Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202202-0209-12

Page: 1 of 81

Radio Test Report

FCC ID: 2A3KR-KST103SDL

IC: 28252-KST103SDL

Report No. : TBR-C-202202-0209-12

Applicant: SHENZHEN KINSTONE D&T DEVELOP CO.LTD.

Equipment Under Test (EUT)

EUT Name : Android tablet

Model No. : KST103SD-L

Brand Name : Kinstone

Sample ID : 20210804-05_01-01 & 20210804-05_01-02

Receipt Date : 2022-02-28

Test Date : 2022-02-28 to 2022-03-31

Issue Date : 2022-03-31

Standards : FCC Part 15 Subpart E 15.407

RSS-247 Issue 2 February 2017

RSS-Gen Issue 5 March 2019

Test Method : ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor:

Engineer Manager :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COL	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	7
	1.4 Description of Support Units	
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	13
3.	TEST SOFTWARE	13
4.	TEST EQUIPMENT	14
5.	CONDUCTED EMISSION TEST	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	
	5.3 Test Procedure	15
	5.4 Deviation From Test Standard	16
	5.5 EUT Operating Mode	16
	5.6 Test Data	16
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	17
	6.1 Test Standard and Limit	17
	6.2 Test Setup	18
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	
	6.6 Test Data	
7.	RESTRICTED BANDS REQUIREMENT	21
	7.1 Test Standard and Limit	
	7.2 Test Setup	22
	7.3 Test Procedure	22
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	BANDWIDTH TEST	24
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	26

	8.6 Test Data	26
9.	MAXIMUM CONDUCTED OUTPUT POWER	27
	9.1 Test Standard and Limit	27
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	28
	9.5 EUT Operating Mode	28
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY TEST	29
	10.1 Test Standard and Limit	29
	10.2 Test Setup	29
	10.3 Test Procedure	29
	10.4 Deviation From Test Standard	30
	10.5 Antenna Connected Construction	30
	10.6 Test Data	30
11.	FREQUENCY STABILITY	31
	11.1 Test Standard and Limit	31
	11.2 Test Setup	31
	11.3 Test Procedure	31
	11.4 Deviation From Test Standard	32
	11.5 Antenna Connected Construction	32
	11.6 Test Data	32
12.	ANTENNA REQUIREMENT	33
	12.1 Test Standard and Limit	33
	12.2 Deviation From Test Standard	33
	12.3 Antenna Connected Construction	33
	12.4 Test Data	33
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	34
	ACHMENT B. LINWANTED EMISSIONS DATA	

Report No.: TBR-C-202202-0209-12 Page: 4 of 81

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202202-0209-12	Rev.01	Initial issue of report	2022-03-31
The same	400	0000	
		EDIN CHARLE	
TOBY	(10)33		MOBA
A CONTRACTOR	A. C.	THE STATE OF THE S	
TUDE	The Control	BIJ MORIS	TODE
	100	MODE TO	
THE STATE OF THE PARTY OF THE P	000		wing)
OBY TO	33	CHURCH THE PARTY OF THE PARTY O	1033
TO:33	THU .		4000
The Contract of the Contract o			000

Page: 5 of 81

1. General Information about EUT

1.1 Client Information

Applicant		SHENZHEN KINSTONE D&T DEVELOP CO.LTD.
Address		5th Floor, Building A2, Xinjianxing Technology Industrial Park, Fengxin Road, Guangming District, Shenzhen, China
Manufacturer		SHENZHEN KINSTONE D&T DEVELOP CO.LTD.
Address	:	5th Floor, Building A2, Xinjianxing Technology Industrial Park, Fengxin Road, Guangming District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Android tablet	
HVIN/Models No.		KST103SD-L	
1033	1	Operation Frequency:	U-NII-1: 5180MHz~5240MHz, U-NII-2C: 5500MHz~5720MHz, U-NII-3: 5745MHz~5825MHz
	1	Antenna Gain:	0.5dBi PIFA Antenna
Product Description	Bit Rate of Transmitter:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM,	
			64QAM, 256QAM)
			802.11a: 6/9/12/18/24/36/48/54 Mbps
		Transmiller.	802.11n: up to 150Mbps 802.11ac: at most 433.3 Mbps
Power Rating	5	Input: DC 5V,2A DC 3.8V by 7500mAh	
Software Version	ė	: Android 11	
Hardware Version	W	PC109-T618-VX.0(X U	se numbers 1 to 9 for software version)

Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

Page: 6 of 81

(4) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5180~5240MHz (U-NII-1)	38	5190 MHz	46	5230 MHz
(0-1411-1)	40	5200 MHz	48	5240 MHz
	42	5210 MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5500~5720 MHz	108	5540 MHz	134	5670 MHz
(U-NII-2C)	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz		

For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144

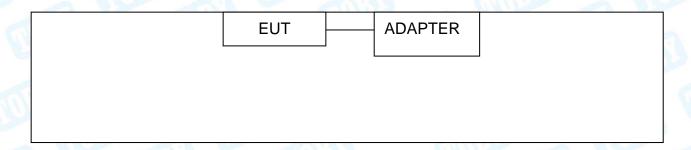
For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142

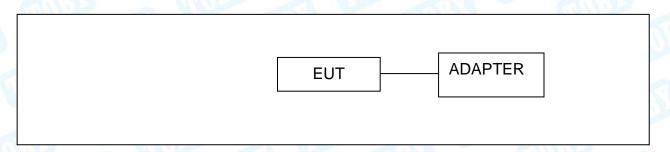
For 80 MHz Bandwidth, use channel 106, 122, 138.

Note: For the protection of Environment, the 5600-5650 MHz band restricted in Canada. So the CH 118/120/122/124/126/128 was restricted use in Canada.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5745~5825MHz (U-NII-3)	151	5755 MHz	159	5795 MHz
(0-NII-3)	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159. For 80 MHz Bandwidth, use channel 155.




Page: 7 of 81

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

	Equipment Information					
Name	Model	FCC ID/VOC	Manufacturer	Used "√"		
a	1333 0	(U)		1		
		Cable Information	1			
Number	Shielded Type	Ferrite Core	Length	Note		
	P - W		(1137)			
	Remark: the USB C	able and adapter provi	ded by the Applicant.			

Page: 8 of 81

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

respective	ery.	
		For Conducted Test
Fina	al Test Mode	Description
33	Mode 1	Charging + TX a Mode(5180MHz)
	For	Radiated Test Below 1GHz
Fina	al Test Mode	Description
	Mode 2	Charging + TX a Mode(5180MHz)
	For Radiated	Above 1GHz and RF Conducted Test
Test Band	Final Test Mode	Description
	Mode 3	TX Mode 802.11a Mode Channel 36/40/48
1000	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/40/48
U-NII-1	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48
U-IVII-1	Mode 6	TX Mode 802.11n(HT40) Mode Channel 38/46
	Mode 7	TX Mode 802.11ac(VHT40) Mode Channel 38/46
A STATE OF THE PARTY OF THE PAR	Mode 8	TX Mode 802.11ac(VHT80) Mode Channel 42
	Mode 9	TX Mode 802.11a Mode Channel 100/116/140
	Mode 10	TX Mode 802.11n(HT20) Mode Channel 100/116/140
U-NII-2C	Mode 11	TX Mode 802.11ac(VHT20) Mode Channel 100/116/140
U-IVII-2C	Mode 12	TX Mode 802.11n(HT40) Mode Channel 102/110/134
	Mode 13	TX Mode 802.11ac(VHT40) Mode Channel 102/110/134
	Mode 14	TX Mode 802.11ac(VHT80) Mode Channel 106/138
	Mode 15	TX Mode 802.11a Mode Channel 149/157/165
	Mode 16	TX Mode 802.11n(HT20) Mode Channel 149/157/165
U-NII-3	Mode 17	TX Mode 802.11ac(vHT20) Mode Channel 149/157/165
0-1111-3	Mode 18	TX Mode 802.11n(HT40) Mode Channel 151/159
M. F.	Mode 19	TX Mode 802.11ac(VHT40) Mode Channel 151/159
	Mode 20	TX Mode 802.11ac(VHT80) Mode Channel 155

Page: 9 of 81

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0

802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1 802.11ac(VHT80) Mode: MCS 0/ Nss1

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 10 of 81

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software: rftest Software				
	U-NII-1			
Mode	Frequency (MHz)	Parameters		
	5180	17		
802.11a	5200	17		
	5240	17		
	5180	17		
802.11n(HT20)	5200	17		
	5240	17		
	5180	17		
802.11ac(VHT20)	5200	17		
	5240	17		
902 11 _p /UT10)	5190	17		
802.11n(HT40)	5230	17		
902 11aa(\/\UT40\	5190	17		
802.11ac(VHT40)	5230	17		
802.11ac(VHT80)	5210	17		

	U-NII-2C	
Mode	Frequency (MHz)	Parameters
	5500	17
802.11a	5580	17
	5700	17
	5500	17
802.11n(HT20)	5580	17
	5700	17
	5500	17
802.11ac(VHT20)	5580	17
THE	5700	17
	5510	17
802.11n(HT40)	5550	17
ATT TO SERVICE OF THE PARTY OF	5670	17
THURS .	5510	17
802.11ac(VHT40)	5550	17
	5670	17
000 44 co(\/LIT00\	5530	17
802.11ac(VHT80)	5690	17
	U-NII-3	
Mode	Frequency (MHz)	Parameters
	5745	17
802.11a	5785	17
	5825	17
	5745	17
802.11n(HT20)	5785	17
	5825	17
	5745	17
802.11ac(VHT20)	5785	17
	5825	17
000 44 = (UT 40)	5755	17
802.11n(HT40)	5795	17
TUDE		17
000 44 co/\/LIT40\	5755	
802.11ac(VHT40)	5755 5795	17

Page: 12 of 81

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U_{\tau}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2_{\tau}$ providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202202-0209-12 Page: 13 of 81

2. Test Summary

Standard Section		Took Home	To a (O a see a la (a)	1 1	
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	RSS-Gen 8.8	Conducted Emission	20210804-05_01-01	PASS	N/A
FCC 15.209 & 15.407(b)	RSS-Gen 8.9 & RSS 247 5.5	Radiated Unwanted Emissions	20210804-05_01-01	PASS	N/A
FCC 15.203	RSS-247 6.8	Antenna Requirement	20210804-05_01-02	PASS	N/A
FCC 15.407(a)	RSS-247(6.2.1.2)	-26dB Emission Bandwidth	20210804-05_01-02	PASS	N/A
FCC 15.407(a)	RSS-247(6.2.1.2)	99% Occupied Bandwidth	20210804-05_01-02	PASS	N/A
FCC 15.407(e)	RSS-247(6.2.4.1)	-6dB Min Emission Bandwidth	20210804-05_01-02	PASS	N/A
FCC 15.407(a)	RSS-247(6.2.1.1& 6.2.2.1&6.2.3.1& 6.2.4.1)	Maximum Conducted Output Power and E.I.R.P	20210804-05_01-02	PASS	N/A
FCC 15.407(a)	RSS-247(6.2.1.1& 6.2.2.1&6.2.3.1& 6.2.4.1)	Power Spectral Density	20210804-05_01-02	PASS	N/A
FCC 15.407(b)& 15.205	RSS-Gen 8.10& RSS-247 5.5	Emissions in Restricted Bands	20210804-05_01-02	PASS	N/A
FCC 15.407(b)&15.209	RSS-Gen 8.9 & RSS 247 5.5	Conducted Unwanted Emissions	20210804-05_01-02	PASS	N/A
FCC 15.407(g)	RSS-Gen 8.11	Frequency Stability	20210804-05_01-02	PASS	N/A
		On Time and Duty Cycle	20210804-05_01-02		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202202-0209-12 Page: 14 of 81

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 28, 2022	Feb. 27, 202
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 28, 2022	Feb. 27, 202
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Feb. 28, 2022	Feb. 27, 202
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	Sonoma	310N	185903	Feb. 24, 2022	Feb. 23, 202
Pre-amplifier	HP	8449B	3008A00849	Feb. 24, 2022	Feb. 23, 202
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb. 24, 2022	Feb. 23, 202
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 24, 2022	Feb. 23, 202
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 10, 2021	Sep. 09, 202
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 10, 2021	Sep. 09, 202
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 10, 2021	Sep. 09, 202
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 10, 2021	Sep. 09, 202
DE Dower Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 10, 2021	Sep. 09, 202
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 10, 2021	Sep. 09, 202
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 10, 2021	Sep. 09, 202

Page: 15 of 81

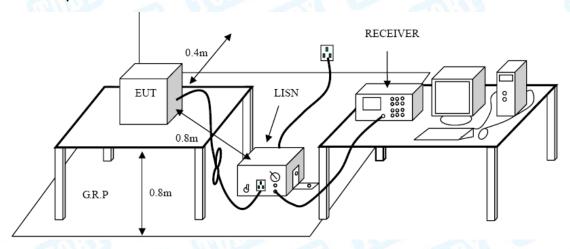
5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

RSS-Gen 8.8

FCC Part 15.207


5.1.2 Test Limit

Francis	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- ●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 16 of 81

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 17 of 81

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

RSS-Gen 8.9 & RSS 247 5.5 FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz					
Frequency (MHz)	Field Strength (µA/m)*	Field Strength (microvolt/meter)**	Measurement Distance (meters)		
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300		
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30		
1.705~30.0	0.08	30	30		

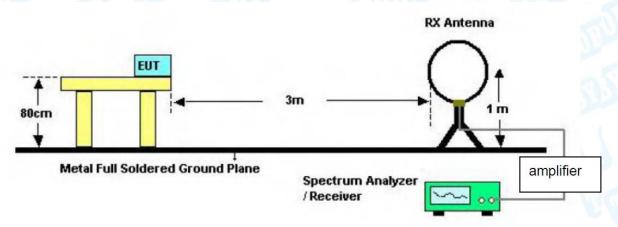
Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

2, *is for RSS Standard, **is for FCC Standard.

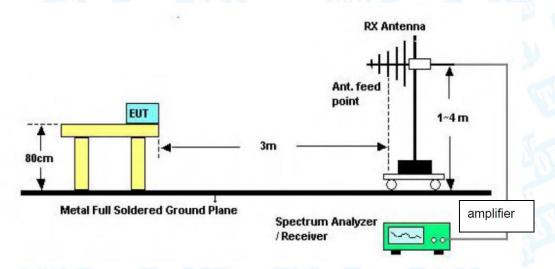
General field strength limits at frequencies above 30 MHz				
Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

General field strength limits at frequencies Above 1000MHz				
Frequency	Distance of 3m (dBuV/m)			
(MHz)	Peak	Average		
Above 1000	74	54		
A WAY AND A SAME				

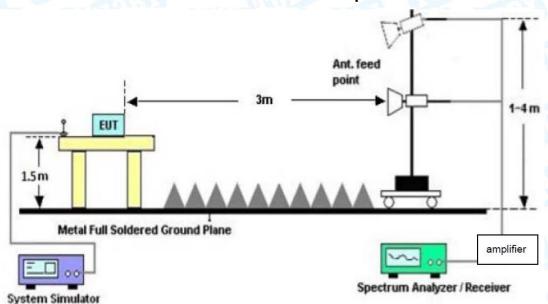
Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

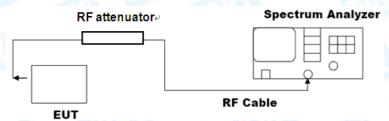


6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Page: 19 of 81

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 20 of 81

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix C.

Page: 21 of 81

7. Restricted Bands Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard

RSS-Gen 8.10 & RSS 247 5.5 FCC Part 15.205 & FCC Part 15.407(b)

7.1.2 Test Limit

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
	-27(Note 2)	68.3
F70F F00F	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.3

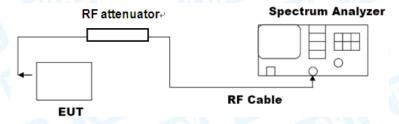
NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.



Page: 22 of 81

7.2 Test Setup

Radiated measurement Ant. feed point 1-4 m EUT 1.5m Metal Full Soldered Ground Plane amplifier Spectrum Analyzer / Receiver System Simulator

Conducted measurement

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 23 of 81

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

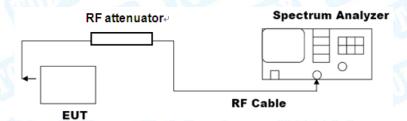
Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the Appendix C.

Page: 24 of 81

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

RSS 247 (6.2.1.2) & RSS 247 (6.2.1.4) FCC Part 15.407(a) & FCC Part 15.407(e)

8.1.2 Test Limit

Test Item	Limit	Frequency Range (MHz)
		5150~5250
26 Bandwidth	N/A	5250~5350
		5500~5725
6 dB Bandwidth	>500kHz	5725~5850
	(18)	5150~5250
99% Bandwidth	N/A	5250~5350
99% balluwidin		5500~5725
		5725~5850

8.2 Test Setup

8.3 Test Procedure

---Emission bandwidth

- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.

Page: 25 of 81

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Page: 26 of 81

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Please refer to the Appendix C.

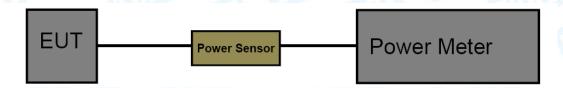
Page: 27 of 81

9. Maximum Conducted Output Power

9.1 Test Standard and Limit

9.1.1 Test Standard

RSS 247 (6.2.11&6.2.2.1&6.2.3.1&6.2.4.1) FCC Part 15.407(a)


9.1.2 Test Limit

		RSS-2	247		
Limais		Frequ	ency Range(MHz)	
Limit	5150~5250	52	250~5350	5500~5725	5725~5850
Max Conducted TX Power	N/A		The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm		ot 1 Watt (30dBm)
Max E.I.R.P	For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.	The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.		4 W (36 dBm) with 6 dBi antenna	
TPC	NO	YES, if Max_EIRP ≥ 500 mW (27 dBm) and able to lower EIRP below 24dBm NO, if Max_EIRP < 500mW (27dBm)		NO NO	
	FCC Part	15 Sub	part E(15.407)		
Limit		Freq	uency Range(M	lHz)	
Limit	5150~5250		5250~5350	5500~5725	5725~5850
Max Conducted TX Power	Master Device: 1 Watt(30dBm) C Device: 250mW(24dBm)	lient	B, whichever is	or 11 dBm+ 10 log lower (B= 26-dB on BW)	1 Watt (30dBm)
P. C. L.	4 W (36 dBm) with 6 dBi anten	na		CUR.	
Max E.I.R.P	200 W (53 dBm) for fixed P-t-P app with 23 dBiantenna	lication	1 W (30 dBm) w	ith 6 dBi antenna	4 W (36 dBm) with 6
	Additional rule for outdoor operation: Max_EIRP< 125 mW(21 dBm) at any elevation angle > 30°from horizon			Maria	dBi antenna
		on			
TPC		on	dBm) and able to	RP ≥ 500 mW (27 lower EIRP below	NO

Page: 28 of 81

9.2 Test Setup

9.3 Test Procedure

● The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

9.6 Test Data

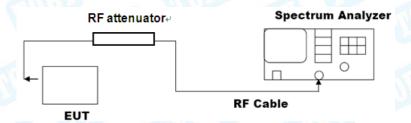
Please refer to the Appendix C.

Page: 29 of 81

10. Power Spectral Density Test

10.1 Test Standard and Limit

10.1.1 Test Standard


RSS 247 (6.2.11&6.2.2.1&6.2.3.1&6.2.4.1)

FCC Part 15.407(a)

10.1.2 Test Limit

Test Item		Limit	Frequency Range(MHz)
0.00	FCC	Master Device: 17dBm/MHz Client Device: 11dBm/MHz	5150~5250
Power Spectral Density	IC	10dBm/MHz	
	1	11dBm/MHz	5250~5350
		11dBm/MHz	5500~5725
	HILL	30dBm/500kHz	5725~5850

10.2 Test Setup

10.3 Test Procedure

- Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:
- a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power…."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)
- b) Use the peak search function on the instrument to find the peak of the spectrum.
- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.
- 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and

Page: 30 of 81

power averaging.

- d) The result is the PPSD.
- e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:
- 1) Set RBW≥1 / T, where T is defined in 12.2 a).
- 2) Set VBW ≥ [3*RBW].
- 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

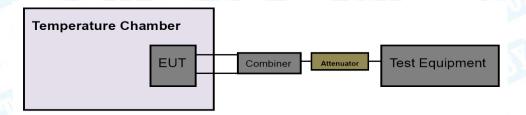
10.6 Test Data

Please refer to the Appendix C.

Page: 31 of 81

11. Frequency Stability

11.1 Test Standard and Limit


11.1.1 Test Standard

RSS-Gen 8.11 FCC Part 15.407(g)

11.1.2 Test Limit

If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation.

11.2 Test Setup

11.3 Test Procedure

- Determining compliance with the peak excursion requirement shall be done by confirming that the ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed the regulatory requirement. 96 The procedure for this method is as follows:
- a) The following guidance for limiting the number of tests applies only to peak excursion measurements:
- 1) Testing each modulation mode on a single channel in a single operating band is sufficient to determine compliance with the peak excursion requirement. (If all modulation modes are not available on a single channel in a single band, then testing must be extended to other channels and bands as needed to ensure that all modulation modes are tested.)
- 2) Tests must include all variations in signal structure, such as:
 - i) All signal types [e.g., direct sequence spread spectrum (DSSS) and OFDM].
 - ii) All modulation types [e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 16-QAM, 64-QAM, and 256-QAM].
 - iii) All bandwidth modes.
 - iv) All variations in signal parameters (e.g., changes in subcarrier spacing or number of subcarriers).
- 3) For a given signal structure, testing of multiple error-correction coding rates is not required (e.g., 1/2, 2/3, and 3/4).
- 4) For MIMO devices, testing of a single output port is sufficient to determine compliance with the peak excursion requirement. If a given signal structure can be exercised with various combinations of spatial multiplexing (such as different numbers of spatial

Page: 32 of 81

streams), beamforming, and cyclic delay diversity, peak excursion tests are not required to include those variations.

- b) The procedure is as follows:
- 1) Set the span of the spectrum analyzer or EMI receiver to view the entire emission bandwidth or occupied bandwidth.
- 2) Find the maximum of the peak-max-hold spectrum:
 - i) Set RBW = 1 MHz.
 - ii) VBW □ 3 MHz.
 - iii) Detector = peak.
 - iv) Trace mode = max-hold.
 - v) Allow the sweeps to continue until the trace stabilizes.
 - vi) Use the peak search function to find the peak of the spectrum.
- 3) Use the procedure found in 12.5 to measure the PPSD.
- 4) Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the Appendix C.

Page: 33 of 81

12. Antenna Requirement

12.1 Test Standard and Limit

12.1.1 Test Standard

RSS 247 6.8 FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

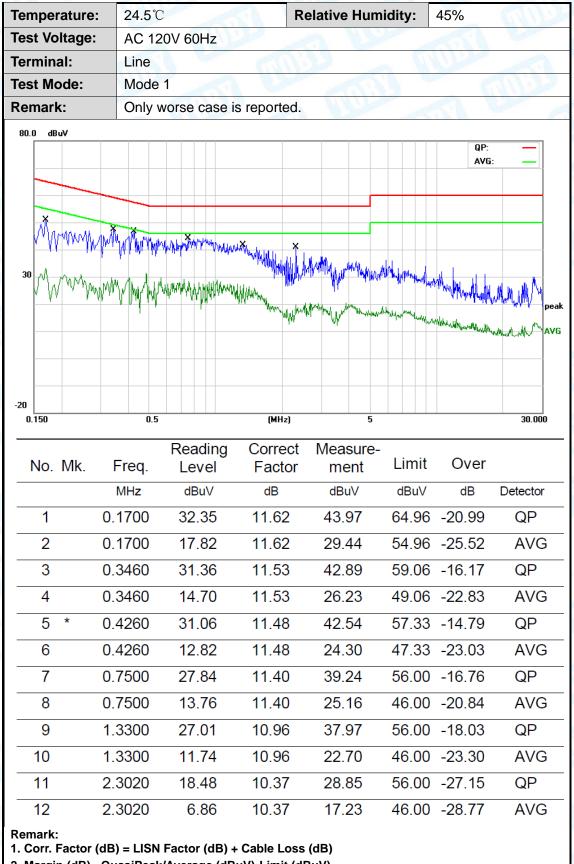
12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 0.5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Test Data


The EUT antenna is a PIFA Antenna. It complies with the standard requirement.

Antenna Type						
mnB3	☐Permanent attached antenna					
10	⊠Unique connector antenna					
	☐Professional installation antenna					

Page: 34 of 81

Attachment A-- Conducted Emission Test Data

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

empe	rature:	24.5	$^{\circ}$ C		Relative H	umidity:	45%	-60
est Vo	oltage:	AC 1	20V 60Hz	W C	CTT			WIT:
ermin	al:	Neut	tral		3 17		TITE.	
est M	ode:	Mod	e 1			a All	The same	
Remar	k:	Only	worse cas	e is reported.		3		
30 dB	Maryty Maryyyy	~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Haranda And Markey	My Marine and beautiful	Manage Ma	5747 444 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QP: AVG:	pe A A JUAN
0.150 No.	Mk	Freq.	Reading	(MHz) Correct Factor	Measure- ment	Limit	Over	30.000
110.	TVIIX.	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1580	31.20	11.60	42.80		-22.76	QP
2		0.1580	15.43	11.60	27.03	55.56		AVG
3			28.21					
		0.2140		11.65	39.86	63.04		QP
4		0.2140	13.61	11.65	25.26	53.04		AVG
5		0.2700	29.93	11.60	41.53	61.12		QP
6		0.2700	12.45	11.60	24.05	51.12		AVG
7	*	0.4420	31.98	11.49	43.47	57.02		QP
0		0.4420	15.62	11.49	27.11	47.02	-19.91	AVG
8				11.26	39.97	56.00	-16.03	QP
9		0.9260	28.71	11.20				
		0.9260 0.9260	28.71 14.81	11.26	26.07	46.00	-19.93	AVG
9					26.07 37.42	46.00 56.00		AVG QP

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 36 of 81

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

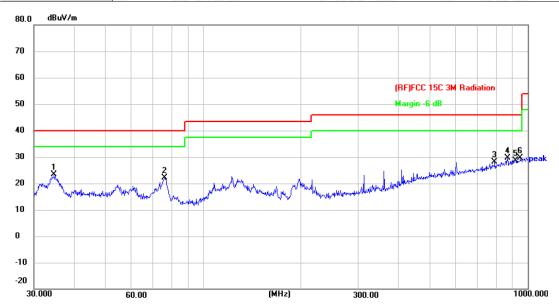
Below the permissible value has no need to be reported.

30MHz~1GHz

J	ature:	24.3°	C	2	A ROSE	Relative H	umidity:	45%	
Test Vo	Itage:	AC 120V 60Hz Horizontal				CHILL			
Ant. Po	l.						an s		1
Test Mo	ode:	Mode	2	M	ALL STREET				
Remark	c :	Only	worse o	case i	s reported.	11/2/2		I I L	
80.0 d	BuV/m								
70									
60							(RF)FCC 15	C 3M Radiation	
50							Margin -6 d	В	
40						Š			
30			1			>	3	غ داد	56 pea
20			**			Market III	of the same of the same of the same of	and be designed by the same of	
e de la face	refresheld and street	and and the Landson	Jan No. 1						
10	distribution and a	A A A AND CONTRACTOR AS	, Automati	A doctor and a second	No Market Charles and American	LLLINNI MANAGER			
10	disasting as sale of	a and desired	(Variety	of the state of th	A CARACTER CONTRACTOR	ub late at a transfer			
0	The section of the section of	a a a day day a day	Y No.coli	ty tody today	Harlander Andrews	LE TORE STATE OF THE STATE OF T			
	- The state of the	a a a a a a a a a a a a a a a a a a a	Y No. 10 H	hy hely and an any	Harley Arthur Ar	Children and Market			
-10		60.00	Yharely	hy hely commence.	(MHz)	300	0.00		1000.00
-10 -20 30.000		60.00	Read			300	0.000 Limit	Margin	
-10 -20		60.00 ency	Read (dBu	ling	(MHz)	I	Limit	Margin (dB)	
-10 -20 30.000	Freque	60.00 ency lz)	l	ling IV)	(MHz)	Level	Limit		
-10 -20 30.000	Freque (MH	ency lz)	(dBu	ling IV)	(MHz) Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	(dB)	Detector
0 -10 -20 30.000 No.	Freque (MH	ency lz) 142 794	(dBu	ling IV) 53	Factor (dB/m) -25.83	Level (dBuV/m) 22.80	Limit (dBuV/m) 40.00	(dB) -17.20	Detector peak
0 -10 -20 30.000 No.	Freque (MH 76.24 312.1	ency lz) 142 794 476	(dBu 48.6 53.6	ling IV) 53 56 35	Factor (dB/m) -25.83 -20.51	Level (dBuV/m) 22.80 33.15	Limit (dBuV/m) 40.00 46.00	(dB) -17.20 -12.85	Detector peak peak
No.	Freque (MH 76.2 ² 312.1 360.4	ency z) 442 794 476 778	(dBu 48.6 53.6 48.3	ling IV) 63 66 35 08	(MHz) Factor (dB/m) -25.83 -20.51 -19.41	Level (dBuV/m) 22.80 33.15 28.94	Limit (dBuV/m) 40.00 46.00 46.00	(dB) -17.20 -12.85 -17.06	peak peak

^{*:}Maximum data x:Over limit !:over margin

Remark:


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 37 of 81

Temperature:	24.3 °C	Relative Humidity:	45%
Test Voltage:	AC 120V 60Hz		CALL DE
Ant. Pol.	Vertical	1	
Test Mode:	Mode 2		W.
Remark:	Only worse case is report	ed.	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	34.6385	46.51	-23.08	23.43	40.00	-16.57	peak
2	75.9773	48.00	-25.76	22.24	40.00	-17.76	peak
3	790.6188	38.19	-10.08	28.11	46.00	-17.89	peak
4	866.0879	38.50	-8.93	29.57	46.00	-16.43	peak
5	916.0687	36.96	-8.31	28.65	46.00	-17.35	peak
6 *	948.7610	37.70	-8.03	29.67	46.00	-16.33	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 38 of 81

Above 1GHz

5180MHz-5240MHz(U-NII-1)

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11a Mode 5180N	1Hz (U-NII-1)	THU .

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10360.297	34.58	2.08	36.66	54.00	-17.34	AVG
2	10360.350	46.92	2.08	49.00	68.30	-19.30	peak

Remark:

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5180M	IHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10360.346	34.61	2.08	36.69	54.00	-17.31	AVG
2	10360.376	47.34	2.08	49.42	68.30	-18.88	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 39 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CM Div
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11a Mode 5200M	IHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10400.240	45.76	2.19	47.95	68.30	-20.35	peak
2 *	10400.320	34.00	2.19	36.19	54.00	-17.81	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5200N	1Hz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10400.007	44.50	2.19	46.69	68.30	-21.61	peak
2 *	10400.177	33.93	2.19	36.12	54.00	-17.88	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

40 of 81 Page:

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CIII)
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11a Mode 5240M	IHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.227	47.94	2.32	50.26	68.30	-18.04	peak
2 *	10480.317	34.00	2.32	36.32	54.00	-17.68	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5240N	1Hz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10480.207	45.79	2.32	48.11	68.30	-20.19	peak
2 *	10480.309	34.05	2.32	36.37	54.00	-17.63	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 41 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	e 5180MHz (U-NII-1)	NU.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	10360.248	45.24	6.08	51.32	68.30	-16.98	peak
2 *	10360.330	34.22	6.08	40.30	54.00	-13.70	AVG

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	The state of the s	
Ant. Pol.	Vertical		0
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1)	MILLER

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10360.207	34.31	6.08	40.39	54.00	-13.61	AVG
2	10360.327	45.73	6.08	51.81	68.30	-16.49	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 42 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CIII)
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT20) Mode	5200MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10400.079	44.95	6.19	51.14	68.30	-17.16	peak
2 *	10400.186	33.54	6.19	39.73	54.00	-14.27	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	70	
Ant. Pol.	Vertical		N. W.
Test Mode:	TX 802.11n(HT20) Mod	de 5200MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10400.082	33.58	6.19	39.77	54.00	-14.23	AVG
2	10400.137	45.34	6.19	51.53	68.30	-16.77	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 43 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CIII)
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT20) Mode	5240MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10480.193	33.94	6.32	40.26	54.00	-13.74	AVG
2	10480.258	45.11	6.32	51.43	68.30	-16.87	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5240MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.340	43.91	6.32	50.23	68.30	-18.07	peak
2 *	10480.424	33.86	6.32	40.18	54.00	-13.82	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 44 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	an u	MUD
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT20) Mo	ode 5180MHz (U-NII-1)	NU P

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10360.284	42.20	6.08	48.28	68.30	-20.02	peak
2 *	10360.458	32.43	6.08	38.51	54.00	-15.49	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	DC 3.8V		M C				
Ant. Pol.	Vertical						
Test Mode:	TX 802.11ac(VHT20) Mo	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l e	Margin (dB)	Detector
1	10360.188	43.31	6.08	49.39	68.30	-18.91	peak
2 *	10360.259	33.35	6.08	39.43	54.00	-14.57	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 45 of 81

WILLIAM V. C.							
Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	DC 3.8V	OC 3.8V					
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11ac(VHT20) Mo	802.11ac(VHT20) Mode 5200MHz (U-NII-1)					

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1 *	10401.285	32.16	6.19	38.35	54.00	-15.65	AVG
2	10401.985	45.18	6.19	51.37	68.30	-16.93	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		O
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20) Mc	de 5200MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10400.690	42.11	6.19	48.30	68.30	-20.00	peak
2 *	10400.845	32.26	6.19	38.45	54.00	-15.55	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 46 of 81

	Temperature:	26℃	Relative Humidity:	54%
ì	Test Voltage:	DC 3.8V		
	Ant. Pol.	Horizontal	0	
	Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5240MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.166	45.79	6.32	52.11	68.30	-16.19	peak
2 *	10480.236	33.37	6.32	39.69	54.00	-14.31	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20) Mc	de 5240MHz (U-NII-1)	The second

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10480.239	33.49	6.32	39.81	54.00	-14.19	AVG
2	10480.277	43.62	6.32	49.94	68.30	-18.36	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 47 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CIII)
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT40) Mode	5190MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10380.351	33.71	6.13	39.84	54.00	-14.16	AVG
2	10380.383	43.62	6.14	49.76	68.30	-18.54	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		WURD I
Ant. Pol.	Vertical	THU	
Test Mode:	TX 802.11n(HT40) Mode	5190MHz (U-NII-1)	A HIVE

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10380.266	33.66	6.13	39.79	54.00	-14.21	AVG
2	10380.336	44.61	6.13	50.74	68.30	-17.56	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 48 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	an u	
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT40) Mode	e 5230MHz (U-NII-1)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10460.258	33.34	6.29	39.63	54.00	-14.37	AVG
2	10460.318	43.52	6.29	49.81	68.30	-18.49	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		D O
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5230MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10460.170	42.95	6.29	49.24	68.30	-19.06	peak
2 *	10460.210	33.44	6.29	39.73	54.00	-14.27	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 49 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CIII)
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT40) Mo	de 5190MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10380.213	43.00	6.13	49.13	68.30	-19.17	peak
2 *	10380.271	33.77	6.13	39.90	54.00	-14.10	AVG

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		Ja U
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) Mc	ode 5190MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10380.313	33.73	6.13	39.86	54.00	-14.14	AVG
2	10380.355	45.89	6.13	52.02	68.30	-16.28	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 50 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CIII)
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT40) Mo	de 5230MHz (U-NII-1)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10460.313	33.62	6.29	39.91	54.00	-14.09	AVG
2	10460.347	43.17	6.29	49.46	68.30	-18.84	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	The state of the s	
Ant. Pol.	Vertical		6
Test Mode:	TX 802.11ac(VHT40) Mo	de 5230MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10460.241	43.19	6.29	49.48	68.30	-18.82	peak
2 ,	10460.277	32.94	6.29	39.23	54.00	-14.77	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 51 of 81

Tomporaturo	26℃	Polativo Humidity	54%
Temperature:	26 C	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Horizontal		W. Car
Test Mode:	TX 802.11ac(VHT80) Mc	de 5210MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10420.142	43.31	6.23	49.54	68.30	-18.76	peak
2 *	10420.190	33.57	6.23	39.80	54.00	-14.20	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	DC 3.8V		TOTAL STATE				
Ant. Pol.	Vertical		MUL				
Test Mode:	TX 802.11ac(VHT80) Mc	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10420.146	43.00	6.23	49.23	68.30	-19.07	peak
2 *	10420.172	33.27	6.23	39.50	54.00	-14.50	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 52 of 81

5500MHz-5720MHz(U-NII-2C)

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		(MI)
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11a Mode 5500N	ИНz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	11000.266	32.09	3.64	35.73	54.00	-18.27	AVG
2	11000.283	44.46	3.64	48.10	68.30	-20.20	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		THU .
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5500N	MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.244	42.46	3.64	46.10	68.30	-22.20	peak
2 *	11000.299	32.09	3.64	35.73	54.00	-18.27	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 53 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	TUDE	Marie Control
Ant. Pol.	Horizontal	and the	ann.
Test Mode:	TX 802.11a Mode 5580N	ИНz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	11160.199	45.59	3.31	48.90	68.30	-19.40	peak
2 *	11160.329	33.21	3.31	36.52	54.00	-17.48	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		N. C.
Test Mode:	TX 802.11a Mode 5	5580MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11160.217	44.06	3.31	47.37	68.30	-20.93	peak
2 *	11160.275	33.13	3.31	36.44	54.00	-17.56	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 54 of 81

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11a Mode 5700M	IHz (U-NII-2C)	W. San

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11400.260	43.76	4.37	48.13	68.30	-20.17	peak
2 *	11400.331	32.53	4.37	36.90	54.00	-17.10	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		MU
Test Mode:	TX 802.11a Mode 5700N	/IHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11400.271	32.53	4.37	36.90	54.00	-17.10	AVG
2	11400.334	45.26	4.37	49.63	68.30	-18.67	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 55 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	an u	
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11n(HT20) Mode	5500MHz (U-NII-2C)	TO THE REAL PROPERTY.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11000.101	32.18	7.64	39.82	54.00	-14.18	AVG
2	11000.153	43.31	7.64	50.95	68.30	-17.35	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical	CONTRACTOR OF THE PARTY OF THE	N. C.
Test Mode:	TX 802.11 n(HT20) Mod	de 5500MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11000.146	32.17	7.64	39.81	54.00	-14.19	AVG
2	11000.214	43.68	7.64	51.32	68.30	-16.98	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 56 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		MAIN
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT20) Mode	5580MHz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11160.130	33.35	7.31	40.66	54.00	-13.34	AVG
2	11160.195	46.03	7.31	53.34	68.30	-14.96	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	70	
Ant. Pol.	Vertical		THU
Test Mode:	TX 802.11n(HT20) Mode	5580MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector
1 *	11160.125	33.15	7.31	40.46	54.00	-13.54	AVG
2	11160.188	45.27	7.31	52.58	68.30	-15.72	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 57 of 81

	Temperature:	26℃	Relative Humidity:	54%
Ĭ	Test Voltage:	DC 3.8V		MUD
	Ant. Pol.	Horizontal	0	
F	Test Mode:	TX 802.11n(HT20) Mode	5700MHz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11400.279	33.25	8.37	41.62	54.00	-12.38	AVG
2	11400.487	46.16	8.37	54.53	68.30	-13.77	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5700MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11400.398	44.18	8.37	52.55	68.30	-15.75	peak
2 *	11400.473	32.79	8.37	41.16	54.00	-12.84	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 58 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CM Div
	Ant. Pol.	Horizontal	7	
	Test Mode:	TX 802.11ac(VHT20) Mo	de 5500MHz (U-NII-2C	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.197	42.19	7.64	49.83	68.30	-18.47	peak
2 *	11000.247	32.48	7.64	40.12	54.00	-13.88	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		N. C.
Test Mode:	TX 802.11 ac(VHT20) M	ode 5500MHz (U-NII-20	C) (1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11000.095	45.30	7.64	52.94	68.30	-15.36	peak
2 *	11000.145	32.32	7.64	39.96	54.00	-14.04	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 59 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CM Div
	Ant. Pol.	Horizontal	7	
	Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5580MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11160.040	42.60	7.31	49.91	68.30	-18.39	peak
2 *	11160.085	32.81	7.31	40.12	54.00	-13.88	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		N. C.
Test Mode:	TX 802.11 ac(VHT20) M	ode 5580MHz (U-NII-20	C) (1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11160.194	33.15	7.31	40.46	54.00	-13.54	AVG
2	11160.250	42.79	7.31	50.10	68.30	-18.20	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

60 of 81 Page:

١.				
	Temperature:	26℃	Relative Humidity:	54%
	Test Voltage:	DC 3.8V	TUDE OF	
L	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5700MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11400.345	31.53	8.37	39.90	54.00	-14.10	AVG
2	11400.390	41.32	8.37	49.69	68.30	-18.61	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		The same
Test Mode:	TX 802.11 ac(VHT20) M	ode 5700MHz (U-NII-20	C) (1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11400.253	40.81	8.37	49.18	68.30	-19.12	peak
2 *	11400.313	32.29	8.37	40.66	54.00	-13.34	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 61 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		CM Div
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT40) Mode	5510MHz (U-NII-2C)	W

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	11020.151	42.51	7.56	50.07	68.30	-18.23	peak
2 *	11020.265	31.89	7.55	39.44	54.00	-14.56	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		THU
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5510MHz (U-NII-2C)	001

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11020.373	41.32	7.55	48.87	68.30	-19.43	peak
2 *	11020.422	32.09	7.55	39.64	54.00	-14.36	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 62 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	TUDE	
Ant. Pol.	Horizontal	and the	ann.
Test Mode:	TX 802.11n(HT40) Mode	5550MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11100.183	42.31	7.23	49.54	68.30	-18.76	peak
2 *	11100.237	33.10	7.23	40.33	54.00	-13.67	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	Relative Humidity:	54%				
DC 3.8V						
Vertical						
TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5550MHz (U-NII-2C)					
,	Vertical	DC 3.8V				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11100.194	32.83	7.23	40.06	54.00	-13.94	AVG
2	11100.244	43.37	7.23	50.60	68.30	-17.70	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 63 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		MAIN
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT40) Mode	5670MHz (U-NII-2C)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11340.115	33.39	8.35	41.74	54.00	-12.26	AVG
2	11340.309	41.30	8.35	49.65	68.30	-18.65	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	Relative Humidity:	54%
	-	
A THUE		
13		
11n(HT40) Mode	5670MHz (U-NII-2C)	
	11n(HT40) Mode	11n(HT40) Mode 5670MHz (U-NII-2C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11340.187	33.46	8.35	41.81	54.00	-12.19	AVG
2	11340.228	43.81	8.35	52.16	68.30	-16.14	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 64 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	anily .	MUD
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5510MHz (U-NII-20	C)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11020.133	32.14	7.56	39.70	54.00	-14.30	AVG
2	11020.306	41.86	7.55	49.41	68.30	-18.89	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		N. C.
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5510MHz (U-NII-20	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11020.148	31.90	7.56	39.46	54.00	-14.54	AVG
2	11020.195	42.50	7.56	50.06	68.30	-18.24	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 65 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		William .
Ant. Pol.	Horizontal	0	
Test Mode:	TX 802.11ac(VHT40) Mo	de 5550MHz (U-NII-2C	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)			Detector
1 *	11100.367	33.02	7.23	40.25	54.00	-13.75	AVG
2	11100.428	43.29	7.23	50.52	68.30	-17.78	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

emperature: 2	26℃	Relative Humidity:	54%
est Voltage: D	OC 3.8V		
nt. Pol.	/ertical		
est Mode: T	X 802.11ac(VHT40) Mo	de 5550MHz (U-NII-2C	
		de 5550MHz (U-NII-2C	;)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11100.235	42.62	7.23	49.85	68.30	-18.45	peak
2 *	11100.299	33.02	7.23	40.25	54.00	-13.75	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 66 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CM Div
	Ant. Pol.	Horizontal	7	
	Test Mode:	TX 802.11ac(VHT40) Mo	de 5670MHz (U-NII-2C	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11340.237	33.32	8.35	41.67	54.00	-12.33	AVG
2	11340.262	43.75	8.35	52.10	68.30	-16.20	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5670MHz (U-NII-2C	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11340.291	33.13	8.35	41.48	54.00	-12.52	AVG
2	11340.322	43.44	8.35	51.79	68.30	-16.51	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 67 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		William.
	Ant. Pol.	Horizontal	7	
	Test Mode:	TX 802.11ac(VHT80) Mo	de 5530MHz (U-NII-2C	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11060.180	32.37	7.39	39.76	54.00	-14.24	AVG
2	11060.220	43.92	7.39	51.31	68.30	-16.99	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT80) Mo	de 5530MHz (U-NII-20	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11060.251	45.27	7.39	52.66	68.30	-15.64	peak
2 *	11060.287	32.25	7.39	39.64	54.00	-14.36	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

68 of 81 Page:

5745MHz-5825MHz(U-NII-3)

Temperature:	26℃	Relative Humidity:	54%					
Test Voltage:	DC 3.8V	DC 3.8V						
Ant. Pol.	Horizontal	1						
Test Mode:	TX 802.11a Mode 5745M	X 802.11a Mode 5745MHz (U-NII-3)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11490.274	33.33	4.30	37.63	54.00	-16.37	AVG
2	11490.316	43.96	4.30	48.26	68.30	-20.04	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:						
Test Voltage:	DC 3.8V							
Ant. Pol.	Vertical		N. C.					
Test Mode:	TX 802.11a Mode 5745N	TX 802.11a Mode 5745MHz (U-NII-3)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11490.219	33.59	4.30	37.89	54.00	-16.11	AVG
2	11490.322	45.23	4.30	49.53	68.30	-18.77	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 69 of 81

MINA VENEZIO							
Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	DC 3.8V	DC 3.8V					
Ant. Pol.	Horizontal	1					
Test Mode:	TX 802.11a Mode 5785N	X 802.11a Mode 5785MHz (U-NII-3)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11570.171	33.22	3.96	37.18	54.00	-16.82	AVG
2	11570.230	43.76	3.96	47.72	68.30	-20.58	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	N. W.	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5785M	1Hz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11570.233	44.04	3.96	48.00	68.30	-20.30	peak
2 *	11570.295	33.21	3.96	37.17	54.00	-16.83	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 70 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CM Div
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11a Mode 5825M	IHz (U-NII-3)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11650.288	32.15	3.82	35.97	54.00	-18.03	AVG
2	11650.363	43.55	3.82	47.37	68.30	-20.93	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
DC 3.8V		
Vertical		
TX 802.11a Mode 5825M	IHz (U-NII-3)	
	DC 3.8V Vertical	DC 3.8V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11650.300	42.97	3.82	46.79	68.30	-21.51	peak
2 *	11650.375	32.24	3.82	36.06	54.00	-17.94	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 71 of 81

WILLIAM V. C.			
Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	5745MHz (U-NII-3)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector
1 *	11490.106	33.47	8.30	41.77	54.00	-12.23	AVG
2	11490.323	45.04	8.30	53.34	68.30	-14.96	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	N. C.	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5745MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11490.265	33.40	8.30	41.70	54.00	-12.30	AVG
2	11490.346	45.42	8.30	53.72	68.30	-14.58	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 72 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT20) Mode	5785MHz (U-NII-3)	W

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11570.057	33.41	7.96	41.37	54.00	-12.63	AVG
2	11570.229	45.05	7.96	53.01	68.30	-15.29	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		THU
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5785MHz (U-NII-3)	001

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11570.259	41.45	7.96	49.41	68.30	-18.89	peak
2 *	11570.294	32.57	7.96	40.53	54.00	-13.47	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 73 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	HULL	Contraction of the second
Ant. Pol.	Horizontal		A A A A A A A A A A A A A A A A A A A
Test Mode:	TX 802.11n(HT20) Mode	5825MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11650.189	31.93	7.82	39.75	54.00	-14.25	AVG
2	11650.380	41.82	7.82	49.64	68.30	-18.66	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical	THU THE	100
Test Mode:	TX 802.11n(HT20) Mode	e 5825MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11650.189	43.53	7.82	51.35	68.30	-16.95	peak
2 *	11650.268	32.09	7.82	39.91	54.00	-14.09	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 74 of 81

	Temperature:	26℃	Relative Humidity:	54%
ì	Test Voltage:	DC 3.8V		
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT20) Mo	de 5745MHz (U-NII-3)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11490.172	33.10	8.30	41.40	54.00	-12.60	AVG
2	11490.285	43.10	8.30	51.40	68.30	-16.90	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		MUDDE
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT	20) Mode 5745MHz (U-NII-3)	A U

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11490.142	43.47	8.30	51.77	68.30	-16.53	peak
2 *	11490.216	33.03	8.30	41.33	54.00	-12.67	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 75 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	anis s	MUD
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ac(VHT20) Mo	ode 5785MHz (U-NII-3)	NU.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11570.345	43.63	7.96	51.59	68.30	-16.71	peak
2 *	11570.398	33.01	7.96	40.97	54.00	-13.03	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		The same
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5785MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11570.260	33.03	7.96	40.99	54.00	-13.01	AVG
2	11570.396	42.26	7.96	50.22	68.30	-18.08	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 76 of 81

	Temperature:	26℃	Relative Humidity:	54%
V	Test Voltage:	DC 3.8V		CM Div
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT20) Mo	de 5825MHz (U-NII-3)	WU -

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11610.317	42.23	7.81	50.04	68.30	-18.26	peak
2 *	11610.360	32.54	7.81	40.35	54.00	-13.65	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

The second secon	Mark 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	DC 3.8V					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)					

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	11610.208	32.47	7.81	40.28	54.00	-13.72	AVG
2	11610.278	42.21	7.81	50.02	68.30	-18.28	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 77 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	an u	
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11n(HT40) Mode	e 5755MHz (U-NII-3)	NU P

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11510.084	33.51	8.24	41.75	54.00	-12.25	AVG
2	11510.151	44.09	8.24	52.33	68.30	-15.97	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11510.023	44.28	8.24	52.52	68.30	-15.78	peak
2 *	11510.135	33.27	8.24	41.51	54.00	-12.49	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 78 of 81

WILLIAM TO A STATE OF			
Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT40) Mo	ode 5795MHz (U-NII-3)	The same of the sa

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11590.191	32.76	7.87	40.63	54.00	-13.37	AVG
2	11590.232	41.57	7.87	49.44	68.30	-18.86	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	N. W.	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11590.169	32.60	7.87	40.47	54.00	-13.53	AVG
2	11590.317	42.72	7.87	50.59	68.30	-17.71	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 79 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	anily .	MUD
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5755MHz (U-NII-3)	NU STATE OF THE PARTY OF THE PA

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11510.185	33.43	8.24	41.67	54.00	-12.33	AVG
2	11510.228	43.10	8.24	51.34	68.30	-16.96	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	DC 3.8V						
Ant. Pol.	Vertical		N. C.				
Test Mode:	TX 802.11ac(VHT40) Mo	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11510.137	33.19	8.24	41.43	54.00	-12.57	AVG
2	11510.258	42.47	8.24	50.71	68.30	-17.59	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 80 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11ac(VHT40) Mc	de 5795MHz (U-NII-3)	W.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11590.225	41.94	7.87	49.81	68.30	-18.49	peak
2 *	11590.270	32.54	7.87	40.41	54.00	-13.59	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	26℃	Relative Humidity:	54%		
Test Voltage:	DC 3.8V	MUL			
Ant. Pol.	Vertical				
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11590.277	42.61	7.87	50.48	68.30	-17.82	peak
2 *	11590.323	32.83	7.87	40.70	54.00	-13.30	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 81 of 81

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT80) Mo	ode 5775MHz (U-NII-3)	NU.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11550.236	33.09	8.05	41.14	54.00	-12.86	AVG
2	11550.268	46.10	8.05	54.15	68.30	-14.15	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	DC 3.8V	N. W.	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT80) Mo	de 5775MHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11550.187	33.42	8.05	41.47	54.00	-12.53	AVG
2	11550.381	42.99	8.05	51.04	68.30	-17.26	peak

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

----END OF REPORT-----