FCC TEST REPORT					
	FCC ID: 2A3JH-PC411A				
Report No.	: <u>SSP23110116E</u>				
Prepared For	: Dongguan Yuzhenrong Trading Co., Ltd.				
Product Name	: Wireless keyboard				
Model Name	: PC411A				
FCC Rule	: FCC Part 15.249				
Date of Issue	: 2023-12-29				
Prepared By	: Shenzhen CCUT Quality Technology Co., Ltd.				
	enzhen CCUT Quality Technology Co., Ltd.				
	1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)				
This test report is limited to the	above client company and the product model only. It may not be duplicated permitted by Shenzhen CCUT Quality Technology Co., Ltd.				

Г

Test Report Basic Information

	L		
Applicant	Dongguan Yuzhenrong Trading Co., Ltd.		
Address of Applicant	Room 204, No.74, Humen Xinlian 9th Street, Humen Village, Humen Town, Dongguan City, Guangdong, China		
Manufacturer	Dongguan Yuzhenrong Trading Co., Ltd.		
Address of Manufacturer:	Room 204, No.74, Humen Xinlian 9th Street, Humen Village, Humen Town, Dongguan City, Guangdong, China		
Product Name:	Wireless keyboard		
Brand Name:	-		
Main Model	PC411A		
Series Models	CK240G, CM622G		
	FCC Part 15 Subpart C		
Test Standard	ANSI C63.10-2013		
Date of Test	2023-12-26 to 2023-12-29		
Test Result:	PASSED		
Tested Engineer	Lorrix Lua (Lorzix Luo) Lieber Ouyang) (Lieber Ouyang)		
Project Manager	Lieber Ouyang (Lieber Ouyang)		
	Lahn Peng (Lahn Pang)		
Authorized Signatory	(Lahm Peng)		
Note : This test report is limited	to the above client company and the product model only. It may not be		
-	ted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in		
this test report is only applicabl	e to presented test sample.		

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	10
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	11
4.3 Test Data and Results	12
5. Radiated Emissions	13
5.1 Standard and Limit	
5.2 Test Procedure	
5.3 Test Data and Results	15
6. Out of Band Emissions	20
6.1 Standard and Limit	
6.2 Test Procedure	
6.3 Test Data and Results	20
7. Occupied Bandwidth	23
7.1 Standard and Limit	23
7.2 Test Procedure	23
7.3 Test Data and Results	23

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2023-12-29	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	Wireless keyboard			
Trade Name:	-			
Main Model:	PC411A			
Series Models:	CK240G, CM622G			
Rated Voltage:	DC 1.5V by AAA battery			
Hardware Version:	MA1386N-3			
Software Version:	V1.0			
Note 1: The test data is gathered from a production sample, provided by the manufacturer.				
Note 2: The color of appearance and model name of series models listed are different from the main model,				
but the circuit and the elec	tronic construction are the same, declared by the manufacturer.			

Wireless Specification	
Wireless Standard:	2.4G RF
Operating Frequency:	2408 ~ 2474 MHz
Max. Field Strength:	91.63dBuV/m
Quantity of Channel:	34
Channel Separation:	2MHz
Modulation:	GFSK
Antenna Gain:	-0.61dBi
Type of Antenna:	PCB Antenna
Type of Device:	Portable Device Mobile Device Modular Device

1.2 Test Setup Information

List of Test Modes							
Test Mode	De	escription		Remark			
TM1	Low	est Channel		2408MH:	Z		
TM2	Mide	dle Channel		2440MH:	Z		
TM3	High	ighest Channel		2474MHz			
List and Detai	List and Details of Auxiliary Cable						
Descrij	Description Length (cm)			Shielded/Unshielded	With/Without Ferrite		
-	-			-	-		
List and Details of Auxiliary Equipment							
Descrij	ption	Manufacturer		Model	Serial Number		
-					-		

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	MHz	Channel	MHz	Channel	MHz	Channel	MHz
01	2408	10	2426	19	2444	28	2462
02	2410	11	2428	20	2446	29	2464
03	2412	12	2430	21	2448	30	2466
04	2414	13	2432	22	2450	31	2468
05	2416	14	2434	23	2452	32	2470
06	2418	15	2436	24	2454	33	2472
07	2420	16	2438	25	2456	34	2474
08	2422	17	2440	26	2458	-	-
09	2424	18	2442	27	2460	-	-

1.3 Compliance Standards

Compliance Standards			
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
rec rait 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test	nethodology		
FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart C	Intentional Radiators		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
	GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C65.10-2015	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30		
		Radiated Emissio	ons				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30		
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30		
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06		
	Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30		

1.5 List of Measurement Instruments

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
Radiated Emissions	9kHz ~ 30MHz	±2.88 dB
	30MHz ~ 1GHz	±3.32 dB
	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %

2. Summary of Test Results

FCC Rule	Description of Test Item	Result				
FCC Part 15.203	Antenna Requirement	Passed				
FCC Part 15.207	Conducted Emissions	N/A				
FCC Part 15.209, 15.249(a)&(d)	Radiated Emissions	Passed				
FCC Part 15.249(d)	Out of Band Emissions	Passed				
FCC Part 15.215(c)	Passed					
Passed: The EUT complies with the essential requirements in the standard Failed: The EUT does not comply with the essential requirements in the standard N/A: Not applicable						

3. Antenna Requirement

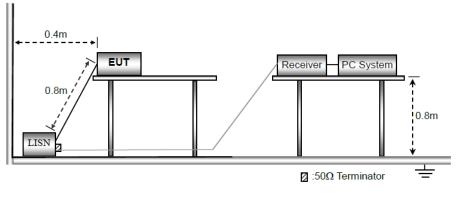
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an integral antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)							
(MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56	56 to 46						
0.5-5	56	46						
5-30	60	50						
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz								
Note 2: The lower limit applies at the band edges								

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

Because the product power is supply through DC 1.5V by AAA battery, so not applicable.

5. Radiated Emissions

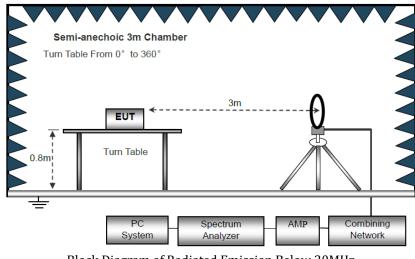
5.1 Standard and Limit

According to §15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

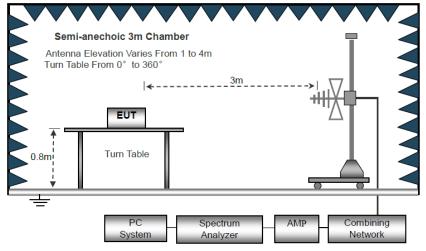
Fundamental fueruen au	Field strength of fundamental	Field strength of Harmonics		
Fundamental frequency	(milli-volts/meter)	(micro-volts/meter)		
902-928 MHz	50	500		
2400-2483.5 MHz	50	500		
5725-5875 MHz	50	500		
24.0-24.25 GHz	250	2500		

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

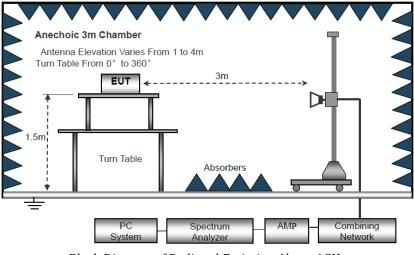
According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:


Frequency of emission (MHz)	Radiated emissions (3m)					
	Quasi-peak (dBuV/m)					
30-88	40					
88-216	43.5					
216-960	46					
Above 960	54					
Note: The more stringent limit applies at transition frequencies.						

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

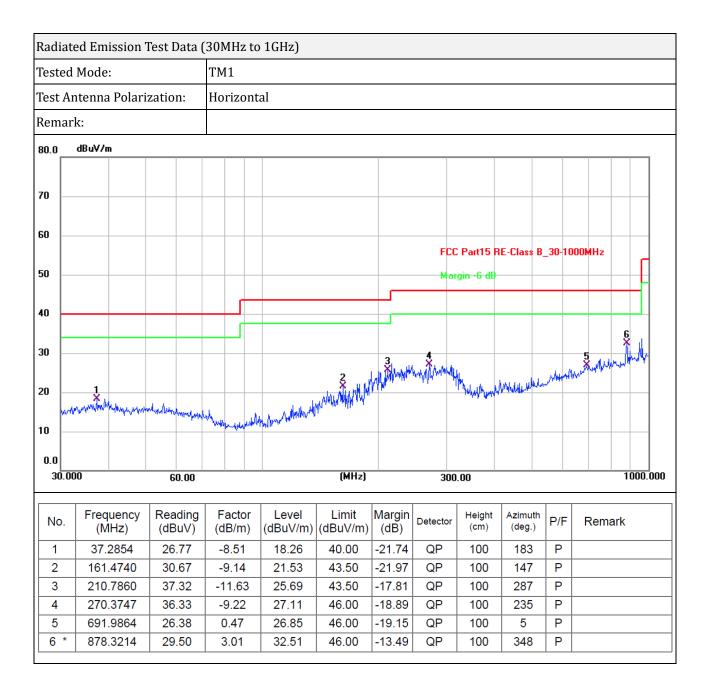
a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

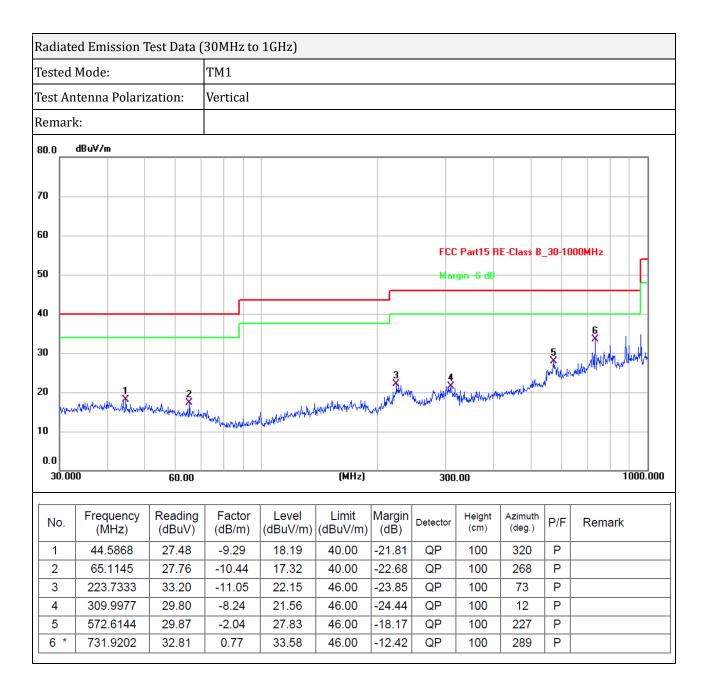
b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.


f) For the actual test configuration, please refer to the related item - EUT test photos.


5.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.249 standard limit for a wireless device, and with the worst case as below:

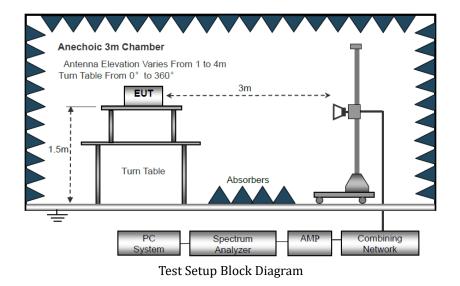
Remark: Level = Reading + Factor, Margin = Level - Limit

Note: For 9kHz-30MHz, the amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Radiated Em	ission Test Dat	ta (Above 1GH	z)								
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector				
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV				
Lowest Channel (2408MHz)											
2408	110.09	-20.87	89.22	114	-24.78	Н	РК				
2408	99.78	-20.87	78.91	94	-15.09	Н	AV				
4816	74.95	-14.71	60.24	74	-13.76	Н	РК				
4816	61.6	-14.71	46.89	54	-7.11	Н	AV				
7224	64.32	-8.39	55.93	74	-18.07	Н	РК				
7224	48.2	-8.39	39.81	54	-14.19	Н	AV				
2408	106.08	-20.87	85.21	114	-28.79	V	РК				
2408	95.22	-20.87	74.35	94	-19.65	V	AV				
4816	73.68	-14.71	58.97	74	-15.03	V	РК				
4816	57.32	-14.71	42.61	54	-11.39	V	AV				
7224	62.93	-8.39	54.54	74	-19.46	V	РК				
7224	46.2	-8.39	37.81	54	-16.19	V	AV				
			Middle Chann	el (2440MHz)							
2440	112.34	-20.71	91.63	114	-22.37	Н	РК				
2440	100.14	-20.71	79.43	94	-14.57	Н	AV				
4880	76.98	-14.64	62.34	74	-11.66	Н	РК				
4880	62.6	-14.64	47.96	54	-6.04	Н	AV				
7320	65.74	-8.28	57.46	74	-16.54	Н	РК				
7320	45.77	-8.28	37.49	54	-16.51	Н	AV				
2440	110.78	-20.71	90.07	114	-23.93	V	РК				
2440	99.87	-20.71	79.16	94	-14.84	V	AV				
4880	75.27	-14.64	60.63	74	-13.37	V	РК				
4880	60.45	-14.64	45.81	54	-8.19	V	AV				
7320	62.77	-8.28	54.49	74	-19.51	V	РК				
7320	45.57	-8.28	37.29	54	-16.71	V	AV				

Radiated Emission Test Data (Above 1GHz)											
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector				
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV				
	Highest Channel (2474MHz)										
2474	106.98	-20.55	86.43	114	-27.57	Н	РК				
2474	97.12	-20.55	76.57	94	-17.43	Н	AV				
4948	77.22	-14.54	62.68	74	-11.32	Н	РК				
4948	61.49	-14.54	46.95	54	-7.05	Н	AV				
7422	64.29	-8.15	56.14	74	-17.86	Н	РК				
7422	45.34	-8.15	37.19	54	-16.81	Н	AV				
2474	104.59	-20.87	84.04	114	-29.96	V	РК				
2474	93.58	-20.87	73.03	94	-20.97	V	AV				
4948	75.88	-14.54	61.34	74	-12.66	V	РК				
4948	59.66	-14.54	45.12	54	-8.88	V	AV				
7422	63.61	-8.15	55.46	74	-18.54	V	РК				
7422	45.61	-8.15	37.46	54	-16.54	V	AV				

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported. Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

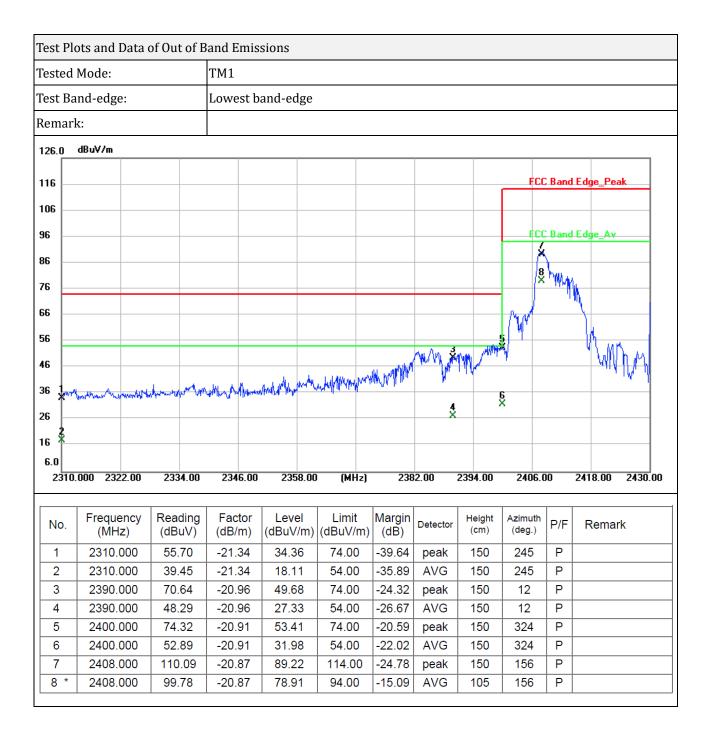

6. Out of Band Emissions

6.1 Standard and Limit

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


As the radiation test, set the Lowest and Highest Transmitting Channel, observed the outside band of 2400MHz to 2483.5MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.249 standard limit, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test Mode	Frequency	Limit	Result	
Test Mode	MHz	dBuV/dBc		
	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
	2400.00	>50 dBc	Pass	
Uighost	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Test	Plots and I	Data o	of Out	of B	and E	mis	sions								
Teste	ed Mode:				ТМ3	ГМ3									
Test	Band-edge	e:			Highe	est b	and-e	dge							
Rema	ark:														
126.0	dBuV/m														
[
116									7						
106															
96									_						
86		1 miles	N												
76		2											FCC	Band	l Edge_Peak
66			M	106											
56				Ψ h u	b										
	l			1.18	MAN	M	for the particular of the part	r.	3					. Ban c	l Edge_Av
46								' m	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W. W.	WAYNA AND	An alder a	users .		5
36											1 MALANA	I. MARINE MARINE	And the second	ለግ ኒሌላ	Window which which
26									4 ×						- 6
16															
6.0															
24	70.000 247	'3.00	2470	6.00	2479	9.00	248	2.00) (MHz)	248	38.00	2491.00	2494.0)0	2497.00 2500.0
No	Freque		Read (dBu		Fact (dB/r		Leve (dBuV		Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2474.0	000	106.	98	-20.5	55	86.4	3	114.00	-27.57	peak	150	12	Р	
2			97.1		-20.5		76.5		94.00	-17.43	AVG	150	12	Ρ	
3	2483.		67.8		-20.5		47.0		74.00	-27.00	peak	150	355	P	
4 5	2483.		46.7 60.4		-20.5 -20.4		26.2 40.0		54.00 74.00	-27.72 -33.95	AVG peak	150 150	355 134	P P	
6	2500.0		42.3		-20.4		21.9		54.00	-32.08	AVG	150	134	P	
	2000.0		12.0		20.		21.0	-	01.00	02.00	,	100			1

7. Occupied Bandwidth

7.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

7.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

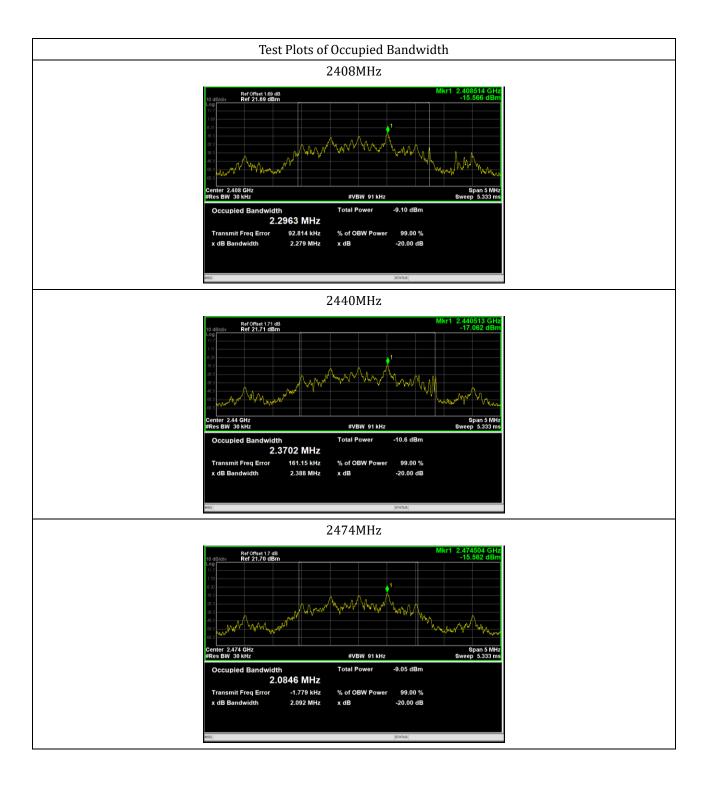
Set span = 2MHz, centered on a transmitting channel

 $RBW \ge 1\%$ 20dB Bandwidth, VBW $\ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold


All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

Test Setup Block Diagram

7.3 Test Data and Results

Test Channel	Test Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	
Lowest Channel	2408MHz	2.279	2.2963	
Middle Channel	2440MHz	2.388	2.3702	
Highest Channel	2474MHz	2.092	2.0846	

***** END OF REPORT *****