

Applicant: PDi Digital GmbH
Kalsdorfer Strasse 12
A – 8072 Fenzt-Mellach

Tested Product: sepioo sensoric system
Product Name: sepioo S1
Model: RMG3-RCOM-A
FCC-ID: 2A3HY-RMG3-RCOM-A
IC-ID: 27854-RMG3RCOMA
Manufacturer: PDi Digital GmbH
Kalsdorfer Strasse 12
A – 8072 Fenzt-Mellach

Output power / field strength: 0,60 mV/m average @ 3m distance **power supply:** 3V DC external battery
Frequency range: 2404,053 - 2479,285 MHz **Channel separation:** 0,35 MHz
Standard: FCC: 47 CFR Part 15 (eCFR 08.11.2021)
RSS-210 Issue 10, December 2019

Testing Laboratory,
Inspection Body,
Certification Body,
Calibration Laboratory,
Verifizierungsstelle

Notified Body 0408
IC 2932K-1

Non-executive
Board of Directors:
KR DI Johann
Marihart

Management:
DI Dr. Stefan Haas
Mag. Christoph
Wenninger

Registered Office:
Deutschstrasse 10
1230 Vienna/Austria

Branch Offices:
www.tuv.at/standorte

Company Register
Court / - Number:
Vienna / FN 288476 f

Bank Details:
IBAN
AT131200052949001066
BIC BKAUATWW

VAT ATU63240488
DVR 3002476

Ing. Michael Emminger

examined by / Testing
Laboratory
TÜV AUSTRIA SERVICES
GMBH

12.11.2021

Ing. Wilhelm Seier

approved by / Testing
Laboratory
TÜV AUSTRIA SERVICES
GMBH

A publication of this test report is only permitted literally.
Copying or reproduction of partial sections needs a written permission of TÜV AUSTRIA
SERVICES GMBH.

The results of this test report only refer to the provided equipment.

Contents

	Designation	PAGE
1.	Applicant	3
2.	Description of EUT	4
3.	Standards / Final result	5
4.	Test results	
	List of measurements according to 47 CFR 15 and RSS-210	
4.1	Test object data	6
4.2	Number of channels and channel spacing	7
4.3	Duty Cycle for averaging	8
4.4	Field strength at 2400 – 2483,5 MHz	9-11
4.5	Emissions outside 2400 – 2483,5 MHz (15.209)	12-14
4.6	RF Exposure	15
Appendix	Designation	PAGES
1	Test equipment used	5
2	Photodocumentation	9

1. Applicant

Company: PDi Digital GmbH
Department: Product & Project Manager
Address: A – 8072 Fernitz-Mellach; Kalsdorfer Strasse 12
Contact person: Mr. Phillip Jauck

EUT received on: 08.11.2021

Tests were performed on: 08.11. and 09.11.2021

2. Description of EUT

EUT: sepioo sensoric system

Product Name: sepioo S1

Model: RMG3-RCOM-A

Serial Number: Prototype

Manufacturer: PDi Digital GmbH
A – 8072 Fernitz-Mellach; Kalsdorfer Strasse 12

Description: PDi Digital GmbH provided the following configuration for the measurements:

Prototype with special test-firmware for continuous transmission

Operating mode: The measurements were carried out at the following running states:
test-firmware running, transmitting continuously

Technical data EUT: Rated voltage: 3VDC
Rated current: <1A
Rated frequency: DC

Mains voltage during the tests: 3VDC external battery

Climatic conditions in the emc laboratory: Relative humidity: 30%
Temperature: 23°C

3. Standards / Final result

Name	Title	Deviation	Result
Title 47 CFR Part 15 eCFR 08.11.2021	RADIO FREQUENCY DEVICES	none	OK
RSS-210 Issue 10, December 2019	Licence-Exempt Radio Apparatus: Category I Equipment	none	OK
<p>Result: Opinions and interpretation of testing laboratory OK: EUT passed NOK: EUT failed</p>			

4.1 TEST OBJECT DATA

General EUT Description

This transceiver module is working in a network consisting of a controller station, so called Accesspoint, and various displays. The Accesspoint transmits information to the displays and receives acknowledgements. This device is a display operating in the network system. The device is equipped with a passive NFC chip onboard which does not have its own rf generation. It works as tag and can also receive information from the NFC reader station.

2.1033 (c) Technical description

2.1033 (4) Type of emission: Minimum shift keying – declared channel bandwidth 250 kHz – ‘virtual’ channel spacing about 0,35 MHz. Only 11 channels from the channel plan are used, therefore the channel spacing in reality is much higher and varies from 2,45 MHz minimum up to 17,15 MHz.

2.1033 (5) Frequency range: 2404,053 – 2479,285 MHz (channel center frequencies of channel 0 up to ch. 10)

2.1033 (6) Power range and Controls: The maximum field strength measured is 0,60 mV/m average @ 3m distance. There is no power control or regulation.

2.1033 (7) Maximum output power rating: 0,60 mV/m average @ 3m distance.

2.1033 (8) DC Voltage and Current: 3 VDC (internal battery)
maximum current consumption: 28,0mA during continuous transmission

RSS-135 This standard does not apply to:

1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

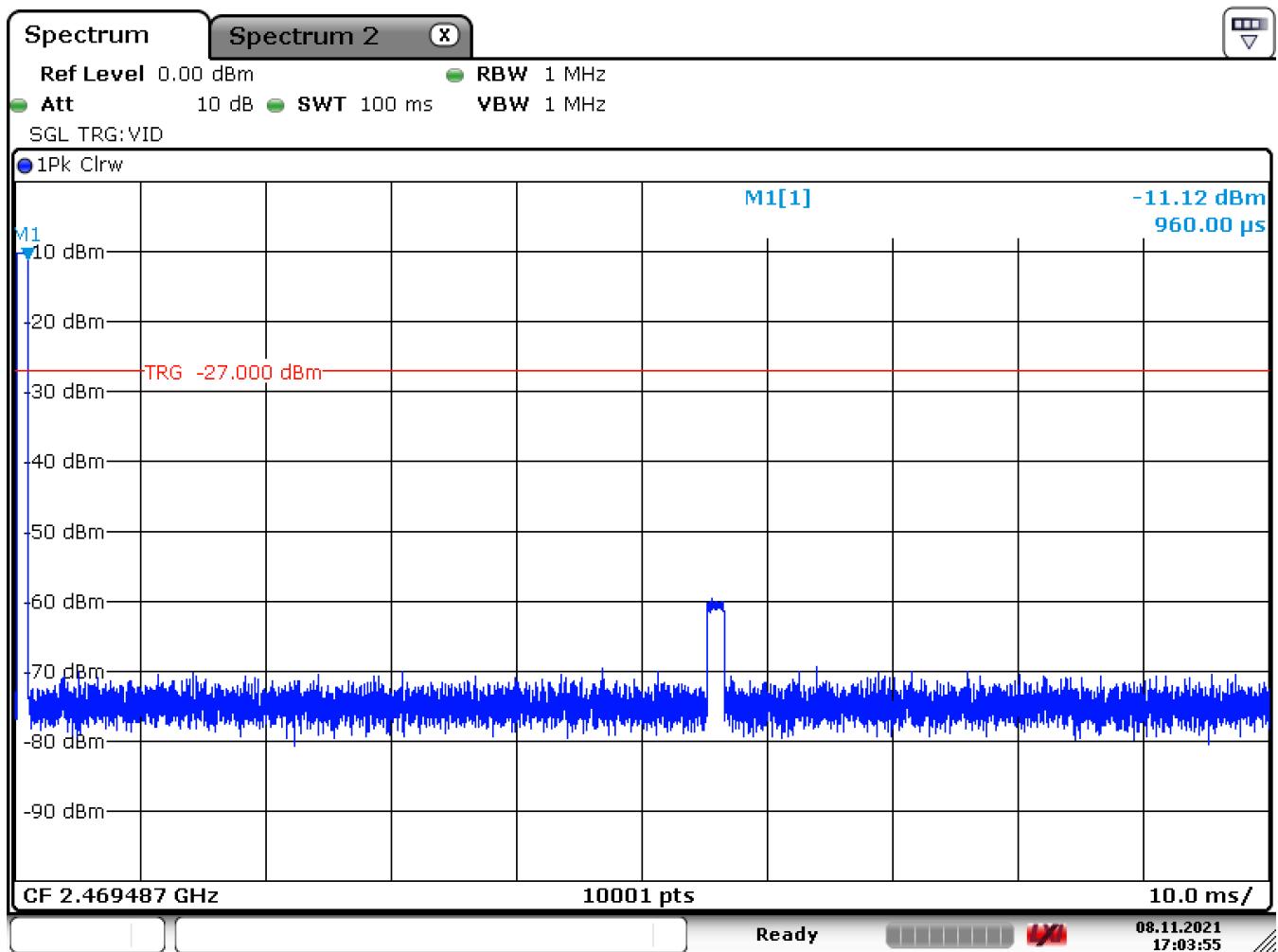
Tests were performed on: November 8th and 9th 2021.

4.2 Number of channels and channel spacing

§ 2.1033

Channel plan:

ESL-CH	RF-CH	f_{G2} [GHz] (26.000000 MHz) (6049109)
CH0	12	2.404053
CH1	29	2.410002
CH2	63	2.421899
CH3	71	2.424698
CH4	120	2.441844
CH5	141	2.449192
CH6	177	2.461789
CH7	199	2.469487
CH8	213	2.474386
CH9	220	2.476835
CH10	227	2.479285


Tests were performed on ESL channels 0, 4 and 10.

Test Equipment used: N/A

4.3 Duty Cycle measurements for averaging

§ 15.249 (e)

Mode: data transmission (worst case in 100ms)

Date: 8.NOV.2021 17:03:55

According to the timing protocol description provided by the manufacturer and attached as technical description to the application for certification, the transmission burst time was checked to not exceed the declared value. The declared value was taken for calculation, as that gives the worst case.

There is only one transmission burst in a 100ms time frame of a length of 1,00ms, giving a duty cycle of 1,00% or an average factor of -40,0 dB.

LIMIT

SUBCLAUSE 15.249(e)

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Test Equipment used: NT-203/1

DN: FM-INE-EMV-EMC-0100a_en

FG21-190.docx

Rev04

4.4 Field strength of emissions at 2400 – 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 0 (2404,053MHz)

The maximum peak value measured was 94,9 dB μ V/m = 55,59 mV/m at 3m distance.

With the averaging factor calculated on page 8 of this test report of -40,0 dB the maximum average value is then 54,9 dB μ V/m = 0,56 mV/m at 3m distance.

LIMIT

SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

(c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200/1

Field strength of emissions at 2400 – 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 4 (2441,844 MHz)

The maximum peak value measured was 94,8 dB μ V/m = 54,95 mV/m at 3m distance.

With the averaging factor calculated on page 8 of this test report of -40,0 dB the maximum average value is then 54,8 dB μ V/m = 0,55 mV/m at 3m distance.

LIMIT

SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

(c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200/1

Field strength of emissions at 2400 – 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 10 (2479,285 MHz)

The maximum peak value measured was 95,5 dB μ V/m = 59,57 mV/m at 3m distance.

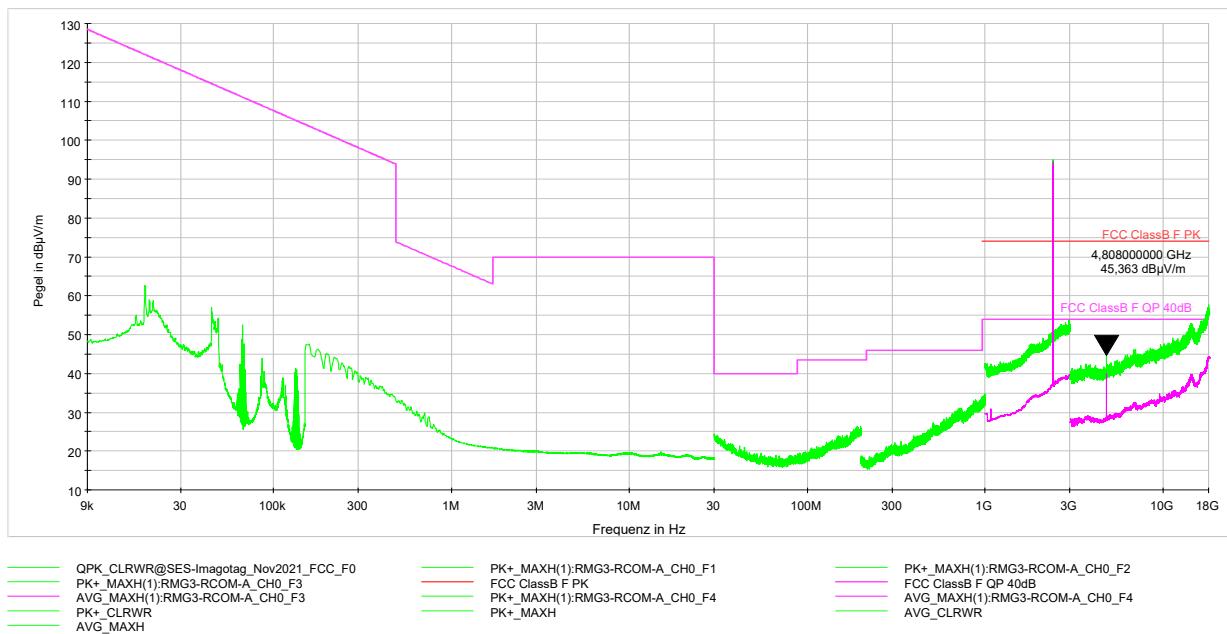
With the averaging factor calculated on page 8 of this test report of -40,0 dB the maximum average value is then 55,5 dB μ V/m = 0,60 mV/m at 3m distance.

LIMIT

SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500


(c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200/1

4.5 Emissions outside 2400 – 2483,5 MHz

§ 15.249 (d) (e)

Channel 0 (2404,053 MHz) – average values above 1 GHz are shown in magenta – green = peak

LIMIT

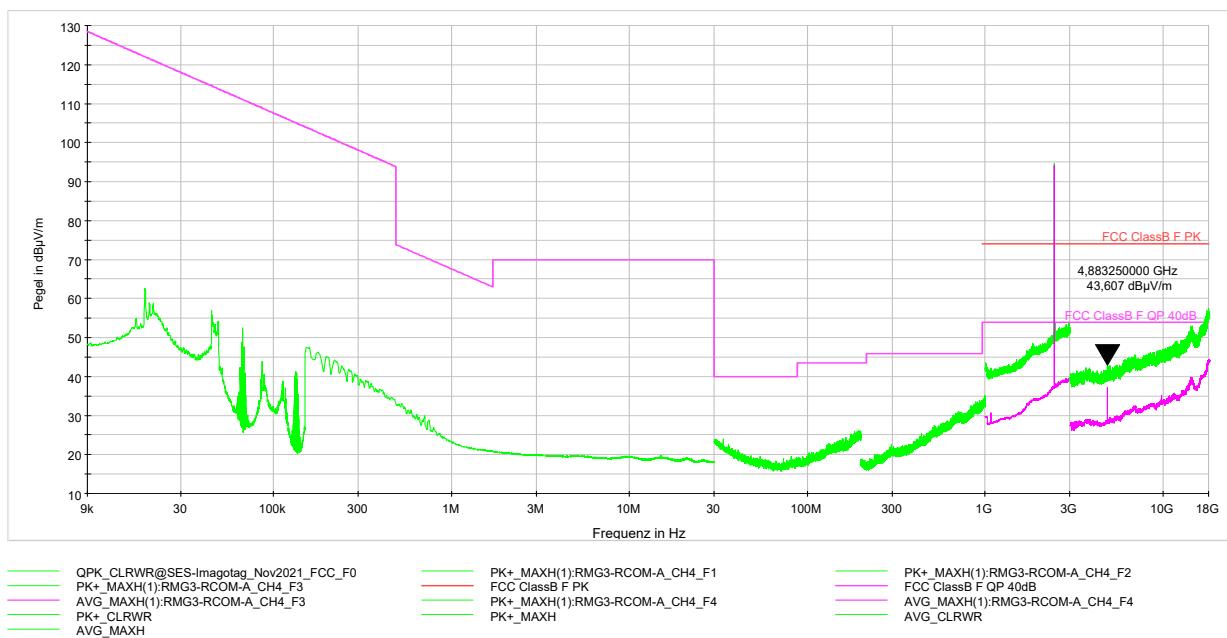
SUBCLAUSE 15.249(d) (e) (15.209)

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:


EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200/1; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automated, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

Emissions outside 2400 – 2483,5 MHz

§ 15.249 (d) (e)

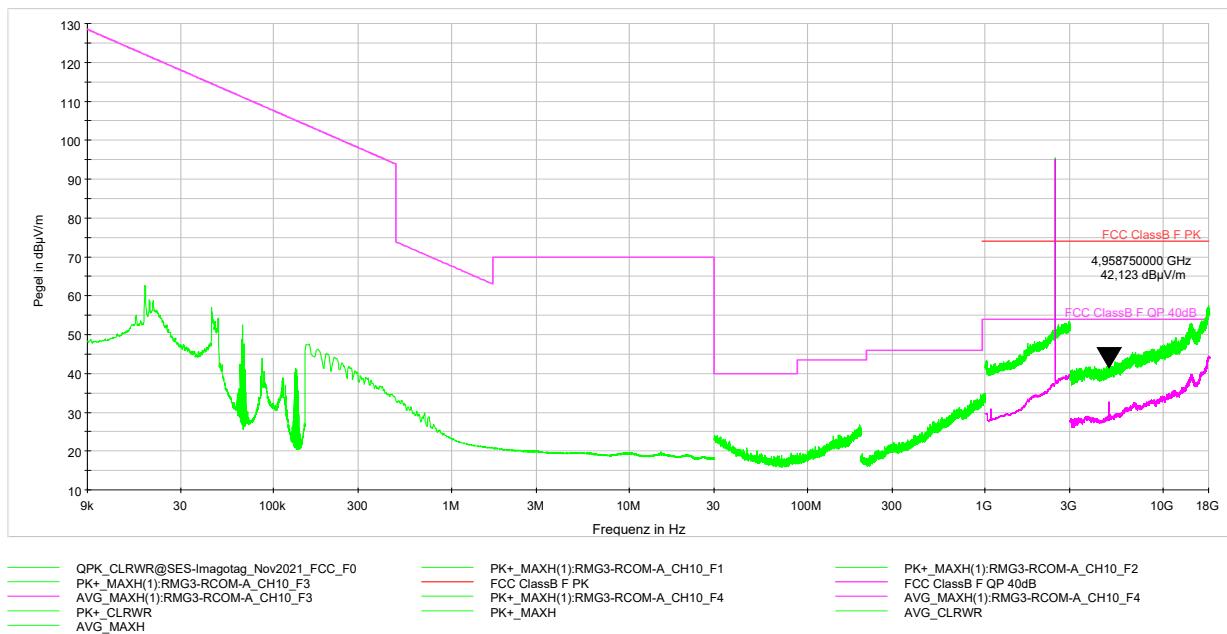
Channel 4 (2441,844 MHz) – average values above 1 GHz are shown in magenta – green = peak

Worst case Emission: 43,61 dBµV/m Peak at 4883,25.

LIMIT

SUBCLAUSE 15.249(d) (e) (15.209)

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.


(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200/1; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automated, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

Emissions outside 2400 – 2483,5 MHz**§ 15.249 (d) (e)****Channel 10 (2479,285 MHz) – average values above 1 GHz are shown in magenta – green = peak**

Worst case Emission: 42,12 dBµV/m Peak at 4958,75 MHz.

LIMIT**SUBCLAUSE 15.249(d) (e) (15.209)**

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200/1; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automated, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

4.6 RF Exposure

§ 1.1307(b)(3)(i)(A)

Title 47 §1.1307(b)(3)(i):

(3) Determination of exemption. (i) For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);

max. conducted Tx power [mW] (see operational description)	Duty cycle [%] (see 4.3)	max. time-averaged power [mW]	§1.1307(b)(3)(i)(A) limit [mW]
10	4.62	0.462	1

The maximum time-averaged power is less than 1 mW.

The device is an *exempt RF device* as per Title 47 §1.1307(b)(3)(i)(A).

Appendix 1

Test equipment used

<input type="checkbox"/> Anechoic Chamber with 3m measurement distance	NT-100	<input type="checkbox"/> Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173	Division: Industry & Energy
<input type="checkbox"/> stripline according to ISO 11452-5	NT-108	<input type="checkbox"/> Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200	Department: FG
<input type="checkbox"/> MA4000 - Antenna mast 1 - 4 m height	NT-110/1	<input type="checkbox"/> ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1	Test report number: INE-AT/FG-21/190
<input type="checkbox"/> DS - Turntable 0 - 400 ° Azimuth	NT-111/1	<input type="checkbox"/> ESR – Test receiver 20 Hz – 26,5 GHz	NT-207/1	Page: 1 of 5
<input type="checkbox"/> CO3000 Controller Mast+Turntable	NT-112/1	<input type="checkbox"/> Digital Radio Tester CMW500	NT-208/1	Date: 12.11.2021
<input type="checkbox"/> HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	<input type="checkbox"/> Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209	
<input type="checkbox"/> FMZB1513 - Loop Antenna 9 kHz - 30 MHz	NT-122/1	<input type="checkbox"/> CMTA - Radiocommunication analyzer ; 0,1 - 1000 MHz	NT-210	
<input type="checkbox"/> HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	<input type="checkbox"/> 3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211	
<input type="checkbox"/> 3121C - Dipole Antenna 28 - 1000 MHz	NT-124	<input type="checkbox"/> Digital Radio Tester Aeroflex 3920	NT-212/1	
<input type="checkbox"/> 3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	<input type="checkbox"/> Mixer M28HW 26,5 GHz - 40 GHz	NT-214	
<input type="checkbox"/> 3116 - Horn Antenna 18 - 40 GHz	NT-126	<input type="checkbox"/> RubiSource T&M Timing reference	NT-216	
<input type="checkbox"/> SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	<input type="checkbox"/> Radiocommunicationanalyzer SWR 1180 MD	NT-217	
<input type="checkbox"/> AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	<input type="checkbox"/> Mixer M19HWD 40 GHz – 60 GHz	NT-218	
<input type="checkbox"/> HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	<input type="checkbox"/> Mixer M12HWD 60 GHz – 90 GHz	NT-219	
<input type="checkbox"/> HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	<input type="checkbox"/> DSO9104 Digital scope	NT-220/1	
<input type="checkbox"/> 3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	<input type="checkbox"/> TPS 2014 Digital scope	NT-222	
<input type="checkbox"/> VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	<input type="checkbox"/> Artificial Ear according to IEC 60318	NT-224	
<input type="checkbox"/> Loop Antenna H-Field	NT-132	<input type="checkbox"/> 1 kHz Sound calibrator	NT-225	
<input type="checkbox"/> Horn Antenna 500 MHz - 2900 MHz	NT-133	<input type="checkbox"/> SRM-3006 Spectrumanalyzer	NT-233/1a	
<input type="checkbox"/> Horn Antenna 500 MHz - 6000 MHz	NT-133/1	<input type="checkbox"/> E-field probe SRM 75 MHz – 3 GHz	NT-234	
<input type="checkbox"/> Log. per. Antenna 800 MHz - 2500 MHz	NT-134	<input type="checkbox"/> Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-e	
<input type="checkbox"/> Log. per. Antenna 800 MHz - 2500 MHz	NT-135	<input type="checkbox"/> Magnetometer HP-01	NT-241/1	
<input type="checkbox"/> BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	<input type="checkbox"/> EFA-3 H-field- / E-field probe	NT-243	
<input type="checkbox"/> Conical Dipol Antenna PCD8250	NT-138	<input type="checkbox"/> EHP-50F H-field- / E-field probe	NT-243/1	
<input type="checkbox"/> HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	<input type="checkbox"/> Field Meter EMR-200 100 kHz – 3 GHz	NT-244	
<input type="checkbox"/> HZ-1 Antenna tripod	NT-150	<input type="checkbox"/> E-field probe 100 kHz – 3 GHz	NT-245	
<input type="checkbox"/> BN 1500 Antenna tripod	NT-151	<input type="checkbox"/> H-field probe 300 kHz – 30 MHz	NT-246	
<input type="checkbox"/> Ant. tripod for EN61000-4-3 Model TP1000A	NT-156			

Appendix 1 (continued)

Test equipment used

<input type="checkbox"/> E-field probe 3 MHz – 18 GHz	NT-247	<input type="checkbox"/> Prana N-MT 500 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332/1	Division: Industry & Energy
<input type="checkbox"/> H-field probe 27 MHz – 1 GHz	NT-248	<input type="checkbox"/> AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333	
<input type="checkbox"/> ELT-400 1 Hz – 400 kHz	NT-249	<input type="checkbox"/> APA01 - RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334	Department: FG
<input type="checkbox"/> MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	<input type="checkbox"/> Preamplifier 1 GHz - 4 GHz	NT-335	Test report number: INE-AT/FG-21/190
<input type="checkbox"/> FCC-203I EM Injection clamp	NT-251	<input type="checkbox"/> Preamplifier for GPS MKU 152 A	NT-336	Page: 2 of 5
<input type="checkbox"/> FCC-203I-DCN Ferrite decoupling network	NT-252	<input type="checkbox"/> Preamplifier 1 GHz – 18 GHz	NT-337/1	Date: 12.11.2021
<input type="checkbox"/> PR50 Current Probe	NT-253	<input type="checkbox"/> DC Block 10 MHz – 18 GHz Model 8048	NT-338	
<input type="checkbox"/> i310s Current Probe	NT-254/1	<input type="checkbox"/> 2-97201 Electronic load	NT-341	
<input type="checkbox"/> Fluke 87 V True RMS Multimeter	NT-260	<input type="checkbox"/> TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344	
<input type="checkbox"/> Model 2000 Digital Multimeter	NT-261	<input type="checkbox"/> TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345	
<input type="checkbox"/> Fluke 87 V Digital Multimeter	NT-262/1	<input type="checkbox"/> VDS 200 Mobil-impuls-generator	NT-350	
<input type="checkbox"/> ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	<input type="checkbox"/> LD 200 Mobil-impuls-generator	NT-351	
<input type="checkbox"/> ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	<input type="checkbox"/> MPG 200 Mobil-Impuls-Generators	NT-352	
<input type="checkbox"/> ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	<input type="checkbox"/> EFT 200 Mobil-impuls-generator	NT-353	
<input type="checkbox"/> ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	<input type="checkbox"/> AN 200 S1 Artificial Network	NT-354	
<input type="checkbox"/> EZ10 T-Artificial Network	NT-305	<input type="checkbox"/> FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1	
<input type="checkbox"/> SMG - Signal generator 0,1 - 1000 MHz	NT-310	<input type="checkbox"/> PHE 4500 - Mains impedance network	NT-401	
<input type="checkbox"/> SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	<input type="checkbox"/> IP 6.2 Coupling filter for data lines (Surge)	NT-403	
<input type="checkbox"/> RefRad Reference generator	NT-312	<input type="checkbox"/> TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409	
<input type="checkbox"/> SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	<input type="checkbox"/> ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410	
<input type="checkbox"/> 40 MHz Arbitrary Generator TGA1241	NT-315	<input type="checkbox"/> IP 4 - Capacitive clamp (Burst)	NT-411	
<input type="checkbox"/> Artificial mains network NSLK 8127-PLC	NT-316	<input type="checkbox"/> Highpass-Filter 100 MHz – 3 GHz	NT-412	
<input type="checkbox"/> PSURGE 4.1 Surge generator	NT-324	<input type="checkbox"/> Highpass-Filter 600 MHz – 4 GHz	NT-413	
<input type="checkbox"/> IMU4000 Immunity test system	NT-325/1	<input type="checkbox"/> Highpass-Filter 1250 MHz – 4 GHz	NT-414	
<input type="checkbox"/> VCS 500-M6 Surge-Generator	NT-326	<input type="checkbox"/> Highpass-Filter 1800 MHz – 16 GHz	NT-415	
<input type="checkbox"/> Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c			
<input type="checkbox"/> BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330			
<input type="checkbox"/> T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331			

Appendix 1 (continued)

Test equipment used

<input type="checkbox"/> RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417/1	<input type="checkbox"/> FCC-801-T4 Coupling decoupling network	NT-463	Division: Industry & Energy
<input type="checkbox"/> RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	<input type="checkbox"/> FCC-801-C1 Coupling decoupling network	NT-464	Department: FG
<input type="checkbox"/> RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419	<input type="checkbox"/> SW 9605 - Current probe 150 kHz – 30 MHz	NT-465/1	Test report number: INE-AT/FG-21/190
<input type="checkbox"/> RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	<input type="checkbox"/> 95242-1 – Current probe 1 MHz – 400 MHz	NT-468	Page: 3 of 5
<input type="checkbox"/> RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	<input type="checkbox"/> 94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	Date: 12.11.2021
<input type="checkbox"/> RF-Attenuator 30 dB	NT-424	<input type="checkbox"/> WHKX12-2700-3000-18000 3 GHz Highpass filter	NT-472	
<input type="checkbox"/> RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	<input type="checkbox"/> WHKX10-3870-4500-18000 4,5 GHz Highpass filter	NT-473	
<input type="checkbox"/> RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	<input type="checkbox"/> GA 1240 Power amplifier according to EN 61000-4-16	NT-480	
<input type="checkbox"/> RF-Attenuator 6 dB	NT-428	<input type="checkbox"/> Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
<input type="checkbox"/> RF-Attenuator 0 dB - 81 dB	NT-429	<input type="checkbox"/> Van der Hoofden Test Head	NT-484	
<input type="checkbox"/> WRU 27 - Band blocking 27 MHz	NT-430	<input type="checkbox"/> WRCJV12-5820-5850-5950-5980 5,9 GHz Band Reject Filter	NT-490	
<input type="checkbox"/> WHJ450C9 AA - High pass 450 MHz	NT-431	<input type="checkbox"/> WHKX10-5670-6300-18000 6 GHz Highpass filter	NT-491	
<input type="checkbox"/> WHJ250C9 AA - High pass 250 MHz	NT-432	<input type="checkbox"/> WHK12-935-1000-7000 1 GHz Highpass filter	NT-492	
<input type="checkbox"/> RF-Load 150 W	NT-433	<input type="checkbox"/> EMC Video/Audiosystem	NT-511/1	
<input type="checkbox"/> Impedance transducer 1:4 ; 1:9 ; 1:16	NT-435	<input type="checkbox"/> ES-K1 Version 1.71 SP2 Test software	NT-520	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 6 dB	NT-436	<input type="checkbox"/> EMC32 Version 10.60.20 Test software	NT-520/1	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 6 dB	NT-437	<input type="checkbox"/> SRM-TS Version 1.3 software for SRM-3000	NT-522	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 10 dB	NT-438	<input type="checkbox"/> SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 20 dB	NT-439	<input type="checkbox"/> Spitzenger und Spies Test software V4.1	NT-525	
<input type="checkbox"/> I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	<input type="checkbox"/> Vertical coupling plane (ESD)	NT-531	
<input type="checkbox"/> ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	<input type="checkbox"/> Test cable #4 for EN 61000-4-6	NT-553	
<input type="checkbox"/> Power Divider 6 dB/1 W/50 Ohm	NT-443	<input type="checkbox"/> Test cable #3 for conducted emission	NT-554	
<input type="checkbox"/> Directional coupler 0,1 MHz – 70 MHz	NT-444	<input type="checkbox"/> Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
<input type="checkbox"/> Directional coupler 0,1 MHz – 70 MHz	NT-445	<input type="checkbox"/> Test cable #8 Sucoflex 104EA	NT-559	
<input type="checkbox"/> Tube imitations according to EN 55015	NT-450	<input type="checkbox"/> Test cable #9 (for outdoor measurements)	NT-580	
<input type="checkbox"/> FCC-801-M3-16A Coupling decoupling network	NT-458	<input type="checkbox"/> Test cable #10 (for outdoor measurements)	NT-581	
<input type="checkbox"/> FCC-801-M2-50A Coupling decoupling network	NT-459	<input type="checkbox"/> Test cable #13 Sucoflex 104PE	NT-584	
<input type="checkbox"/> FCC-801-M5-25 Coupling decoupling network	NT-460	<input type="checkbox"/> Test cable #21 for SRM-3000	NT-592	
<input type="checkbox"/> FCC-801-AF10 Coupling decoupling network	NT-461	<input type="checkbox"/> Shield chamber	NT-600	
<input type="checkbox"/> FCC-801-S25 Coupling decoupling network	NT-462	<input type="checkbox"/> Climatic chamber	M-1200	

Appendix 1 (continued)

Test equipment used

				Division:
<input type="checkbox"/> Anechoic Chamber 3 m / 5 m measuring distance	EMV-100	<input type="checkbox"/> HF- Amplifier 9 kHz-225 MHz BBL200	EMV-300/1	Industry & Energy
<input type="checkbox"/> Turntable 6 m diameter	EMV-101	<input type="checkbox"/> HF- Amplifier 80 -1000 MHz BBA150	EMV-301	Department: FG
<input type="checkbox"/> Antenna mast + controller	EMV-102+ EMV-103	<input type="checkbox"/> HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302	Test report number: INE-AT/FG-21/190
<input type="checkbox"/> EMC Video/Audiosystem	EMV-104	<input type="checkbox"/> High Power Ant. 20-200 MHz HPBA-2510	EMV-303/1	Page: 4 of 5
<input type="checkbox"/> EMC Software EMC32 Version 10.60.20	EMV-105	<input type="checkbox"/> High Power Ant. 20-200 MHz S12018-21	EMV-303/2	Date: 12.11.2021
<input type="checkbox"/> Hornantenna 1 – 18 GHz HF 907	EMV-110	<input type="checkbox"/> Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304	
<input type="checkbox"/> Antennapre.amp. 1 – 18 GHz ERZ-LNA0200-1800-30-2	EMV-111	<input type="checkbox"/> Log.per Antenna 0,7 – 9 GHz STLP9149	EMV-305	
<input type="checkbox"/> Trilog Antenna 30-3000 MHz VULB9163	EMV-112	<input type="checkbox"/> HF- Amplifier 9 kHz-250 MHz BBA150 (low noise)	EMV-306	
<input type="checkbox"/> Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113	<input type="checkbox"/> ISO11451-2 TLS 10 kHz – 30 MHz	EMV-307	
<input type="checkbox"/> Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114	<input type="checkbox"/> Load Dump Generator LD 200N	EMV-350	
<input type="checkbox"/> Hornantenna 200 – 2000 MHz AH-220	EMV-115	<input type="checkbox"/> Ultra Compact Simulator UCS 200N100	EMV-351	
<input type="checkbox"/> DC Artificial Network PVDC 8300	EMV-150	<input type="checkbox"/> Automotive Power fail module PFM 200N100.1	EMV-352	
<input type="checkbox"/> AC Artificial Network NNLK 8121 RC	EMV-151	<input type="checkbox"/> Voltage Drop Simulator VDS 200Q100	EMV-353	
<input type="checkbox"/> EMI Receiver ESW44	EMV-200/1	<input type="checkbox"/> Arb. Generator AutoWave	EMV-354	
<input type="checkbox"/> Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201	<input type="checkbox"/> Ultra Compact Simulator UCS 500N7	EMV-355	
<input type="checkbox"/> GPS Frequency normal B-88	EMV-202	<input type="checkbox"/> Coupling decoupling network CNI 503B7 / 32 A	EMV-356	
<input type="checkbox"/> DC Power supply N5745A	EMV-203	<input type="checkbox"/> Coupling decoupling network CNI 503B7 / 63 A	EMV-357	
<input type="checkbox"/> Spektrum Analyzator FSV40	EMV-205	<input type="checkbox"/> Telecom Surge Generator TSurge 7	EMV-358	
<input type="checkbox"/> Thd Multimeter Model 2015	EMV-206	<input type="checkbox"/> Coupling decoupling network CNI 508N2	EMV-359	
<input type="checkbox"/> Poweramplifier PAS15000	EMV- 207/abc	<input type="checkbox"/> Coupling decoupling network CNV 504N2.2	EMV-360	
<input type="checkbox"/> Inrush Current Source	EMV- 208/abc	<input type="checkbox"/> Immunity generator NSG4060/NSG4060-1	EMV-361	
<input type="checkbox"/> Arb.-generator Sycore	EMV-209	<input type="checkbox"/> Coupling network CDND M316-2	EMV-362	
<input type="checkbox"/> Harmonics/Flicker analyzer ARS 16/3	EMV-210	<input type="checkbox"/> Coupling network CT419-5	EMV-363	
<input type="checkbox"/> Power Supply Regatron AC	EMV-214	<input type="checkbox"/> ESD Generator NSG 437	EMV-364	
<input type="checkbox"/> Power Supply Regatron DC	EMV-215	<input type="checkbox"/> Pulse Limiter VTSD 9561-F BNC	EMV-405	
<input type="checkbox"/> Harmonics/Flicker analyser Zimmer	EMV-216	<input type="checkbox"/> Transient emission BSM200N40+BS200N100	EMV- 450+451	
<input type="checkbox"/> Flicker Impedanz Newton4th 753	EMV-218	<input type="checkbox"/> Cap. Coupling Clamp HFK	EMV-455	
<input type="checkbox"/> Comemso	EMV-219	<input type="checkbox"/> Mag. Field System MS100N+MC26100+MC2630	EMV- 456-458	

Appendix 1 (continued)

Test equipment used

Division:
Industry & Energy

<input type="checkbox"/> Coupling network CDN M2-100A	EMV-459
<input type="checkbox"/> Coupling network CDN M3-32A	EMV-460
<input type="checkbox"/> Coupling network CDN M5-100A	EMV-461
<input type="checkbox"/> Current Clamp CIP 9136A	EMV-462
<input type="checkbox"/> DC Artificial Network HV-AN 150	EMV-464+465
<input type="checkbox"/> Coupling Clamp EM 101	EMV-466
<input type="checkbox"/> Decoupling Clamp FTC 101	EMV-467
<input type="checkbox"/> Power attenuator 10 dB / 250 Watt	EMV-469/2
<input type="checkbox"/> HV AMN NNHV 8123 800A	EMV-472
<input type="checkbox"/> HV AMN NNHV 8123 800A	EMV-473

Department: FG

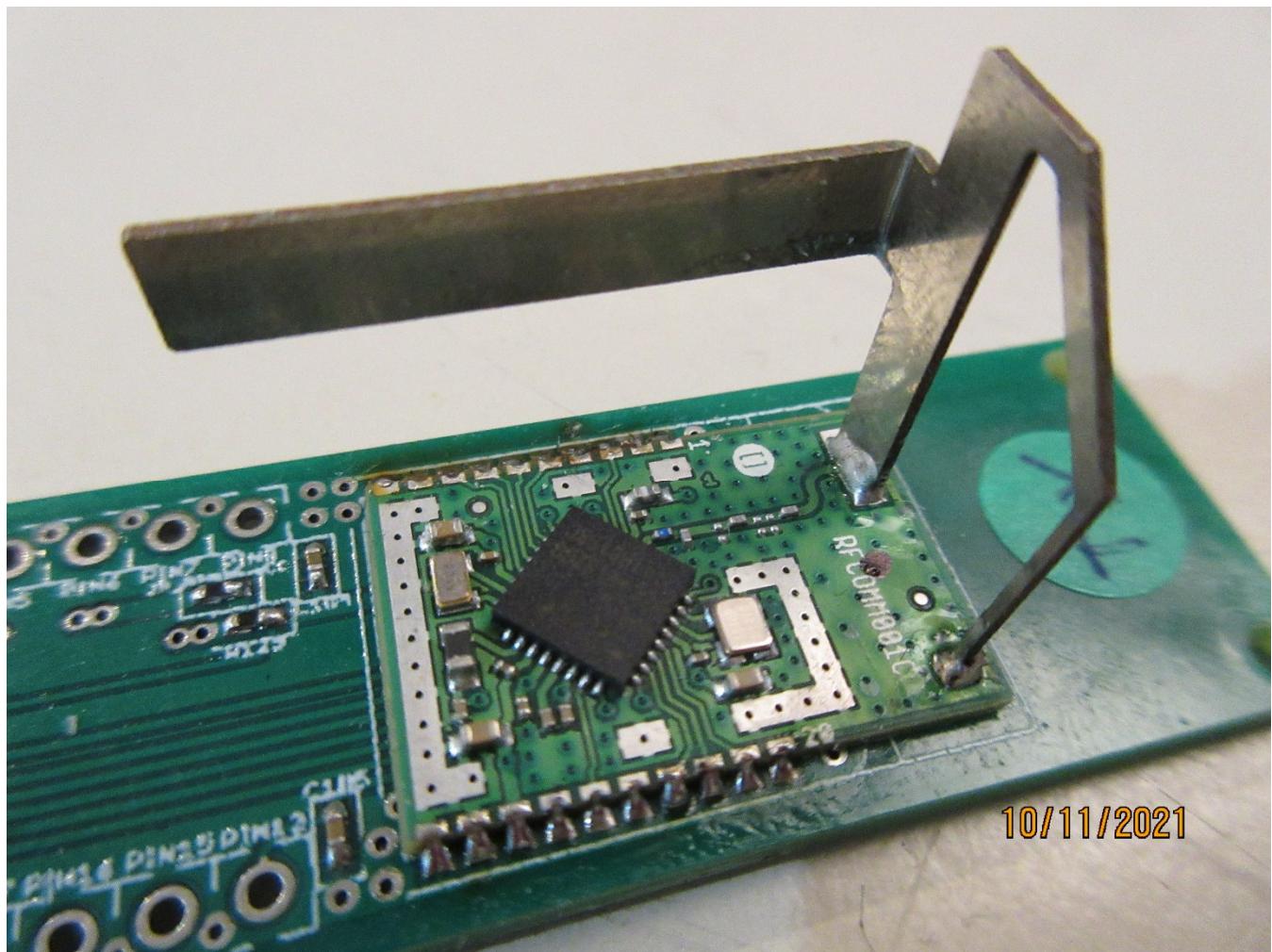
Test report number:
INE-AT/FG-21/190

Page: 5 of 5

Date: 12.11.2021

Appendix 2 Photodocumentation

Description: Module view #1


Division:
Industry & Energy

Department: FG

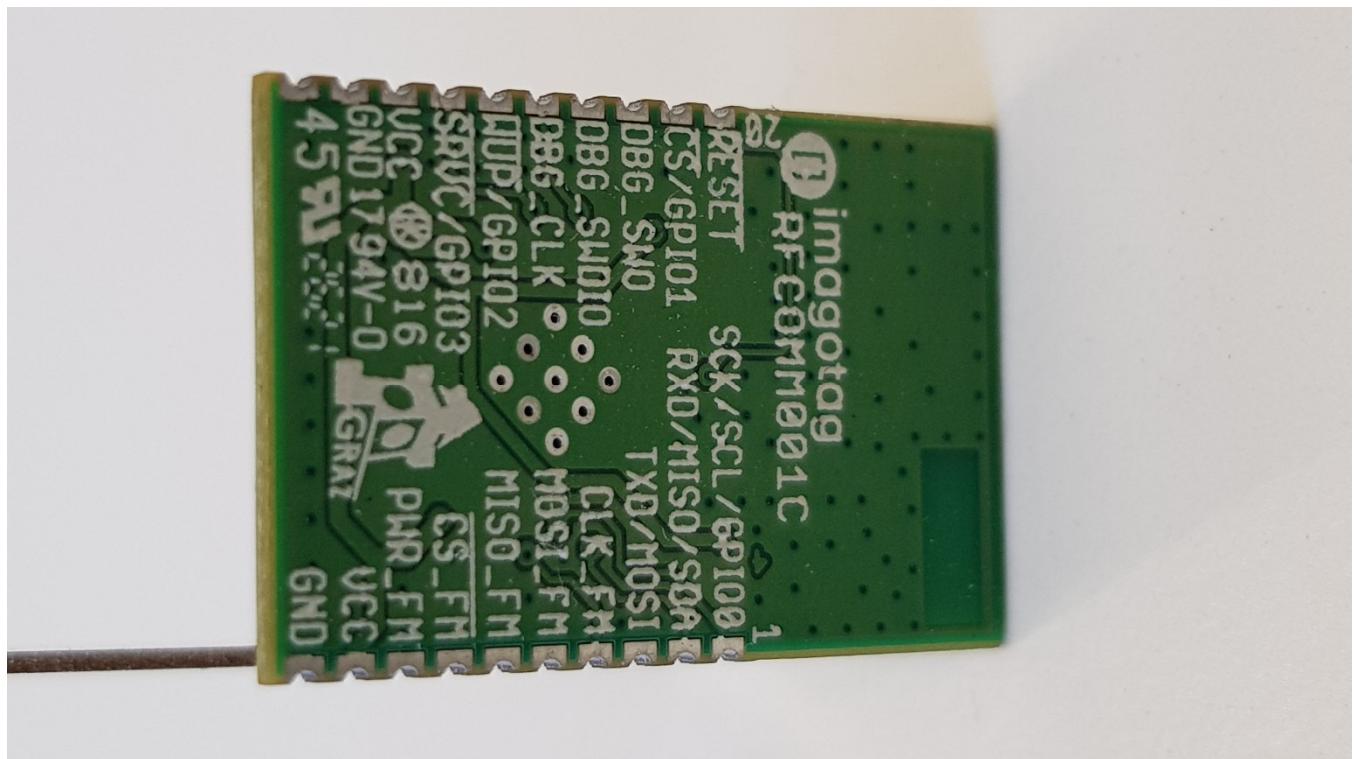
Test report reference:
INE-AT/FG-21/190

Page: 1 of 9

Date: 12.11.2021

Appendix 2 Photodocumentation

Division:
Industry & Energy


Description: Module view #2

Department: FG

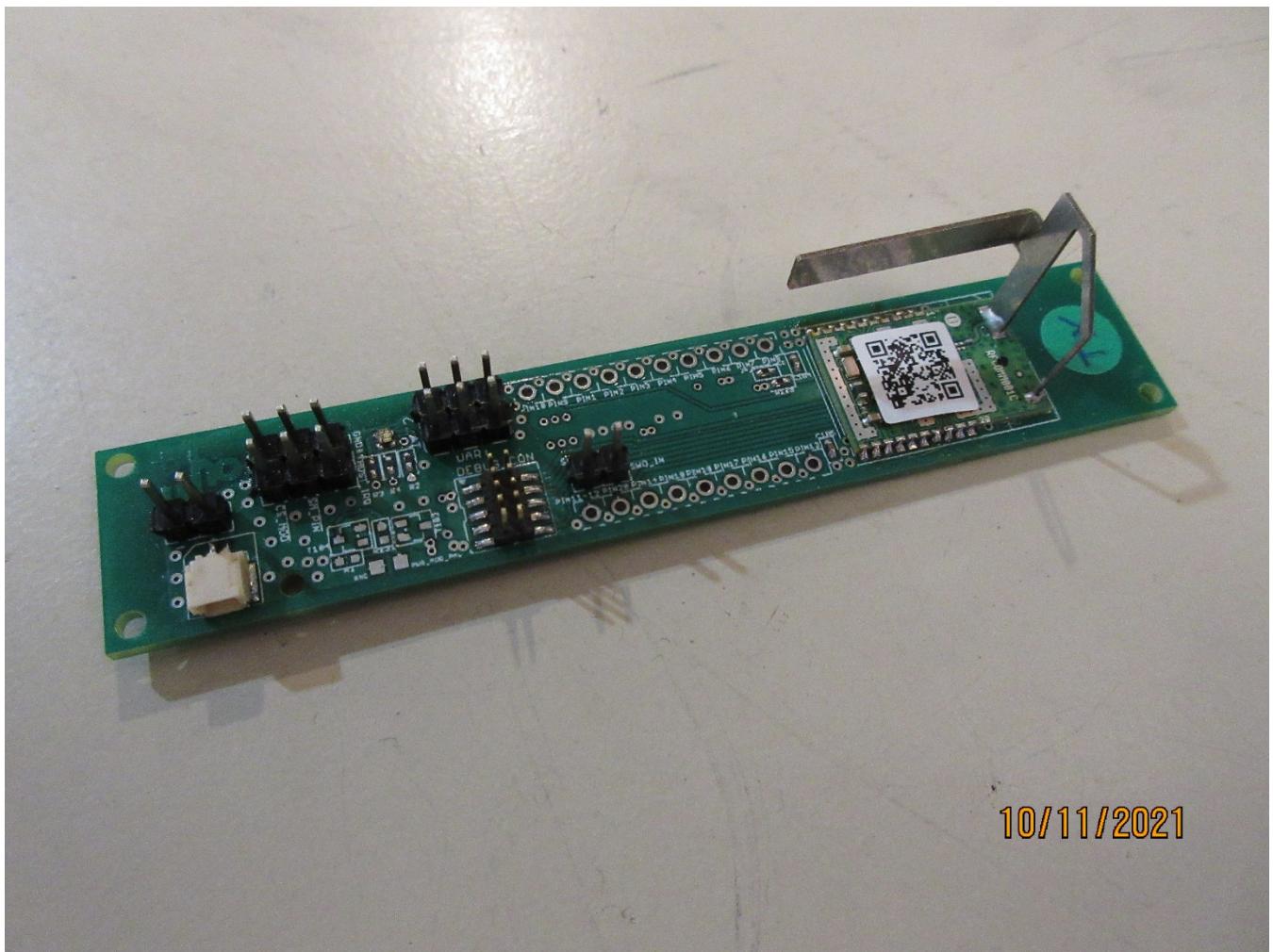
Test report reference:
INE-AT/FG-21/190

Page: 2 of 9

Date: 12.11.2021

Appendix 2 Photodocumentation

Description: Test setup view #1


Division:
Industry & Energy

Department: FG

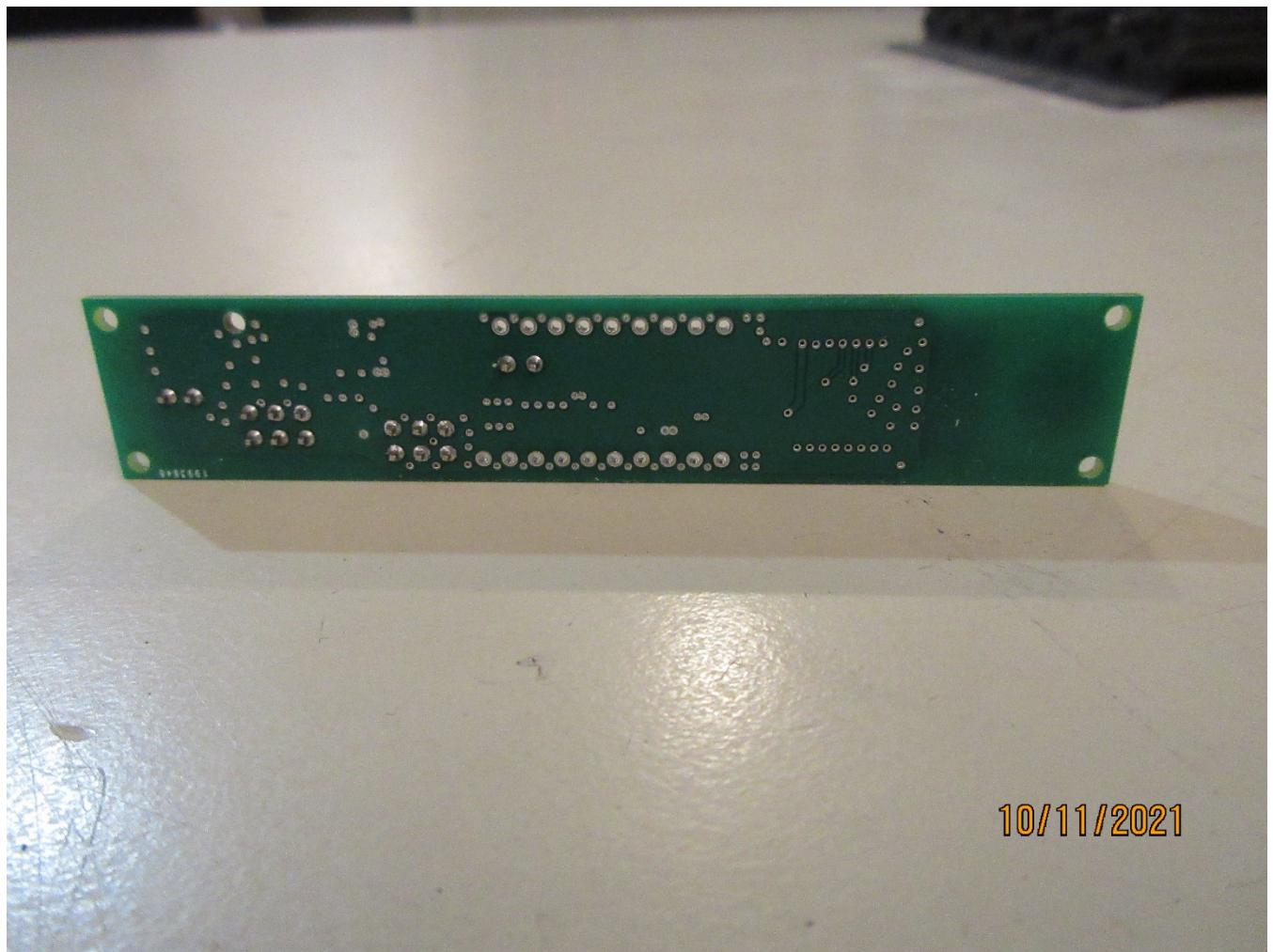
Test report reference:
INE-AT/FG-21/190

Page: 3 of 9

Date: 12.11.2021

Appendix 2 Photodocumentation

Description: Test setup view #2


Division:
Industry & Energy

Department: FG

Test report reference:
INE-AT/FG-21/190

Page: 4 of 9

Date: 12.11.2021

Appendix 2 Photodocumentation

Division:
Industry & Energy

Department: FG

Description: Test setup emissions up to 30 MHz

Test report reference:
INE-AT/FG-21/190

Page: 5 of 9

Date: 12.11.2021

Appendix 2 Photodocumentation

Division:
Industry & Energy

Description: Test setup emissions 30-200 MHz

Department: FG

Test report reference:
INE-AT/FG-21/190

Page: 6 of 9

Date: 12.11.2021

Appendix 2 Photodocumentation

Description: Test setup emissions 200-1000 MHz

Division:
Industry & Energy

Department: FG

Test report reference:
INE-AT/FG-21/190

Page: 7 of 9

Date: 12.11.2021

Appendix 2 Photodocumentation

Division:
Industry & Energy

Department: FG

Description: Test setup emissions above 1 GHz view
#1

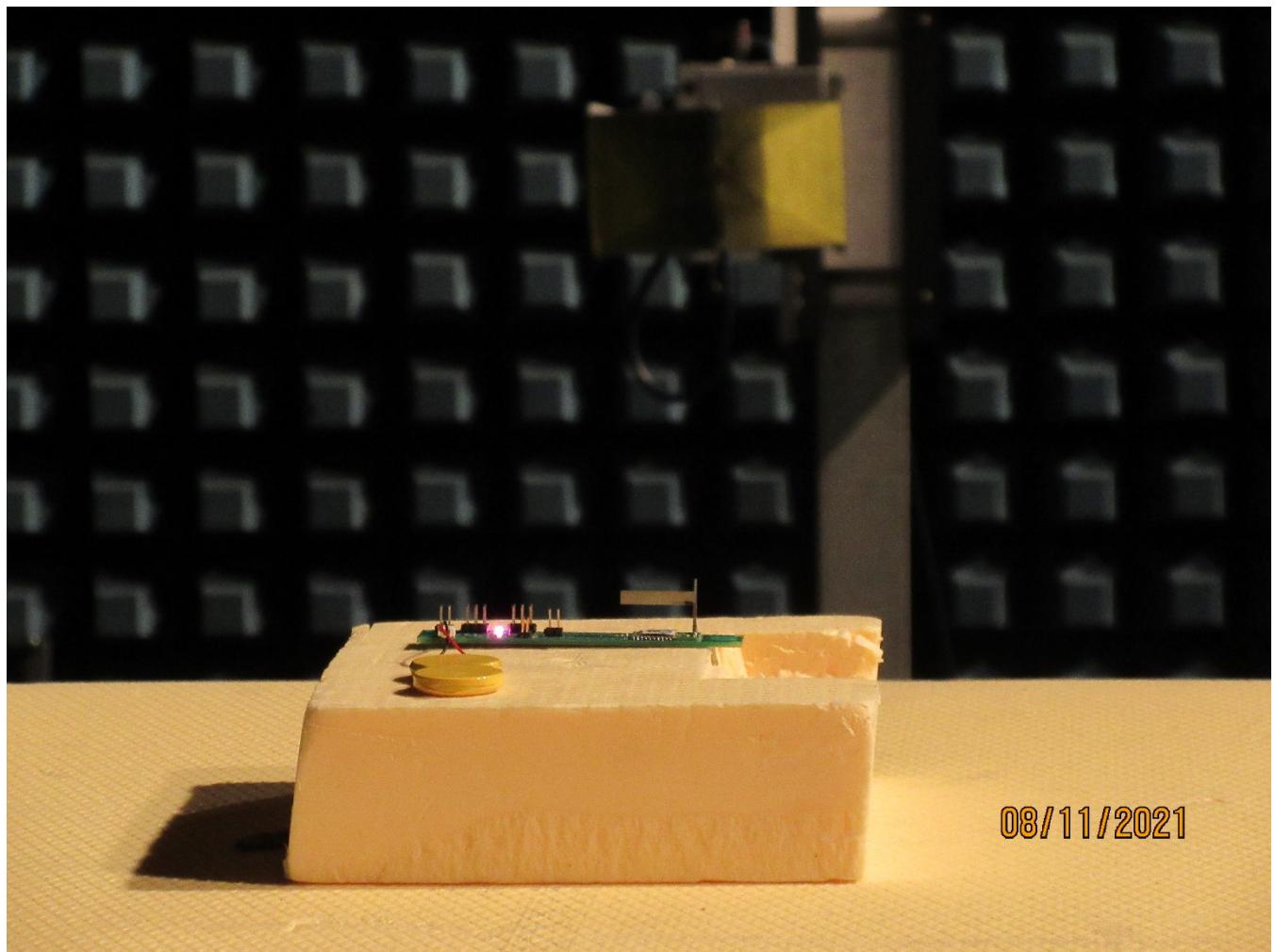
Test report reference:
INE-AT/FG-21/190

Page: 8 of 9

Date: 12.11.2021

Appendix 2 Photodocumentation

Division:
Industry & Energy


Department: FG

Description: Test setup emissions above 1 GHz view
#2

Test report reference:
INE-AT/FG-21/190

Page: 9 of 9

Date: 12.11.2021

--- END OF TEST REPORT ---