

Measurement Data

Modulation	Duty cycle	Duty Factor
802.11a	98.8%	0.05
802.11n(HT20)	98.8%	0.05
802.11n(HT40)	97.5%	0.11
802.11ac(HT20)	98.9%	0.05
802.11ac(HT40)	97.4%	0.11
802.11ac(HT80)	95.2%	0.21

ANT1:

			802.11a m	ode		
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
36	5180	7.30	0.05	7.35	23.98	Pass
40	5200	8.64	0.05	8.69	23.98	Pass
48	5240	8.39	0.05	8.44	23.98	Pass
			802.11n(HT20) mode		
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
36	5180	7.28	0.05	7.33	23.98	Pass
40	5200	8.60	0.05	8.65	23.98	Pass
48	5240	8.38	0.05	8.43	23.98	Pass
			802.11ac(HT2	0) mode		
CH No.	Frequency (MHz)	Measured Power (dBm) Duty Factor Output Power (dBm) Limit (dBm)		Limit (dBm)	Result	
36	5180	7.47	0.05	7.52	23.98	Pass
40	5200	8.69	0.05	8.74	23.98	Pass
48	5240	8.37	0.05	8.42	23.98	Pass
			802.11n(HT40)) mode		
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
38	5190	7.73	0.11	7.84	23.98	Pass
46	5230	8.46	0.11	8.57	23.98	Pass
			802.11 ac(HT4	0) mode		
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
38	5190	7.77	0.11	7.88	23.98	Pass
46	5230	8.48	0.11	8.59	23.98	Pass
			802.11 ac(l	HT80)		
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
42	5210	7.88	0.21	8.09	23.98	Pass

ANT2:

Report No.: GTSL202110000182F04

AN I 2	<u>- 16 - 18 - 16 - 16 - 1</u>			<u> </u>		
			802.11a m	ode	T 2 1 2 1	
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
36	5180	6.74	0.05	6.79	23.98	Pass
40	5200	7.01	0.05	7.06	23.98	Pass
48	5240	7.77	0.05	7.82	23.98	Pass
			802.11n(HT20) mode		
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
36	5180	6.62	0.05	6.67	23.98	Pass
40	5200	6.91	0.05	6.96	23.98	Pass
48	5240	7.70	0.05	7.75	23.98	Pass
			802.11ac(HT2	0) mode	·	
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
36	5180	6.67	0.05	6.72	23.98	Pass
40	5200	6.84	0.05	6.89	23.98	Pass
48	5240	7.61	0.05	7.66	23.98	Pass
			802.11n(HT40) mode		
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
38	5190	6.55	0.11	6.66	23.98	Pass
46	5230	7.43	0.11	7.54	23.98	Pass
			802.11 ac(HT4	0) mode		
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
38	5190	6.58	0.11	6.69	23.98	Pass
46	5230	7.39	0.11	7.50	23.98	Pass
			802.11 ac(l	HT80)		
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result
42	5210	6.56	0.21	6.77	23.98	Pass

Note: Output Power = Measured Power + Duty Factor

Duty Factor = 10 log (1/Duty Cycle)

ANT1+ANT2:

			802.11n(HT20) mode		
CH No.	Frequency (MHz)	Output Power (dBm) ANT1	Output Power (dBm) ANT2	MIMO Output Power (dBm)	Limit (dBm)	Result
36	5180	7.33	6.67	10.02	23.98	Pass
40	5200	8.65	6.96	10.90	23.98	Pass
48	5240	8.43	7.75	11.11	23.98	Pass
			802.11ac(HT20)) mode		
CH No.	Frequency (MHz)	Output Power (dBm) ANT1	Output Power (dBm) ANT2	MIMO Output Power (dBm)	Limit (dBm)	Result
36	5180	7.52	6.72	10.15	23.98	Pass
40	5200	8.74	6.89	10.92	23.98	Pass
48	5240	8.42	7.66	11.07	23.98	Pass
			802.11n(HT40) mode		
CH No.	Frequency (MHz)	Output Power (dBm) ANT1	Output Power (dBm) ANT2	MIMO Output Power (dBm)	Limit (dBm)	Result
38	5190	7.84	6.66	10.30	23.98	Pass
46	5230	8.57	7.54	11.10	23.98	Pass
			802.11 ac(HT4	0) mode		
CH No.	Frequency (MHz)	Output Power (dBm) ANT1	Output Power (dBm) ANT2	MIMO Output Power (dBm)	Limit (dBm)	Result
38	5190	7.88	6.69	10.34	23.98	Pass
46	5230	8.59	7.5	11.09	23.98	Pass
			802.11 ac(H	IT80)		
CH No.	Frequency (MHz)	Output Power (dBm) ANT1	Output Power (dBm) ANT2	MIMO Output Power (dBm)	Limit (dBm)	Result
42	5210	8.09	6.77	10.49	23.98	Pass

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.40	07				
Test Method:	KDB 789033 D02 General U	J-NII Test Procedures New Rules v02r01				
Limit:	Frequency band (MHz)	Limit				
	5150-5250	≤17dBm in 1MHz for master device				
		≤11dBm in 1MHz for client device				
	5250-5350	≤11dBm in 1MHz for client device				
	5470-5725	≤11dBm in 1MHz for client device				
		ower spectral density is measured as a ect connection of a calibrated test instrument st.				
Test setup:		E.U.T ducted Table ference Plane				
Test procedure:	being tested by following measuring maximum con analyzer or EMI receive SA-2, SA-3, or alternative including, the step label 2) Use the peak search furthe spectrum. 3) Make the following adjust applicable: a) If Method SA-2 or SA where x is the duty cycle b) If Method SA-3 Alternused in step E)2)g)(viii)	 being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". 2) Use the peak search function on the instrument to find the peak of the spectrum. 3) Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. 				
Test Instruments:	Refer to section 6 for details					
Test mode:	Refer to section 5.2 for deta	ils				
Test results:	Pass					

Measurement Data

Modulation	Duty cycle	Duty Factor
802.11a	98.8%	0.05
802.11n(HT20)	98.8%	0.05
802.11n(HT40)	97.5%	0.11
802.11ac(HT20)	98.9%	0.05
802.11ac(HT40)	97.4%	0.11
802.11ac(HT80)	95.2%	0.21

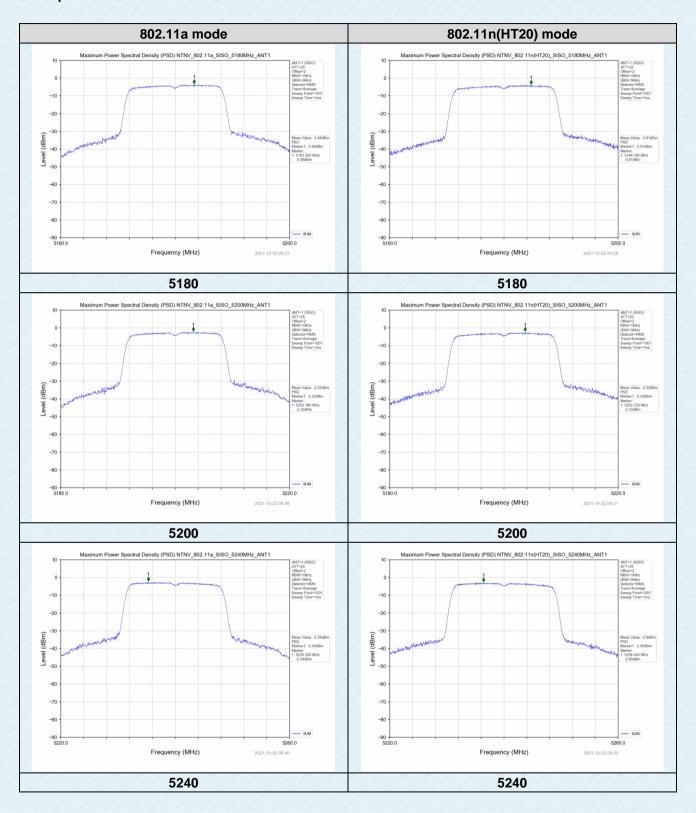
ANT1:

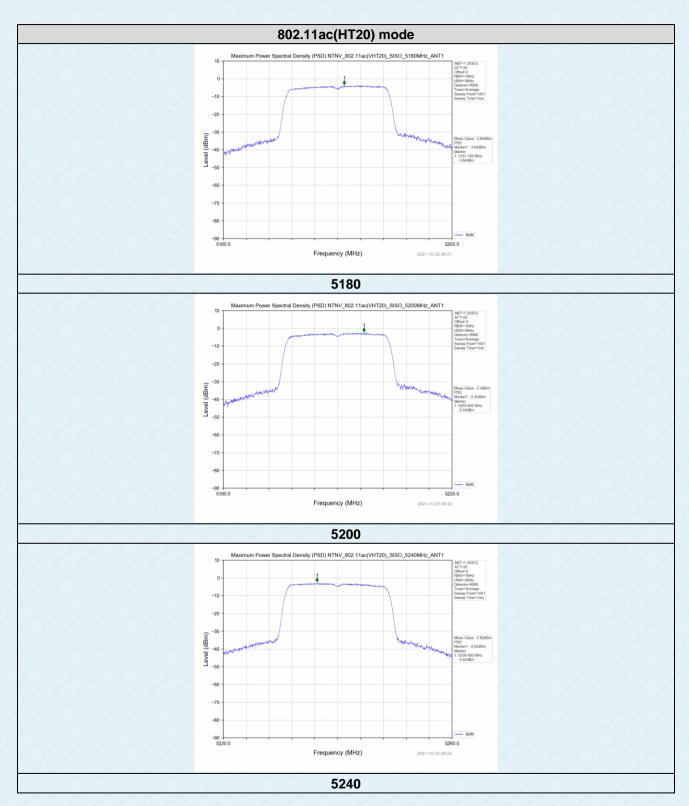
			802.11a	mode				
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result		
36	5180	-3.48	0.05	-3.43	11	Pass		
40	5200	-2.32	0.05	-2.27	11	Pass		
48	5240	-2.34	0.05	-2.29	11	Pass		
			802.11n(HT	20) mode				
CH No.	CH Frequency Measured PSD Duty Factor Total PSD Limit							
36	5180	-3.81	0.05	-3.76	11	Pass		
40	5200	-2.33	0.05	-2.28	11	Pass		
48	5240	-2.90	0.05	-2.85	11	Pass		
			802.11ac(HT	20) mode				
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result		
36	5180	-3.64	0.05	-3.59	11	Pass		
40	5200	-2.40	0.05	-2.35	11	Pass		
48	5240	-2.62	0.05	-2.57	11	Pass		
			802.11n(HT	40) mode				
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result		
38	5190	-6.13	0.11	-6.02	11	Pass		
46	5230	-5.37	0.11	-5.26	11	Pass		
			802.11 ac(H	Γ40) mode				
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result		
38	5190	-5.88	0.11	-5.77	11	Pass		
46	5230	-5.35	0.11	-5.24	11	Pass		
			802.11 ac	(HT80)				
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result		
42	5210	-8.39	0.21	-8.18	11	Pass		

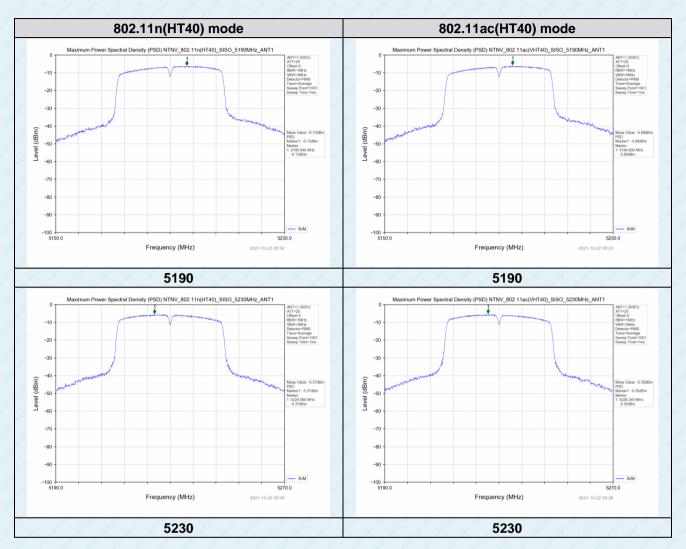
Note: Output Power = Measured Power + Duty Factor

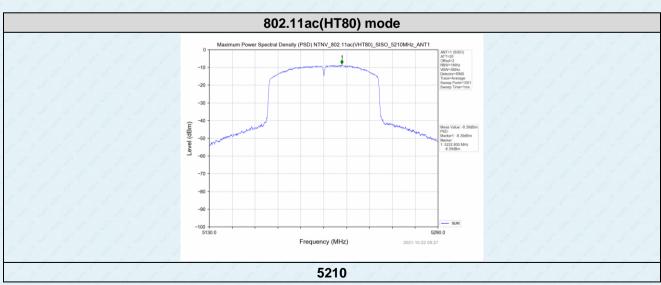
Duty Factor = 10 log (1/Duty Cycle)

Global United Technology Services Co., Ltd.


No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102




Test plots as followed:

Report No.: GTSL202110000182F04

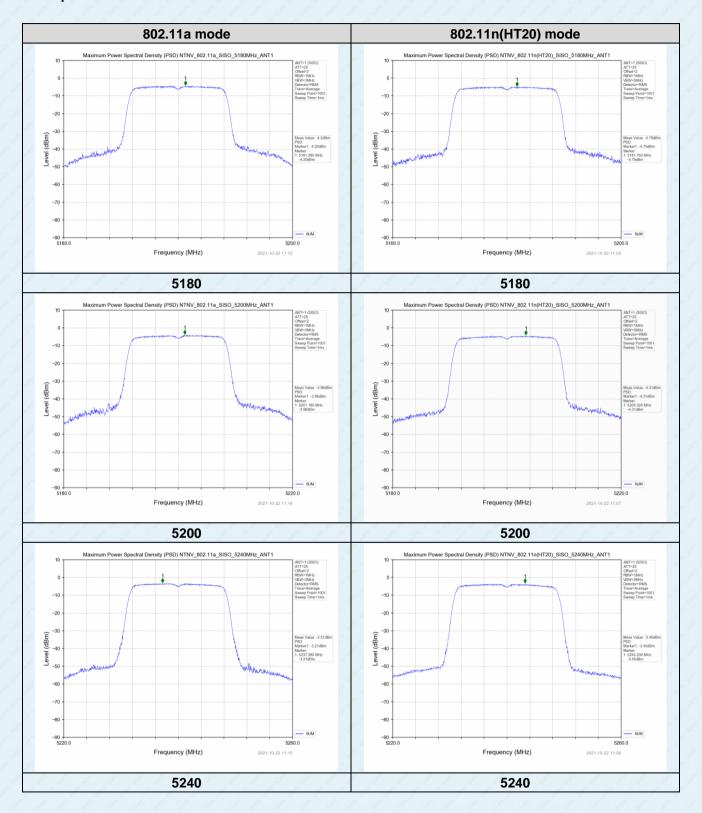
ANT2:

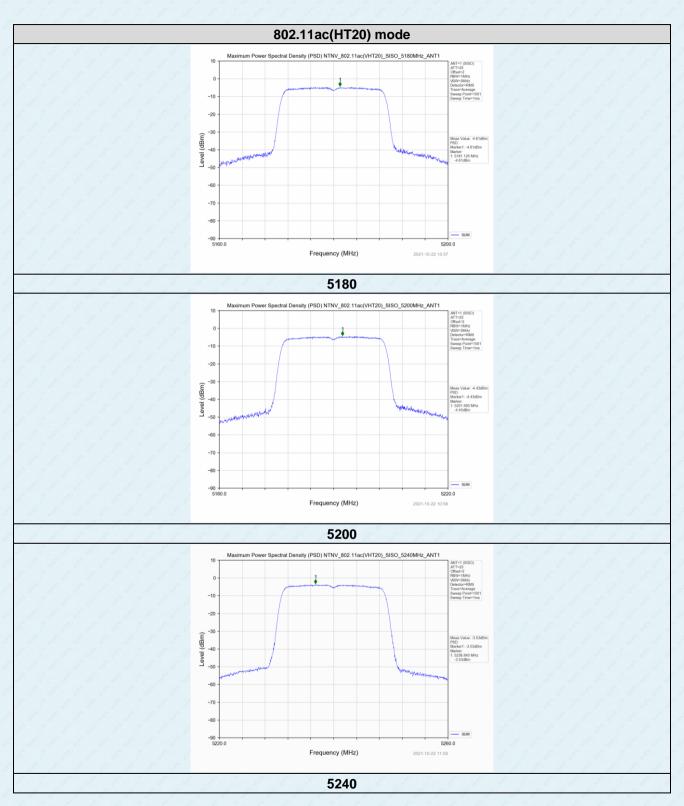
			802.11a	mode		
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result
36	5180	-4.20	0.05	-4.15	11	Pass
40	5200	-3.96	0.05	-3.91	11	Pass
48	5240	-3.21	0.05	-3.16	11	Pass
			802.11n(HT	20) mode		
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result
36	5180	-4.79	0.05	-4.74	11	Pass
40	5200	-4.31	0.05	-4.26	11	Pass
48	5240	-3.45	0.05	-3.40	11	Pass
			802.11ac(HT	20) mode		
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result
36	5180	-4.61	0.05	-4.56	11	Pass
40	5200	-4.43	0.05	-4.38	11	Pass
48	5240	-3.53	0.05	-3.48	11	Pass
			802.11n(HT	40) mode		
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result
38	5190	-7.44	0.11	-7.33	11	Pass
46	5230	-6.48	0.11	-6.37	11	Pass
			802.11 ac(HT	740) mode		
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result
38	5190	-7.67	0.11	-7.56	11	Pass
46	5230	-6.60	0.11	-6.49	11	Pass
			802.11 ac	(HT80)		
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result
42	5210	-10.03	0.21	-9.82	11	Pass

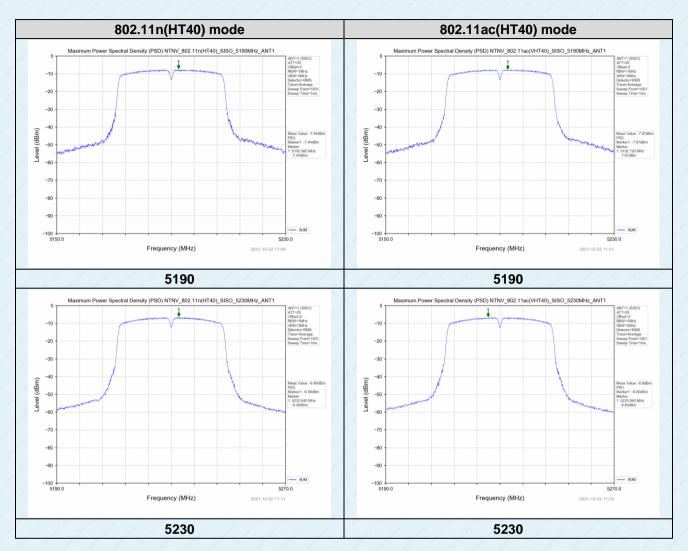
Note: Output Power = Measured Power + Duty Factor

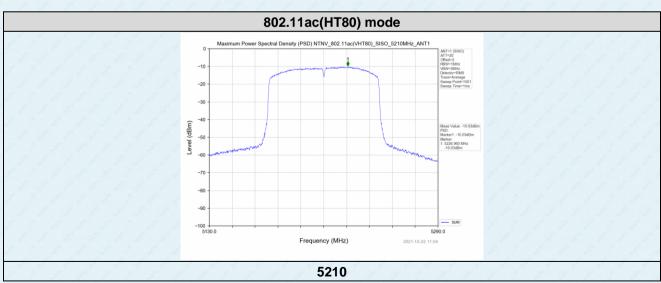
Duty Factor = 10 log (1/Duty Cycle)

ANT1+ANT2:


Report No.: GTSL202110000182F04


		<u> </u>	802.11n(HT20)) mode			
CH No.	Frequency (MHz)	100	Measured PSD (dBm/MHz) ANT1	Measured PSD (dBm/MHz) ANT2	MIMO Measured PSD (dBm/MHz)	Limit (dBm)	Result
36	5180	-3.76	-4.74	-1.21	11	Pass	
40	5200	-2.28	-4.26	-0.15	11	Pass	
48	5240	-2.85	-3.4	-0.11	11	Pass	
			802.11ac(HT2	0) mode			
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz) ANT1	Measured PSD (dBm/MHz) ANT2	MIMO Measured PSD (dBm/MHz)	Limit (dBm)	Result	
36	5180	-3.59	-4.56	-1.04	11	Pass	
40	5200	-2.35	-4.38	-0.24	11	Pass	
48	5240	-2.57	-3.48	0.01	11	Pass	
			802.11n(HT40)) mode			
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz) ANT1	Measured PSD (dBm/MHz) ANT2	MIMO Measured PSD (dBm/MHz)	Limit (dBm)	Result	
38	5190	-6.02	-7.33	-3.62	11	Pass	
46	5230	-5.26	-6.37	-2.77	11	Pass	
			802.11 ac(HT4	0) mode			
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz) ANT1	Measured PSD (dBm/MHz) ANT2	MIMO Measured PSD (dBm/MHz)	Limit (dBm)	Result	
38	5190	-5.77	-7.56	-3.56	11	Pass	
46	5230	-5.24	-6.49	-2.81	11	Pass	
			802.11 ac(ł	HT80)			
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz) ANT1	Measured PSD (dBm/MHz) ANT2	MIMO Measured PSD (dBm/MHz)	Limit (dBm)	Result	
42	5210	-8.18	-9.82	-5.91	11	Pass	


Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 40 of 55



Test plots as followed:

7.6 Band Edge

Test Requirement:	RSS-Gen 8.10							
Test Method:	ANSI C63.10:201	ANSI C63.10:2013 & RSS-Gen						
Test site:	Measurement Dis	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	Detector Quasi-peak Peak	RBW 100KHz 1MHz	VBW 300KHz 3MHz 3MHz	Remark Quasi-peak Value Peak Value			
Limit:	30MHz-88 88MHz-216 216MHz-96 960MHz-1 Above 10	Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value Which is a superscript of the peak Value of the peak Value Which is a superscript of the peak Value of the peak Value Undesirable emission limits:						
	 (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band. (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz. 							
Test Procedure:	a. The EUT was ground at a 3 determine the b. The EUT was antenna, which tower. c. The antenna the ground to Both horizons make the me d. For each sus case and the meters and the degrees to fire. The test-recesspecified Base f. If the emission of the EUT we have 10dB meters and the limit specified base of the EUT we have 10dB meters and the limit specified Base f.	a meter camber e position of the set 3 meters ch was mounted beinght is varied and vertical and vertical and vertical and vertical and the antenna the rotable table and the maximulativer system who have been and the test of the lefted, then test rould be report argin would be	r. The table e highest ra away from ed on the to d from one e maximum polarizatio on, the EUT was turned e was turne m reading. as set to Pelaximum Ho EUT in peal ing could be ed. Otherwie e re-tested	was rotate adiation. the interference op of a varial meter to fo value of the ns of the are was arran to heights find from 0 de- eak Detect I old Mode. k mode was e stopped a see the emis-	rom 1 meter to 4 egrees to 360			

	sheet.
Test setup:	For radiated emissions above 1GHz
	> = """ = """ = ""
	<3m>→
	Test Antenna-
	< lm 4m > 1
	Turn Tables - E011
	<150cm>,
	Receiver Preamplifier
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

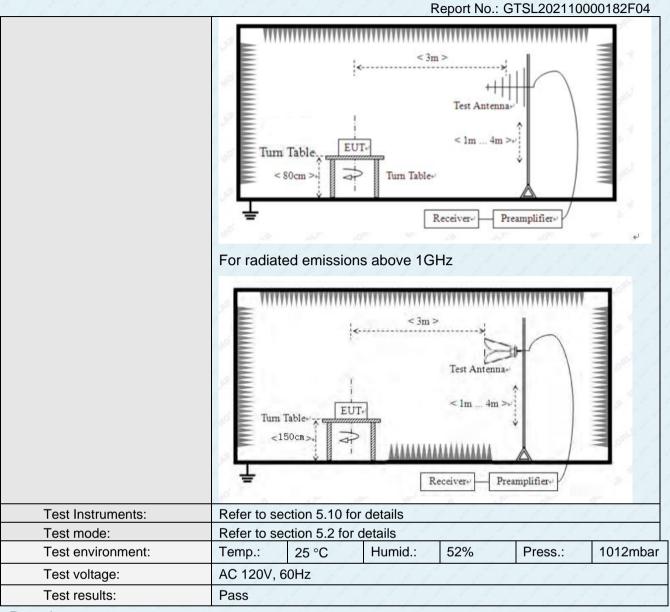
802.11ac(H	T20)		1111	PK	1 1 1	18 18 1		1 1 1
Frequency	Read Level	Antenna Factor	Cable Loss		Level	Limit Line	Over Limit	
(MHz)	(dBuV)	(dB/m)	(dB)	Preamp Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization
5150	51.26	31.82	5.4	35.98	52.5	68.2	-15.7	Horizontal
5350	46.89	31.98	5.98	35.68	49.17	68.2	-19.03	Horizontal
5150	54.28	31.82	5.4	35.98	55.52	68.2	-12.68	Vertical
5350	54.33	31.98	5.98	35.68	56.61	68.2	-11.59	Vertical

802.11ac(H	T20)			AV				
2 2 5		Antenna	8 8 8		2 5 5			2 5 5
Frequency	Read Level	Factor	Cable Loss		Level	Limit Line	Over Limit	
(MHz)	(dBuV)	(dB/m)	(dB)	Preamp Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization
5150	32.49	31.82	5.4	35.98	33.73	54	-20.27	Horizontal
5350	32.44	31.98	5.98	35.68	34.72	54	-19.28	Horizontal
5150	33.49	31.82	5.4	35.98	34.73	54	-19.27	Vertical
5350	34.03	31.98	5.98	35.68	36.31	54	-17.69	Vertical

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.
- 4. All modes were tested, only recorded the worst case data in the test report.

7.7 Radiated Emission


Test Requirement :	DSS Con 8 0 8 9	10	<u> </u>					
Test Method :	RSS-Gen 8.9 & 8.10 ANSI C63.10: 2013 & RSS-Gen							
	9kHz to 40GHz	Jano	O Och		<u> </u>			
Test Frequency Range: Test site:	Measurement Dist	topoo: 3	m (Son	oi Anachair	Chambar)			
	Frequency		ector	RBW	VBW	Value		
Receiver setup:	9kHz-150KHz		-peak	200Hz	1kHz	Quasi-peak Value		
	150kHz-30MHz		-peak	9kHz	30kHz	Quasi-peak Value		
	30MHz-1GHz		-peak	100KHz	300KHz	Quasi-peak Value		
	Above 1GHz		ak	1MHz	3MHz	Peak Value		
	Above 1GHz	Α	V	1MHz	3MHz	Average Value		
Limit:	1 1 1 1 1							
	Frequency		Limit	(uV/m)	Value	Measurement Distance		
	0.009MHz-0.490	MHz	2400	/F(KHz)	QP	300m		
	0.490MHz-1.705	MHz	24000	/F(KHz)	QP	300m		
	1.705MHz-30N	ИHz	100	30	QP	30m		
	30MHz-88MH	Ηz	2 2 1	00	QP	1 1 1 1 1		
	88MHz-216M	Hz	3	50	QP			
	216MHz-960M	1Hz	2	200	QP	1 1 1 1 1		
	960MHz-1GHz		5	500	QP	3m		
				500	Average			
	Above 1GH	Z		000	Peak			
	1GHz and 1.5 meter camber position of the position of the 2. The EUT was antenna, whi antenna towe 3. The antenna the ground to Both horizon make the me 4. For each sus case and the meters and the degrees to fir 5. The test-rece Specified Bar 6. If the emission the limit specified not have	procedurest proced	ure as bedure: on the sofor able wast radiated and the vertical ment. emission tennal betable table maximum at the vertical ment. It is the maximum at the vertical ment and the table maximum at the vertical maximum at the	top of a rot ove 1GHz) s rotated 30 ion. away from ed on the to d from one e maximum polarizatio on, the EUT was tuned e was turned e was turned e was turned aximum Ho EUT in peal ing could be reported. (vould be re-	above the general above the general above the general above the general above the interfere above the arms of the general above the general abov	ence-receiving ble-height ur meters above e field strength. Itenna are set to ged to its worst rom 1 meter to 4 egrees to 360. Function and a 10dB lower than		

Report No.: GTSL202110000182F04 the 0.8m support on the turntable and in the position closest to normal use as declared by the provider. 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) Pg is the generator output power into the substitution antenna. Test setup: For radiated emissions from 9kHz to 30MHz Test Antenna EUT: Turn Table 1m< 80cm Turn Tables

For radiated emissions from 30MHz to1GHz

Remarks:

- 1. Antenna 1 and antenna 2 have been tested to show only the worst antenna 1 test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

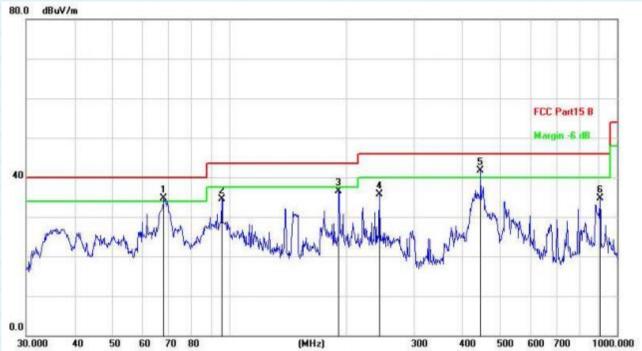
Measurement Data:

9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

30MHz~1GHz

Horizontal:



No	0.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	1		67.4381	49.86	-19.63	30.23	40.00	-9.77	QP
	2		148.4410	50.07	-17.74	32.33	43.50	-11.17	QP
	3		191.7450	55.10	-19.94	35.16	43.50	-8.34	QP
-	4		297.2241	54.70	-18.38	36.32	46.00	-9.68	QP
	5	*	444.8514	57.81	-16.15	41.66	46.00	-4.34	QP
-	6		595.1326	46.29	-13.34	32.95	46.00	-13.05	QP

Final Level = Receiver Read level + Correct Factor

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	!	67.9128	54.39	-19.68	34.71	40.00	-5.29	QP
2		95.7622	55.40	-20.85	34.55	43.50	-8.95	QP
3		191.7450	56.43	-19.94	36.49	43.50	-7.01	QP
4		244.2321	55.16	-19.51	35.65	46.00	-10.35	QP
5	*	444.8514	57.78	-16.15	41.63	46.00	-4.37	QP
6		903.3093	44.15	-9.54	34.61	46.00	-11.39	QP

Final Level = Receiver Read level + Correct Factor

Above 1-40GHz:

Pre-scan all test modes of antenna 1 and antenna 2, found worst case at 802.11ac(HT20), and so only show the test result of 802.11ac(HT20).

Above 1GHz:

802.11ac(HT20) 5180MHz

2 6 6	8 8 8	Antenna	1 1 1	2 6 6	8 8 8	1 1 1	1 1 1	2 8 8
Frequency	Read Level	Factor	Cable Loss	Preamp	Level	Limit Line	Over Limit	polarizatio
(MHz)	(dBuV)	(dB/m)	(dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	n
10360	30.22	39.67	14.62	32.65	51.86	68.2	-16.34	Vertical
15540	30.59	38.6	17.66	34.46	52.39	68.2	-15.81	Vertical
10360	29.98	39.67	14.62	32.65	51.62	68.2	-16.58	Horizontal
15540	29.22	38.6	17.66	34.46	51.02	68.2	-17.18	Horizontal

802.11ac(HT20) 5200MHz

4 4 4	Developed in	Antenna	0.11.1		1 1 1	1. 1. 1.	O and inside	
Frequency	Read Level	Factor	Cable Loss	Preamp	Level	Limit Line	Over Limit	polarizatio
(MHz)	(dBuV)	(dB/m)	(dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	n
10400	43.88	39.44	8.12	33.85	57.59	68.2	-10.61	Vertical
15600	41.33	38.28	9.58	31.51	57.68	68.2	-10.52	Vertical
10400	40.01	39.44	8.12	33.85	53.72	68.2	-14.48	Horizontal
15600	39.79	38.28	9.58	31.51	56.14	68.2	-12.06	Horizontal

802.11ac(HT20) 5240MHz

		Antenna						
Frequency	Read Level	Factor	Cable Loss	Preamp	Level	Limit Line	Over Limit	polarizatio
(MHz)	(dBuV)	(dB/m)	(dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	n
10480	44.59	39.65	8.19	33.74	58.69	68.2	-9.51	Vertical
15720	41.02	37.72	9.5	31.43	56.81	68.2	-11.39	Vertical
10480	39.55	39.65	8.19	33.74	53.65	68.2	-14.55	Horizontal
15720	38.97	37.72	9.5	31.43	54.76	68.2	-13.44	Horizontal

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)	FCC Part15 C Section 15.407(g)						
Test Method:	ANSI C63.10:2013, FCC Part 2.1055							
Limit:	stability such that an emission is mai	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified						
Test Procedure:		The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.						
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on Ar	Temperature Chamber EUT Variable Power Supply stenna connector						
Test Instruments:	Refer to section 6 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Note: Measured all conditions and recorded worst case.

Page 53 of 55

Measurement data:

IEEE 802.11a Mode / 5180 - 5240 MHz / 5180 MHz

Report No.: GTSL202110000182F04

Enviroment Temperature (Dregree)	Voltage (V)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results
20	20.9	5179.954616	5150 – 5250	PASS
20	17.1	5179.941177	5150 – 5250	PASS
50	19.0	5179.952473	5150 - 5250	PASS
40	19.0	5179.925261	5150 – 5250	PASS
30	19.0	5179.965407	5150 – 5250	PASS
20	19.0	5179.985144	5150 – 5250	PASS
10	19.0	5179.964798	5150 - 5250	PASS
0	19.0	5179.995492	5150 - 5250	PASS
-10	19.0	5179.968255	5150 - 5250	PASS
-20	19.0	5179.962132	5150 – 5250	PASS
-30	19.0	5179.956178	5150 - 5250	PASS

IEEE 802.11a Mode / 5180 - 5240 MHz / 5240 MHz

Enviroment Temperature (Dregree)	Voltage (V)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results
20	20.9	5239.975444	5150 - 5250	PASS
20	17.1	5239.984171	5150 – 5250	PASS
50	19.0	5239.967177	5150 - 5250	PASS
40	19.0	5239.965763	5150 - 5250	PASS
30	19.0	5239.984411	5150 - 5250	PASS
20	19.0	5239.974717	5150 - 5250	PASS
10	19.0	5239.969769	5150 - 5250	PASS
0	19.0	5239.977543	5150 – 5250	PASS
-10	19.0	5239.955170	5150 – 5250	PASS
-20	19.0	5239.994413	5150 - 5250	PASS
-30	19.0	5239.975415	5150 – 5250	PASS

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---

5 2779 8960 Page 55 of 55