

Applicant:	PDi Digital GmbH Kalsdorfer Strasse 6 A – 8072 Fennitz-Mellach		
Tested Product:	Electronic shelf labelling system		
Product Name:	Sepioo D12.2 B NB-IoT Outdoor		
Model:	PDNB-1220-C		
FCC ID:	2A3HY-PDNB-1220-C		
IC ID:	27854-PDNB1220C		
Manufacturer:	PDi Digital GmbH Kalsdorfer Strasse 6 A – 8072 Fennitz-Mellach		
Output power	0,36 mW eirp	power supply:	3 VDC via Battery
	0,13 mW eirp		
Frequency range:	2402 - 2480 MHz	Channel separation:	2 MHz
	2401 - 2481 MHz		1 MHz / 2 MHz
Accredited Standards:	FCC: 47 CFR Parts 15, 22, 24, 27 and 90 (eCFR 6.11.2023); RSS-130 Issue 2; RSS-132 Issue 4; RSS-133 Issue 4, February 2008; RSS-139 Issue 4, September 2022; RSS-247 Issue 3, August 2023; ANSI C63.10-2013		

Testing Laboratory,
 Inspection Body,
 Certification Body,
 Calibration Laboratory,
 Verifizierungsstelle

Notified Body 0408
 IC 2932K-1

Non-executive
 Board of Directors:
 KR DI Johann
 Marihart

Management:
 DI Dr. Stefan Haas
 Mag. Christoph
 Wenninger

Registered Office:
 Deutschstrasse 10
 1230 Vienna/Austria

Branch Offices:
 www.tuv.at/standorte

Company Register
 Court / - Number:
 Vienna / FN 288476 f

Bank Details:
 IBAN
 AT131200052949001066
 BIC BKAUATWW

VAT ATU63240488
 DVR 3002476

TÜV AUSTRIA GMBH
Test laboratory for EMC

Ing. Andreas Malek
 examined by / Testing
 Laboratory
 TÜV AUSTRIA GMBH

05.12.2023

Ing. Michael Emminger
 approved by / Testing
 Laboratory
 TÜV AUSTRIA GMBH

A publication of this test report is only permitted literally.

Copying or reproduction of partial sections needs a written permission of
 TÜV AUSTRIA GMBH.

The results of this test report only refer to the provided equipment.

Contents

	Designation	PAGE
1.	Applicant	3
2.	Description of EUT	4
3.	Standards / Final result	5
4.	Test results	
	List of measurements for Bluetooth Low Energy (BLE)	
4.1	Test object data	6
4.2	Number of channels and channel spacing	7
4.3	6 dB Bandwidth	8 – 10
4.4	99% dB Bandwidth	11 – 13
4.5	Maximum Peak RF Power Output	14
4.6	Power Spectral Density	15 – 17
4.7	Emissions in restricted bands	18 – 32
	List of measurements for BLE/Quupa	
4.8	Test object data	33
4.9	Number of channels and channel spacing	34
4.10	6 dB Bandwidth	35 – 37
4.11	99% dB Bandwidth	38 – 40
4.12	Maximum Peak RF Power Output	41
4.13	Power Spectral Density	42 – 44
4.14	Emissions in restricted bands	45 – 59
4.15	RF Exposure	60 – 62
Appendix	Designation	PAGES
1	Test equipment used	5
2	Photodocumentation	11

1. Applicant

Company: PDi Digital GmbH

Department: /

Address: A – 8072 Fernitz-Mellach; Kalsdorfer Strasse 6

Contact person: Mr. Klaus Niederl

EUT received on: 6.11.2023

Tests were performed on: 6.11. to 10.11. and on 23.11.2023

2. Description of EUT

EUT:	Electronic shelf labelling system
Product Name:	Sepioo D12.2 B NB-IoT Outdoor
Model:	PDNB-1220-C
Serial Number:	prototype
Manufacturer:	PDi Digital GmbH
Description:	PDi Digital GmbH provided the following configuration for the measurements: Prototype with special firmware for continuous transmission
Operating mode:	The measurements were carried out at the following running states: test-firmware running, transmitting continuously
Technical data EUT:	Rated voltage: 3VDC Rated frequency: DC Mains voltage during the tests: 3VDC
Climatic conditions in the emc laboratory:	Relative humidity: 33% Temperature: 23°C

3. Standards / Final result

Name	Title	Deviation	Result
FCC: 47 CFR Part 15 (eCFR 6.11.2023)	Radio Frequency Devices	none	OK
FCC: 47 CFR Part 22 (eCFR 6.11.2023)	Public Mobile Services	*)	OK
FCC: 47 CFR Part 24 (eCFR 6.11.2023)	Personal Communications Services	*)	OK
FCC: 47 CFR Part 27 (eCFR 6.11.2023)	Miscellaneous Wireless Communications Services	*)	OK
FCC: 47 CFR Part 90 (eCFR 6.11.2023)	Private Land Mobile Radio Services	*)	OK
RSS-130 Issue 2, February 2019	Equipment Operating in the Frequency Bands 617-652 MHz, 663-698 MHz, 698-756 MHz and 777-787 MHz	*)	OK
RSS-132 Issue 4, January 2023	Cellular Systems Operating in the Bands 824-849 MHz and 869-894 MHz	*)	OK
RSS-133 Issue 4, February 2008	2 GHz Personal Communications Service	*)	OK
RSS-139 Issue 4, September 2022	Advanced Wireless Services Equipment Operating in the Bands 1710-1780 MHz and 2110-2200 MHz	*)	OK
RSS-247 Issue 3, August 2023	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices	none	OK
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	none	OK

Result: Opinions and interpretation of testing laboratory
OK: EUT passed
NOK: EUT failed

*) Only out of band emissions for simultaneous transmission with module FCC ID: XMR2020BG95M2, IC: 10224A-2020BG95M2 were tested.

4. TEST RESULTS

4.1. TEST OBJECT DATA (Bluetooth Low Energy, BLE)

General EUT Description

The device is a display for electronic shelf labelling. The device is equipped with a passive NFC chip onboard which does not have its own rf generation. It works as tag and can also receive information from the NFC reader station. This device incorporates different communication protocols. The device uses Bluetooth Low Energy (BLE) protocol and Quuppa protocol which are generated by separate chips, but use a common antenna. Simultaneous transmission between BLE and Quuppa is not possible. The first part of this test report is for Bluetooth Low Energy (BLE) Protocol, the second part includes measurements for Quuppa protocol. Further, the device contains a licensed module (FCC ID: XMR2020BG95M2, IC: 10224A-2020BG95M2). Simultaneous transmission with BLE and Quuppa is possible and is considered in the respective subsections.

2.1033 (c) Technical description

2.1033 (4) Type of emission: 1M00F1D – Channel spacing 2 MHz

2.1033 (5) Frequency range: 2402 to 2480 MHz (channel center frequencies).

2.1033 (6) Power range and Controls: The maximum peak output power is 0,36 mW and there is no power regulation.

2.1033 (7) Maximum output power rating: 0,36 mW.

2.1033 (8) DC Voltage and Current: 3V DC

RSS-135 This standard does not apply to:

- 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Worst case Spurious Emissions: 38,44 dB μ V/m Average at 12199,25 MHz.

Tests were performed from November 6th to November 23rd 2023.

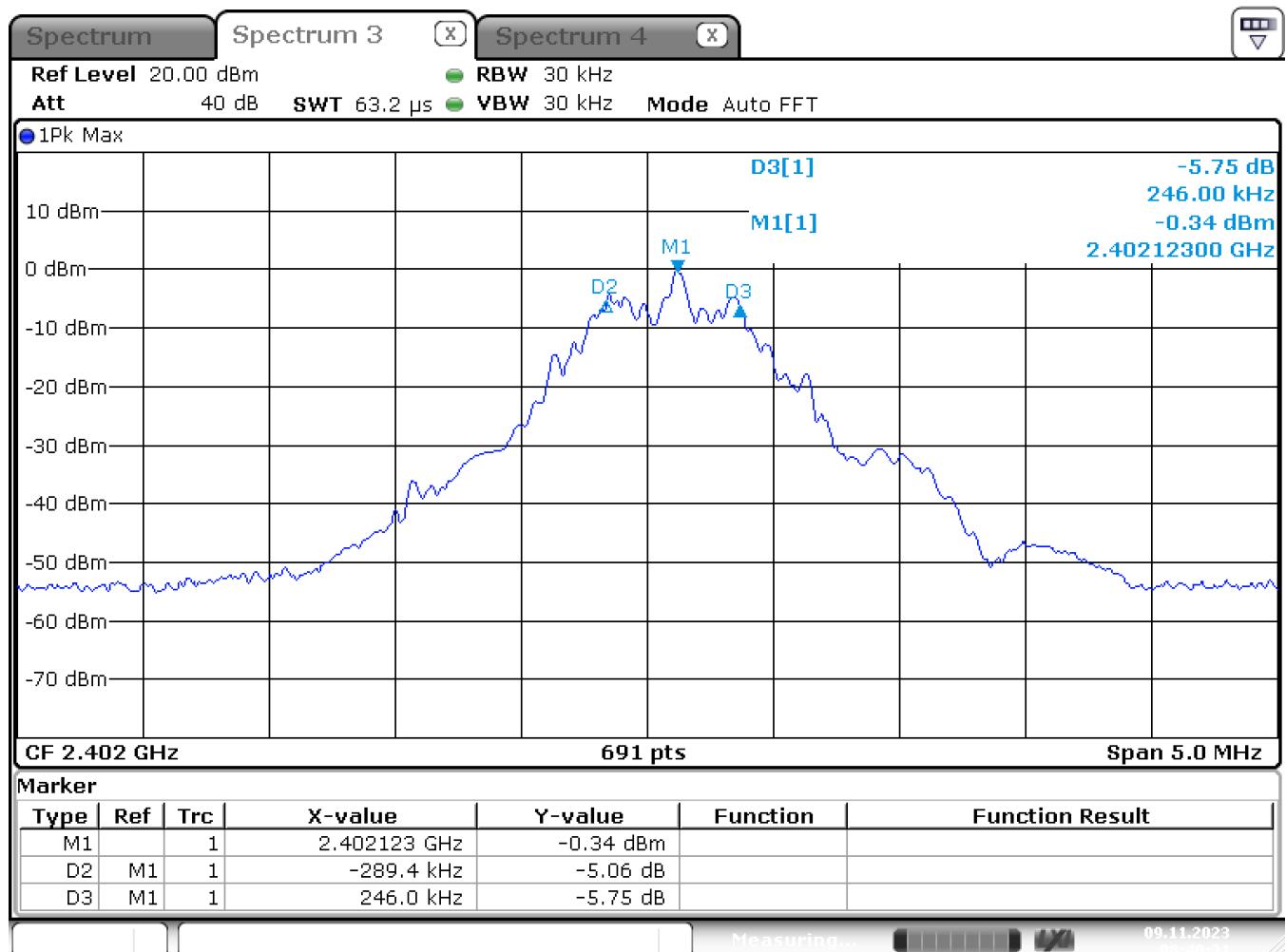
4.2. Number of channels and channel spacing

§ 2.1033

Conducted Measurement

Rated output power: 0,36 mW

There are 40 Channels used, starting at 2402 till 2480 MHz each separated by 2 MHz channel spacing.


Test Equipment used: N/A

4.3. 6 dB Bandwidth

§ 15.247(a)(2)
5.2.a

Conducted Measurement

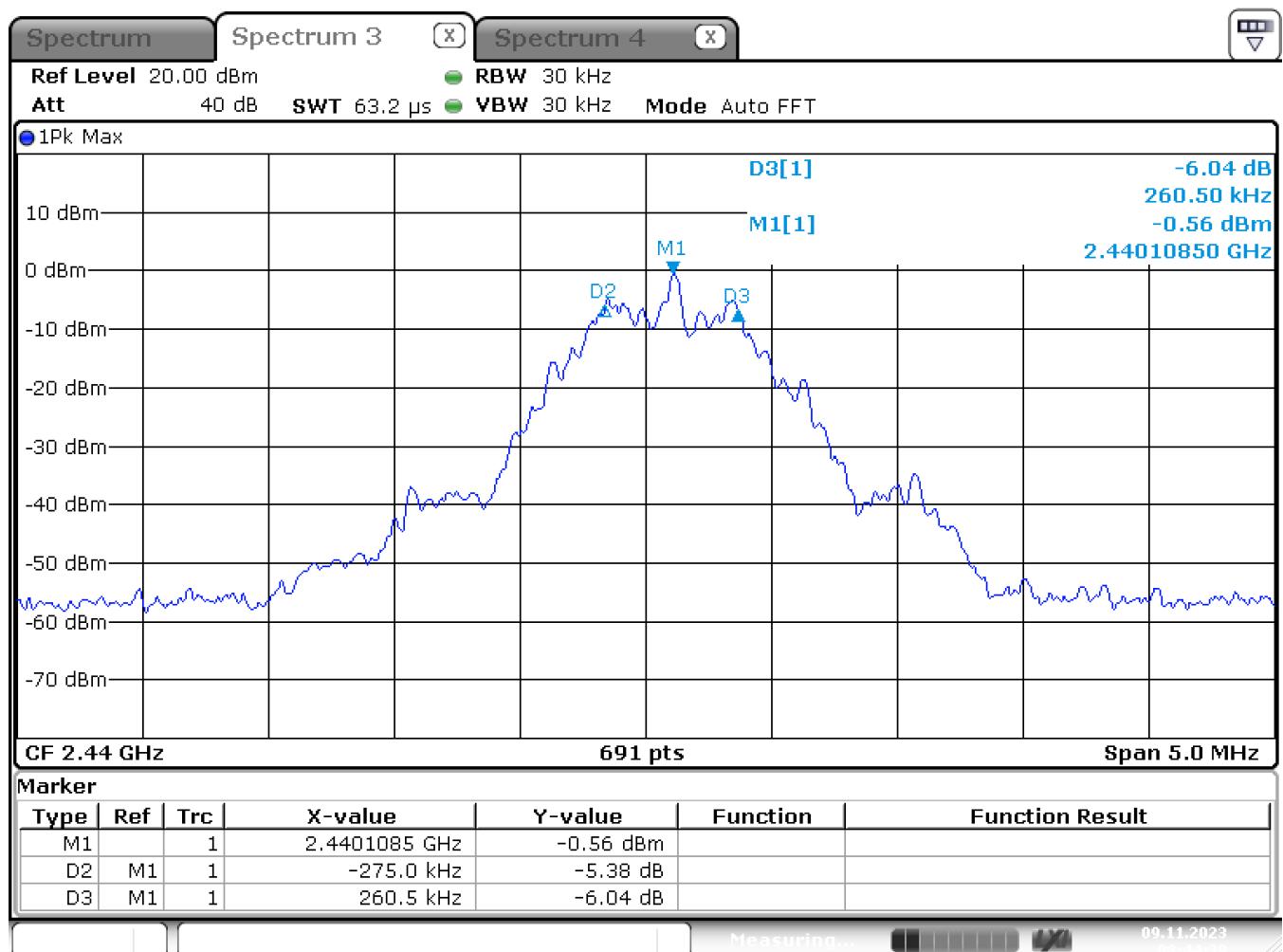
Rated output power: 0,36 mW Channel 0 (2402 MHz center frequency)

Date: 9.NOV.2023 08:40:32

6dB Bandwidth: 535,4 kHz

LIMIT **SUBCLAUSE 15.247(e) – 5.2.a)**

Under normal test conditons	6 dB Bandwidth at least 500 kHz
-----------------------------	---------------------------------


Test Equipment used: EMV-205;

6 dB Bandwidth

**§ 15.247(a)(2)
5.2.a**

Conducted Measurement

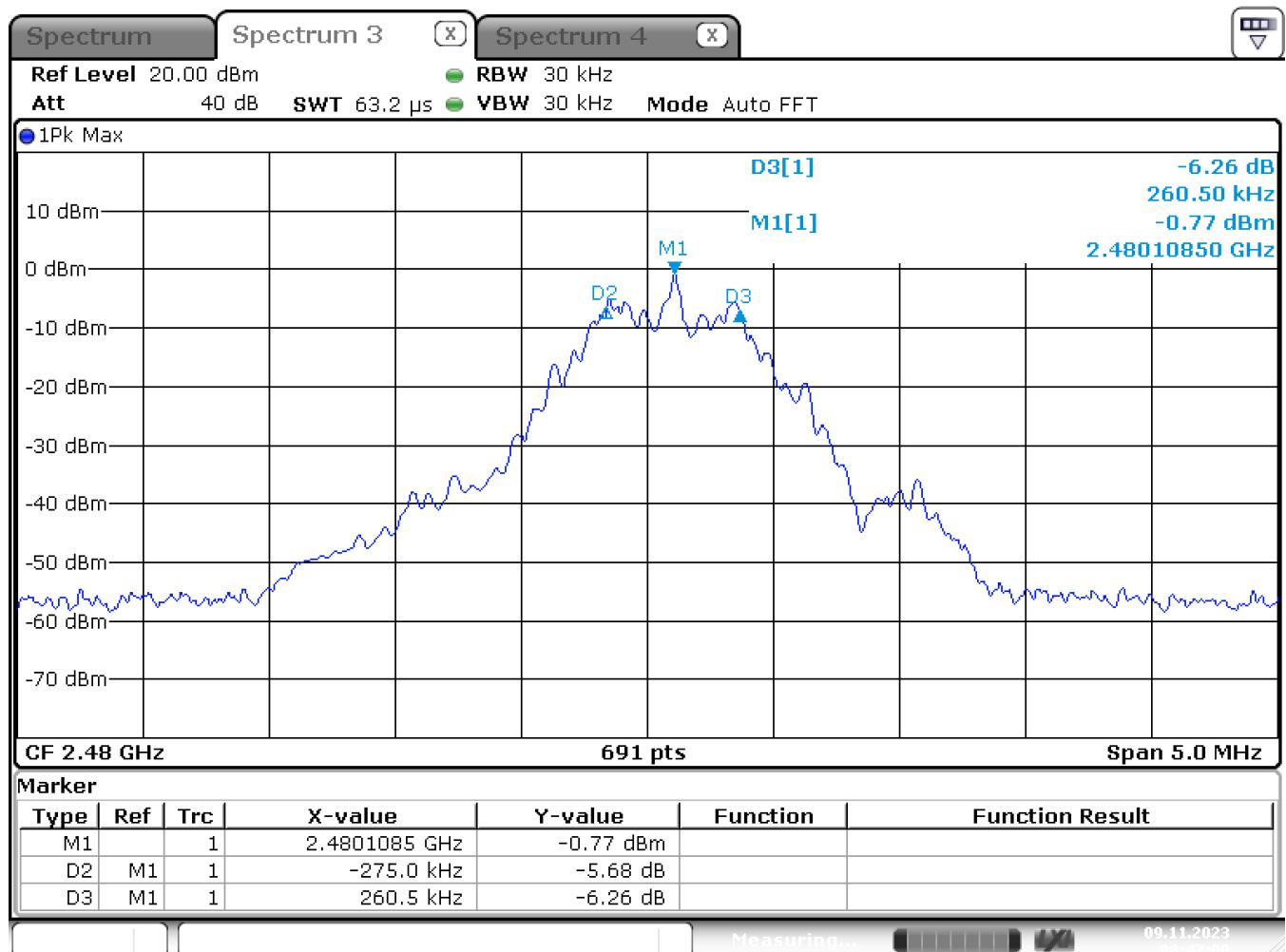
Rated output power: 0,36 mW Channel 19 (2440 MHz center frequency)

Date: 9.NOV.2023 08:44:39

6dB Bandwidth: 535,5 kHz

LIMIT **SUBCLAUSE 15.247(e) – 5.2.a**

Under normal test conditons	6 dB Bandwidth at least 500 kHz
-----------------------------	---------------------------------


Test Equipment used: EMV-205;

6 dB Bandwidth

**§ 15.247(a)(2)
5.2.a**

Conducted Measurement

Rated output power: 0,36 mW Channel 39 (2480 MHz center frequency)

Date: 9.NOV.2023 08:47:00

6dB Bandwidth: 535,5 kHz

LIMIT **SUBCLAUSE 15.247(e) – 5.2.a**

Under normal test conditons	6 dB Bandwidth at least 500 kHz
-----------------------------	---------------------------------

Test Equipment used: EMV-205;

4.4. 99% Bandwidth

RSS 247

Conducted Measurement

Rated output power: 0,36 mW Channel 0 (2402 MHz center frequency)

Date: 9.NOV.2023 08:52:06

99% Bandwidth: 998,6 kHz

LIMIT RSS 247

None; for IC reporting purposes only


Test Equipment used: EMV-205;

99% Bandwidth

RSS 247

Conducted Measurement

Rated output power: 0,36 mW Channel 19 (2440 MHz center frequency)

Date: 9.NOV.2023 08:51:29

99% Bandwidth: 991,3 kHz

LIMIT **RSS 247**

None; for IC reporting purposes only

Test Equipment used:EMV-205;

99% Bandwidth

RSS 247

Conducted Measurement

Rated output power: 0,36 mW Channel 39 (2480 MHz center frequency)

Date: 9.NOV.2023 08:49:24

99% Bandwidth: 984,1 kHz

LIMIT **RSS 247**

None; for IC reporting purposes only

Test Equipment used: EMV-205;

4.5. Maximum Peak RF Power Output

§ 15.247(b)(3)
5.4.d

Conducted Measurement

Rated output power: 0,36 mW

Test conditions		Transmitter power (mW)		
		2402 MHz	2440 MHz	2480 MHz
T _{nom} (23) °C	V _{nom} (3) V	1,04	0,95	0,91
Measurement uncertainty		± 0,75 dB		

Radiated Measurement

Rated output power: 0,36 mW

Test conditions		Transmitter power (mW) EIRP		
		2402 MHz	2440 MHz	2480 MHz
T _{nom} (23) °C	V _{nom} (3) V	0,36	0,26	0,13
Measurement uncertainty		± 2 dB		

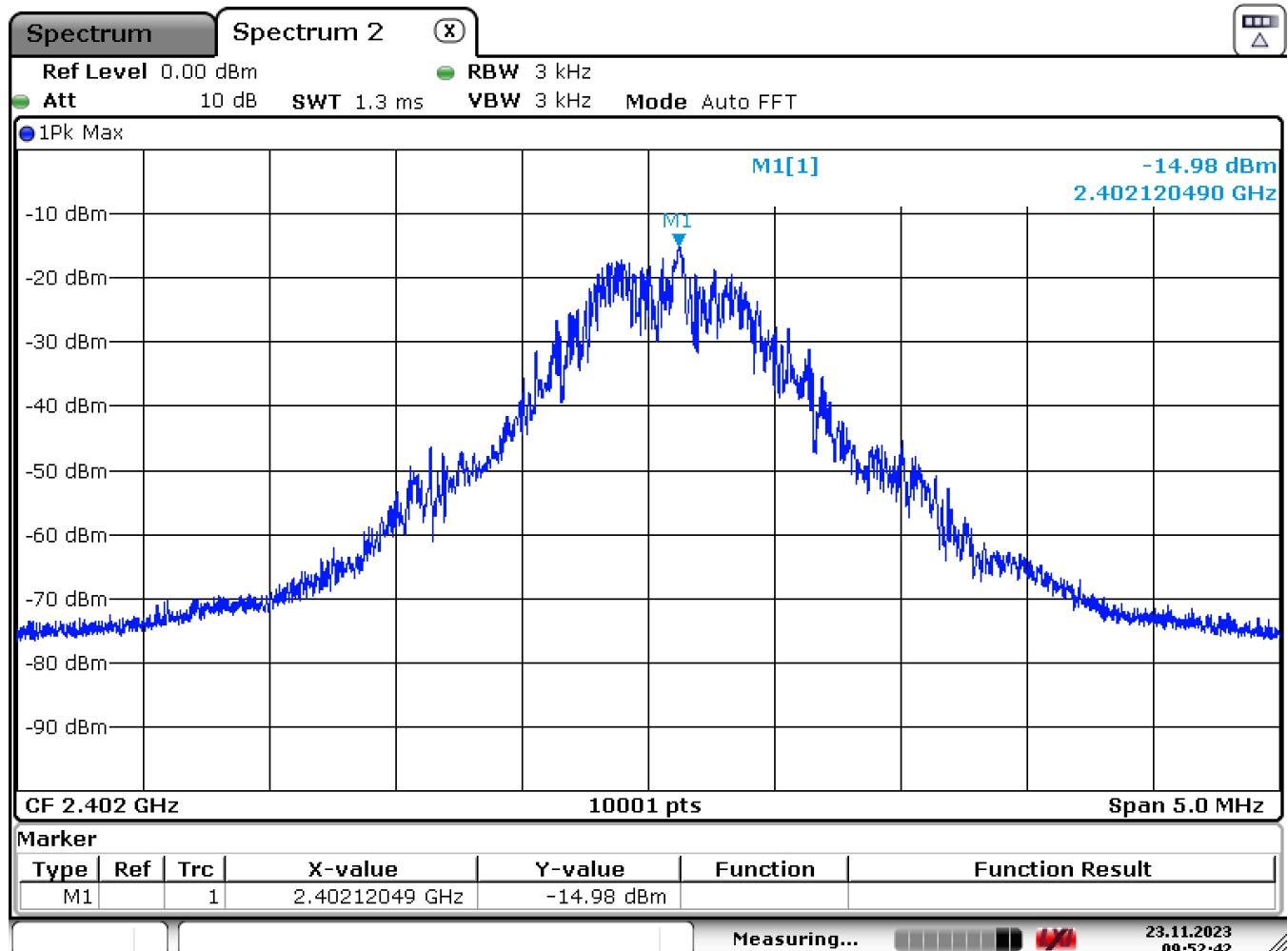
Maximum Gain derived from EIRP and conducted measurement:

		Maximum Gain (dBi)		
Test condition		2402 MHz	2440 MHz	2480 MHz
T _{nom} 23 °C	V _{nom} (3)V	-4,55	-5,58	-8,38

LIMIT

SUBCLAUSE 15.247(b)(3) – 5.4.4

Under normal test conditons	1W conducted (4W eirp)
-----------------------------	------------------------


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-139; NT-207/1; EMV-205

4.6. Power spectral density

§ 15.247(e)
5.2.b

Conducted Measurement

Rated output power: 0,36 mW Channel 0 (2402 MHz center frequency)

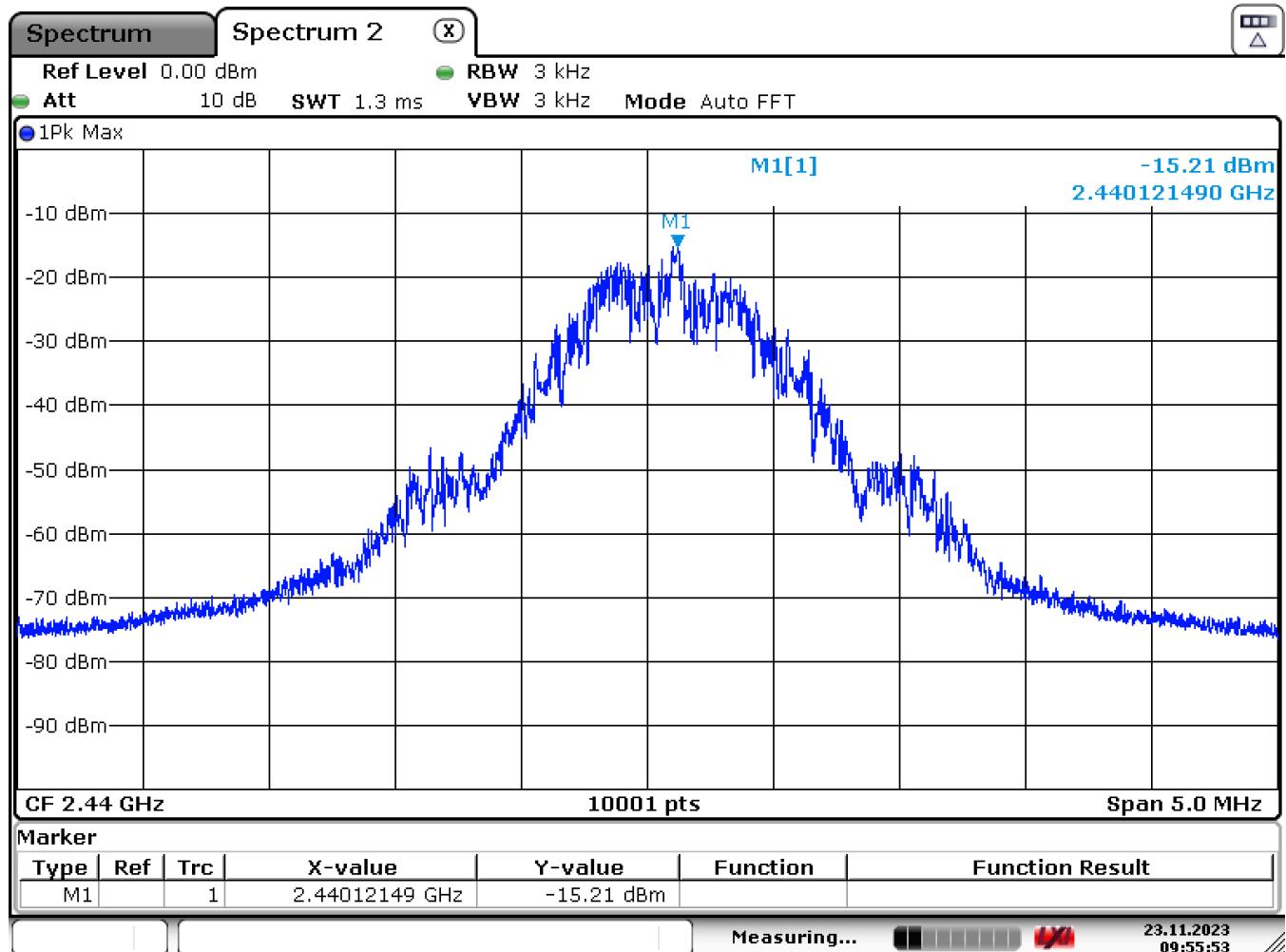
Date: 23.NOV.2023 09:52:42

Power Spectral density: -14,98 dBm @ 2402,12 MHz

LIMIT

SUBCLAUSE 15.247(e) – 5.2 b)

Under normal test conditons	+8dBm in any 3 kHz band
-----------------------------	-------------------------


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-139; NT-207/1;

Power spectral density

**§ 15.247(e)
5.2.b**

Conducted Measurement

Rated output power: 0,36 mW Channel 19 (2440 MHz center frequency)

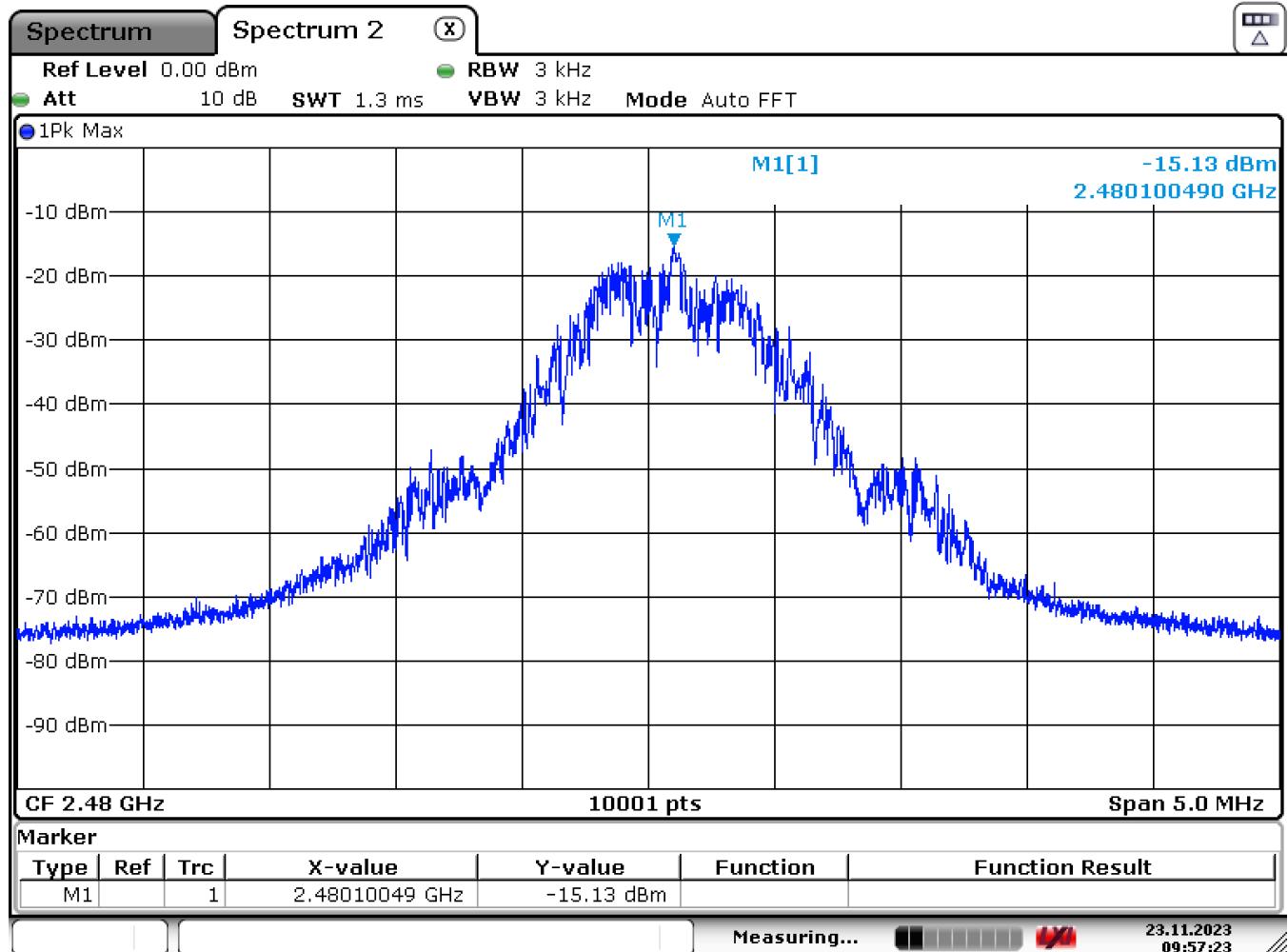
Date: 23.NOV.2023 09:55:53

Power Spectral density: -15,21 dBm @ 2440,12 MHz

LIMIT

SUBCLAUSE 15.247(e) – 5.2 b)

Under normal test conditons	+8dBm in any 3 kHz band
-----------------------------	-------------------------


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-139; NT-207/1;

Power spectral density

**§ 15.247(e)
5.2.b**

Conducted Measurement

Rated output power: 0,36 mW Channel 39 (2480 MHz center frequency)

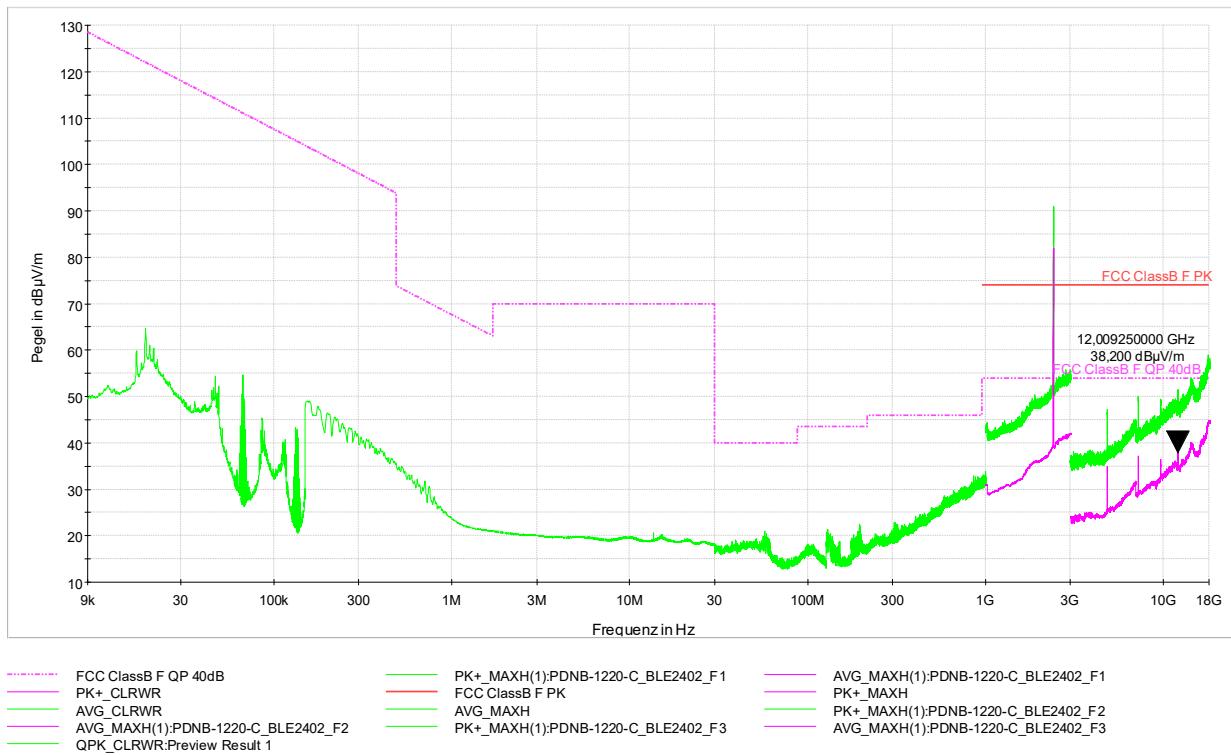
Date: 23.NOV.2023 09:57:23

Power Spectral density: -15,13 dBm @ 2480,10 MHz

LIMIT

SUBCLAUSE 15.247(e) – 5.2 b)

Under normal test conditons	+8dBm in any 3 kHz band
-----------------------------	-------------------------


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-139; NT-207/1;

4.7. Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 15.209(a)
RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line):

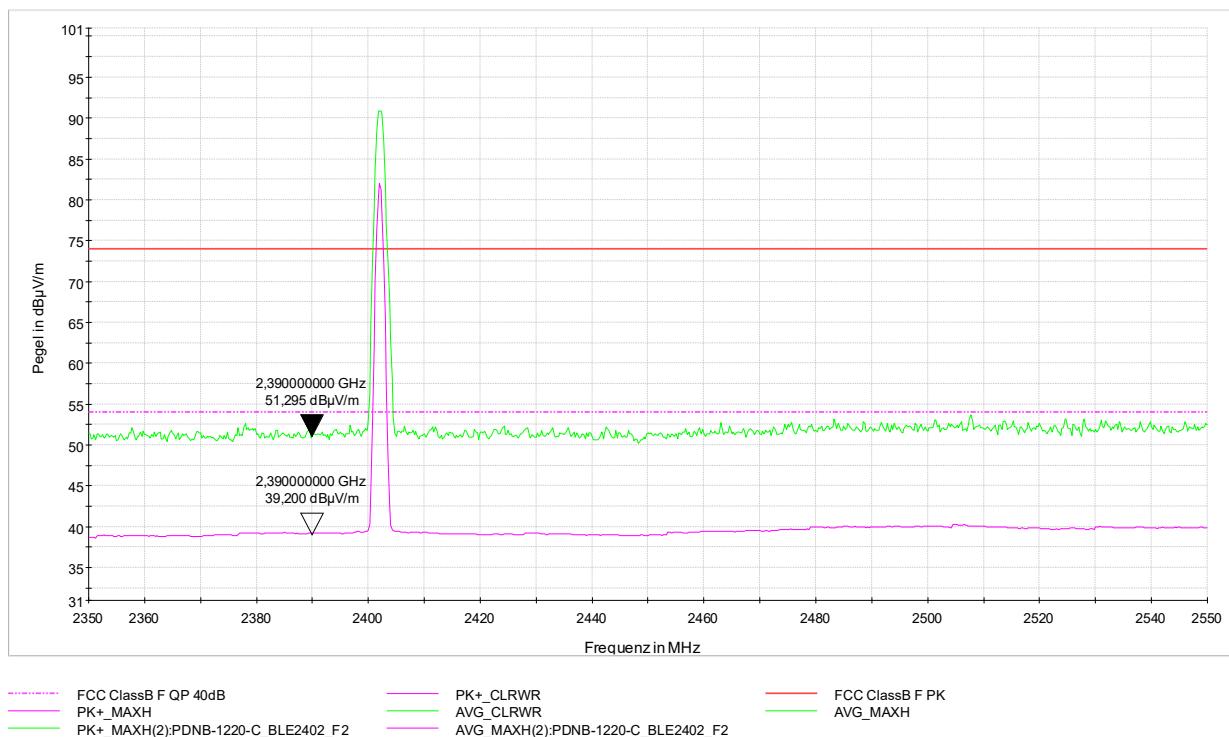
Setup: CH 0: 2402 MHz

Worst case emission: Average @ 12009,25 MHz: 38,20 dBμV/m

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen


Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands § 15.209(a)
Emissions falling within restricted frequency bands RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line): Band Edge requirement

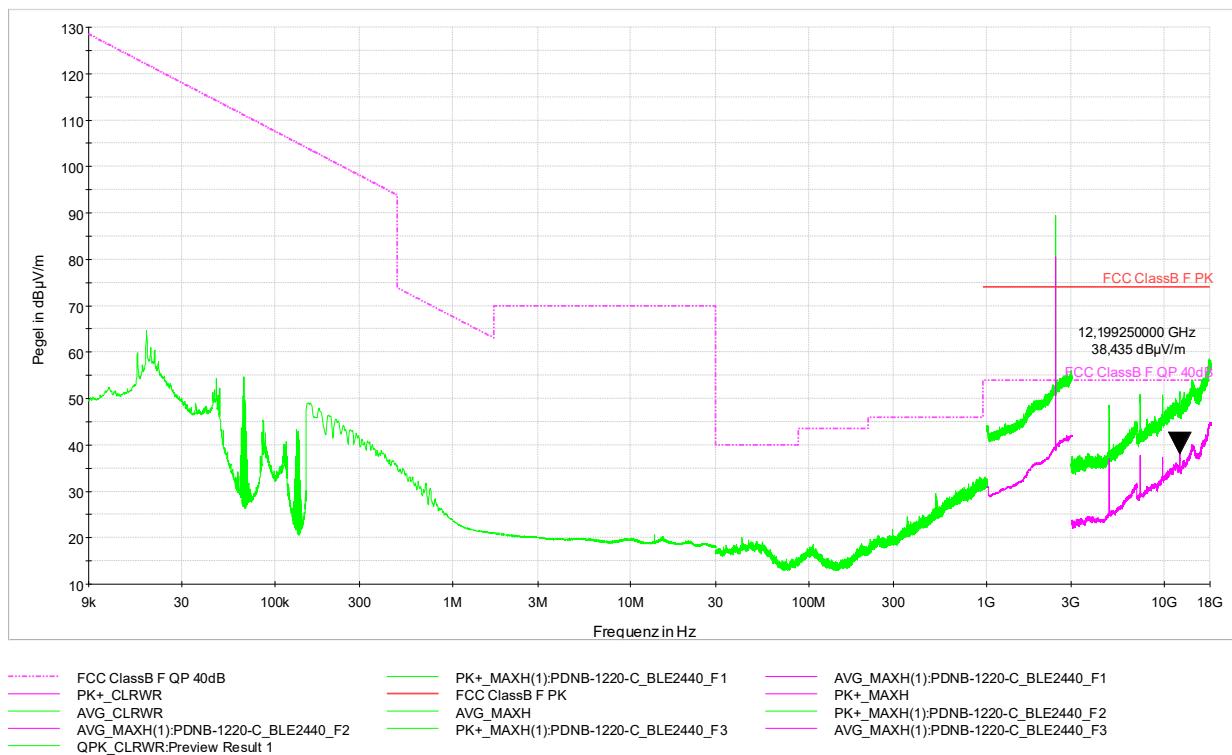
Setup: CH 0: 2402 MHz

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Band edges of the nearest restricted bands: 2390 MHz and 2483,5 MHz.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-131/1; NT-139; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 15.209(a)
RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line):

Setup: CH 19: 2440 MHz

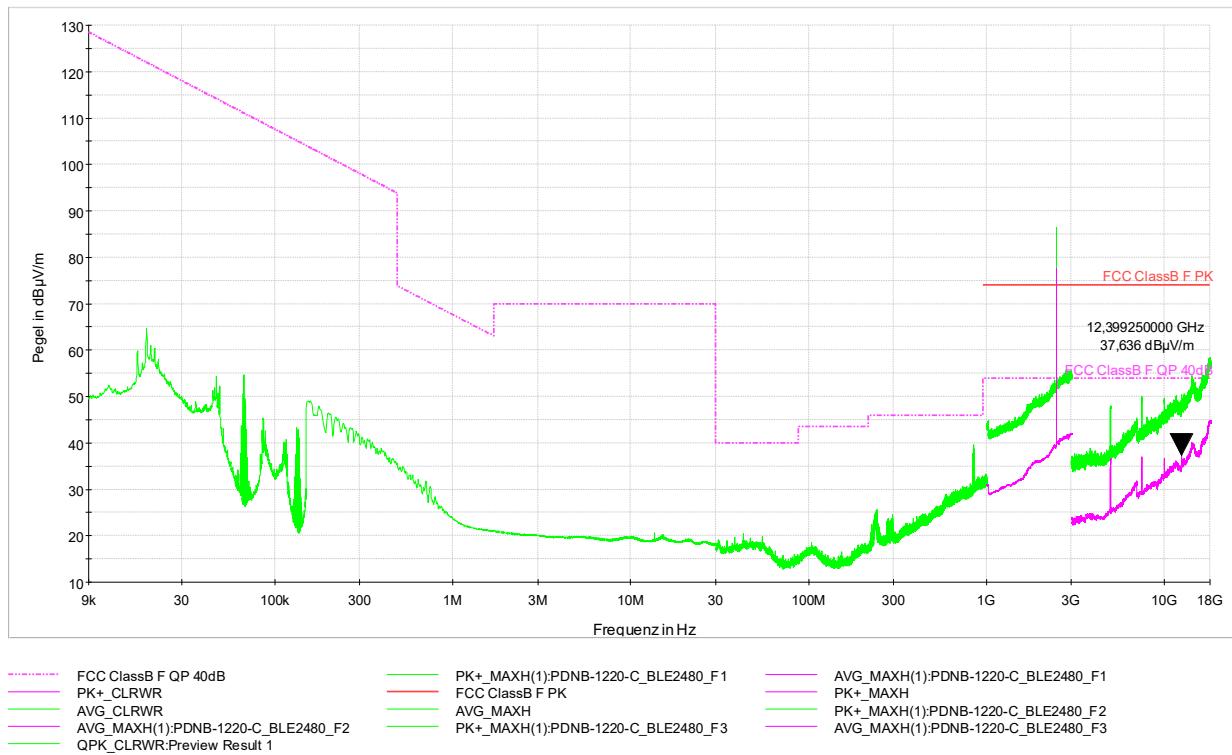
Worst case emission: Average @ 12199.25 MHz: 38.44 dBμV/m

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 15.209(a)
RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line):

Setup: CH 39: 2480 MHz

Worst case emission: Average @ 12399,25 MHz: 37,64 dBμV/m

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 15.209(a)
RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line): Band Edge requirement

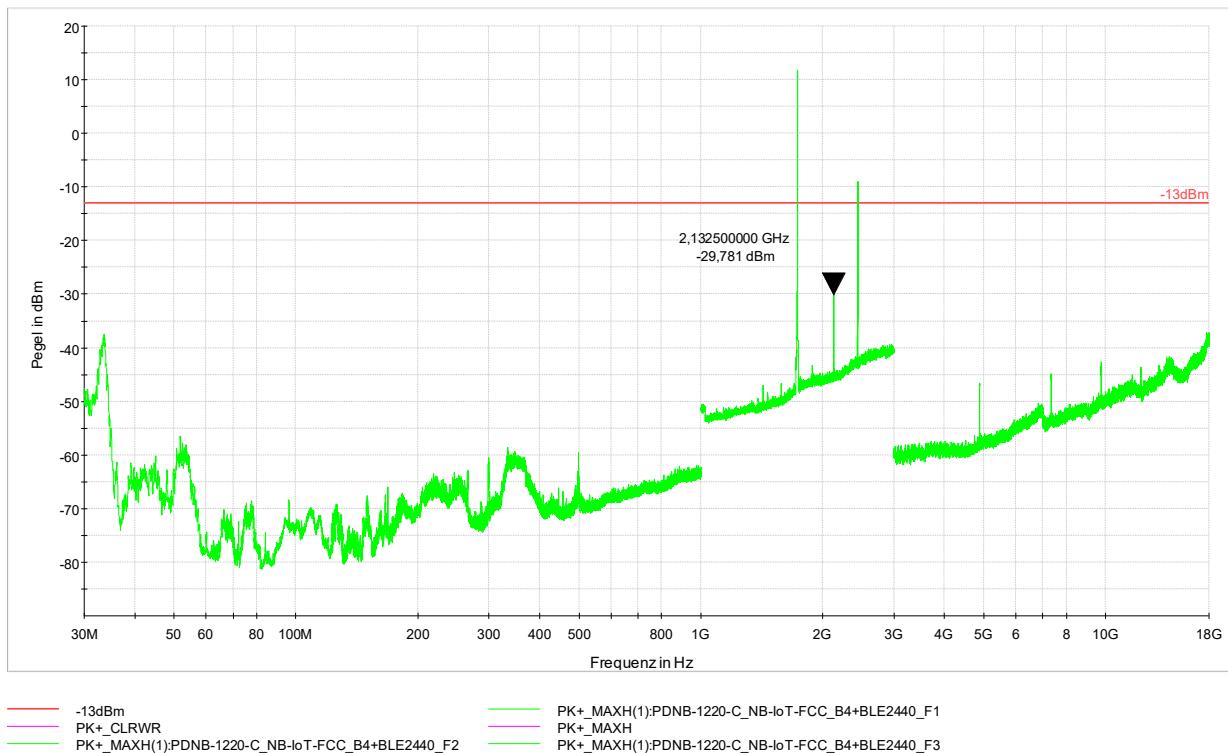
Setup: CH 39: 2480 MHz

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Band edges of the nearest restricted bands: 2390 MHz and 2483,5 MHz.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-131/1; NT-139; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 27.53
RSS-139

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission NB-IoT B4 / B66 and BLE 2440 MHz

Worst case emission: Peak @ 2132,5 MHz: -29,78 dBm

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 27.53(h)(1)**

General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10} (P)$ dB.

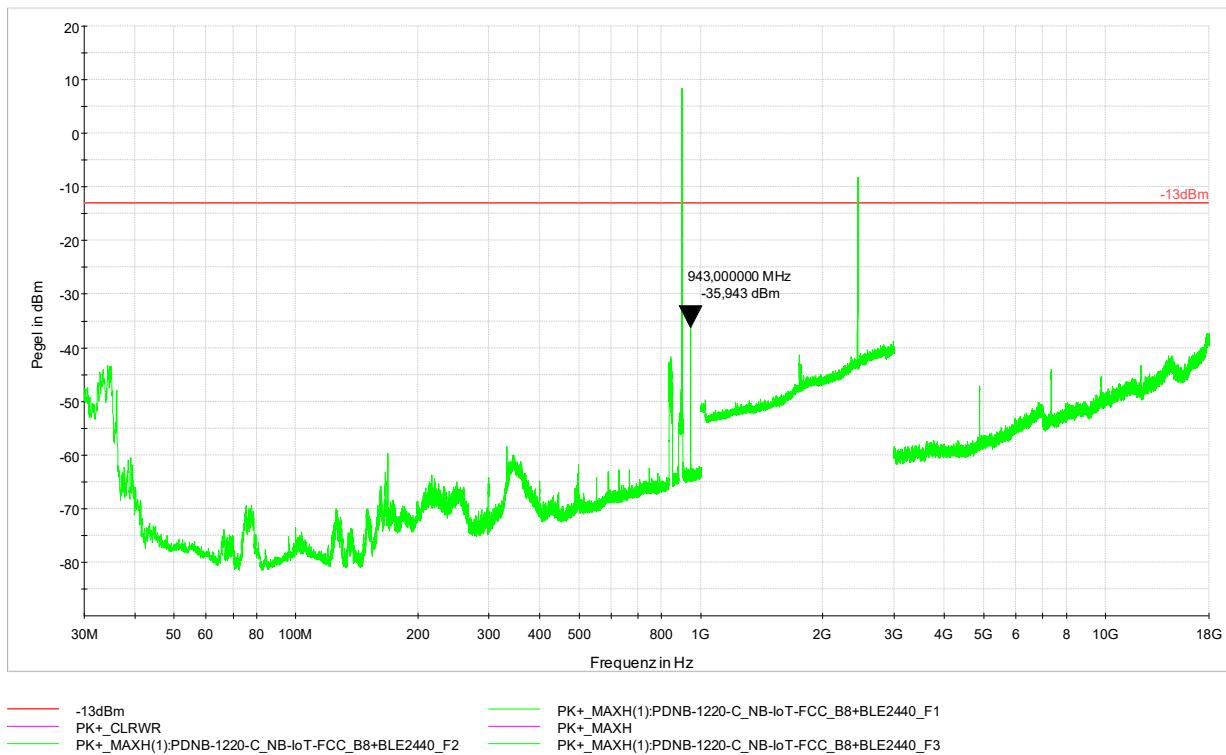
LIMIT **RSS-139 5.6**

Unwanted emissions shall be measured in terms of average values.

For all equipment, the TRP or total conducted power (sum of conducted power across all antenna connectors) of the unwanted emissions outside the frequency block or frequency block group shall not exceed the limits shown in table 6.

Table 6: Unwanted emission limits

Offset from the edge of the frequency block or frequency block group	Unwanted emission limits
1 MHz	-13 dBm/(1 % of Occupied Bandwidth)
> 1 MHz	-13 dBm/MHz


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 27.1509
RSS-130

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission NB-IoT B8 and BLE 2440 MHz

Worst case emission: Peak @ 943,0 MHz: -35,94 dBm

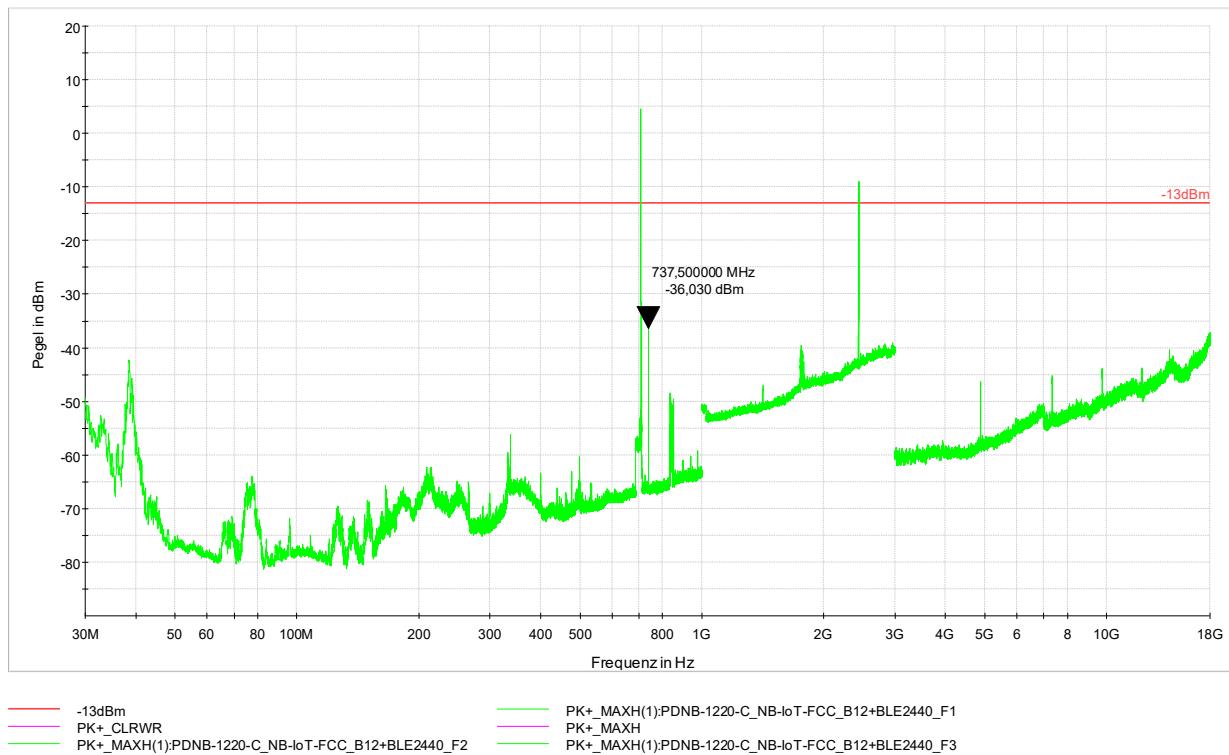
Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 27.1509(a)**

For 900 MHz broadband operations in 897.5–900.5 MHz band by at least $43 + 10 \log (P)$ dB.

LIMIT **RSS-130 4.7.1**

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands

**§ 27.53
RSS-130**

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission NB-IoT B12 / B85 and BLE 2440 MHz

Worst case emission: Peak @ 737,5 MHz: -36,03 dBm

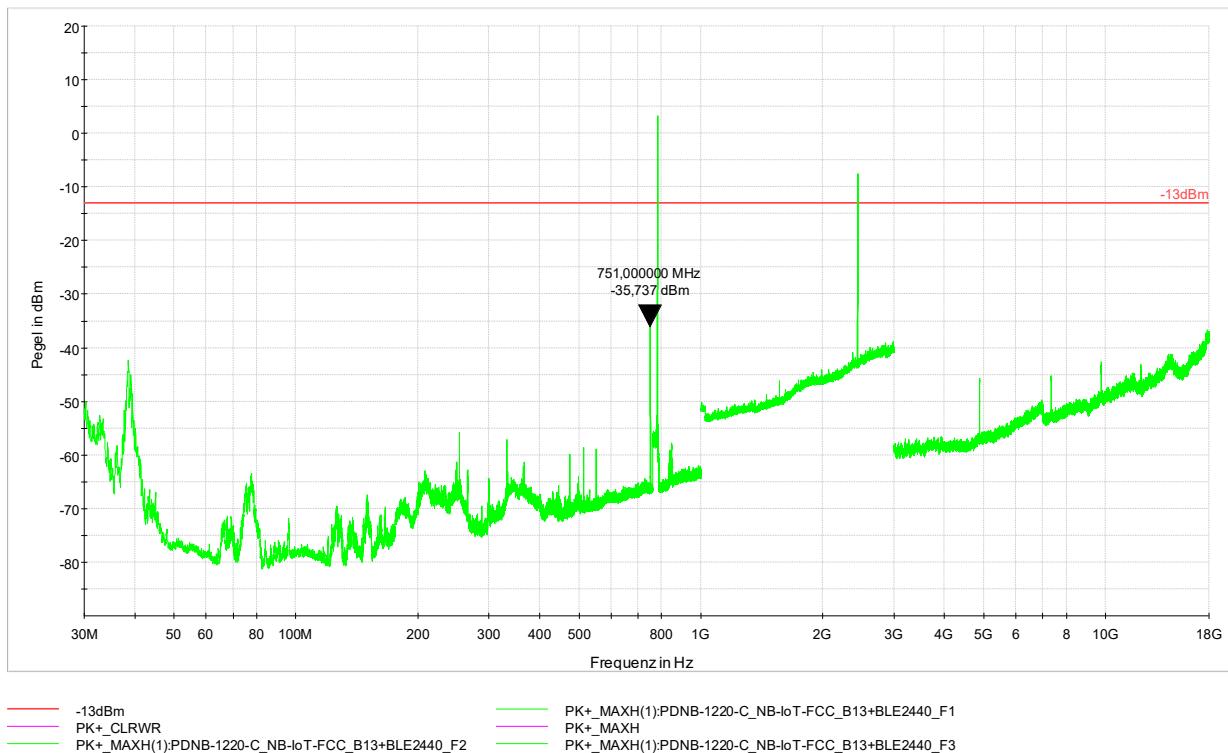
Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 27.53(g)**

For operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log (P)$ dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

LIMIT RSS-130 4.7.1

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 27.53
RSS-130

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission NB-IoT B13 and BLE 2440 MHz

Worst case emission: Peak @ 751.00 MHz: -35.74 dBm

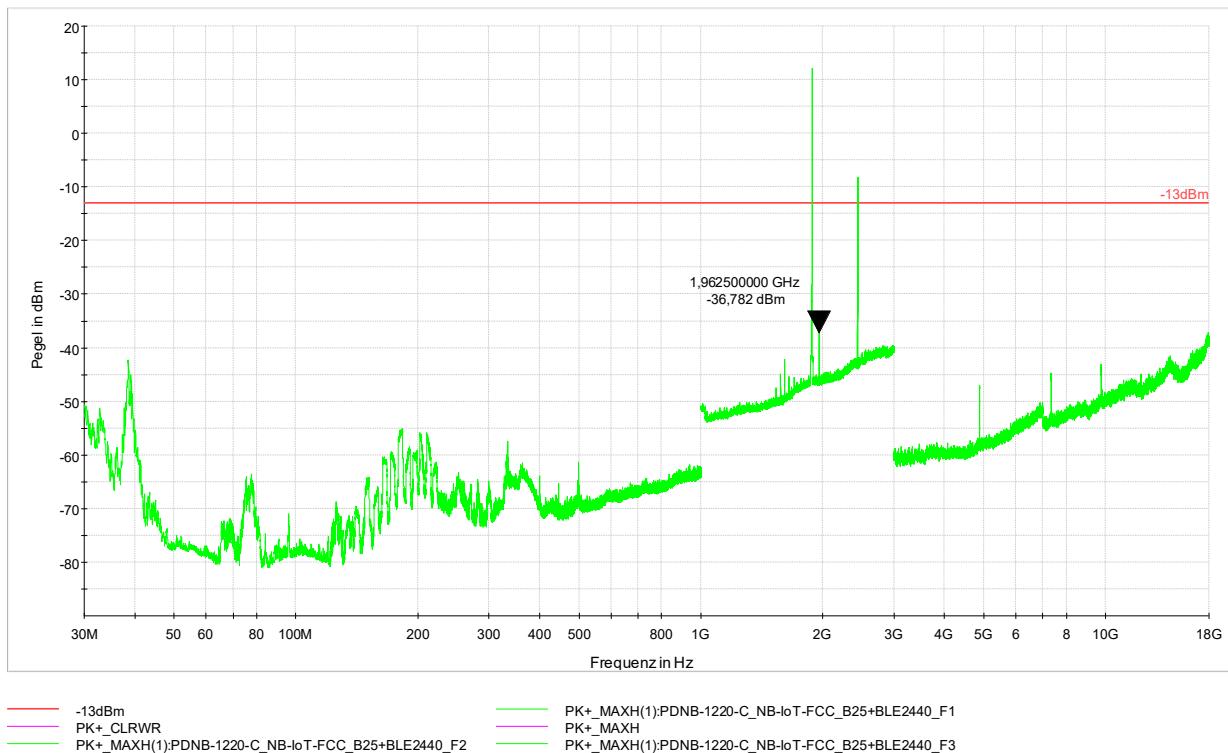
Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 27.53(c)(2)**

On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P)$ dB;

LIMIT **RSS-130 4.7.1**

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 24.238
RSS-133

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission NB-IoT B25 and BLE 2440 MHz

Worst case emission: Peak @ 1962,5 MHz: -36,78 dBm

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

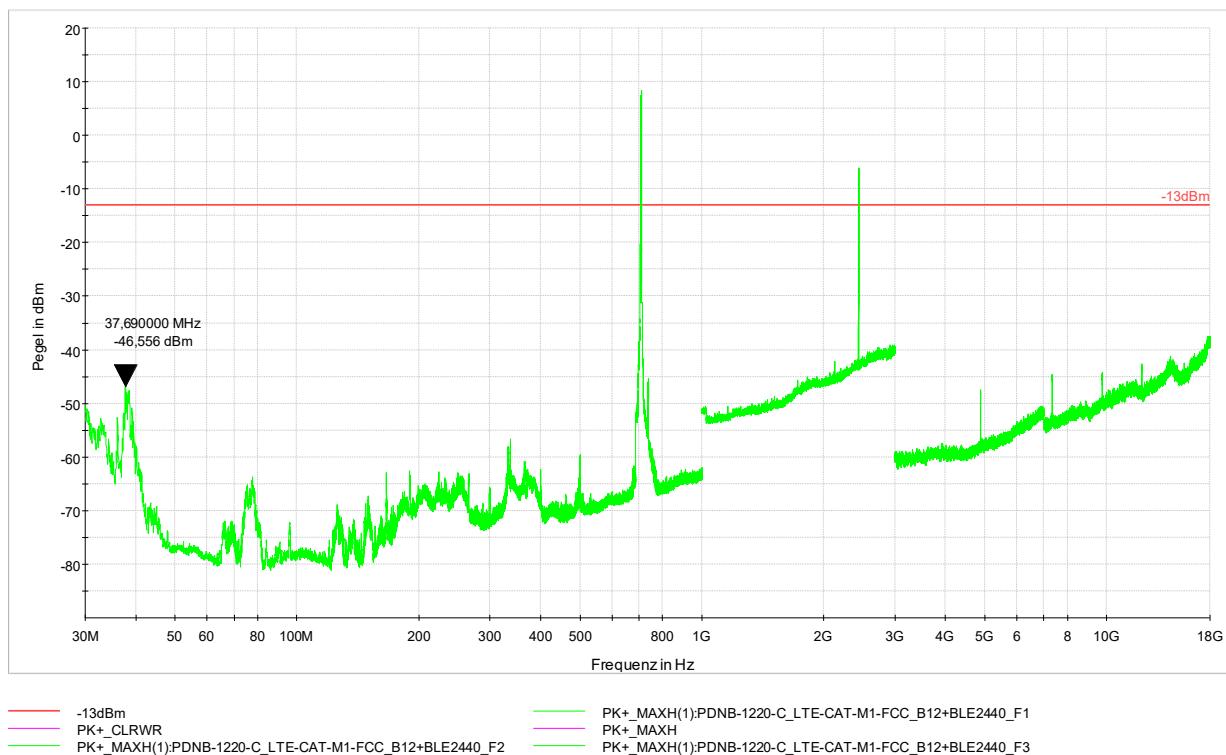
LIMIT **FCC Part 24.238(a)**

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

LIMIT **RSS-133 6.5.1(a)(i) and RSS-133 6.5.1(b)**

In the first 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the power of emissions per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB.

(b) After the first 1.0 MHz (for equipment that complies with (a)(i) of this subsection) or 1.5 MHz (for equipment that complies with (a)(ii) of this subsection), the power of emissions in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB. (Note: If the test result using 1% of the emission bandwidth is used, power integration over 1.0 MHz is required; alternatively, the spectrum analyzer resolution and video bandwidths can be increased to 1.0 MHz for this measurement).


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands

**§ 27.53
RSS-130**

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission LTE CAT-M1 B12 and BLE 2440 MHz

Worst case emission: Peak @ 37.7 MHz: -46.56 dBm

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT

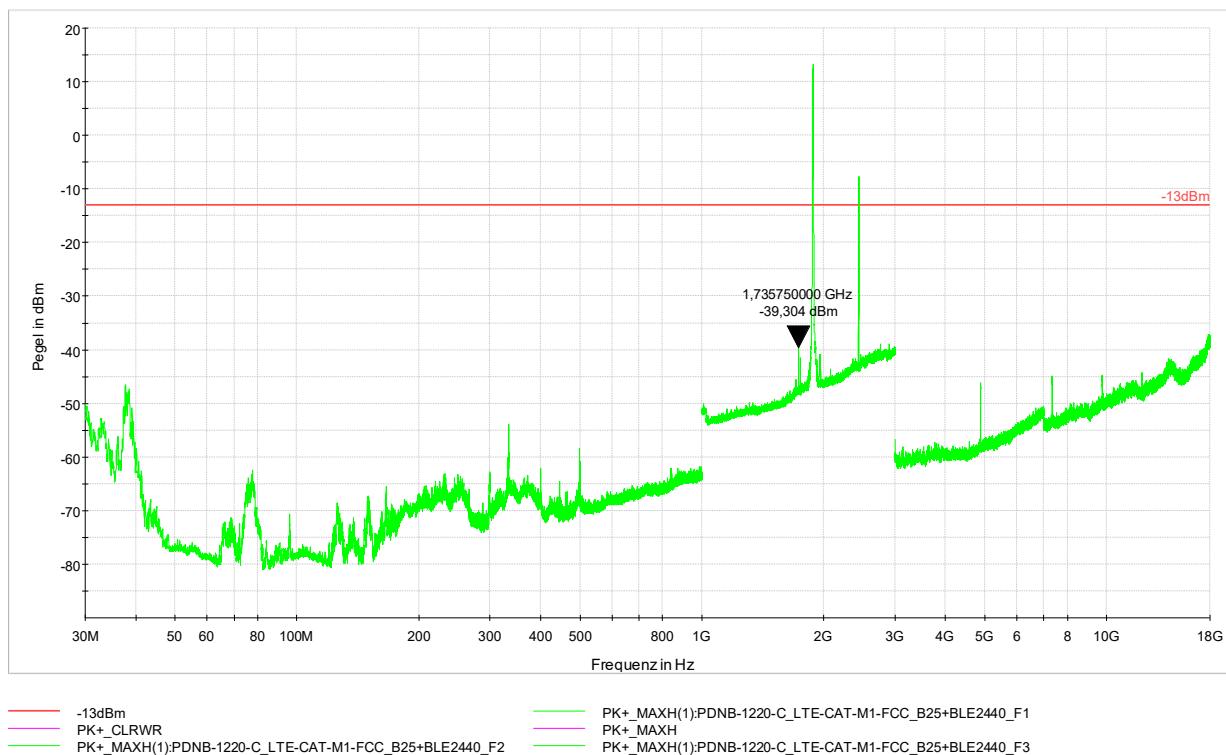
FCC Part 27.53(q)

For operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log (P)$ dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

LIMIT

RSS-130 4.7.1

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 24.238
RSS-133

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission LTE CAT-M1 B2/B25 and BLE 2440 MHz

Worst case emission: Peak @ 1735,8 MHz: -39,30 dBm

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

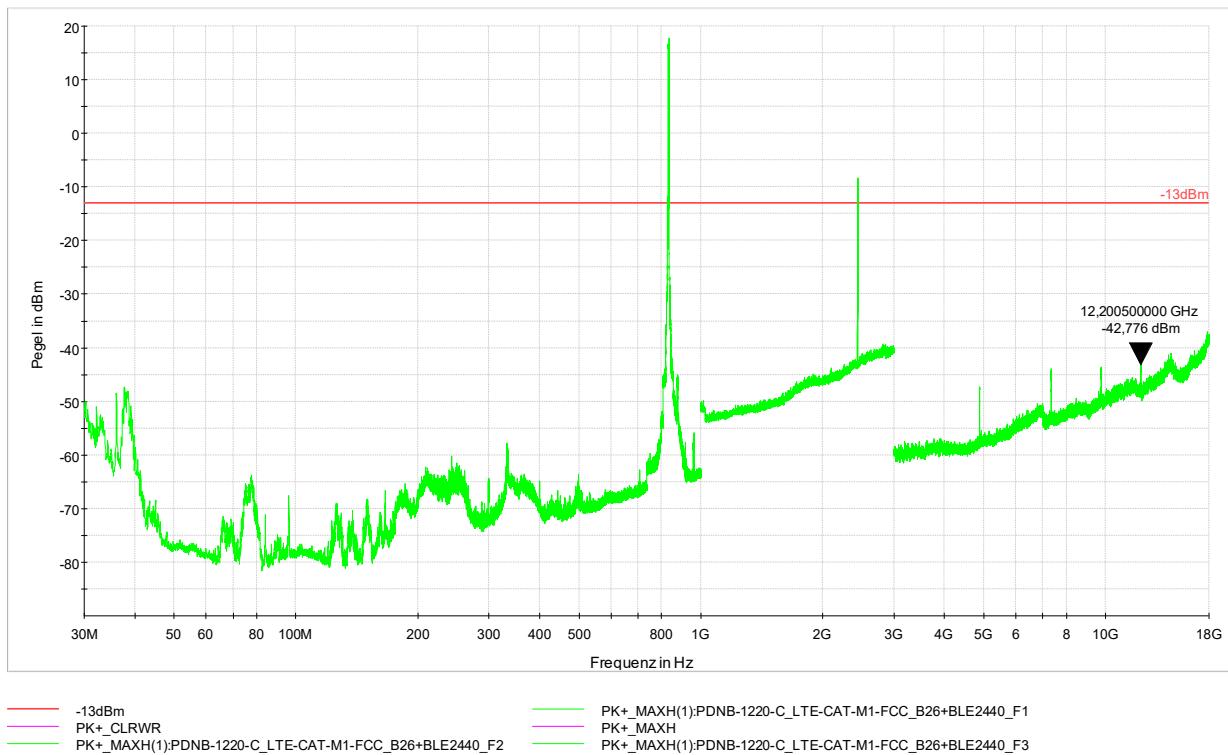
LIMIT **FCC Part 24.238(a)**

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

LIMIT **RSS-133 6.5.1(a)(i) and RSS-133 6.5.1(b)**

In the first 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the power of emissions per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB.

(b) After the first 1.0 MHz (for equipment that complies with (a)(i) of this subsection) or 1.5 MHz (for equipment that complies with (a)(ii) of this subsection), the power of emissions in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB. (Note: If the test result using 1% of the emission bandwidth is used, power integration over 1.0 MHz is required; alternatively, the spectrum analyzer resolution and video bandwidths can be increased to 1.0 MHz for this measurement).


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 22.917, § 90.669
RSS-132

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission LTE CAT-M1 B5 (B26 only FCC) and BLE 2440 MHz

Worst case emission: Peak @ 12200,5 MHz: -42,78 dBm

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 22.917(a)**

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

LIMIT **FCC Part 90.669(a)**

On any frequency in an MTA licensee's spectrum block that is adjacent to a non-MTA frequency, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 plus $10 \log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation.

Note: The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

LIMIT **RSS-132 5.5**

Equipment shall meet the unwanted emission limits specified below:

(i) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated below the transmitter output power P (dBW) by at least $43 + 10 \log(p)$ dB.

(ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated below the transmitter output power P (dBW) by at least $43 + 10 \log(p)$ dB. If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

p is the output power specified in watts.

Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

4.8. TEST OBJECT DATA (BLE/Quuppa Protocol)

General EUT Description

2.1033 (c) Technical description

2.1033 (4) Type of emission: 1M02F1D – Channel spacing 2 MHz plus 2 additional ‘Quuppa’ channels at 2401 and 2481 MHz

2.1033 (5) Frequency range: 2402 to 2482 MHz (channel center frequencies) plus 2 additional ‘Quuppa’ channels at 2401 and 2481 MHz

2.1033 (6) Power range and Controls: The maximum peak output power is 0,13 mW eirp and there is no power regulation.

2.1033 (7) Maximum output power rating: 0,13 mW eirp.

2.1033 (8) DC Voltage: 3 VDC (internal battery)

RSS-135

This standard does not apply to:

- 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Worst case Spurious Emissions: 34,02 dB μ V/m Average at 7203,5 MHz.

Tests were performed from November 6th to November 23rd 2023.

4.9. Number of channels and channel spacing

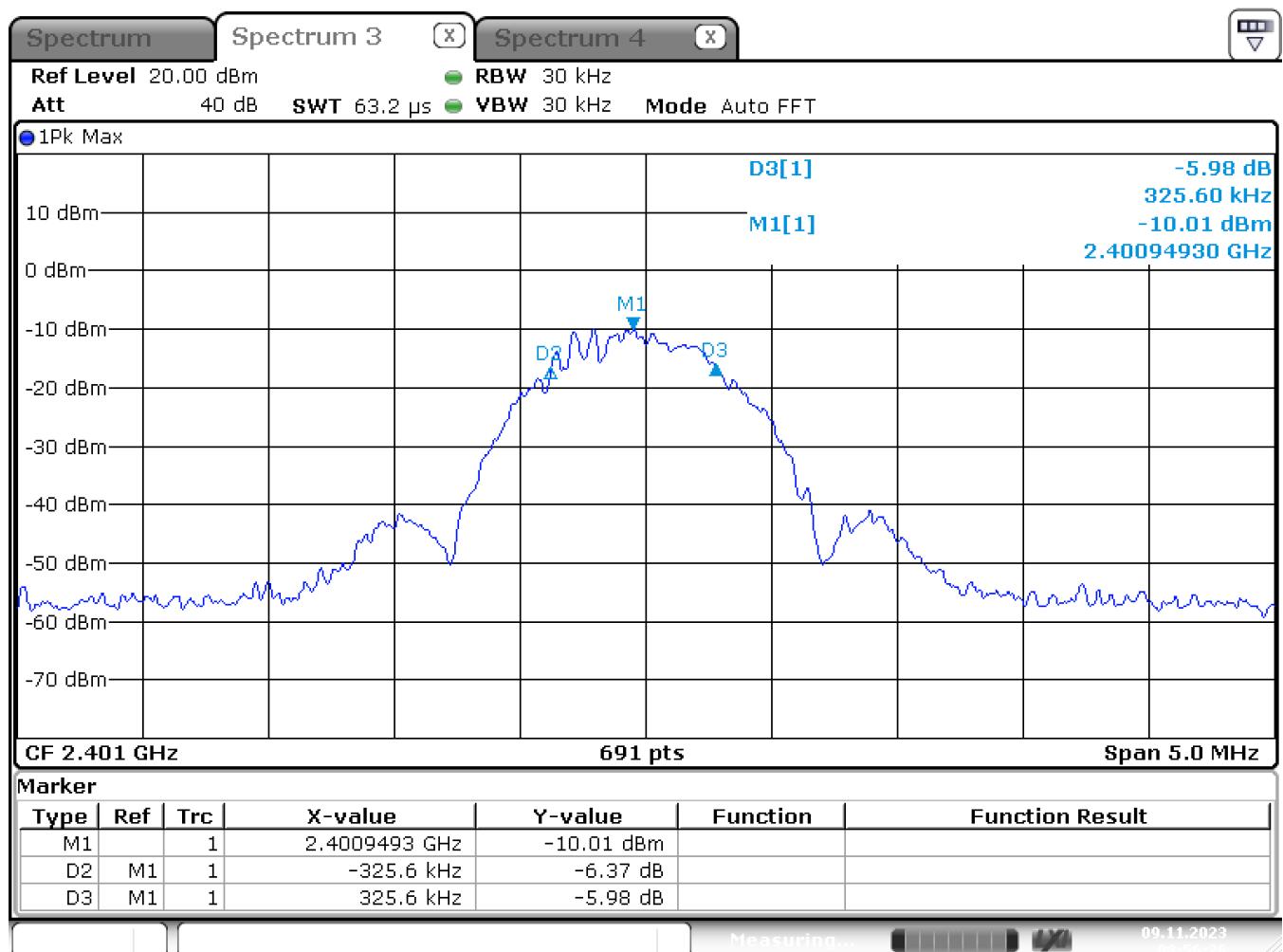
§ 2.1033

Conducted Measurement

Rated output power: 0,13 mW

There are 40 Channels used, starting at 2402 till 2480 MHz each separated by 2 MHz channel spacing.

Two additional channels are used with the same modulation but for positioning purposes. These channels use 2401 MHz and 2481 MHz as center frequencies.


Test Equipment used: N/A

4.10. 6 dB Bandwidth

§ 15.247(a)(2)
5.2.a)

Conducted Measurement

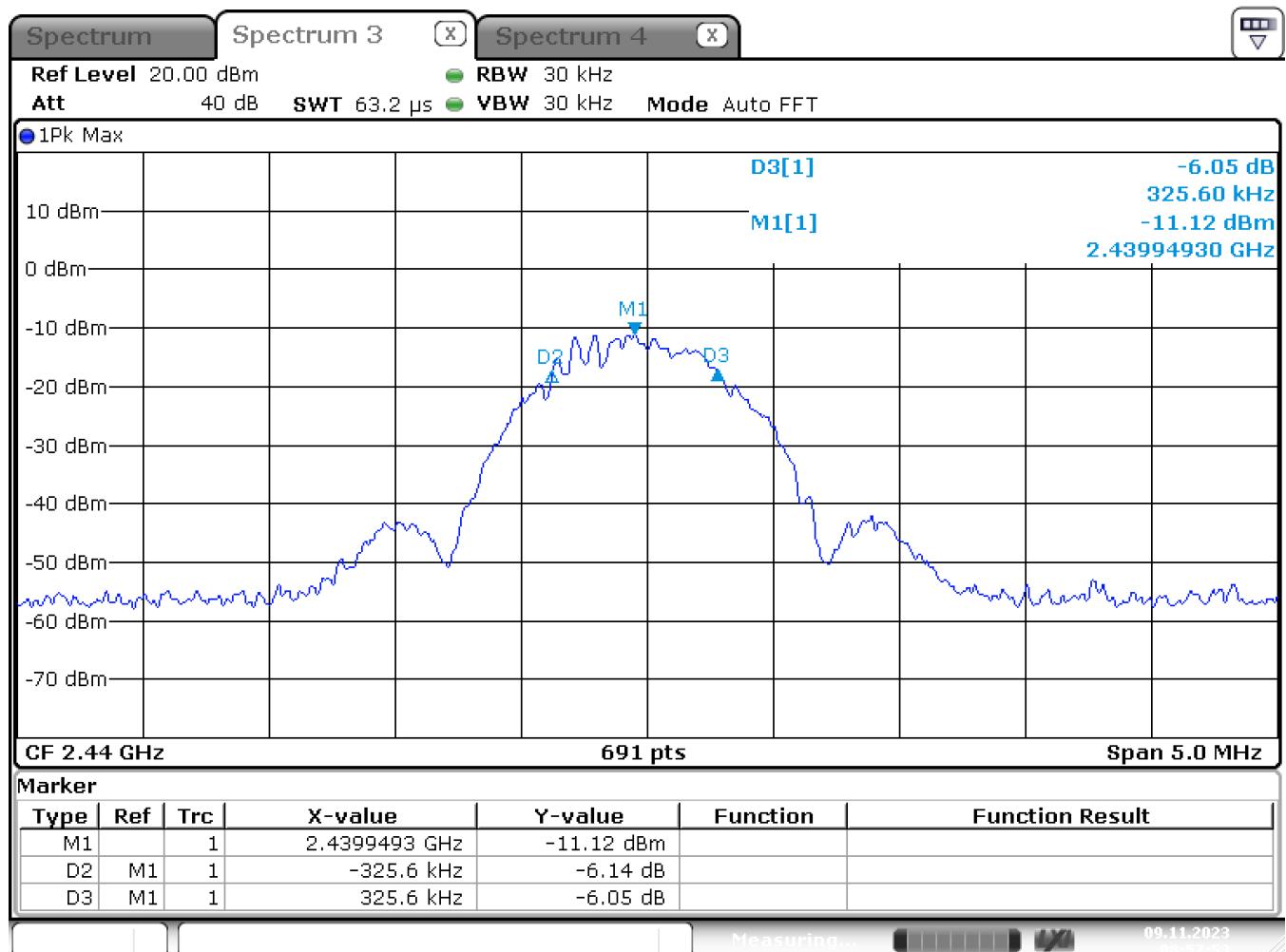
Rated output power: 0,13 mW 2401 MHz center frequency

Date: 9.NOV.2023 08:56:27

6dB Bandwidth: 651,2 kHz

LIMIT **SUBCLAUSE 15.247(e) – 5.2.a)**

Under normal test conditons	6 dB Bandwidth at least 500 kHz
-----------------------------	---------------------------------


Test Equipment used: EMV-205;

6 dB Bandwidth

**§ 15.247(a)(2)
5.2.a)**

Conducted Measurement

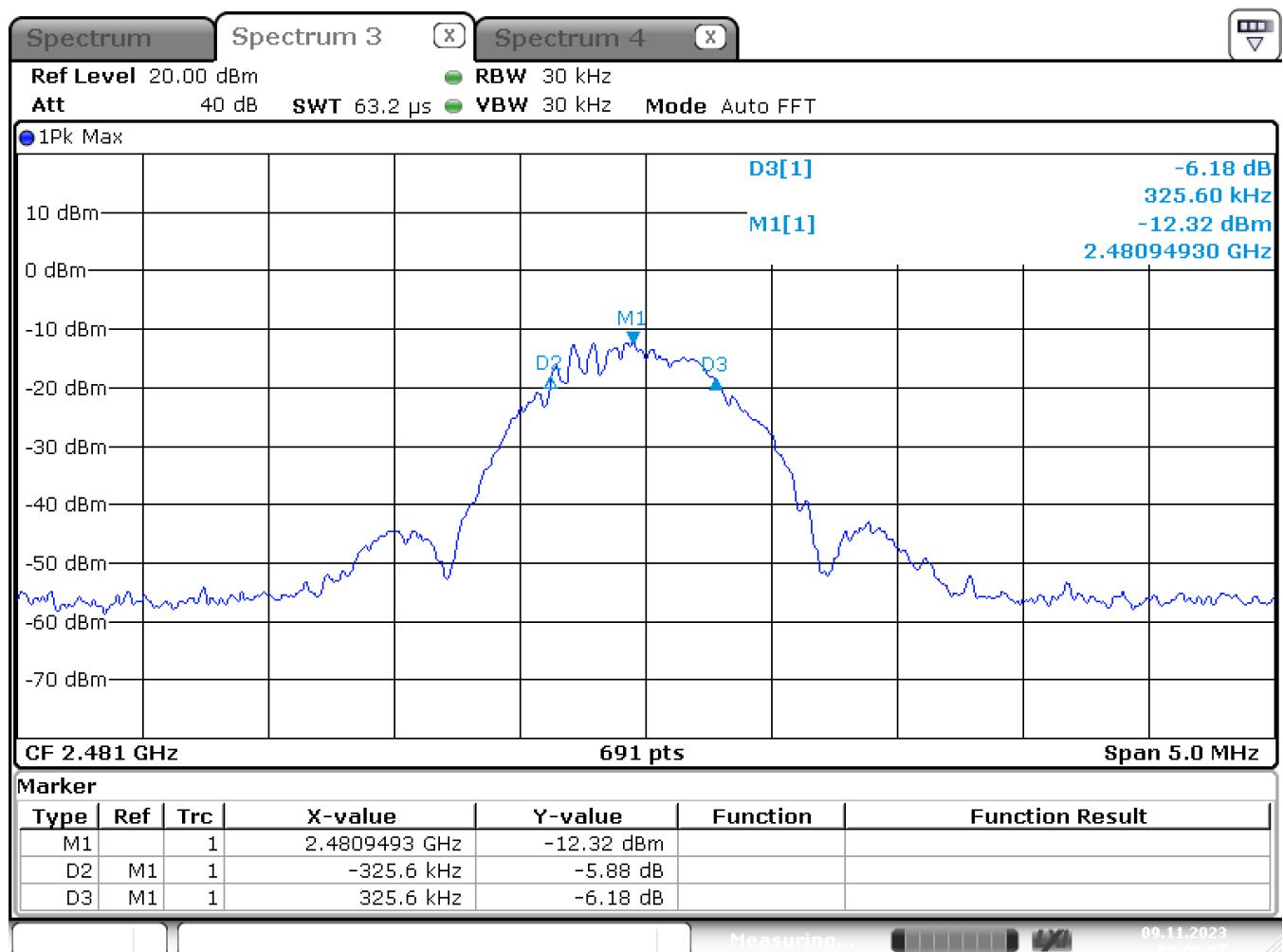
Rated output power: 0,13 mW 2440 MHz center frequency

Date: 9.NOV.2023 08:57:53

6dB Bandwidth: 651,2 kHz

LIMIT **SUBCLAUSE 15.247(e) – 5.2.a)**

Under normal test conditons	6 dB Bandwidth at least 500 kHz
-----------------------------	---------------------------------


Test Equipment used: EMV-205;

6 dB Bandwidth

**§ 15.247(a)(2)
5.2.a)**

Conducted Measurement

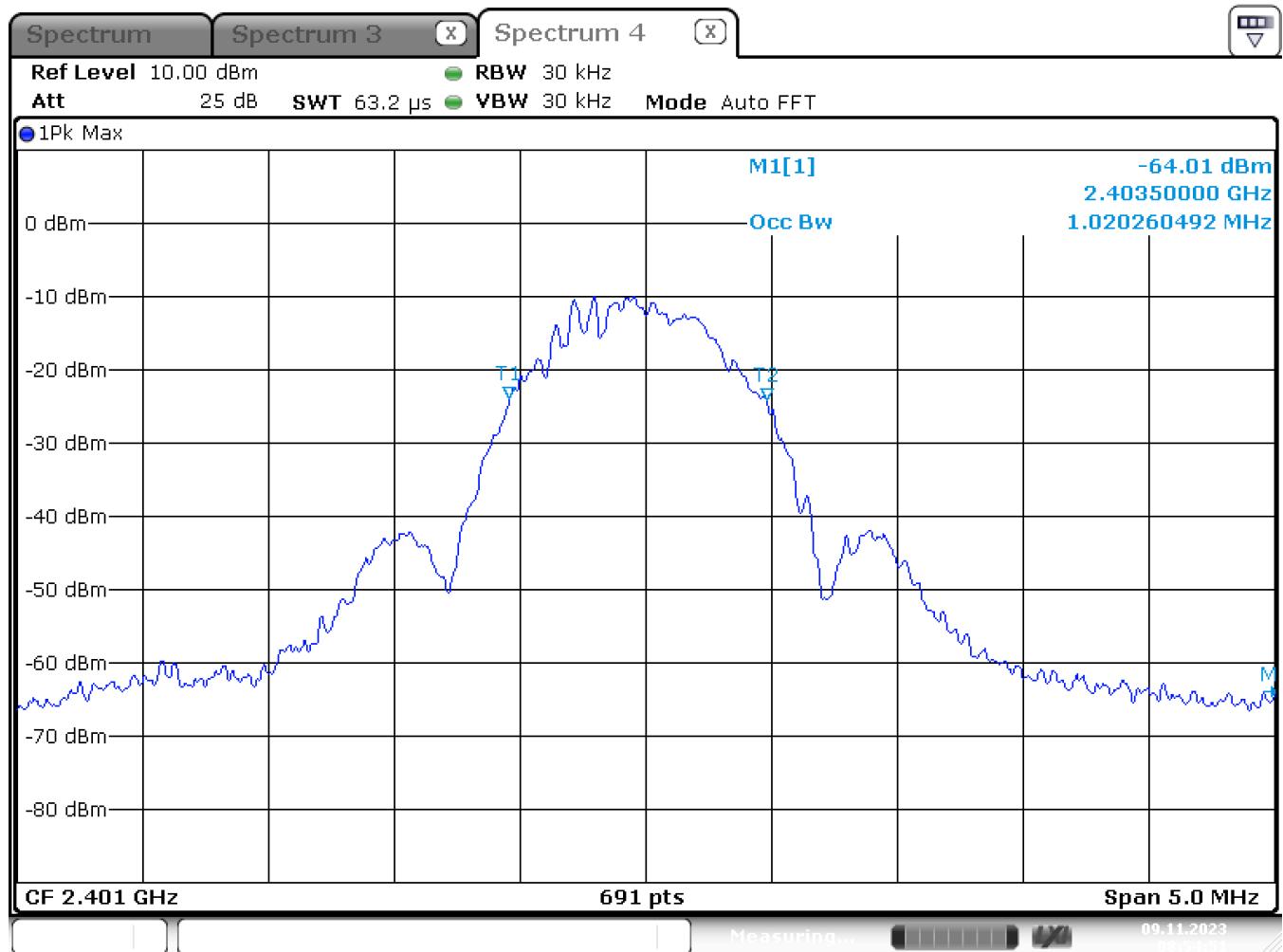
Rated output power: 0,13 mW 2481 MHz center frequency

Date: 9.NOV.2023 09:00:08

6dB Bandwidth: 651,2 kHz

LIMIT **SUBCLAUSE 15.247(e) – 5.2.a)**

Under normal test conditons	6 dB Bandwidth at least 500 kHz
-----------------------------	---------------------------------


Test Equipment used: EMV-205;

4.11. 99% Bandwidth

RSS 247

Conducted Measurement

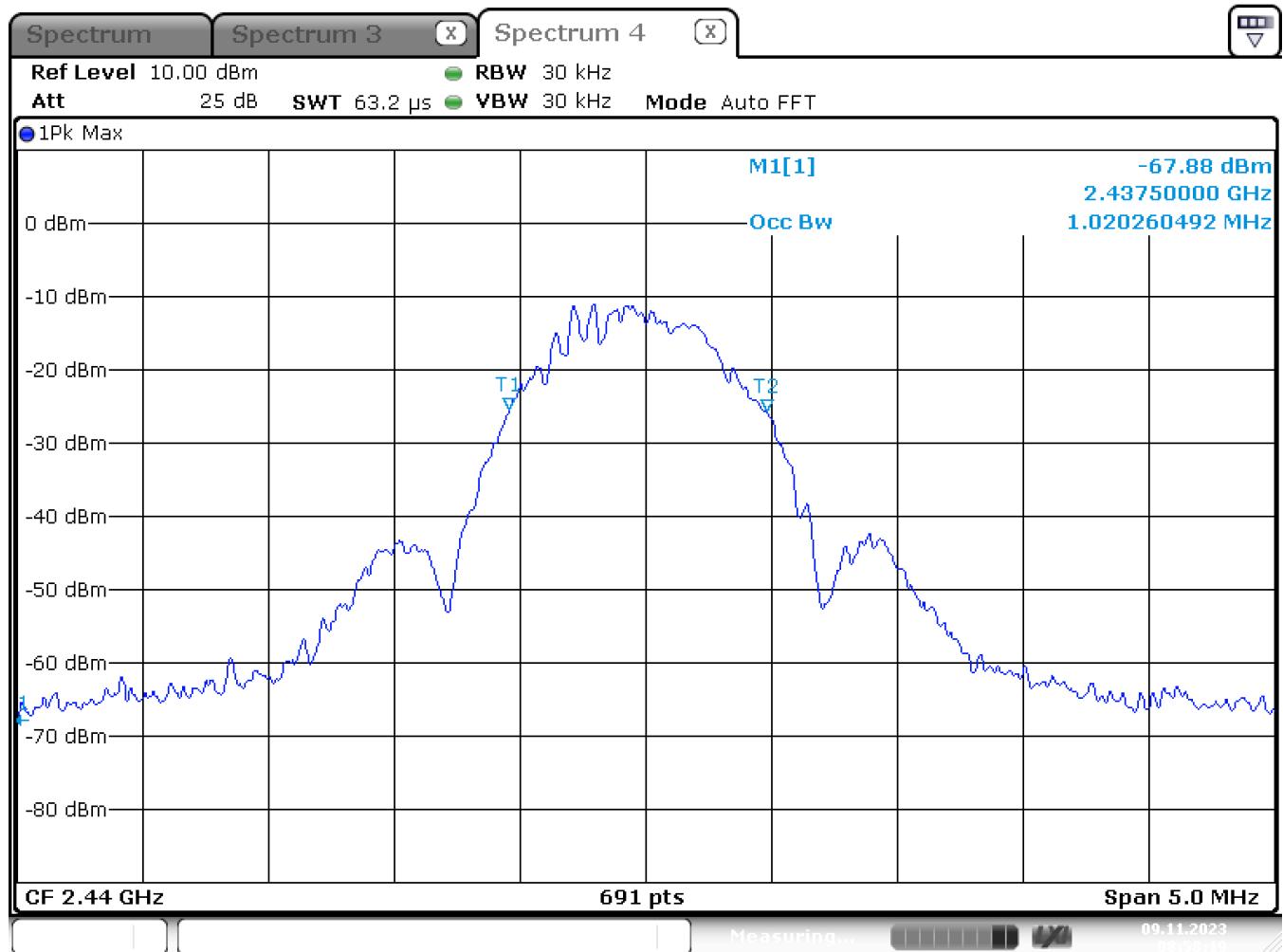
Rated output power: 0,13 mW 2401 MHz center frequency

Date: 9.NOV.2023 08:54:52

99% Bandwidth: 1020 kHz

LIMIT RSS 247

None; for IC reporting purposes only


Test Equipment used: EMV-205;

99% Bandwidth

RSS 247

Conducted Measurement

Rated output power: 0,13 mW 2440 MHz center frequency

Date: 9.NOV.2023 08:58:19

99% Bandwidth: 1020 kHz

LIMIT RSS 247

None; for IC reporting purposes only


Test Equipment used:EMV-205;

99% Bandwidth

RSS 247

Conducted Measurement

Rated output power: 0,13 mW 2481 MHz center frequency

Date: 9.NOV.2023 08:58:59

99% Bandwidth: 1020 kHz

LIMIT **RSS 247**

None; for IC reporting purposes only

Test Equipment used: EMV-205;

4.12. Maximum Peak RF Power Output

§ 15.247(b)(3)
5.4.4

Conducted Measurement

Rated output power: 0,69 mW

Test conditions		Transmitter power (mW)		
		2401 MHz	2440 MHz	2481 MHz
T _{nom} (23) °C	V _{nom} (3) V	0,30	0,23	0,18
Measurement uncertainty		± 0,75 dB		

Radiated Measurement

Rated output power: 0,13 mW

Test conditions		Transmitter power (mW) EIRP		
		2401 MHz	2440 MHz	2481 MHz
T _{nom} (23) °C	V _{nom} (3) V	0,13	0,09	0,04
Measurement uncertainty		± 2 dB		

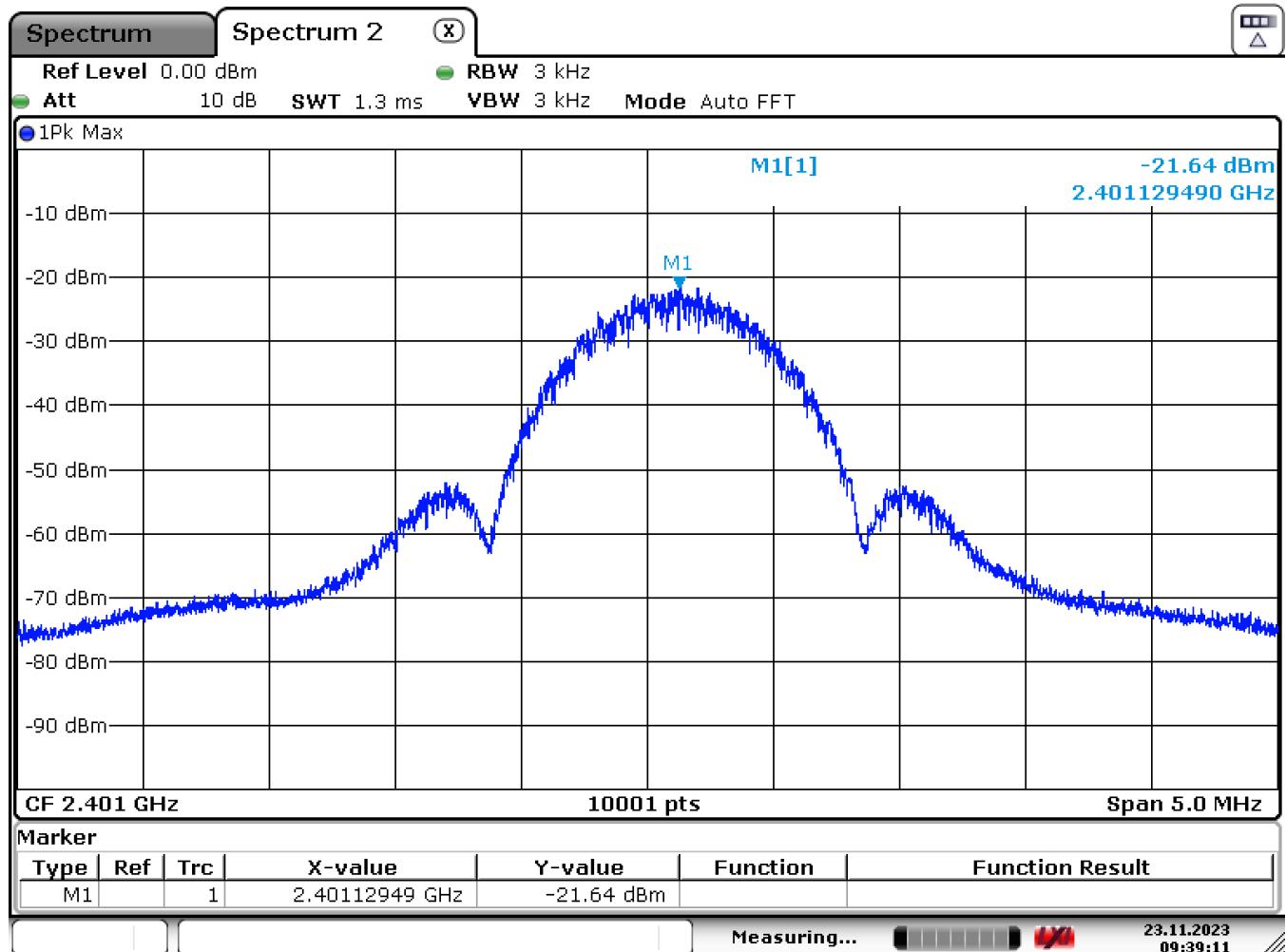
Maximum Gain derived from EIRP and conducted measurement:

		Maximum Gain (dBi)		
Test condition		2401 MHz	2440 MHz	2481 MHz
T _{nom} 23 °C	V _{nom} (3)V	-3,64	-4,23	-6,54

LIMIT

SUBCLAUSE 15.247(b)(3) – 5.4.4

Under normal test conditons	1W conducted (4W eirp)
-----------------------------	------------------------


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-139; NT-207/1; EMV-205

4.13. Power spectral density (radiated)

§ 15.247(e)
5.2.2

Conducted Measurement

Rated output power: 0,13 mW 2401 MHz center frequency

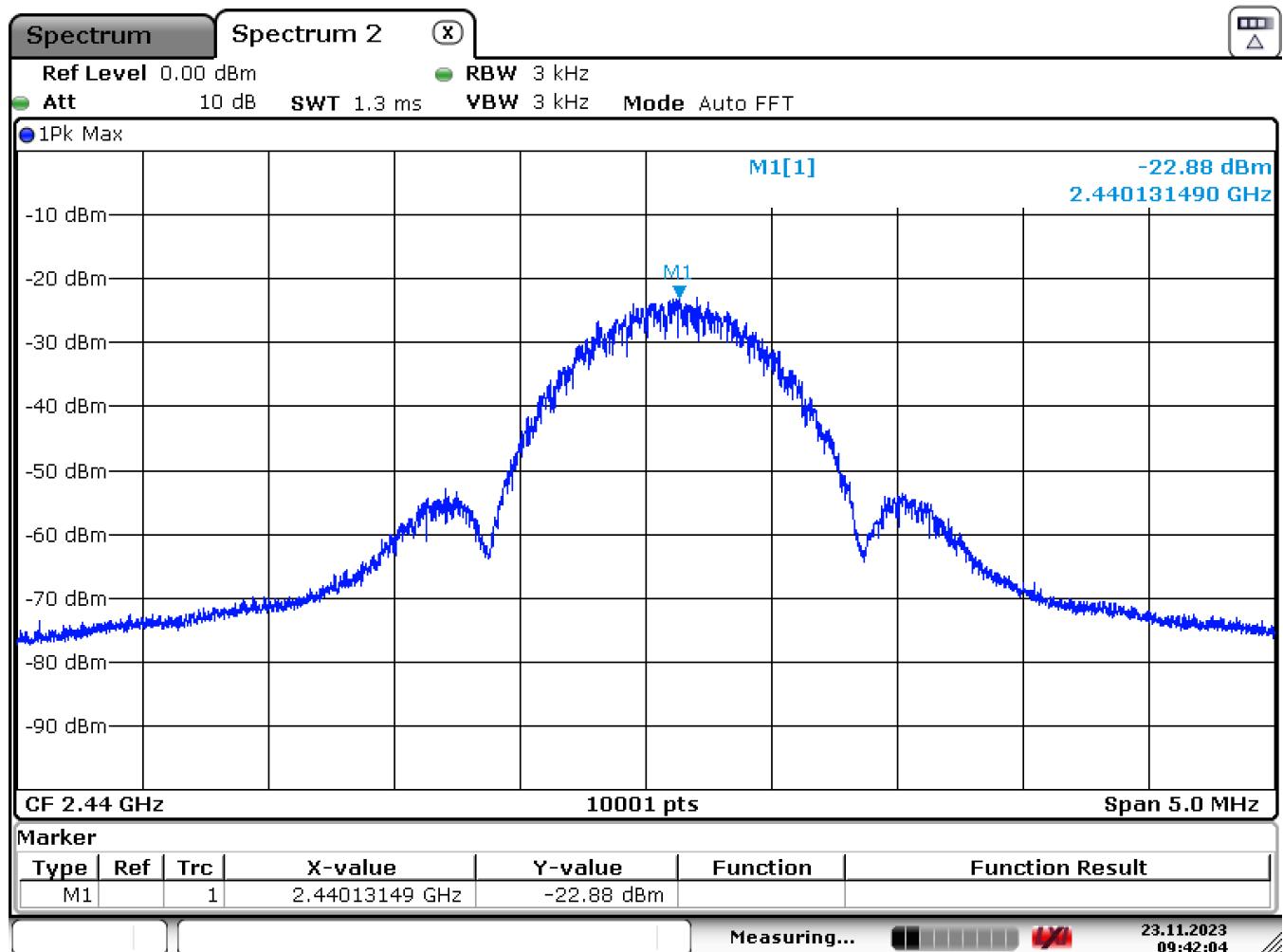
Date: 23.NOV.2023 09:39:11

Power Spectral density: -21,64 dBm @ 2401,13 MHz

LIMIT

SUBCLAUSE 15.247(e) – 5.2 b)

Under normal test conditons	+8dBm in any 3 kHz band
-----------------------------	-------------------------


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-139; NT-207/1;

Power spectral density (radiated)

**§ 15.247(e)
5.2 b)**

Conducted Measurement

Rated output power: 0,13 mW 2440 MHz center frequency

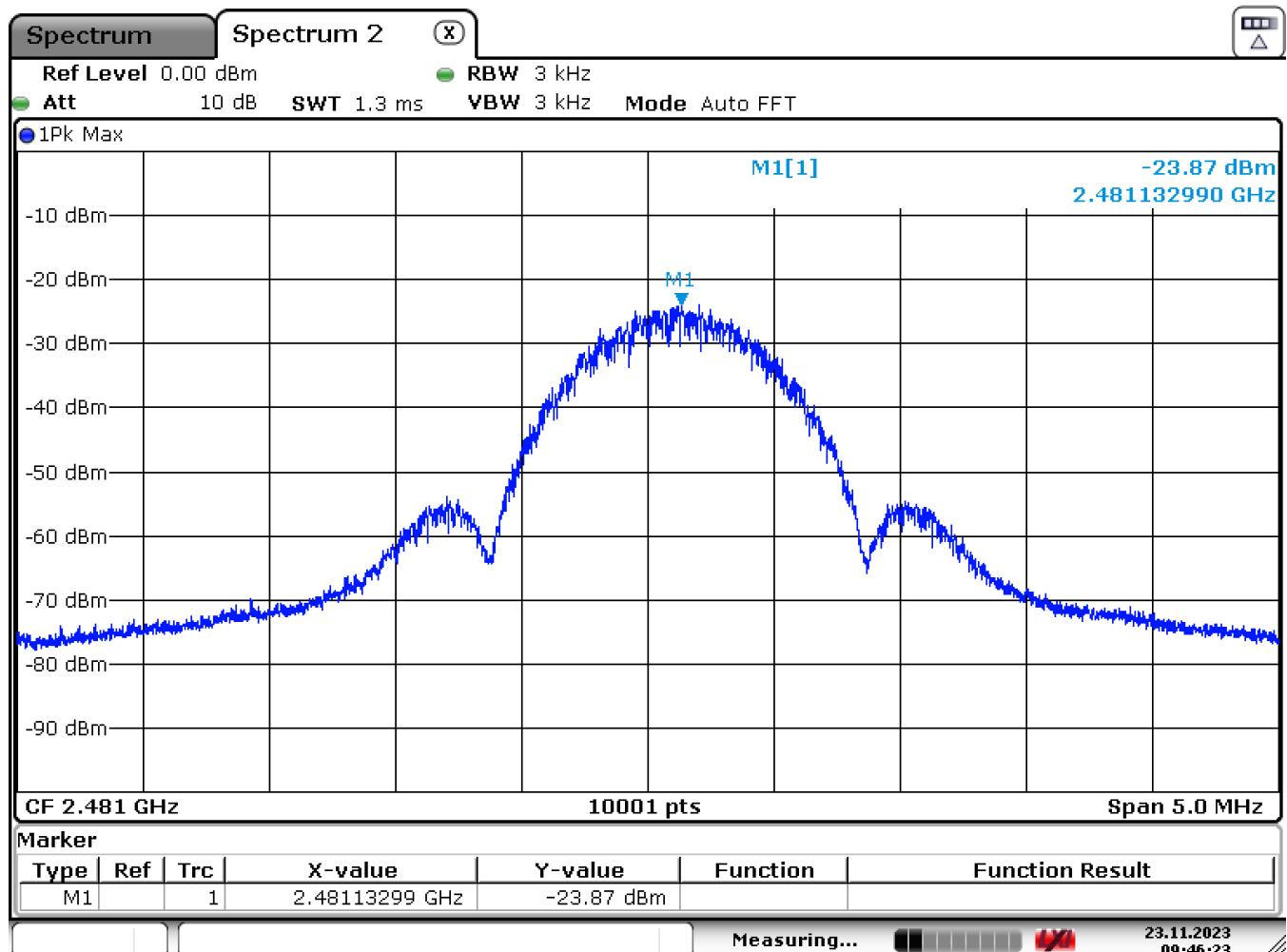
Date: 23.NOV.2023 09:42:05

Power Spectral density: -22,88 dBm @ 2440,13 MHz

LIMIT

SUBCLAUSE 15.247(e) – 5.2 b)

Under normal test conditons	+8dBm in any 3 kHz band
-----------------------------	-------------------------


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-139; NT-207/1;

Power spectral density (radiated)

**§ 15.247(e)
5.2 b)**

Conducted Measurement

Rated output power: 0,13 mW 2481 MHz center frequency

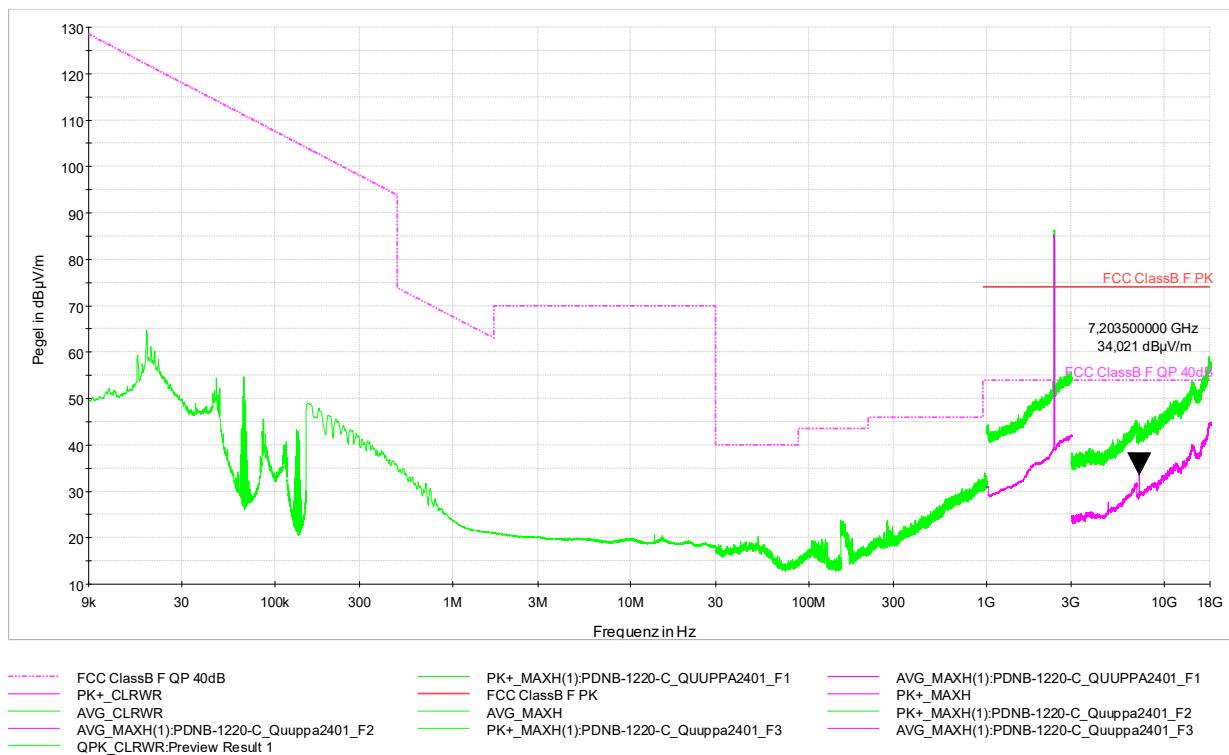
Date: 23.NOV.2023 09:46:23

Power Spectral density: -23,87 dBm @ 2481,13 MHz

LIMIT

SUBCLAUSE 15.247(e) – 5.2 b)

Under normal test conditons	+8dBm in any 3 kHz band
-----------------------------	-------------------------


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-139; NT-207/1;

4.14. Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 15.209(a)
RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line):

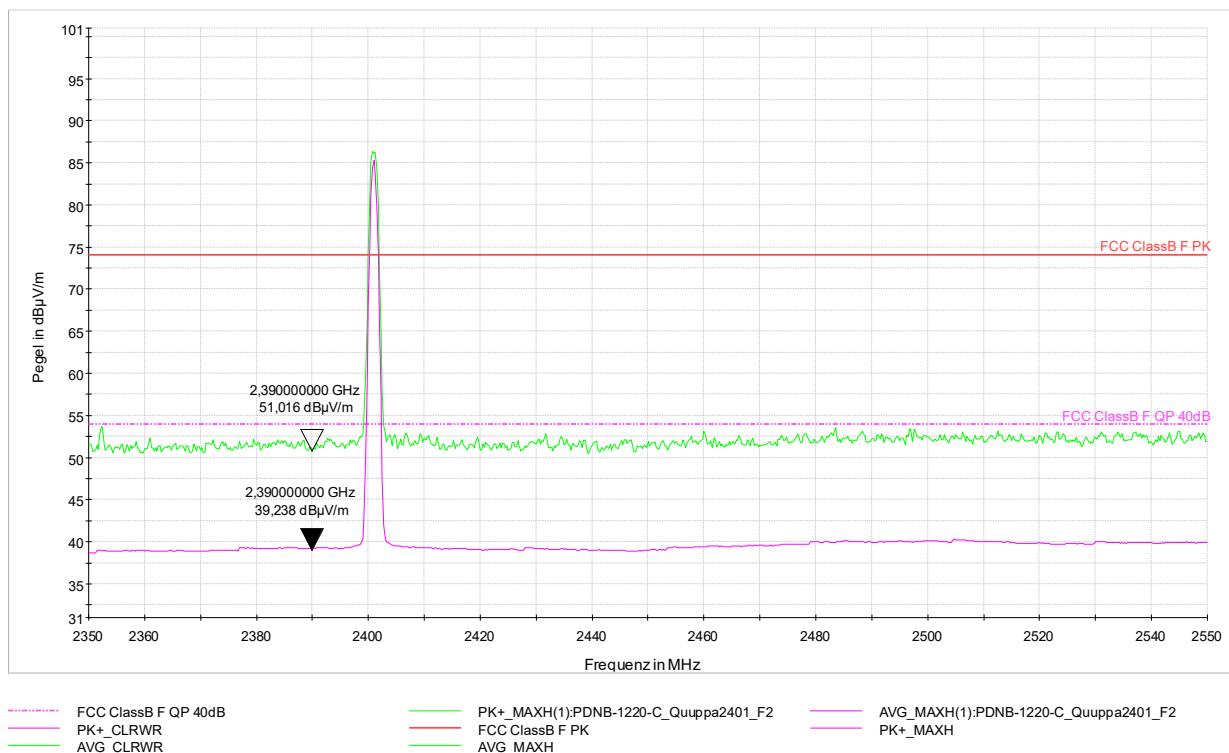
Setup: 2401 MHz

Worst case emission: Average @ 7203,5 MHz: 34,02 dB μ V/m

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen


Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands § 15.209(a)
Emissions falling within restricted frequency bands RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line): Band Edge requirement

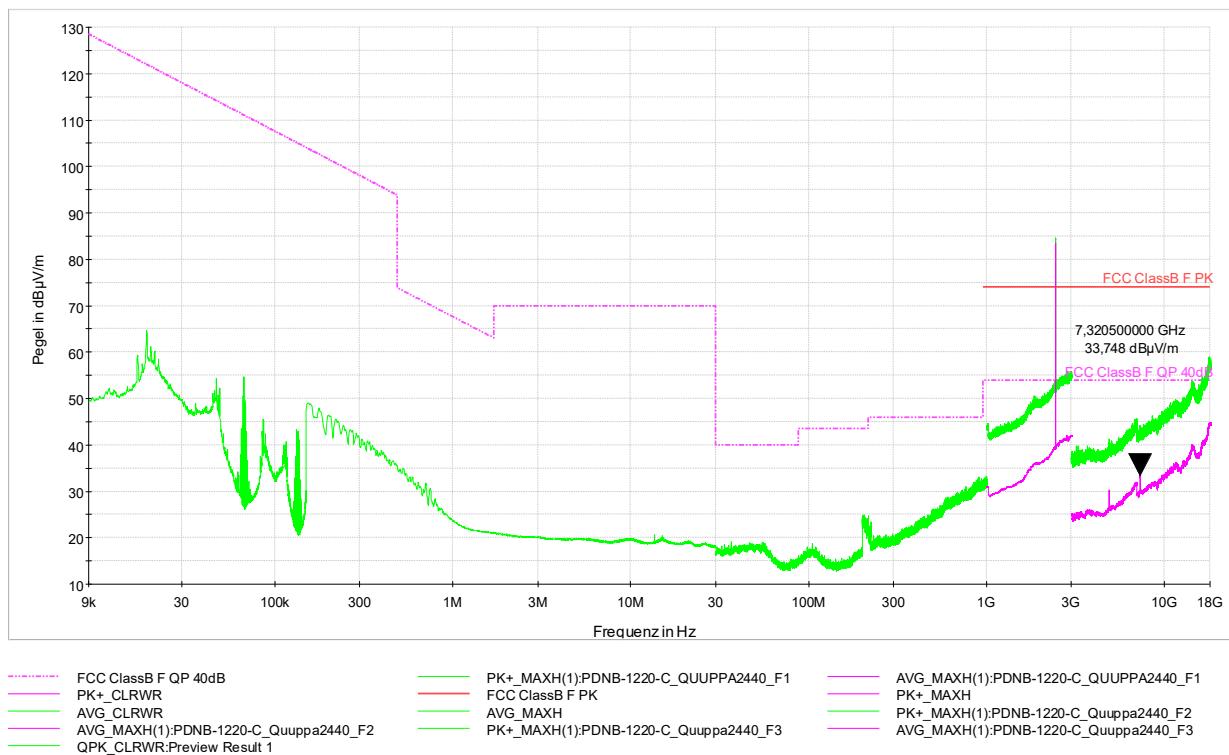
Setup: 2401 MHz

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Band edges of the nearest restricted bands: 2390 MHz and 2483,5 MHz.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-131/1; NT-139; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 15.209(a)
RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line):

Setup: 2440 MHz

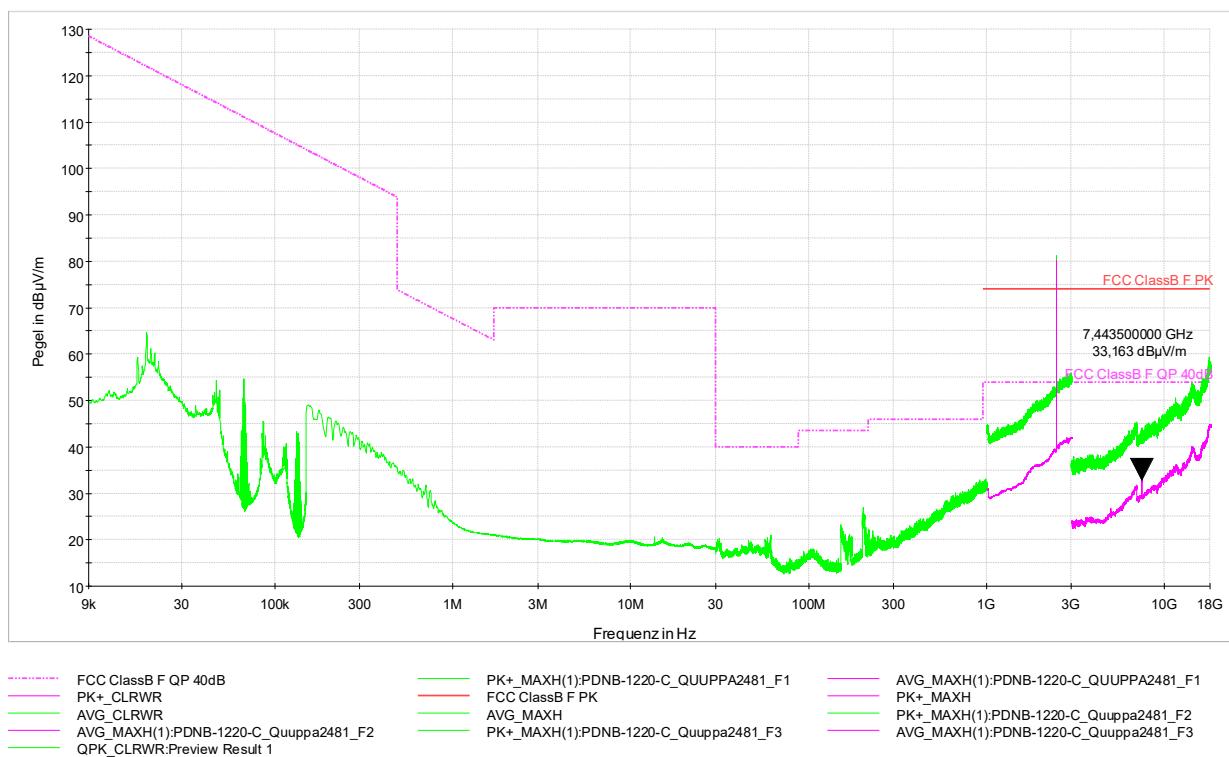
Worst case emission: Average @ 7320,5 MHz: 33,75 dB μ V/m

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 15.209(a)
RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line):

Setup: 2481 MHz

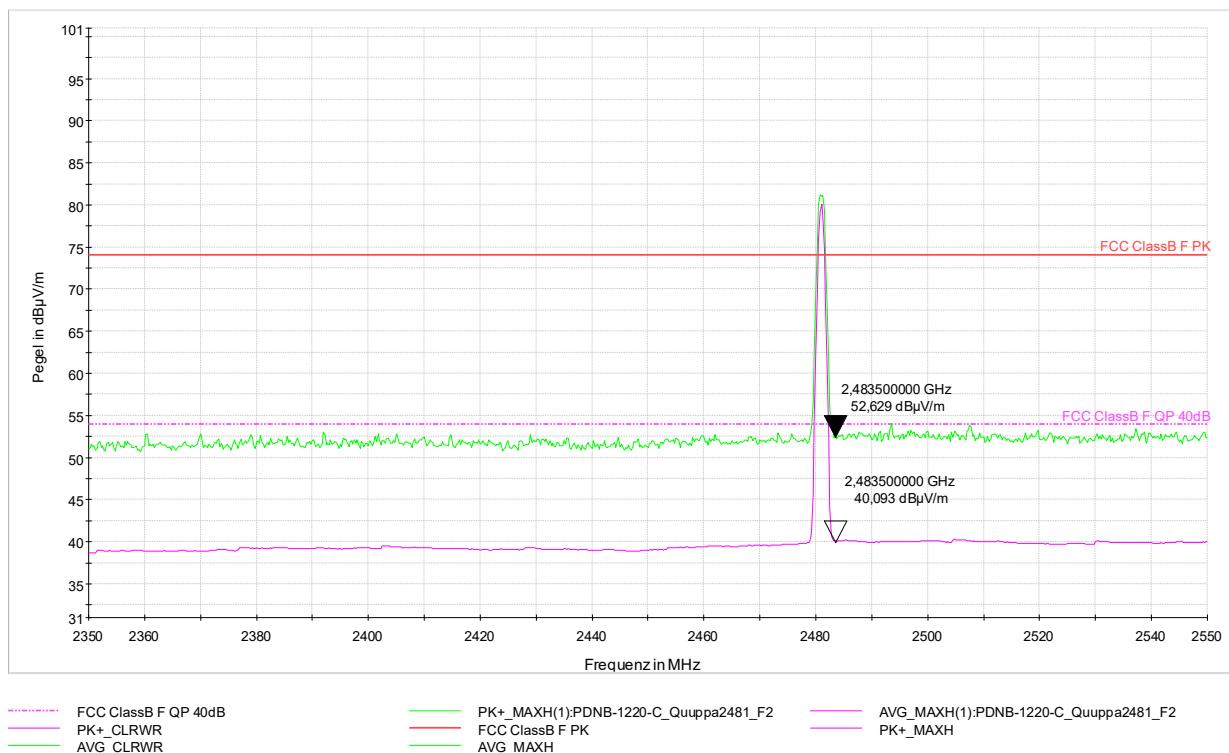
Worst case emission: Average @ 7443,5 MHz: 33,16 dBμV/m

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 15.209(a)
RSS-Gen

Measurement with Peak-Detector (green line) and Average detector (magenta line): Band Edge requirement

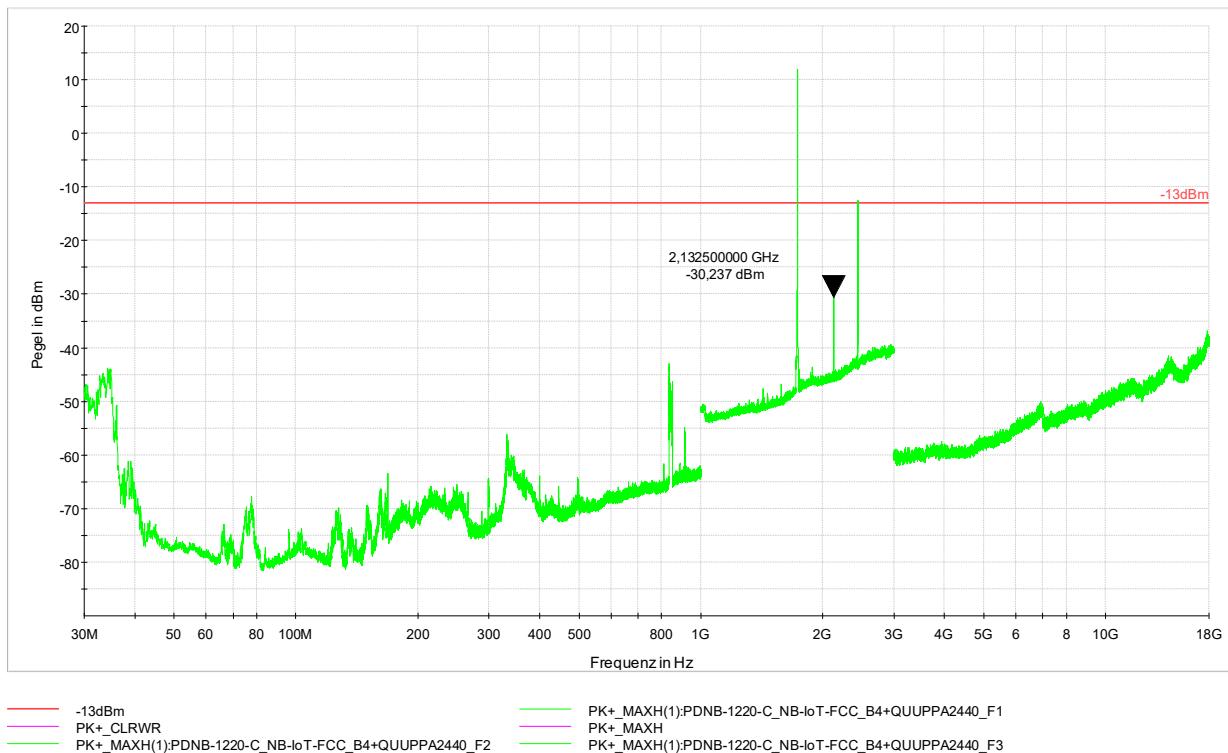
Setup: 2481 MHz

LIMIT

SUBCLAUSE 15.209(a) – RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Band edges of the nearest restricted bands: 2390 MHz and 2483,5 MHz.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-131/1; NT-139; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 27.53
RSS-139

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission NB-IoT B4 / B66 and Quuppa 2440 MHz

Worst case emission: Peak @ 2132,5 MHz: -30,24 dBm

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 27.53(h)(1)**

General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10} (P)$ dB.

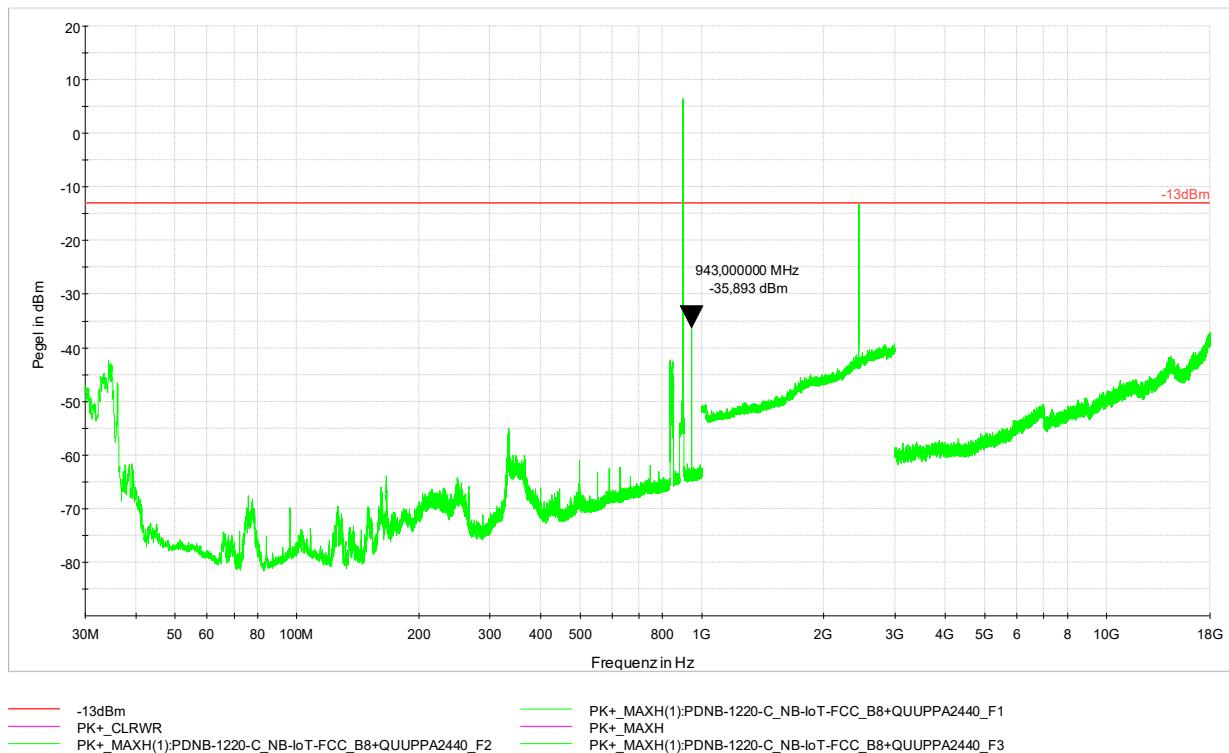
LIMIT **RSS-139 5.6**

Unwanted emissions shall be measured in terms of average values.

For all equipment, the TRP or total conducted power (sum of conducted power across all antenna connectors) of the unwanted emissions outside the frequency block or frequency block group shall not exceed the limits shown in table 6.

Table 6: Unwanted emission limits

Offset from the edge of the frequency block or frequency block group	Unwanted emission limits
1 MHz	-13 dBm/(1 % of Occupied Bandwidth)
> 1 MHz	-13 dBm/MHz


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 27.1509
RSS-130

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission NB-IoT B8 and Quuppa 2440 MHz

Worst case emission: Peak @ 943,0 MHz: -35,89 dBm

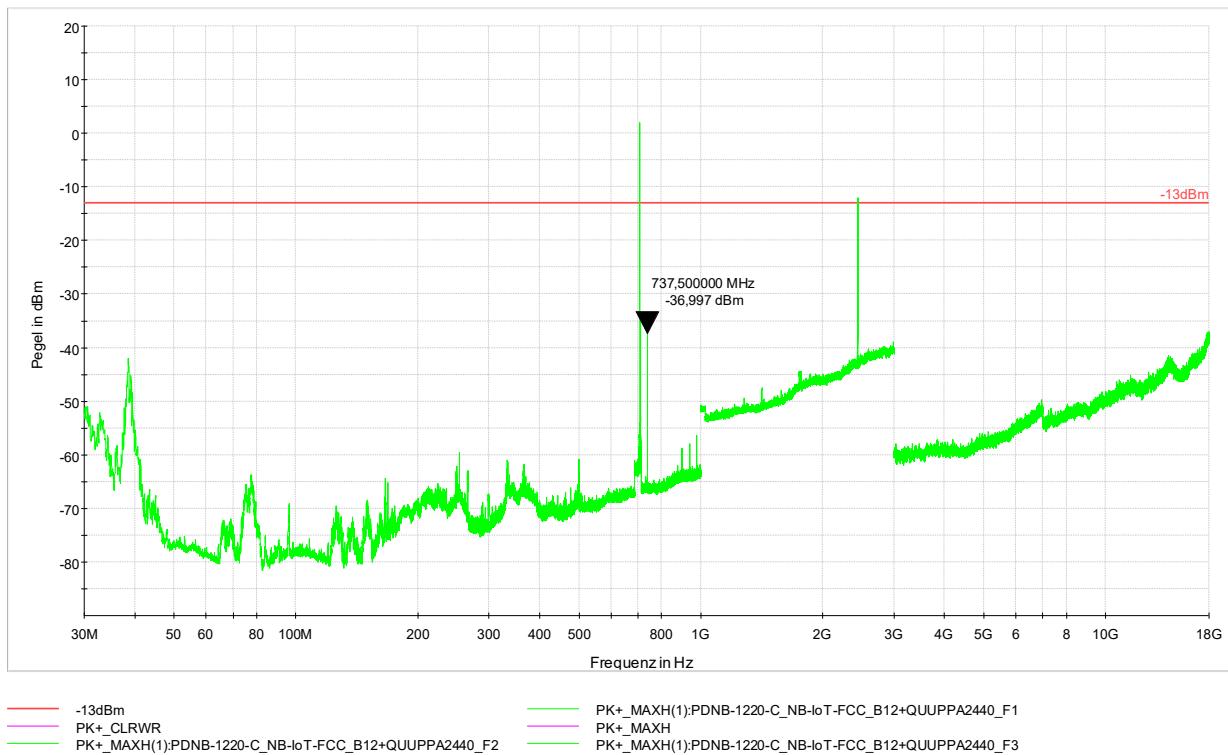
Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 27.1509(a)**

For 900 MHz broadband operations in 897.5–900.5 MHz band by at least $43 + 10 \log (P)$ dB.

LIMIT **RSS-130 4.7.1**

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 27.53
RSS-130

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission NB-IoT B12 / B85 and Quuppa 2440 MHz

Worst case emission: Peak @ 737,5 MHz: -37,00 dBm

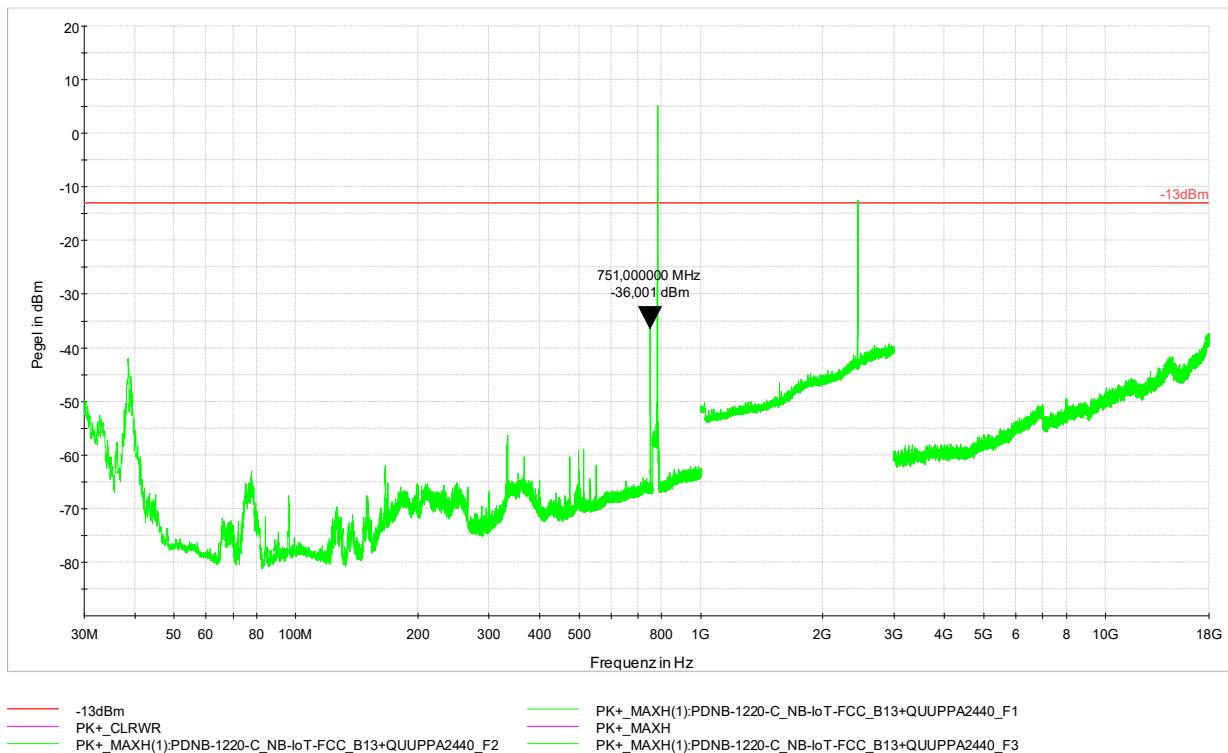
Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 27.53(g)**

For operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log (P)$ dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

LIMIT **RSS-130 4.7.1**

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 27.53
RSS-130

Measurement with Peak-Detector (green line):

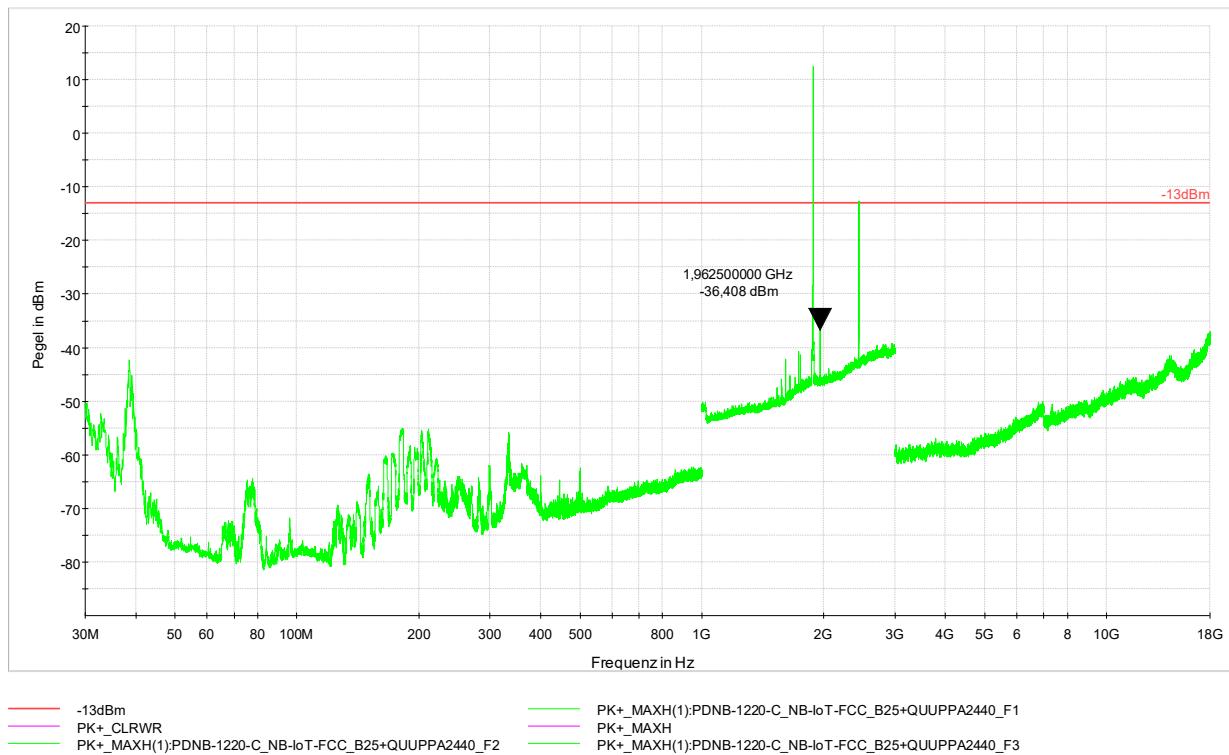
Setup: Simultaneous transmission NB-IoT B13 and Quuppa 2440 MHz

LIMIT **FCC Part 27.53(c)(2)**

On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log(P)$ dB;

LIMIT **RSS-130 4.7.1**

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 24.238
RSS-133

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission NB-IoT B25 and Quuppa 2440 MHz

Worst case emission: Peak @ 1962,5 MHz: -36,41 dBm

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

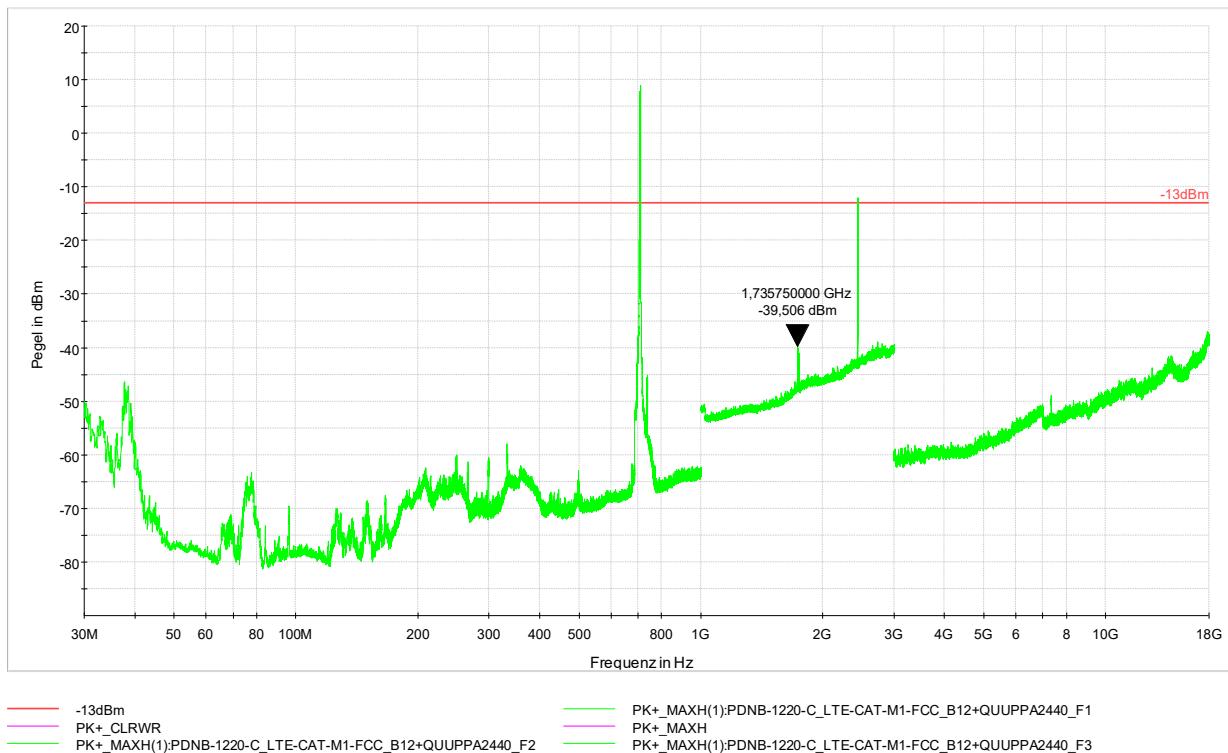
LIMIT **FCC Part 24.238(a)**

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

LIMIT **RSS-133 6.5.1(a)(i) and RSS-133 6.5.1(b)**

In the first 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the power of emissions per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB.

(b) After the first 1.0 MHz (for equipment that complies with (a)(i) of this subsection) or 1.5 MHz (for equipment that complies with (a)(ii) of this subsection), the power of emissions in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB. (Note: If the test result using 1% of the emission bandwidth is used, power integration over 1.0 MHz is required; alternatively, the spectrum analyzer resolution and video bandwidths can be increased to 1.0 MHz for this measurement).


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 27.53
RSS-130

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission LTE CAT-M1 B12 and Quuppa 2440 MHz

Worst case emission: Peak @ 1735,8 MHz: -39,51 dBm

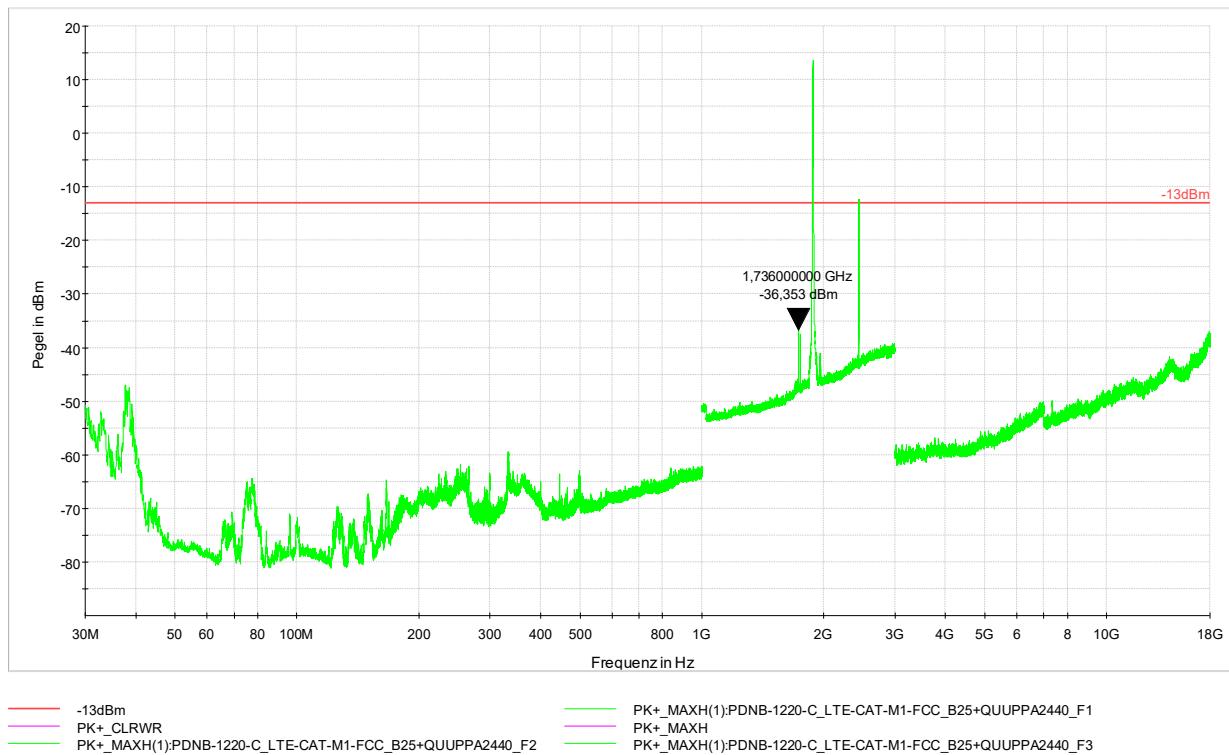
Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 27.53(g)**

For operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log (P)$ dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

LIMIT **RSS-130 4.7.1**

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 24.238
RSS-133

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission LTE CAT-M1 B2/B25 and Quuppa 2440 MHz

Worst case emission: Peak @ 1736,0 MHz: -36,35 dBm

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

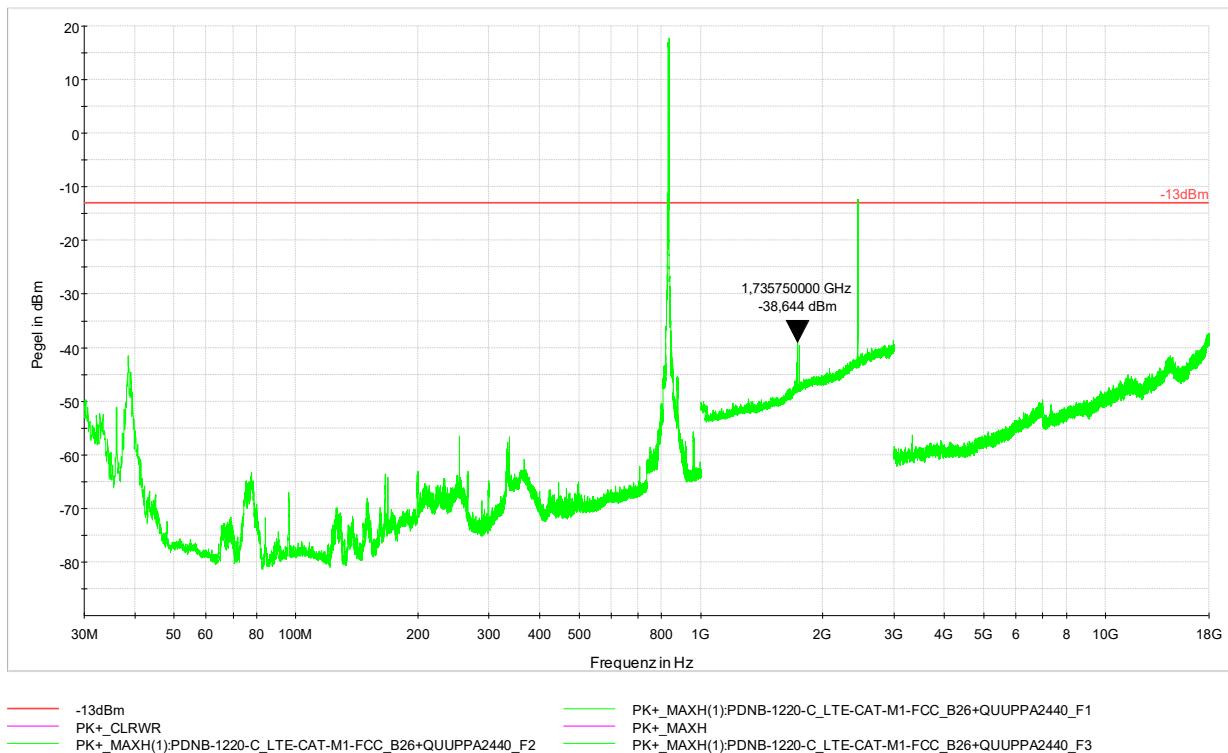
LIMIT **FCC Part 24.238(a)**

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

LIMIT **RSS-133 6.5.1(a)(i) and RSS-133 6.5.1(b)**

In the first 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the power of emissions per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB.

(b) After the first 1.0 MHz (for equipment that complies with (a)(i) of this subsection) or 1.5 MHz (for equipment that complies with (a)(ii) of this subsection), the power of emissions in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in watts) by at least $43 + 10 \log_{10}(P)$, dB. (Note: If the test result using 1% of the emission bandwidth is used, power integration over 1.0 MHz is required; alternatively, the spectrum analyzer resolution and video bandwidths can be increased to 1.0 MHz for this measurement).


Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

Emissions in restricted bands
Emissions falling within restricted frequency bands

§ 22.917, § 90.669
RSS-132

Measurement with Peak-Detector (green line):

Setup: Simultaneous transmission LTE CAT-M1 B5 (B26 only FCC) and Quuppa 2440 MHz

Worst case emission: Peak @ 1735,8 MHz: -38,64 dBm

Remark: Although the measurement above ends at 18 GHz, all measurements were performed up to the tenth harmonics of the transmitter frequency.

LIMIT **FCC Part 22.917(a)**

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

LIMIT **FCC Part 90.669(a)**

On any frequency in an MTA licensee's spectrum block that is adjacent to a non-MTA frequency, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 plus $10 \log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation.

Note: The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

LIMIT **RSS-132 5.5**

Equipment shall meet the unwanted emission limits specified below:

(i) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated below the transmitter output power P (dBW) by at least $43 + 10 \log(p)$ dB.

Test report number:

2023-IN-AT-TICL-E-EX-0-000230-FG-001

Date: 05.12.2023

Ambient temperature: 23°C

Relative humidity: 33%

(ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated below the transmitter output power P (dBW) by at least $43 + 10 \log(p)$ dB. If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

p is the output power specified in watts.

Test Equipment used: NT-100; NT-110/1; NT-111/1; NT-132; NT-207/1;

4.15 RF Exposure

§1.1307(b)(3)(i)(C)
§1.1307(b)(3)(ii)(B)

The device uses BLE and Quuppa transmissions, both with antenna antenova CU23005-1, but a slightly different feed path. Further, the device uses the licensed module XMR2020BG95M2 with antenna antenova CU23003-1. Simultaneous transmissions of LTE-BLE and LTE-Quuppa are possible, simultaneous transmission between BLE and Quuppa is not possible (but would fulfill RF exposure requirements).

Maximum conducted power values for BLE and Quuppa are taken from sections 4.5 and 4.12 of this report.

Gain values for BLE and Quuppa are taken from sections 4.5 and 4.12 of this report.

Production variance is declared by the manufacturer, see operational description exhibit.

For the conducted power values of the LTE module, a worst case assumption of 22 dBm is used (as was done in the module's test report R1907A0448-M1V1).

Gain values for the LTE antenna are taken from antenova CU23003-1 Product Specification Rev.01.

Duty cycles were not measured, a worst case duty cycle of 1 is used for all transmissions.

Calculations are performed for mobile use and 20 cm (0,2 m) minimum separation distance. §1.1307(b)(3)(i)(C) requires a minimum separation distance of at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. For the lowest used frequency (633 MHz for NB-IoT B 71) this results in a distance of 0,075 m, which is fulfilled.

Title 47 §1.1307(b)(3)(i)(C):

(3) Determination of exemption. (i) For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

Table 1 to § 1.1307(b)(3)(i)(C) – Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3–1.34	$1,920 R^2$.
1.34–30	$3,450 R^2/f^2$.
30–300	$3.83 R^2$.
300–1,500	$0.0128 R^2 f$.
1,500–100,000	$19.2R^2$.

Title 47 §1.1307(b)(3)(ii)(B):

For multiple RF sources: Multiple RF sources are exempt in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation.

$$\sum_{i=1}^a \frac{P_i}{P_{th,i}} + \sum_{j=1}^b \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^c \frac{Evaluated_k}{Exposure\ Limit_k} \leq 1$$

Description	f [MHz]	ERPth [W]	conducted [W]	prod. variance [1]	cond P with var [W]	max gain [dBil]	ERP [W]	Fraction ERP/ERPth [1]
BLE	2402	0,768	0,00104	1,58	0,00164	-4,55	0,00035	0,00046
BLE	2440	0,768	0,00095	1,58	0,00150	-5,58	0,00025	0,00033
BLE	2480	0,768	0,00091	1,58	0,00144	-8,38	0,00013	0,00017
Quuppa	2401	0,768	0,00030	1,58	0,00047	-3,64	0,00013	0,00016
Quuppa	2440	0,768	0,00023	1,58	0,00036	-4,23	0,00008	0,00011
Quuppa	2481	0,768	0,00018	1,58	0,00028	-6,54	0,00004	0,00005
LTE Band 2	1850	0,768	0,15849	1,58	0,25041	-0,3	0,14250	0,18555
LTE Band 4	1710	0,768	0,15849	1,58	0,25041	-0,3	0,14250	0,18555
LTE Band 5	824	0,422	0,15849	1,58	0,25041	-4,6	0,05294	0,12549
LTE Band 12	699	0,358	0,15849	1,58	0,25041	-4,6	0,05294	0,14793
LTE Band 13	777	0,398	0,15849	1,58	0,25041	-4,6	0,05294	0,13308
LTE Band 25	1850	0,768	0,15849	1,58	0,25041	-0,3	0,14250	0,18555
LTE Band 26	814	0,417	0,15849	1,58	0,25041	-4,6	0,05294	0,12703
LTE Band 66	1710	0,768	0,15849	1,58	0,25041	-0,3	0,14250	0,18555
LTE Band 85	698	0,357	0,15849	1,58	0,25041	-4,6	0,05294	0,14815
NB-IoT Band 2	1850	0,768	0,15849	1,58	0,25041	-0,3	0,14250	0,18555
NB-IoT Band 4	1710	0,768	0,15849	1,58	0,25041	-0,3	0,14250	0,18555
NB-IoT Band 5	824	0,422	0,15849	1,58	0,25041	-4,6	0,05294	0,12549
NB-IoT Band 12	699	0,358	0,15849	1,58	0,25041	-4,6	0,05294	0,14793
NB-IoT Band 13	777	0,398	0,15849	1,58	0,25041	-4,6	0,05294	0,13308
NB-IoT Band 25	1850	0,768	0,15849	1,58	0,25041	-0,3	0,14250	0,18555
NB-IoT Band 66	1710	0,768	0,15849	1,58	0,25041	-0,3	0,14250	0,18555
NB-IoT Band 71	633	0,324	0,15849	1,58	0,25041	-4,6	0,05294	0,16336
NB-IoT Band 85	698	0,357	0,15849	1,58	0,25041	-4,6	0,05294	0,14815

§1.1307(b)(3)(ii)(B) sum:

Worst case BLE	0,00046
Worst case Quuppa	0,00016
Worst case LTE	0,18555
Sum ERP/ERPth	0,18617

The sum is smaller than 1, the device is MPE exempt per §1.1307(b)(3)(ii)(B).

Appendix 1

Test equipment used

				Division:
<input type="checkbox"/> Anechoic Chamber with 3m measurement distance	NT-100	<input type="checkbox"/> Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	Industry & Energy
<input type="checkbox"/> stripline according to ISO 11452-5	NT-108	<input type="checkbox"/> Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173	
<input type="checkbox"/> MA4000 - Antenna mast 1 - 4 m height	NT-110/1	<input type="checkbox"/> Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200	Test report number: 2023-IN-AT-TICL-E-EX-0-000230-FG-001
<input type="checkbox"/> DS - Turntable 0 - 400 ° Azimuth	NT-111/1	<input type="checkbox"/> ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1	Page: 1 of 5
<input type="checkbox"/> CO3000 Controller Mast+Turntable	NT-112/1	<input type="checkbox"/> ESR – Test receiver 20 Hz – 26,5 GHz	NT-207/1	
<input type="checkbox"/> HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	<input type="checkbox"/> Digital Radio Tester CMW500	NT-208/1	Date: 05.12.2023
<input type="checkbox"/> FMZB1513 - Loop Antenna 9 kHz - 30 MHz	NT-122/1	<input type="checkbox"/> Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209	
<input type="checkbox"/> HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	<input type="checkbox"/> CMTA - Radiocommunication analyzer ; 0,1 - 1000 MHz	NT-210	
<input type="checkbox"/> Dipole Antenna VHA9103 30 - 300 MHz	NT-124/1a	<input type="checkbox"/> 3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211	
<input type="checkbox"/> Dipole Antenna UHA9105 300 - 1000 MHz	NT-124/1b	<input type="checkbox"/> Digital Radio Tester Aeroflex 3920	NT-212/1	
<input type="checkbox"/> 3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	<input type="checkbox"/> Mixer M28HW 26,5 GHz - 40 GHz	NT-214	
<input type="checkbox"/> 3116 - Horn Antenna 18 - 40 GHz	NT-126	<input type="checkbox"/> RubiSource T&M Timing reference	NT-216	
<input type="checkbox"/> SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	<input type="checkbox"/> Radiocommunicationanalyzer SWR 1180 MD	NT-217	
<input type="checkbox"/> AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	<input type="checkbox"/> Mixer FS-Z60 40 GHz – 60 GHz	NT-218/1	
<input type="checkbox"/> HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	<input type="checkbox"/> Mixer FS-Z90 60 GHz – 90 GHz	NT-219/1	
<input type="checkbox"/> HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	<input type="checkbox"/> DSO9104 Digital scope	NT-220/1	
<input type="checkbox"/> 3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	<input type="checkbox"/> TPS 2014 Digital scope	NT-222	
<input type="checkbox"/> VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	<input type="checkbox"/> Artificial Ear according to IEC 60318	NT-224	
<input type="checkbox"/> Loop Antenna H-Field	NT-132	<input type="checkbox"/> 1 kHz Sound calibrator	NT-225	
<input type="checkbox"/> Horn Antenna 500 MHz - 2900 MHz	NT-133	<input type="checkbox"/> SRM-3006 Spectrumanalyzer	NT-233/1a	
<input type="checkbox"/> Horn Antenna 500 MHz - 6000 MHz	NT-133/1	<input type="checkbox"/> E-field probe SRM 75 MHz – 3 GHz	NT-234	
<input type="checkbox"/> Log. per. Antenna 800 MHz - 2500 MHz	NT-134	<input type="checkbox"/> Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-e	
<input type="checkbox"/> Log. per. Antenna 800 MHz - 2500 MHz	NT-135	<input type="checkbox"/> Magnetometer HP-01	NT-241/1	
<input type="checkbox"/> BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	<input type="checkbox"/> EFA-3 H-field- / E-field probe	NT-243	
<input type="checkbox"/> Conical Dipol Antenna PCD8250	NT-138	<input type="checkbox"/> EHP-50F H-field- / E-field probe	NT-243/1	
<input type="checkbox"/> HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	<input type="checkbox"/> Field Meter EMR-200 100 kHz – 3 GHz	NT-244	
<input type="checkbox"/> HZ-1 Antenna tripod	NT-150	<input type="checkbox"/> E-field probe 100 kHz – 3 GHz	NT-245	
<input type="checkbox"/> BN 1500 Antenna tripod	NT-151	<input type="checkbox"/> H-field probe 300 kHz – 30 MHz	NT-246	

Appendix 1 (continued)

Test equipment used

				Division: Industry & Energy
<input type="checkbox"/> E-field probe 3 MHz – 18 GHz	NT-247	<input type="checkbox"/> Prana N-MT 500 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332/1	
<input type="checkbox"/> H-field probe 27 MHz – 1 GHz	NT-248	<input type="checkbox"/> BBA150 RF-Amplifier 1 GHz - 6 GHz	NT-333/1	
<input type="checkbox"/> ELT-400 1 Hz – 400 kHz	NT-249	<input type="checkbox"/> APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334	Test report number: 2023-IN-AT-TICL-E-EX-0- 000230-FG-001
<input type="checkbox"/> MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	<input type="checkbox"/> Preamplifier 1 GHz - 4 GHz	NT-335	Page: 2 of 5
<input type="checkbox"/> FCC-203I EM Injection clamp	NT-251	<input type="checkbox"/> Preamplifier for GPS MKU 152 A	NT-336	Date: 05.12.2023
<input type="checkbox"/> FCC-203I-DCN Ferrite decoupling network	NT-252	<input type="checkbox"/> Preamplifier 1 GHz – 18 GHz	NT-337/1	
<input type="checkbox"/> PR50 Current Probe	NT-253	<input type="checkbox"/> DC Block 10 MHz – 18 GHz Model 8048	NT-338	
<input type="checkbox"/> i310s Current Probe	NT-254/1	<input type="checkbox"/> 2-97201 Electronic load	NT-341	
<input type="checkbox"/> Fluke 87 V True RMS Multimeter	NT-260	<input type="checkbox"/> TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344	
<input type="checkbox"/> Model 2000 Digital Multimeter	NT-261	<input type="checkbox"/> TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345	
<input type="checkbox"/> Fluke 87 V Digital Multimeter	NT-262/1	<input type="checkbox"/> VDS 200 Mobil-impuls-generator	NT-350	
<input type="checkbox"/> ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	<input type="checkbox"/> LD 200 Mobil-impuls-generator	NT-351	
<input type="checkbox"/> ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	<input type="checkbox"/> MPG 200 Mobil-Impuls-Generators	NT-352	
<input type="checkbox"/> ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	<input type="checkbox"/> EFT 200 Mobil-impuls-generator	NT-353	
<input type="checkbox"/> ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	<input type="checkbox"/> AN 200 S1 Artificial Network	NT-354	
<input type="checkbox"/> EZ10 T-Artificial Network	NT-305	<input type="checkbox"/> FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1	
<input type="checkbox"/> SMG - Signal generator 0,1 - 1000 MHz	NT-310	<input type="checkbox"/> PHE 4500 - Mains impedance network	NT-401	
<input type="checkbox"/> SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	<input type="checkbox"/> IP 6.2 Coupling filter for data lines (Surge)	NT-403	
<input type="checkbox"/> RefRad Reference generator	NT-312	<input type="checkbox"/> TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409	
<input type="checkbox"/> SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	<input type="checkbox"/> ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410	
<input type="checkbox"/> 40 MHz Arbitrary Generator TGA1241	NT-315	<input type="checkbox"/> CN-EFT1000 - Capacitive clamp (Burst)	NT-411/1	
<input type="checkbox"/> Artificial mains network NSLK 8127-PLC	NT-316	<input type="checkbox"/> Highpass-Filter 100 MHz – 3 GHz	NT-412	
<input type="checkbox"/> PSURGE 4.1 Surge generator	NT-324	<input type="checkbox"/> Highpass-Filter 600 MHz – 4 GHz	NT-413	
<input type="checkbox"/> IMU4000 Immunity test system	NT- 325/1a-e	<input type="checkbox"/> Highpass-Filter 1250 MHz – 4 GHz	NT-414	
<input type="checkbox"/> VCS 500-M6 Surge-Generator	NT-326	<input type="checkbox"/> Highpass-Filter 1800 MHz – 16 GHz	NT-415	
<input type="checkbox"/> Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c			
<input type="checkbox"/> BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330			

Appendix 1 (continued)

Test equipment used

<input type="checkbox"/> RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417/1	<input type="checkbox"/> SW 9605 - Current probe 150 kHz – 30 MHz	NT-465/1	Division: Industry & Energy
<input type="checkbox"/> RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	<input type="checkbox"/> 95242-1 – Current probe 1 MHz – 400 MHz	NT-468	
<input type="checkbox"/> RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419	<input type="checkbox"/> 94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	
<input type="checkbox"/> RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	<input type="checkbox"/> WHKX12-2700-3000-18000 3 GHz Highpass filter	NT-472	Test report number: 2023-IN-AT-TICL-E-EX-0- 000230-FG-001
<input type="checkbox"/> RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	<input type="checkbox"/> WHKX10-3870-4500-18000 4,5 GHz Highpass filter	NT-473	Page: 3 of 5
<input type="checkbox"/> RF-Attenuator 30 dB	NT-424	<input type="checkbox"/> CDN S9 USB3.0 Coupling decoupling network	NT-474	Date: 05.12.2023
<input type="checkbox"/> RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	<input type="checkbox"/> CDN S2 XLR3-1 Coupling decoupling network	NT-475	
<input type="checkbox"/> RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	<input type="checkbox"/> CDN S8 RJ45 Coupling decoupling network	NT-476	
<input type="checkbox"/> RF-Attenuator 6 dB	NT-428	<input type="checkbox"/> GA 1240 Power amplifier according to EN 61000-4-16	NT-480	
<input type="checkbox"/> RF-Attenuator 0 dB - 81 dB	NT-429	<input type="checkbox"/> Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
<input type="checkbox"/> WRU 27 - Band blocking 27 MHz	NT-430	<input type="checkbox"/> Van der Hoofden Test Head	NT-484	
<input type="checkbox"/> WHJ450C9 AA - High pass 450 MHz	NT-431	<input type="checkbox"/> WRCJV12-5820-5850-5950-5980 5,9 GHz Band Reject Filter	NT-490	
<input type="checkbox"/> WHJ250C9 AA - High pass 250 MHz	NT-432	<input type="checkbox"/> WHKX10-5670-6300-18000 6 GHz Highpass filter	NT-491	
<input type="checkbox"/> RF-Load 150 W	NT-433	<input type="checkbox"/> WHK12-935-1000-7000 1 GHz Highpass filter	NT-492	
<input type="checkbox"/> Impedance transducer 1:4 ; 1:9 ; 1:16	NT-435	<input type="checkbox"/> EMC Video/Audiosystem	NT-511/1	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 6 dB	NT-436	<input type="checkbox"/> EMC32 Version 10.60.20 Test software	NT-520/1	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 6 dB	NT-437	<input type="checkbox"/> SRM-TS Version 1.3 software for SRM-3000	NT-522	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 10 dB	NT-438	<input type="checkbox"/> SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 20 dB	NT-439	<input type="checkbox"/> Spitzenerberger und Spies Test software V4.1	NT-525	
<input type="checkbox"/> I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	<input type="checkbox"/> Vertical coupling plane (ESD)	NT-531	
<input type="checkbox"/> ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	<input type="checkbox"/> Test cable #4 for EN 61000-4-6	NT-553	
<input type="checkbox"/> Power Divider 6 dB/1 W/50 Ohm	NT-443	<input type="checkbox"/> Test cable #3 for conducted emission	NT-554	
<input type="checkbox"/> Directional coupler 0,1 MHz – 70 MHz	NT-444	<input type="checkbox"/> Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
<input type="checkbox"/> Directional coupler 0,1 MHz – 70 MHz	NT-445	<input type="checkbox"/> Test cable #8 Sucoflex 104EA	NT-559	
<input type="checkbox"/> Tube imitations according to EN 55015	NT-450	<input type="checkbox"/> Test cable #9 (for outdoor measurements)	NT-580	
<input type="checkbox"/> FCC-801-M3-16A Coupling decoupling network	NT-458	<input type="checkbox"/> Test cable #10 (for outdoor measurements)	NT-581	
<input type="checkbox"/> FCC-801-M2-50A Coupling decoupling network	NT-459	<input type="checkbox"/> Test cable #13 Sucoflex 104PE	NT-584	
<input type="checkbox"/> FCC-801-M5-25 Coupling decoupling network	NT-460	<input type="checkbox"/> Test cable #21 for SRM-3000	NT-592	
<input type="checkbox"/> FCC-801-T4 Coupling decoupling network	NT-463	<input type="checkbox"/> Shield chamber	NT-600	
<input type="checkbox"/> FCC-801-C1 Coupling decoupling network	NT-464	<input type="checkbox"/> Climatic chamber	M-1200	

Appendix 1 (continued)

Test equipment used

				Division:
				Industry & Energy
<input type="checkbox"/> Anechoic Chamber 3 m / 5 m measuring distance	EMV-100	<input type="checkbox"/> HF- Amplifier 9 kHz-225 MHz BBL200	EMV-300/1	
<input type="checkbox"/> Turntable 6 m diameter	EMV-101	<input type="checkbox"/> HF- Amplifier 80 -1000 MHz BBA150	EMV-301	
<input type="checkbox"/> Antenna mast + controller	EMV-102+ EMV-103	<input type="checkbox"/> HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302	Test report number: 2023-IN-AT-TICL-E-EX-0- 000230-FG-001
<input type="checkbox"/> EMC Video/Audiosystem	EMV-104	<input type="checkbox"/> High Power Ant. 20-200 MHz HPBA-2510	EMV-303/1	
<input type="checkbox"/> EMC Software EMC32 Version 10.60.20	EMV-105	<input type="checkbox"/> High Power Ant. 20-200 MHz S12018-21	EMV-303/2	Page: 4 of 5
<input type="checkbox"/> Hornantenna 1 – 18 GHz HF 907	EMV-110	<input type="checkbox"/> Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304	Date: 05.12.2023
<input type="checkbox"/> Antennapre.amp. 1 – 18 GHz BBV 9718 D	EMV-111/1	<input type="checkbox"/> Log.per Antenna 0,7 – 9 GHz STLP9149	EMV-305	
<input type="checkbox"/> Trilog Antenna 30-3000 MHz VULB9163	EMV-112	<input type="checkbox"/> HF- Amplifier 9 kHz-250 MHz BBA150 (low noise)	EMV-306	
<input type="checkbox"/> Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113	<input type="checkbox"/> ISO11451-2 TLS 10 kHz – 30 MHz	EMV-307	
<input type="checkbox"/> Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114	<input type="checkbox"/> Load Dump Generator LD 200N	EMV-350	
<input type="checkbox"/> Hornantenna 200 – 2000 MHz AH-220	EMV-115	<input type="checkbox"/> Ultra Compact Simulator UCS 200N100	EMV-351	
<input type="checkbox"/> DC Artificial Network PVDC 8300	EMV-150	<input type="checkbox"/> Automotive Power fail module PFM 200N100.1	EMV-352	
<input type="checkbox"/> AC Artificial Network NNLK 8121 RC	EMV-151	<input type="checkbox"/> Voltage Drop Simulator VDS 200Q100	EMV-353	
<input type="checkbox"/> AC Artificial Network NNLK 140	EMV- 153a-d	<input type="checkbox"/> Arb. Generator AutoWave	EMV-354	
<input type="checkbox"/> EMI Receiver ESW44	EMV-200/1	<input type="checkbox"/> Ultra Compact Simulator UCS 500N7	EMV-355	
<input type="checkbox"/> Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201	<input type="checkbox"/> Coupling decoupling network CNI 503B7 / 32 A	EMV-356	
<input type="checkbox"/> GPS Frequency normal B-88	EMV-202	<input type="checkbox"/> Coupling decoupling network CNI 503B7 / 63 A	EMV-357	
<input type="checkbox"/> DC Power supply N5745A	EMV-203	<input type="checkbox"/> Telecom Surge Generator TSurge 7	EMV-358	
<input type="checkbox"/> Spektrum Analyzator FSV40	EMV-205	<input type="checkbox"/> Coupling decoupling network CNI 508N2	EMV-359	
<input type="checkbox"/> Thd Multimeter Model 2015	EMV-206	<input type="checkbox"/> Coupling decoupling network CNV 504N2.2	EMV-360	
<input type="checkbox"/> Poweramplifier PAS15000	EMV- 207/abc	<input type="checkbox"/> Immunity generator NSG4060/NSG4060-1	EMV-361	
<input type="checkbox"/> Inrush Current Source	EMV- 208/abc	<input type="checkbox"/> Coupling network CDND M316-2	EMV-362	
<input type="checkbox"/> Arb.-generator Sycore	EMV-209	<input type="checkbox"/> Coupling network CT419-5	EMV-363	
<input type="checkbox"/> Harmonics/Flicker analyzer ARS 16/3	EMV-210	<input type="checkbox"/> ESD Generator NSG 437	EMV-364	
<input type="checkbox"/> Power Supply Regatron AC	EMV-214	<input type="checkbox"/> Pulse Limiter VTSD 9561-F BNC	EMV-405	
<input type="checkbox"/> Power Supply Regatron DC	EMV-215	<input type="checkbox"/> Transient emission BSM200N40+BS200N100	EMV- 450+451	
<input type="checkbox"/> Harmonics/Flicker analyser Zimmer	EMV-216	<input type="checkbox"/> Cap. Coupling Clamp HFK	EMV-455	
<input type="checkbox"/> Flicker Impedanz Newton4th 753	EMV-218	<input type="checkbox"/> Mag. Field System MS100N+MC26100+MC2630	EMV- 456-458	
<input type="checkbox"/> Comemso	EMV-219			

Appendix 1 (continued)

Test equipment used

Division:
Industry & Energy

<input type="checkbox"/> Coupling network CDN M2-100A	EMV-459
<input type="checkbox"/> Coupling network CDN M3-32A	EMV-460
<input type="checkbox"/> Coupling network CDN M5-100A	EMV-461
<input type="checkbox"/> Current Clamp CIP 9136A	EMV-462
<input type="checkbox"/> DC Artificial Network HV-AN 150	EMV-464+465
<input type="checkbox"/> Coupling Clamp EM 101	EMV-466
<input type="checkbox"/> Decoupling Clamp FTC 101	EMV-467
<input type="checkbox"/> Power attenuator 10 dB / 250 Watt	EMV-469/2
<input type="checkbox"/> HV AMN NNHV 8123 800A	EMV-472
<input type="checkbox"/> HV AMN NNHV 8123 800A	EMV-473

Test report number:
2023-IN-AT-TICL-E-EX-0-
000230-FG-001

Page: 5 of 5

Date: 05.12.2023