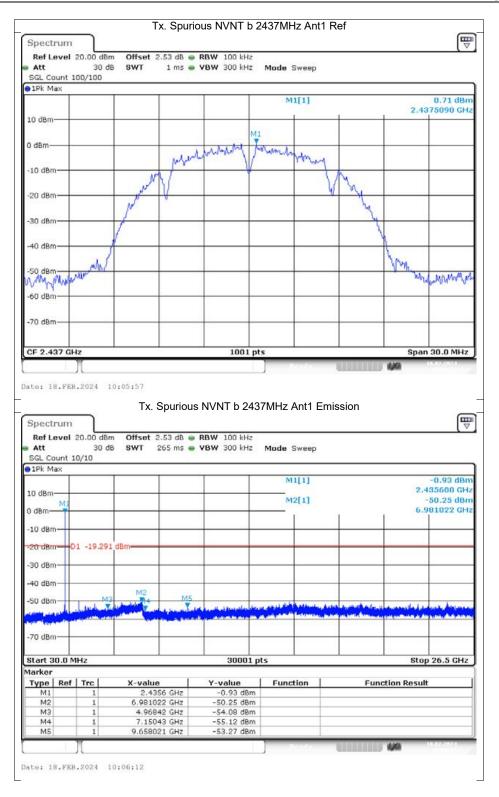

| Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|------|-----------------|---------|-----------------|-------------|---------|
| NVNT      | b    | 2412            | Ant1    | -51.37          | -20         | Pass    |
| NVNT      | b    | 2462            | Ant1    | -55.44          | -20         | Pass    |
| NVNT      | g    | 2412            | Ant1    | -41.47          | -20         | Pass    |
| NVNT      | g    | 2462            | Ant1    | -51.17          | -20         | Pass    |
| NVNT      | n20  | 2412            | Ant1    | -40.66          | -20         | Pass    |
| NVNT      | n20  | 2462            | Ant1    | -50.77          | -20         | Pass    |

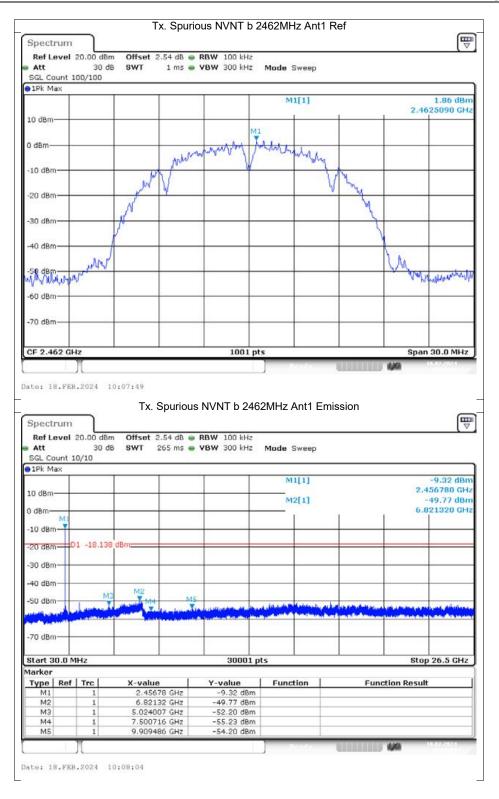

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Band                                        | Test Gra<br>Edge NVNT b 24 | 12MHz Ant1                                             | Ref              |                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|--------------------------------------------------------|------------------|--------------------------------------------------------|
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dand                                        |                            |                                                        |                  | ٩                                                      |
| Ref Level 20.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             | 8 🐵 RBW 100 kHz            |                                                        |                  | (                                                      |
| Att 30<br>SGL Count 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | s 👄 VBW 300 kHz            | Mode Sweep                                             |                  |                                                        |
| 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                            |                                                        |                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                            | M1[1]                                                  |                  | 1.32 dE<br>2.4124800 G                                 |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |                            |                                                        |                  |                                                        |
| dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | M1                         | ana l                                                  |                  |                                                        |
| dom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                           | whanking In                | af a ling how has                                      |                  |                                                        |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and t                                       | ¥                          |                                                        | 1 de             |                                                        |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | where we                                    |                            |                                                        | VN               |                                                        |
| 20 UBIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pro .                                       |                            |                                                        | hy               |                                                        |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                           |                            |                                                        |                  |                                                        |
| 10 db-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H I                                         |                            |                                                        | 1                |                                                        |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                            |                                                        | 0                |                                                        |
| D dem www.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W                                           |                            |                                                        |                  | Jan Marinana                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                            |                                                        |                  | ana ana ana ana a                                      |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                            |                                                        |                  |                                                        |
| 70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                           |                            |                                                        |                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                            |                                                        |                  |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | 1001 1                     |                                                        |                  | 0000 00 0 MU                                           |
| EF 2.412 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             | 1001 pt                    | ] . To silv                                            | nission          | Span 30.0 MH                                           |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Band Ec                                     |                            | ] . To silv                                            | nission          | зран 30.0 Мн                                           |
| te: 18.FEB.2024<br>Spectrum<br>Ref Level 20.00 o<br>Att 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Band Ec<br>Bm Offset 2.52 dB<br>dB SWT 1 ms | lge NVNT b 2412            | ] . To silv                                            | nission          | зран 30.0 Мн                                           |
| te: 18.FEB.2024<br>Spectrum<br>Ref Level 20.00 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Band Ec<br>Bm Offset 2.52 dB<br>dB SWT 1 ms | ige NVNT b 2412            | ) Bentr<br>MHz Ant1 En                                 | nission          | зрап 30.0 Мн-                                          |
| Ref Level 20.00 d<br>Att 30<br>SGL Count 100/100<br>1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Band Ec<br>Bm Offset 2.52 dB<br>dB SWT 1 ms | ige NVNT b 2412            | ) Bentr<br>MHz Ant1 En                                 | nission          | 1.45 dE                                                |
| Content 18, FEB. 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Band Ec<br>Bm Offset 2.52 dB<br>dB SWT 1 ms | ige NVNT b 2412            | ) Pends<br>MHz Ant1 En<br>Mode Sweep                   | nission          | 1.45 dE<br>2.4110700 G<br>M1 -51.60 dE                 |
| Ref Level 20.00 d<br>Att 30<br>SGL Count 100/100<br>1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Band Ec<br>Bm Offset 2.52 dB<br>dB SWT 1 ms | ige NVNT b 2412            | ) Pendy<br>MHz Ant1 En<br>Mode Sweep<br>M1[1]          | nission          | 1.45 dE<br>2.4110700 G                                 |
| Count 100/100<br>Count | Band Ec<br>Bm Offset 2.52 dB<br>dB SWT 1 ms | ige NVNT b 2412            | ) Pendy<br>MHz Ant1 En<br>Mode Sweep<br>M1[1]          | nission          | 1.45 dE<br>2.4110700 G<br>M1 -51.60 dE                 |
| Content of the second s                                                                                                                                                                                                                                                                                | Band Ec<br>Bm Offset 2.52 dB<br>dB SWT 1 ms | ige NVNT b 2412            | ) Pendy<br>MHz Ant1 En<br>Mode Sweep<br>M1[1]          | nission          | 1.45 dE<br>2.4110700 G<br>M1 -51.60 dE                 |
| Content of the second s                                                                                                                                                                                                                                                                                | Band Ec                                     | ige NVNT b 2412            | ) Pendy<br>MHz Ant1 En<br>Mode Sweep<br>M1[1]          | nission          | 1.45 dE<br>2.4110700 G<br>M1 -51.60 dE                 |
| Content of the second s                                                                                                                                                                                                                                                                                | Band Ec                                     | ige NVNT b 2412            | ) Pendy<br>MHz Ant1 En<br>Mode Sweep<br>M1[1]          | nission          | 1.45 dE<br>2.4110700 G<br>M1 -51.60 dE                 |
| J           cte:         18, FEB. 2024           Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Band Ec                                     | ige NVNT b 2412            | MHz Ant1 En<br>Mode Sweep<br>M1[1]<br>M2[1]            | /                | 1.45 dE<br>2.4110700 G<br>M1 -51.60 dE                 |
| J           cte:         18, FEB. 2024           Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Band Ec                                     | ige NVNT b 2412            | MHz Ant1 En<br>Mode Sweep<br>M1[1]<br>M2[1]            | /                | 1.45 dE<br>2.4110700 G<br>M1 -51.60 dE                 |
| Cee: 18.FEB.2024 Ceetrum Ceetevel 20.00 a Att 300 GGL Count 100/100 1Pk Max 0 dBm dBm 20 dBm 01 -18.6 30 dBm 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Band Ec                                     | ige NVNT b 2412            | MHz Ant1 En<br>Mode Sweep<br>M1[1]<br>M2[1]            | /                | 1.45 dE<br>2.4110700 G<br>M1 ~51.60 dE<br>7.2.400000 G |
| Cee: 18.FEB.2024 Ceetrum Ceetevel 20.00 a Att 300 GGL Count 100/100 1Pk Max 0 dBm dBm 20 dBm 01 -18.6 30 dBm 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Band Ec                                     | ige NVNT b 2412            | MHz Ant1 En<br>Mode Sweep<br>M1[1]<br>M2[1]            | /                | 1.45 dE<br>2.4110700 G<br>M1 ~51.60 dE<br>7.2.400000 G |
| Image: Spectrum         Spectrum           Ref Level 20.00 d         30           SGL Count 100/100         100/100           IPk Max         30           0 dBm         30           10 dBm         01 -18.0           30 dBm         30           40 dBm         30           50 dBm         70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Band Ec                                     | ige NVNT b 2412            | MHz Ant1 En<br>Mode Sweep<br>M1[1]<br>M2[1]            | /                | 1.45 dE<br>2.4110700 G<br>M1 ~51.60 dE<br>7.2.400000 G |
| Image: state is a sta                                                                                                                                                                                                                                                                                                       | Band Ec                                     | ige NVNT b 2412            | ) Bendy<br>MHz Ant1 En<br>Mode Sweep<br>M1[1]<br>M2[1] | /                | 1.45 dE<br>2.4110700 G<br>M1 ~51.60 dE<br>7.2.400000 G |
| J           cte:         18, FEB. 2024           Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Band Ec                                     | ige NVNT b 2412            | ) Bendy<br>MHz Ant1 En<br>Mode Sweep<br>M1[1]<br>M2[1] | MB M2N<br>MB M2N | 1.45 dE<br>2.4110700 G<br>M1 -51.60 dE<br>2.4000000 G  |
| te:         18.FEB.2024           Spectrum         30           Ref Level 20.00 (<br>Att 30         30           SGL Count 100/100         100/100           IPk Max         30           0 dBm         01           10 dBm         30           30 dBm         50           50 dBm         50           70 dBm         10           tart 2.327 GHz         arker           Type         Ref         Trc           M1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Band Ec                                     | Ige NVNT b 2412            | ) Pends<br>MHz Ant1 En<br>Mode Sweep<br>M1[1]<br>M2[1] | MB M2N<br>MB M2N | 1.45 dE<br>2.4110700 G<br>M1 ~51.60 dE<br>7 2.400000 G |
| Image: constraint of the sector of                                                                                                                                                                                                                                                                                                        | Band Ec                                     | lge NVNT b 2412            | ) Pends<br>MHz Ant1 En<br>Mode Sweep<br>M1[1]<br>M2[1] | MB M2N<br>MB M2N | 1.45 dE<br>2.4110700 G<br>M1 ~51.60 dE<br>7 2.400000 G |

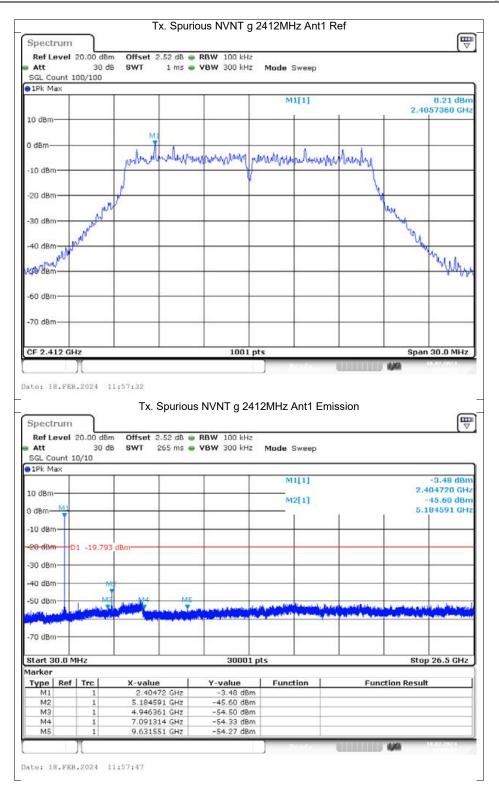


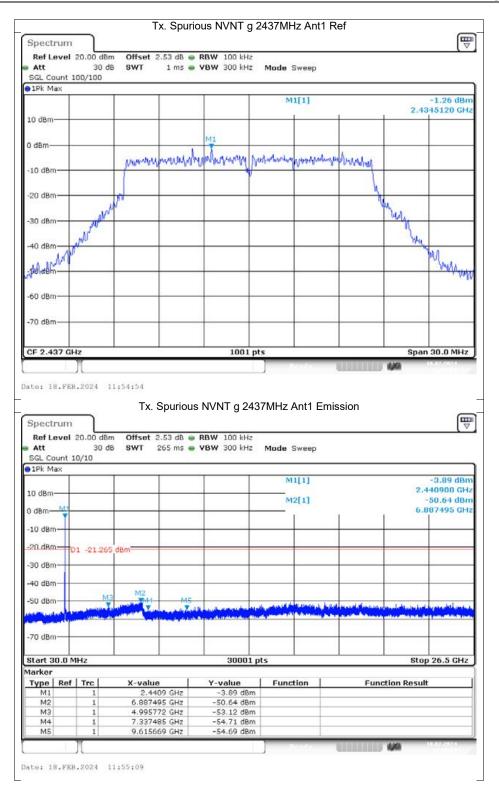
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C                                                                    | 5                                                                                             | e NVNT g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                       |         |                        | C                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|---------|------------------------|-----------------------------------------------------|
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       |         |                        | 7                                                   |
| Att 30 d                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                                                               | BW 100 kHz<br>BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | Swaan                 |         |                        |                                                     |
| SGL Count 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D OWI                                                                | 1 113                                                                                         | DW 500 Kill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . Mode .                     | aweeh                 |         |                        |                                                     |
| 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       |         |                        |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                            | 1[1]                  |         | 2.0                    | -0.96 dBr<br>182640 GH                              |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | -                     |         |                        | 102010 011                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       | 41      |                        |                                                     |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      | Sector Sector                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 152 <b>-</b> 164 - 164       |                       | 7       | -                      | -                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Newmon                                                               | Name Marks                                                                                    | Marymany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | personalized                 | hampan                | Muram   |                        |                                                     |
| 10 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                               | ų                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                       | 1       |                        |                                                     |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                    |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       | 4       |                        |                                                     |
| 20 0Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ň                                                                    |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       | 1       | 1.                     |                                                     |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       |         | Marth                  |                                                     |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | 1                     |         | m                      |                                                     |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       |         | h                      | 94                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       |         |                        | Mr.                                                 |
| soldem                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                    |                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | -                     |         |                        | Mondan                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       |         |                        |                                                     |
| 60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                    |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | -                     |         | -                      |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       |         |                        |                                                     |
| 70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | -                     |         |                        |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                       |         |                        |                                                     |
| F 2.412 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                                                                               | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pts                          | A.D. 4                |         | Spa                    | an 30.0 MHz                                         |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bar                                                                  | _                                                                                             | IVNT g 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | nt1 Emis              | sion    |                        | Ē                                                   |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d                                                                                                                                                                                                                                                                                                                                                                                                                           | Bar<br>m Offset 2                                                    | 2.52 dB 🥃 R                                                                                   | IVNT g 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :                            | -                     | sion    |                        | (T                                                  |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100                                                                                                                                                                                                                                                                                                                                                                                                      | Bar<br>m Offset 2                                                    | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                            | -                     | sion    |                        | [#                                                  |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100                                                                                                                                                                                                                                                                                                                                                                                                      | Bar<br>m Offset 2                                                    | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>Mode 1                  | -                     | sion    |                        | -0.18 dBi                                           |
| Spectrum<br>Ref Level 20.00 d8r<br>Att 30 d<br>SGL Count 100/100<br>1PK Max                                                                                                                                                                                                                                                                                                                                                                                           | Bar<br>m Offset 2                                                    | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Mode 1                     | Sweep<br>1[1]         | sion    | 2.4                    | -0.18 dBi<br>4057700 GH                             |
| Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100<br>1Pk Max<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                              | Bar<br>m Offset 2                                                    | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Mode 1                     | Sweep                 | sion    |                        | -0.18 dBi<br>057700 GF<br>-42.88 dBi                |
| Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100<br>1Pk Max<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                              | Bar<br>m Offset 2                                                    | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Mode 1                     | Sweep<br>1[1]         | м       | 1 2.4                  | -0.18 dBi<br>+057700 GH<br>-42.88 dBi<br>+000000 GH |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100<br>1Pk Max<br>0 dBm<br>dBm                                                                                                                                                                                                                                                                                                                                                                           | Bar<br>m Offset 2                                                    | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Mode 1                     | Sweep<br>1[1]         | м       |                        | -0.18 dBi<br>+057700 GH<br>-42.88 dBi<br>+000000 GH |
| Spectrum Ref Level 20.00 dBr Att 30 d SGL Count 100/100 IPk Max 0 dBm dBm 10 dBm                                                                                                                                                                                                                                                                                                                                                                                      | Bar<br>m Offset 2<br>IB swr                                          | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Mode 1                     | Sweep<br>1[1]         | м       | 1 2.4                  | -0.18 dBi<br>+057700 GH<br>-42.88 dBi<br>+000000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           1Pk Max           0 dBm           0 dBm           10 dBm           10 dBm           20 dBm           D1 -20.956                                                                                                                                                                                                                                                       | Bar<br>m Offset 2<br>IB swr                                          | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Mode 1                     | Sweep<br>1[1]         | м       | 1 2.4                  | -0.18 dBi<br>i057700 GH<br>-42.88 dBi<br>i000000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           1Pk Max           0 dBm           0 dBm           10 dBm           10 dBm           20 dBm           D1 -20.956                                                                                                                                                                                                                                                       | Bar<br>m Offset 2<br>IB swr                                          | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Mode 1                     | Sweep<br>1[1]         | м       | 1 2.4                  | -0.18 dBi<br>i057700 GH<br>-42.88 dBi<br>i000000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           1Pk Max           0 dBm           10 dBm           10 dBm           20 dBm           20 dBm           30 dBm                                                                                                                                                                                                                                                          | Bar<br>m Offset 2<br>IB swr                                          | 2.52 dB 🥃 R                                                                                   | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Mode 1                     | Sweep<br>1[1]         | м       | 1 2.4                  | -0.18 dBi<br>i057700 GH<br>-42.88 dBi<br>i000000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           IPK Max           0 dBm           dBm           10 dBm           20 dBm           20 dBm           10 dBm           40 dBm                                                                                                                                                                                                                                            | Bar<br>m Offset 2<br>l8 swT                                          | 2.52 dB • R<br>1 ms • V                                                                       | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * Mode :<br>Minima<br>Minima | Sweep<br>1[1]<br>2[1] | red and | 1 2.4                  | -0.18 dBi<br>i057700 GH<br>-42.88 dBi<br>i000000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           IPK Max           0 dBm           dBm           10 dBm           20 dBm           20 dBm           10 dBm           40 dBm                                                                                                                                                                                                                                            | Bar<br>m Offset 2<br>l8 swT                                          | 2.52 dB • R<br>1 ms • V                                                                       | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * Mode :<br>Minima<br>Minima | Sweep<br>1[1]<br>2[1] | red and | 1 2.4                  | -0.18 dBi<br>+057700 GH<br>-42.88 dBi<br>+000000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           IPK Max           0 dBm           dBm           10 dBm           20 dBm           20 dBm           10 dBm           40 dBm                                                                                                                                                                                                                                            | Bar<br>m Offset 2<br>l8 swT                                          | 2.52 dB • R<br>1 ms • V                                                                       | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * Mode :<br>Minima<br>Minima | Sweep<br>1[1]<br>2[1] | red and | 1 2.4                  | -0.18 dBi<br>i057700 GH<br>-42.88 dBi<br>i000000 GH |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bar<br>m Offset 2<br>l8 swT                                          | 2.52 dB • R<br>1 ms • V                                                                       | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * Mode :<br>Minima<br>Minima | Sweep<br>1[1]<br>2[1] | red and | 1 2.4                  | -0.18 dBi<br>+057700 GH<br>-42.88 dBi<br>+000000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           IPk Max           0 dBm           dBm           0 dBm           20 dBm           10 dBm           20 dBm           50 dBm           50 dBm           50 dBm           70 dBm                                                                                                                                                                                          | Bar<br>m Offset 2<br>l8 swT                                          | 2.52 dB • R<br>1 ms • V                                                                       | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mode :<br>M<br>M<br>M        | Sweep<br>1[1]<br>2[1] | red and | 1 2.4<br>(Naprin Plan) | -0.18 dBi<br>H057700 GH<br>-42.88 dBi<br>H000000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           1Pk Max           10 dBm           10 dBm           20 dBm           10 dBm           10 dBm           20 dBm           10 dBm           10 dBm           10 dBm           10 dBm           20 dBm           10 dBm           10 dBm           10 dBm           20 dBm           10 dBm           70 dBm           30 dBm           70 dBm           31 dTt 2.327 GHz | Bar<br>m Offset 2<br>B SWT<br>6 dBm<br>6 dBm                         | 2.52 dB  Reference                                                                            | BW 100 kH<br>BW 300 kH<br>300 kH<br>1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mode :<br>Mode :<br>M<br>M   | Sweep<br>1[1]<br>2[1] |         | 1 2.4<br>Neprin Head   | -0.18 dBi                                           |
| Att         30 d           SGL Count 100/100           SGL Count 100/100           1PK Max           10 dBm           10 dBm           20 dBm           20 dBm           10 dBm           20 dBm           20 dBm           50 dBm           50 dBm           70 dBm           70 dBm           51 darker           Type           Type                                                                                                                               | Bar<br>m Offset 2<br>B SWT<br>6 dBm<br>6 dBm<br>K-value              | 2.52 dB   Ims   V                                                                             | BW 100 kH<br>7BW 300 kH<br>300 kH<br>1001<br>1001<br>Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pts                          | Sweep<br>1[1]<br>2[1] |         | 1 2.4<br>(Naprin Plan) | -0.18 dBi                                           |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bar<br>m Offset 2<br>B SWT<br>6 dBm<br>6 dBm<br>6 dBm<br>2.4057<br>2 | 2.52 dB<br>1 ms  V<br>//////////////////////////////////                                      | BW 100 kH<br>BW 300 kH<br>300 kH<br>30 | Mode :<br>                   | Sweep<br>1[1]<br>2[1] |         | 1 2.4<br>Neprin Head   | -0.18 dBi                                           |
| Spectrum         Ref Level 20.00 dBr           Att         30 d           SGL Count 100/100         11Pk Max           10 dBm                                                                                                                                                                                                                                                                                                                                         | Bar<br>m Offset 2<br>B SWT<br>6 dBm<br>6 dBm<br>6 dBm<br>2.4057<br>2 | 2.52 dB<br>1 ms<br>V<br>1 ms<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V | 28₩ 100 kH2<br>/8₩ 300 kH2<br>////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mode :<br>                   | Sweep<br>1[1]<br>2[1] |         | 1 2.4<br>Neprin Head   | 2.427 GHz                                           |

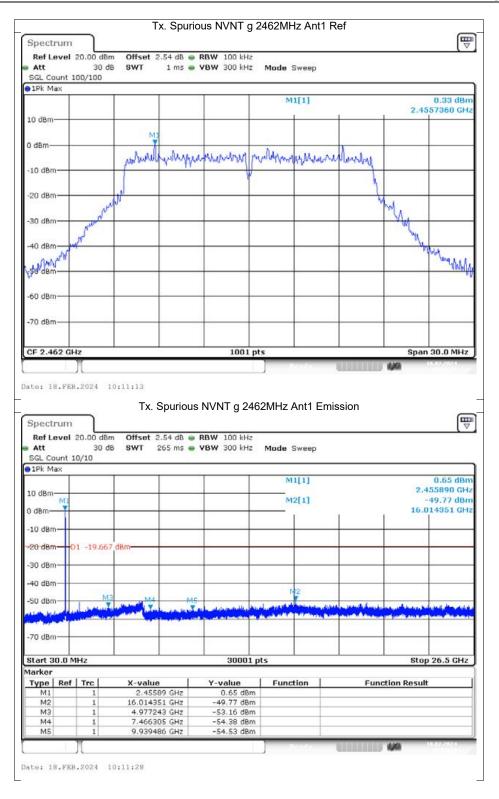


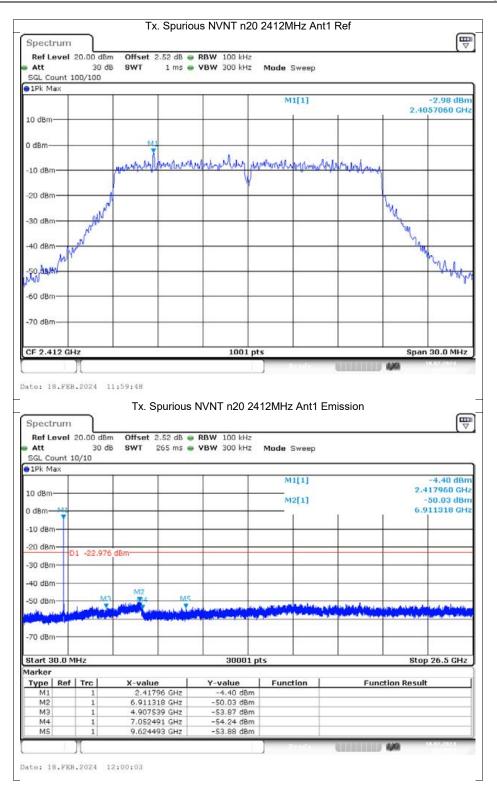



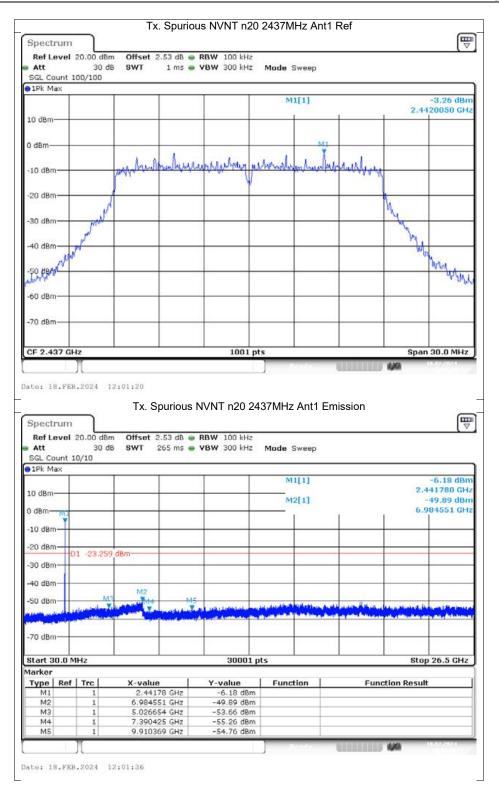



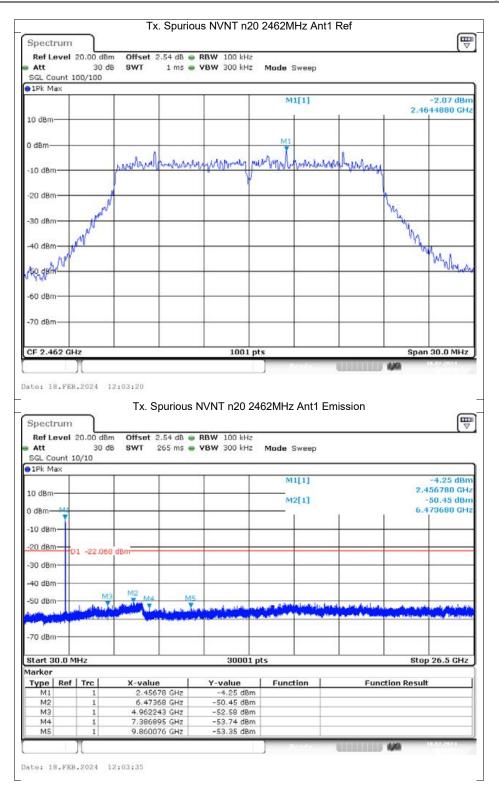


# **Conducted RF Spurious Emission**


| Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|------|-----------------|---------|-----------------|-------------|---------|
| NVNT      | b    | 2412            | Ant1    | -51.17          | -20         | Pass    |
| NVNT      | b    | 2437            | Ant1    | -50.96          | -20         | Pass    |
| NVNT      | b    | 2462            | Ant1    | -51.63          | -20         | Pass    |
| NVNT      | g    | 2412            | Ant1    | -45.81          | -20         | Pass    |
| NVNT      | g    | 2437            | Ant1    | -49.38          | -20         | Pass    |
| NVNT      | g    | 2462            | Ant1    | -50.1           | -20         | Pass    |
| NVNT      | n20  | 2412            | Ant1    | -47.05          | -20         | Pass    |
| NVNT      | n20  | 2437            | Ant1    | -46.63          | -20         | Pass    |
| NVNT      | n20  | 2462            | Ant1    | -48.38          | -20         | Pass    |



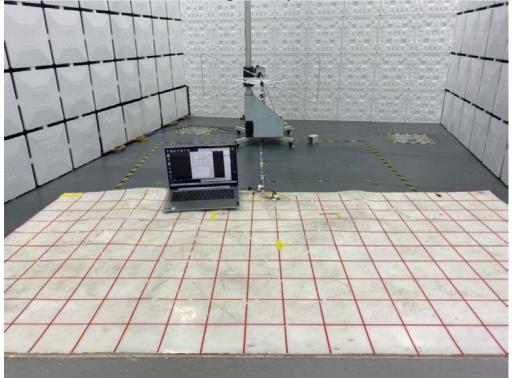









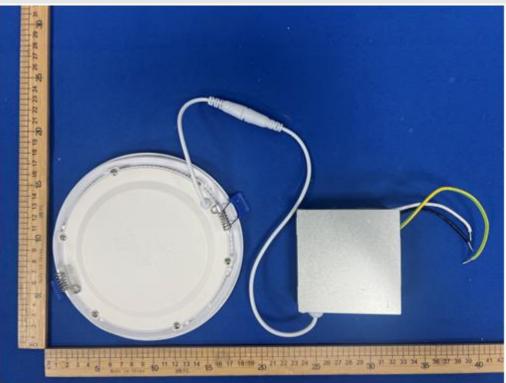


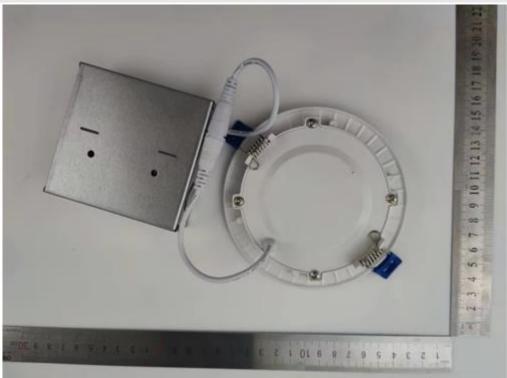

## **APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION**

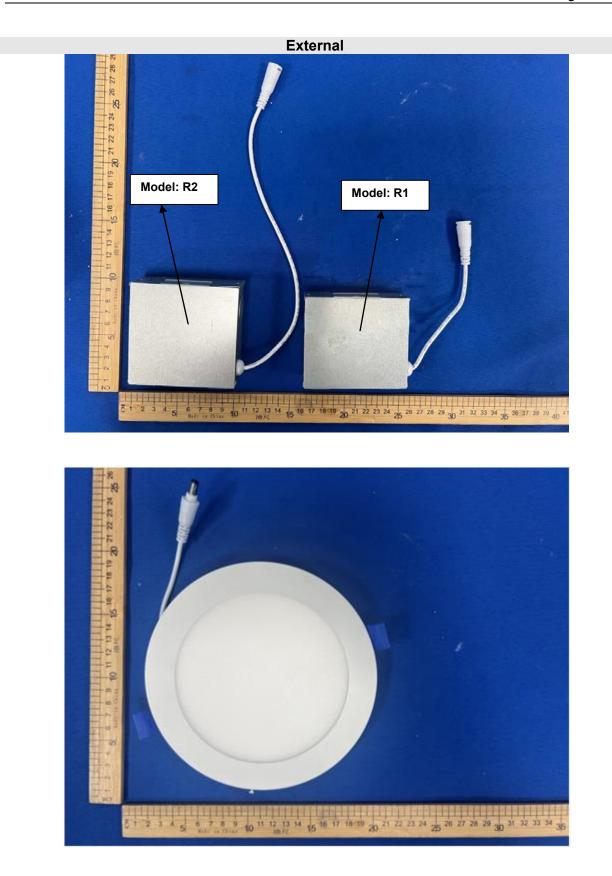
**AC Power Line Conducted Emission** 

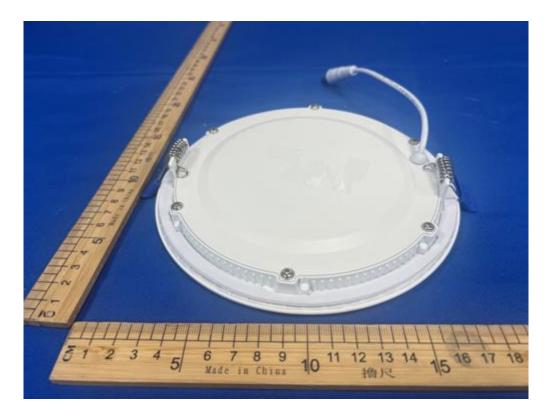



Radiated Band edge and Spurious Emission



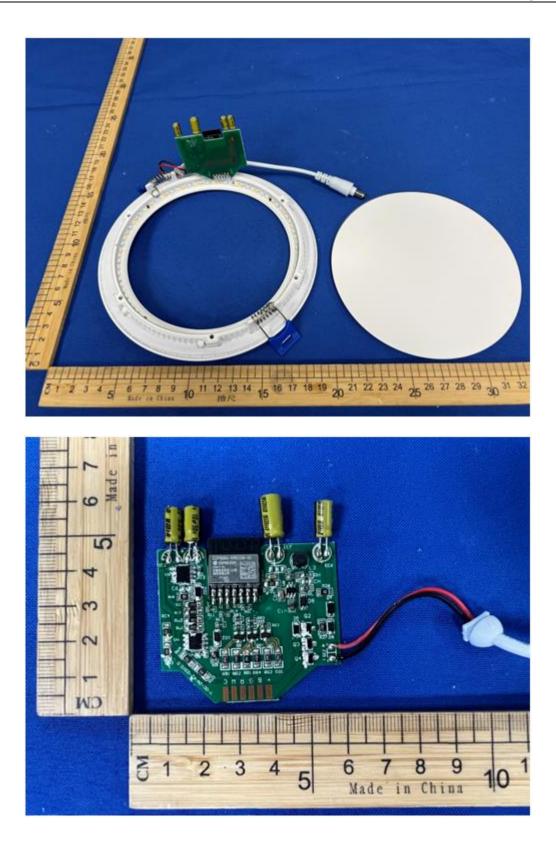


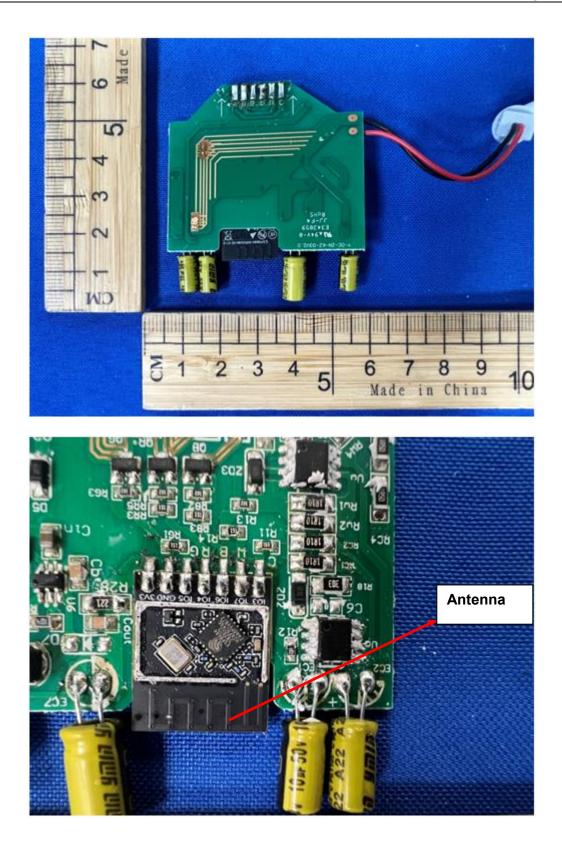


## **APPENDIX: PHOTOGRAPHS OF THE EUT**

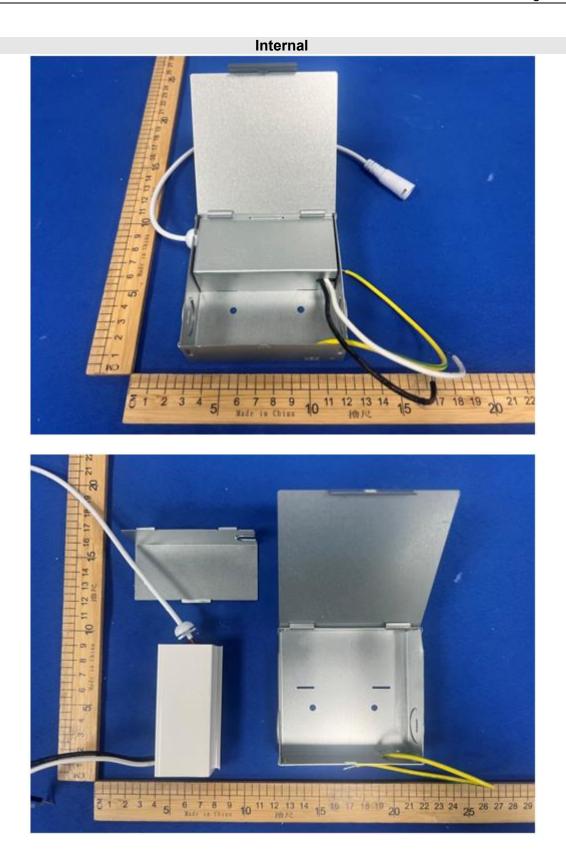

External (Model: R2)

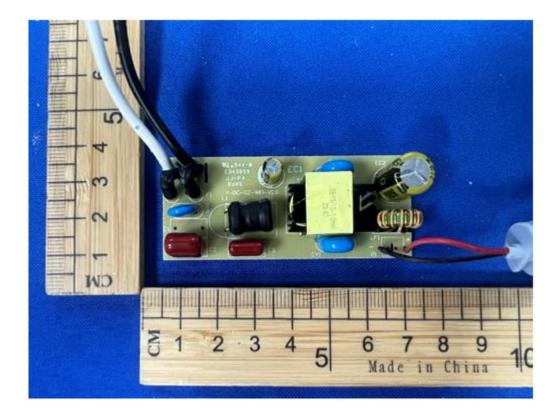


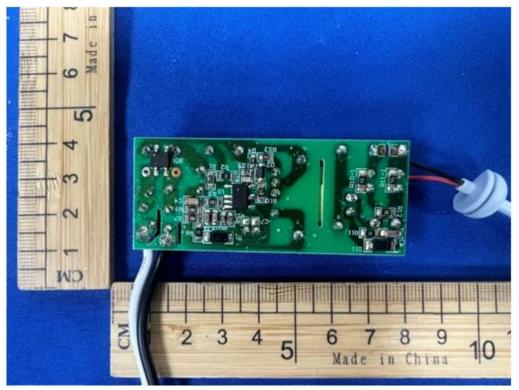
External (Model: R1)





Internal














## **END OF REPORT**

TRF No.: 04-E001-0BGlobal Testing , Great Quality.