

Page : 1 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# RADIO TEST REPORT

**Product**: Wireless console module

Model Name : CIC15101

FCC ID : 2A3HV-CIC15A

**Test Regulation**: FCC 47 CFR Part 15 Subpart E (Section 15.407)

**Received Date** : 2021/12/23

**Test Date** : 2021/12/27 ~ 2022/1/21

**Issued Date** : 2022/2/17

**Applicant**: Hydrow, Inc.

10 Summer St, 5th Floor Boston MA 02110

**Issued By** : Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd.,

Zhudong Township, Hsinchu County, Taiwan





339

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report are responsible of the test sample(s) provided by the client only and are not to be used to indicate applicability to other similar products.

#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948



Page : 2 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# **REVISION HISTORY**

Original Test Report No.: 4790239884-US-R1-V0

| Rev.     | Test report No.<br>4790239884-US-R1-V0 | Date      | Page revised | Contents      |
|----------|----------------------------------------|-----------|--------------|---------------|
| Original | 4790239884-US-R1-V0                    | 2022/2/17 | -            | Initial issue |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |
|          |                                        |           |              |               |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 3 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# **Table of Contents**

| 1. At | ttestation of Test Results                        | 4   |
|-------|---------------------------------------------------|-----|
| 2. Su | ımmary of Test Results                            | 5   |
| 3. Te | est Methodology and Reference Procedures          | 6   |
| 4. Fa | acilities and Accreditation                       | 6   |
| 5. M  | leasurement Uncertainty                           | 7   |
| 6. E  | quipment under Test                               | 8   |
| 6.1.  | Description of EUT                                |     |
| 6.2.  | Channel List                                      | -   |
| 6.3.  | Test Condition                                    |     |
| 6.4.  | Description of Available Antennas                 |     |
| 6.5.  | Test Mode Applicability and Tested Channel Detail |     |
| 6.6.  | Duty cycle                                        | 15  |
| 7. Te | est Equipment                                     | 16  |
| 8. De | escription of Test Setup                          | 18  |
| 9. Te | est Results                                       | 20  |
| 9.1.  | 6dB Bandwidth                                     | 20  |
| 9.2.  | 26dB Bandwidth                                    |     |
| 9.3.  | Occupied Bandwidth                                |     |
| 9.4.  | Conducted output power                            | 51  |
| 9.5.  | Power Spectral Density                            | 57  |
| 9.6.  | Frequency Stability                               | 68  |
| 9.7.  | Radiated Spurious Emission                        | 70  |
| 9.8.  | AC Power Line Conducted Emission                  | 155 |



Page : 4 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 1. Attestation of Test Results

**APPLICANT:** Hydrow, Inc.

10 Summer St, 5th Floor Boston MA 02110

**MANUFACTURER:** InnoComm Mobile Technology Corporation

3F, No. 6, Hsin Ann Rd., Hsinchu Science Park, Hsinchu 300092,

Taiwan

**EUT DESCRIPTION:** Wireless console module

**BRAND:** Hydrow, Inc.

MODEL: CIC15101

**SAMPLE STAGE:** Design Verification Test sample

**DATE of TESTED:** 2021/12/27 ~ 2022/1/21

### APPLICABLE STANDARDS

**STANDARD** 

**Test Results** 

FCC 47 CFR PART 15 Subpart E (Section 15.407)

**PASS** 

Underwriters Laboratories Taiwan Co., Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by Underwriters Laboratories Taiwan Co., Ltd. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Underwriters Laboratories Taiwan Co., Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Underwriters Laboratories Taiwan Co., Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Prepared By:

Approved and Authorized By:

Sally Lu Date : 2022/2/17

Waternil Guan

Date: 2022/2/17

Project Handler

Engineer

**Underwriters Laboratories Taiwan Co., Ltd.** 

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948



Page : 5 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 2. Summary of Test Results

| Summary of Test Results        |                                                   |           |  |  |
|--------------------------------|---------------------------------------------------|-----------|--|--|
| FCC Clause                     | Result                                            |           |  |  |
| 15.407(e)                      | 6dB Bandwidth                                     | PASS      |  |  |
| 15.403(i)                      | 26dB Bandwidth                                    | PASS      |  |  |
| 2.1049                         | Occupied Bandwidth                                | See Note1 |  |  |
| 15.407(a)(1/2/3)               | Conducted Output Power PASS                       |           |  |  |
| 15.407(a)(1/2/3)               | Power Spectral Density                            | PASS      |  |  |
| 15.407(g)                      | Frequency Stability                               | PASS      |  |  |
| 15.407(b)<br>(1/2/3/4(i/ii)/9) | Radiated Emissions and Band Edge Measurement PASS |           |  |  |
| 15.407(b)(9)                   | AC Power Conducted Emission                       | PASS      |  |  |
| 15.203                         | Antenna Requirement                               | PASS      |  |  |
| 15.407(h)                      | Dynamic Frequency Selection                       | See Note2 |  |  |

#### Note:

- 1. The Occupied Bandwidth was reference only.
- 2. The "Dynamic Frequency Selection measurement" was recorded in Report No.: 4790239884-US-R2-V0.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 6 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 3. Test Methodology and Reference Procedures

The tests documented in this report were performed in accordance with 47 CFR FCC Part 2, KDB 789033 D02 General UNII Test Procedure New Rules v02r01, KDB414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013 and KDB 662911 D01 Multiple Transmitter Output v02r01.

## 4. Facilities and Accreditation

| Test Location                | Underwriters Laboratories Taiwan Co., Ltd.                                                            |
|------------------------------|-------------------------------------------------------------------------------------------------------|
| Address                      | Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan |
| Accreditation<br>Certificate | Underwriters Laboratories Taiwan Co., Ltd. is accredited by TAF, Laboratory Code 3398.                |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948 Doc No: 17-EM-F0878 / 6.0



Page : 7 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 5. Measurement Uncertainty

For statement of conformity, accuracy method (Section 8.2.4 and 8.2.5 of ISO Guide 98-4) was applied as decision rule for measurement in this test report.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

| Measurement                                    | Frequency      | Uncertainty |
|------------------------------------------------|----------------|-------------|
| Conducted disturbance at mains terminals ports | 150kHz ~ 30MHz | ±3.1 dB     |
| RF Conducted                                   | 9 kHz - 40GHz  | ±1.9 dB     |
| Radiated disturbance below 30MHz               | 9 kHz - 30 MHz | ±1.9 dB     |
| Radiated disturbance below 1 GHz               | 30MHz ~ 1GHz   | ±5.4 dB     |
| Radiated disturbance above 1 GHz               | 1GHz ~ 40GHz   | ±4.7 dB     |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 8 of 158 Issued date : 2022/2/17 FCC ID : 2A3HV-CIC15A

## 6. Equipment under Test

## **6.1. Description of EUT**

| Product              | Wireless console module                                               |                                                  |  |
|----------------------|-----------------------------------------------------------------------|--------------------------------------------------|--|
| Brand Name           | Hydrow, Inc.                                                          |                                                  |  |
| Model Name           | CIC15101                                                              |                                                  |  |
| Operating Frequency  | 5180 ~ 5240 MHz, 5260 ~ 5320 MHz,<br>5500 ~ 5700 MHz, 5745 ~ 5825 MHz |                                                  |  |
| Modulation           | 256QAM, 64QAM,                                                        | 16QAM, QPSK, BPSK                                |  |
| Transfer Rate        | 802.11a: up to 54 M<br>802.11n: up to MCS<br>802.11ac: up to MCS      | 15                                               |  |
|                      |                                                                       | 4 for 802.11a, 802.11n (HT20), 802.11ac (VHT20)  |  |
|                      | 5180 ~ 5240 MHz                                                       | 2 for 802.11n (HT40), 802.11ac (VHT40)           |  |
|                      |                                                                       | 1 for 802.11ac (VHT80)                           |  |
|                      |                                                                       | 4 for 802.11a, 802.11n (HT20), 802.11ac (VHT20)  |  |
|                      | 5260 ~ 5320 MHz                                                       | 2 for 802.11n (HT40), 802.11ac (VHT40)           |  |
| Number of Channel    |                                                                       | 1 for 802.11ac (VHT80)                           |  |
| Number of Channel    | 5500 ~ 5700 MHz                                                       | 11 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) |  |
|                      |                                                                       | 5 for 802.11n (HT40), 802.11ac (VHT40)           |  |
|                      |                                                                       | 2 for 802.11ac (VHT80)                           |  |
|                      |                                                                       | 5 for 802.11a, 802.11n (HT20), 802.11ac (VHT20)  |  |
|                      | 5745 ~ 5825 MHz                                                       | 2 for 802.11n (HT40), 802.11ac (VHT40)           |  |
|                      |                                                                       | 1 for 802.11ac (VHT80)                           |  |
|                      | 5180 ~ 5240 MHz: 17.52 dBm                                            |                                                  |  |
| Maximum Output Power | 5260 ~ 5320 MHz: 18.50 dBm                                            |                                                  |  |
|                      | 5500 ~ 5700 MHz: 22.47 dBm                                            |                                                  |  |
| N 187 1              | 5745 ~ 5825 MHz: 22.05 dBm                                            |                                                  |  |
| Normal Voltage       | 120Vac/ 60Hz                                                          |                                                  |  |
| Sample ID            | 4602151                                                               |                                                  |  |
| Software Version     | Android verson 11                                                     |                                                  |  |

## **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948



Doc No: 17-EM-F0878 / 6.0

Page : 9 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

#### Note:

1. The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and two receivers.

| <b>Modulation Mode</b> | Tx,Rx Function |
|------------------------|----------------|
| 802.11a                | 2TX,2RX        |
| 802.11n (HT20)         | 2TX,2RX        |
| 802.11n (HT40)         | 2TX,2RX        |
| 802.11ac (VHT20)       | 2TX,2RX        |
| 802.11ac (VHT40)       | 2TX,2RX        |
| 802.11ac (VHT80)       | 2TX,2RX        |

<sup>\*</sup> The modulation and bandwidth are similar for 802.11n mode for HT20 / HT40 and 802.11ac mode for VHT20 / VHT40, therefore investigated worst case to representative mode in test report.

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer the manufacturer's or user's manual.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 10 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 6.2. Channel List

#### FOR 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 36      | 5180 MHz  | 44      | 5220 MHz  |
| 40      | 5200 MHz  | 48      | 5240 MHz  |

## 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 38      | 5190 MHz  | 46      | 5230 MHz  |

#### 1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency |
|---------|-----------|
| 42      | 5210MHz   |

## **FOR 5260 ~ 5320MHz**

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 52      | 5260 MHz  | 60      | 5300 MHz  |
| 56      | 5280 MHz  | 64      | 5320 MHz  |

## 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

|         |           | · · · · · · · · · · · · · · · · · · · |           |
|---------|-----------|---------------------------------------|-----------|
| Channel | Frequency | Channel                               | Frequency |
| 54      | 5270 MHz  | 62                                    | 5310 MHz  |

#### 1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency |
|---------|-----------|
| 58      | 5290MHz   |

#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948



Page : 11 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

#### **FOR 5500 ~ 5700MHz**

11 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 100     | 5500 MHz  | 124     | 5620 MHz  |
| 104     | 5520 MHz  | 128     | 5640 MHz  |
| 108     | 5540 MHz  | 132     | 5660 MHz  |
| 112     | 5560 MHz  | 136     | 5680 MHz  |
| 116     | 5580 MHz  | 140     | 5700 MHz  |
| 120     | 5600 MHz  | -       | -         |

## 5 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 102     | 5510 MHz  | 126     | 5630 MHz  |
| 110     | 5550 MHz  | 134     | 5670 MHz  |
| 118     | 5590 MHz  | -       | -         |

#### 2 channels are provided for 802.11ac (VHT80):

| Channel | Frequency | Frequency Channel |          |
|---------|-----------|-------------------|----------|
| 106     | 5530MHz   | 122               | 5610 MHz |

## **FOR 5745 ~ 5825MHz:**

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 149     | 5745MHz   | 161     | 5805MHz   |
| 153     | 5765MHz   | 165     | 5825MHz   |
| 157     | 5785MHz   | -       | -         |

## 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency | Channel | Frequency |  |
|---------|-----------|---------|-----------|--|
| 151     | 5755MHz   | 159     | 5795MHz   |  |

## 1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency |
|---------|-----------|
| 155     | 5775MHz   |

## Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948 Doc No: 17-EM-F0878 / 6.0



Doc No: 17-EM-F0878 / 6.0

Page : 12 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 6.3. Test Condition

| Test Item                              | Test Site<br>No. | Environmental<br>Condition | Input<br>Power  | Test Date                 | Tested by |
|----------------------------------------|------------------|----------------------------|-----------------|---------------------------|-----------|
| Antenna Port Conducted Measurement     | SR4              | 20~26°C/<br>62~68%RH       | 120Vac/<br>60Hz | 2021/12/27~<br>2022/01/20 | Mike Cai  |
| Radiated<br>Spurious<br>Emission       | 966-2            | 20~26°C/<br>62~68%RH       | 120Vac/<br>60Hz | 2021/12/27~<br>2022/01/21 | Mike Cai  |
| AC power Line<br>Conducted<br>Emission | SR1              | 20~26°C/<br>62~68%RH       | 120Vac/<br>60Hz | 2021/12/27~<br>2022/01/20 | Mike Cai  |

FCC Test Firm Registration Number: 498077

## 6.4. Description of Available Antennas

| Ant. No. | Transmitter Circuit | Ant. Type | Maximum Gain (dBi)         |
|----------|---------------------|-----------|----------------------------|
| 1        | Chain (0)+(1)       | PCB       | 2.4GHz: 3.14<br>5GHz: 4.63 |

Note: The above antenna information was provided from customer and for more detailed features description, please refer the manufacturer's specification or user's manual.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 13 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 6.5. Test Mode Applicability and Tested Channel Detail

- The fundamental of the EUT's Antenna was investigated in three orthogonal axes X-Y/Y-Z/X-Z, it was determined that Y-Z plane was worst-case. Therefore, all final radiated testing was performed with the Y-Z plane at Antenna.
- For Antenna Port Conducted Measurement, this item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only.
- For below 1 GHz radiated emission and AC power line conducted emission have performed all modes of operation were investigated and the worst-case emissions are reported.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

| Test Item                           | Mode       | Modulation<br>Technology | Modulation<br>Type | Available<br>Channel | Test<br>Channel | Data<br>Rate  |      |
|-------------------------------------|------------|--------------------------|--------------------|----------------------|-----------------|---------------|------|
|                                     | 802.11a    |                          | OFDM               | 36 to 48             | 36, 44, 48      | 6Mbps         |      |
|                                     | 802.11ac20 | 5100 5040                |                    | 36 to 48             | 36, 44, 48      | MCS0          |      |
|                                     | 802.11ac40 | 5180-5240                | OFDM               | 38 to 46             | 38, 46          | MCS0          |      |
|                                     | 802.11ac80 |                          |                    | 42                   | 42              | MCS0          |      |
|                                     | 802.11a    |                          | OFDM               | 52 to 64             | 52, 60, 64      | 6Mbps         |      |
|                                     | 802.11ac20 | 5260 5220                |                    | 52 to 64             | 52, 60, 64      | MCS0          |      |
| Radiated Emissions                  | 802.11ac40 | 5260-5320                | OFDM               | 54 to 62             | 54, 62          | MCS0          |      |
|                                     | 802.11ac80 |                          |                    | 58                   | 58              | MCS0          |      |
| (Above 1GHz)                        | 802.11a    | 5500-5700                | OFDM               | 100 to 140           | 100, 116, 140   | 6Mbps         |      |
|                                     | 802.11ac20 |                          | 5500-5700          |                      | 100 to 140      | 100, 116, 140 | MCS0 |
|                                     | 802.11ac40 |                          |                    | OFDM                 | 102 to 134      | 102, 110, 134 | MCS0 |
|                                     | 802.11ac80 |                          |                    | 106, 122             | 106, 122        | MCS0          |      |
|                                     | 802.11a    |                          | OFDM               | 149 to 165           | 149, 157, 165   | 6Mbps         |      |
|                                     | 802.11ac20 | 5745 5905                |                    | 149 to 165           | 149, 157, 165   | MCS0          |      |
|                                     | 802.11ac40 | 5745-5825                | OFDM               | 151 to 159           | 151, 159        | MCS0          |      |
|                                     | 802.11ac80 |                          |                    | 155                  | 155             | MCS0          |      |
| Radiated Emissions<br>(Below 1GHz)  | 802.11ac80 | 5500-5700                | OFDM               | 106, 122             | 106             | MCS0          |      |
| AC Power Line<br>Conducted Emission | 802.11ac80 | 5500-5700                | OFDM               | 106, 122             | 106             | MCS0          |      |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 14 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

| Test Item                | Mode       | Modulation<br>Technology | Modulation<br>Type | Available<br>Channel | Test<br>Channel | Data<br>Rate |            |      |
|--------------------------|------------|--------------------------|--------------------|----------------------|-----------------|--------------|------------|------|
|                          | 802.11a    |                          | OFDM               | 36 to 48             | 36, 44, 48      | 6Mbps        |            |      |
|                          | 802.11ac20 | 5180-5240                |                    | 36 to 48             | 36, 44, 48      | MCS0         |            |      |
|                          | 802.11ac40 | 3180-3240                | OFDM               | 38 to 46             | 38, 46          | MCS0         |            |      |
|                          | 802.11ac80 |                          |                    | 42                   | 42              | MCS0         |            |      |
|                          | 802.11a    |                          | OFDM               | 52 to 64             | 52, 60, 64      | 6Mbps        |            |      |
|                          | 802.11ac20 | 5260-5320                | 5260-5320          | 5260 5220            |                 | 52 to 64     | 52, 60, 64 | MCS0 |
|                          | 802.11ac40 |                          |                    | OFDM                 | 54 to 62        | 54, 62       | MCS0       |      |
| Antenna Port             | 802.11ac80 |                          |                    | 58                   | 58              | MCS0         |            |      |
| Conducted<br>Measurement | 802.11a    |                          | OFDM               | 100 to 140           | 100, 116, 140   | 6Mbps        |            |      |
|                          | 802.11ac20 | 5500-5700                |                    | 100 to 140           | 100, 116, 140   | MCS0         |            |      |
|                          | 802.11ac40 | 3300-3700                | OFDM               | 102 to 134           | 102, 110, 134   | MCS0         |            |      |
|                          | 802.11ac80 |                          |                    | 106, 122             | 106, 122        | MCS0         |            |      |
|                          | 802.11a    |                          | OFDM               | 149 to 165           | 149, 157, 165   | 6Mbps        |            |      |
|                          | 802.11ac20 | 5745 5925                |                    | 149 to 165           | 149, 157, 165   | MCS0         |            |      |
|                          | 802.11ac40 | 5745-5825                | OFDM               | 151 to 159           | 151, 159        | MCS0         |            |      |
|                          | 802.11ac80 |                          |                    | 155                  | 155             | MCS0         |            |      |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948 Doc No: 17-EM-F0878 / 6.0



Page : 15 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 6.6. Duty cycle

| Mode            | On Time (ms) | On+Off<br>Time<br>(ms) | <b>Duty Cycle</b> | Duty Factor (dB) | VBW Set<br>(above<br>1GHz) |
|-----------------|--------------|------------------------|-------------------|------------------|----------------------------|
| 802.11a         | 1.376        | 1.440                  | 0.96              | 0.20             | 1kHz                       |
| 802.11ac(VHT20) | 1.298        | 1.365                  | 0.95              | 0.22             | 1kHz                       |
| 802.11ac(VHT40) | 0.652        | 0.706                  | 0.92              | 0.35             | 2kHz                       |
| 802.11ac(VHT80) | 0.325        | 0.378                  | 0.86              | 0.66             | 5.1kHz                     |



## **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948



Page : 16 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 7. Test Equipment

| Test Equipment List                          |                    |                             |                        |            |              |  |  |  |  |  |
|----------------------------------------------|--------------------|-----------------------------|------------------------|------------|--------------|--|--|--|--|--|
| Equipment                                    | Manufacturer       | Model No.                   | Serial No.             | Cal. Date  | Expired date |  |  |  |  |  |
| Radiated Spurious Emission                   |                    |                             |                        |            |              |  |  |  |  |  |
| Spectrum<br>Analyzer                         | $\dot{\mathbf{r}}$ |                             |                        |            |              |  |  |  |  |  |
| EMI Test<br>Receiver                         | Rohde &<br>Schwarz | ESR7                        | 101754                 | 2021/12/10 | 2022/12/9    |  |  |  |  |  |
| Loop Antenna                                 | ETS lindgren       | 6502                        | 00213440               | 2021/12/23 | 2022/12/22   |  |  |  |  |  |
| Trilog-Broadband Antenna with 5dB Attenuator | Schwarzbeck & EMCI | VULB 9168 & N-<br>6-05      | 9168-773 &<br>AT-N0539 | 2021/3/11  | 2022/3/10    |  |  |  |  |  |
| Horn Antenna (1-<br>18 GHz)                  | Schwarzbeck        | BBHA 9120 D                 | 01690                  | 2021/12/13 | 2022/12/12   |  |  |  |  |  |
| Horn Antenna<br>(18-40 GHz)                  | Schwarzbeck        | BBHA 9170                   | 781                    | 2021/12/17 | 2022/12/16   |  |  |  |  |  |
| Preamplifier (30-1000 MHz)                   | EMCI               | EMC330E                     | 980405                 | 2021/6/8   | 2022/6/7     |  |  |  |  |  |
| Preamplifier (1-18 GHz)                      | EMCI               | EMC051835BE                 | 980406                 | 2021/2/3   | 2022/2/2     |  |  |  |  |  |
| Preamplifier (18-40GHz)                      | EMCI               | EMC184040SEE                | 980426                 | 2021/5/19  | 2022/5/18    |  |  |  |  |  |
| Cables                                       | Hanyitek           | K1K50-UP0264-<br>K1K50-2500 | 170214-4 &<br>170425-2 | 2021/1/22  | 2022/1/21    |  |  |  |  |  |
| Cables                                       | Hanyitek           | K1K50-UP0264-<br>K1K50-2500 | 170214-1 &<br>170214-2 | 2021/1/22  | 2022/1/21    |  |  |  |  |  |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 17 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

|                                          | Test Equipment List                                     |                       |                          |            |              |  |  |  |  |
|------------------------------------------|---------------------------------------------------------|-----------------------|--------------------------|------------|--------------|--|--|--|--|
| Equipment                                | Manufacturer                                            | Model No.             | Serial No.               | Cal. Date  | Expired date |  |  |  |  |
| Antenna Port Conducted Measurement       |                                                         |                       |                          |            |              |  |  |  |  |
| Spectrum<br>Analyzer                     | Kevsiani i Nautua i Mrkanutukaa 1 /0/1/10//9 1 /0///10/ |                       |                          |            |              |  |  |  |  |
| Pulse Power<br>Sensor                    | Anritsu                                                 | MA2411B               | 1531202                  | 2021/12/22 | 2022/12/21   |  |  |  |  |
| Power Meter                              | Anritsu                                                 | ML2495A               | 1645002                  | 2021/12/22 | 2022/12/21   |  |  |  |  |
| Temperature<br>&Humidity<br>Test Chamber | GIANT FORCE                                             | GTH-150- 40-<br>CP-AR | MAA1701-010              | 2021/3/22  | 2022/3/21    |  |  |  |  |
|                                          | AC po                                                   | ower Line Cond        | ducted Emission          |            |              |  |  |  |  |
| EMI Test Receiver                        | Rohde &<br>Schwarz                                      | ESR7                  | 101753                   | 2021/11/15 | 2022/11/14   |  |  |  |  |
| Two-Line V-<br>Network                   | Rohde &<br>Schwarz                                      | ENV216                | 102136                   | 2021/8/30  | 2022/8/29    |  |  |  |  |
| Impuls-Begrenzer Pulse Limiter           | Rohde &<br>Schwarz                                      | ESH3-Z2               | 102219-Qt                | 2021/8/26  | 2022/8/25    |  |  |  |  |
| Cables                                   | TITAN                                                   | CFD200                | T0732ACFD200<br>20A300-1 | 2021/3/2   | 2022/3/1     |  |  |  |  |

| UL Software                      |                         |                |  |  |  |  |  |
|----------------------------------|-------------------------|----------------|--|--|--|--|--|
| Description                      | Name                    | Version        |  |  |  |  |  |
| Radiated measurement             | e3                      | 6.191211 (V6)  |  |  |  |  |  |
| Conducted measurement            | RF Conducted Test Tools | ver 2.4.0.620b |  |  |  |  |  |
| AC power Line Conducted Emission | EZ_EMC                  | UL-3A1.2       |  |  |  |  |  |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948 Doc No: 17-EM-F0878 / 6.0



Doc No: 17-EM-F0878 / 6.0

Page : 18 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 8. Description of Test Setup

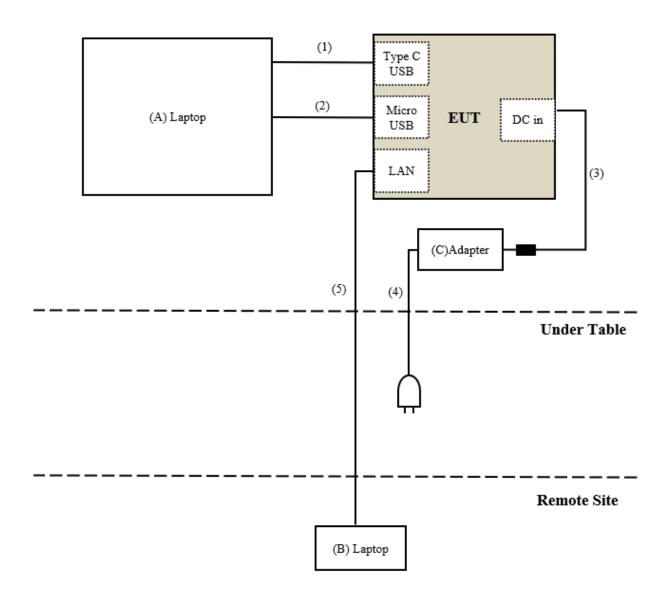
## **Support Equipment**

| ID | Equipment | Brand Name | Model Name  | S/N      | Remark             |
|----|-----------|------------|-------------|----------|--------------------|
| A  | Laptop    | Lenovo     | T460        | PC0FWU5Y | Provide by lab     |
| В  | Test tool | GoldenCrow | MB-R002     | NA       | Supplied by client |
| С  | Adapter   | TECH       | ATS050-P121 | NA       | Supplied by client |

## **I/O Cables**

| ID | Equipment           | Brand Name | Model Name  | Length (m) | Remark                               |
|----|---------------------|------------|-------------|------------|--------------------------------------|
| 1  | Type C to USB Cable | UGREEN     | US287       | 1          | Provide by lab                       |
| 2  | Micro USB Cable     | fujiei     | Z08145      | 1          | Provide by lab                       |
| 3  | DC Cable            | TECH       | ATS050-P121 | 1.5        | with one core,<br>Supplied by client |
| 4  | AC Cable            | NA         | NA          | 1.75       | Supplied by client                   |
| 5  | RJ45                | Fastlink   | FL-61STU-04 | 10         | Provide by lab                       |

## **Test Setup**


The EUT was worked in engineering mode to transmit signal.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 19 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## **Setup Diagram for Test**



## **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 20 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 9. Test Results

## 9.1.6dB Bandwidth


## **Requirements**

The minimum 6 dB bandwidth shall be at least 500 kHz.

## **Test procedure**

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth  $(VBW) \ge 3 \times RBW$ , Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

## **Test Setup**



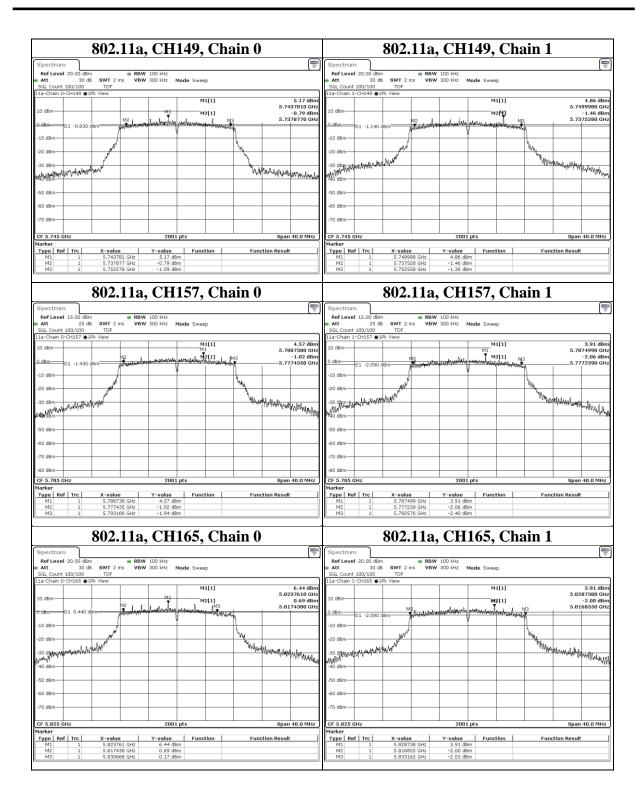
The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 21 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A


## **Test Data**

| Mode CH |     | Freq  | 6dB BW  | V (MHz) | Limit | Result |
|---------|-----|-------|---------|---------|-------|--------|
| Mode    | СП  | (MHz) | Chain 0 | Chain 1 | (MHz) | Kesuit |
|         | 149 | 5745  | 14.701  | 15.031  | 0.5   | Pass   |
| 802.11a | 157 | 5785  | 15.731  | 15.337  | 0.5   | Pass   |
|         | 165 | 5825  | 13.23   | 16.306  | 0.5   | Pass   |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 22 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



#### **Underwriters Laboratories Taiwan Co., Ltd.**

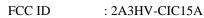
Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

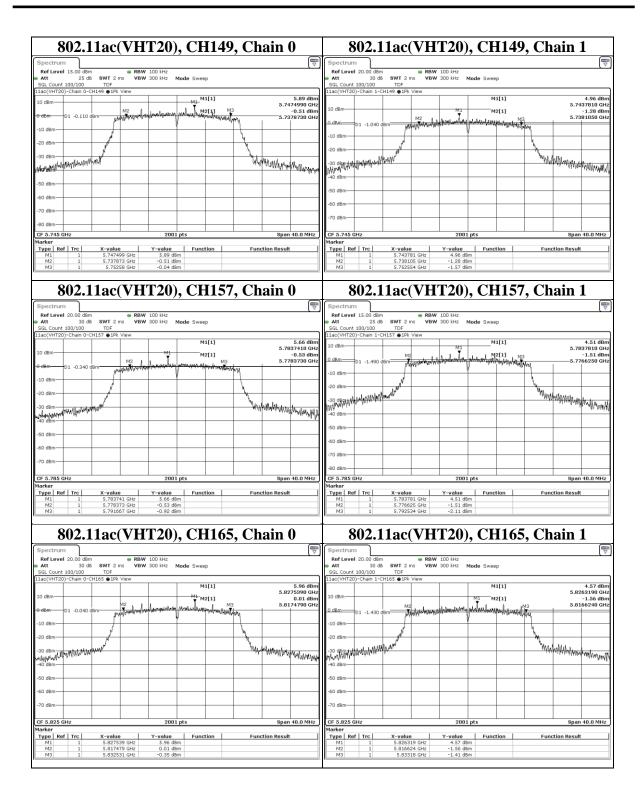
Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948



Page : 23 of 158 Issued date : 2022/2/17 FCC ID : 2A3HV-CIC15A

| Mode            | СН  | Freq  | 6dB BW  | (MHz)   | Limit | Dogult |
|-----------------|-----|-------|---------|---------|-------|--------|
| Mode            | Сп  | (MHz) | Chain 0 | Chain 1 | (MHz) | Result |
|                 | 149 | 5745  | 14.708  | 14.449  | 0.5   | Pass   |
| 802.11ac(VHT20) | 157 | 5785  | 13.294  | 15.909  | 0.5   | Pass   |
| , , , ,         | 165 | 5825  | 15.052  | 16.556  | 0.5   | Pass   |


Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan




Test report No. : 4790239884-US-R1-V0 : 24 of 158

Doc No: 17-EM-F0878 / 6.0

Page Issued date : 2022/2/17 : 2A3HV-CIC15A





### **Underwriters Laboratories Taiwan Co., Ltd.**

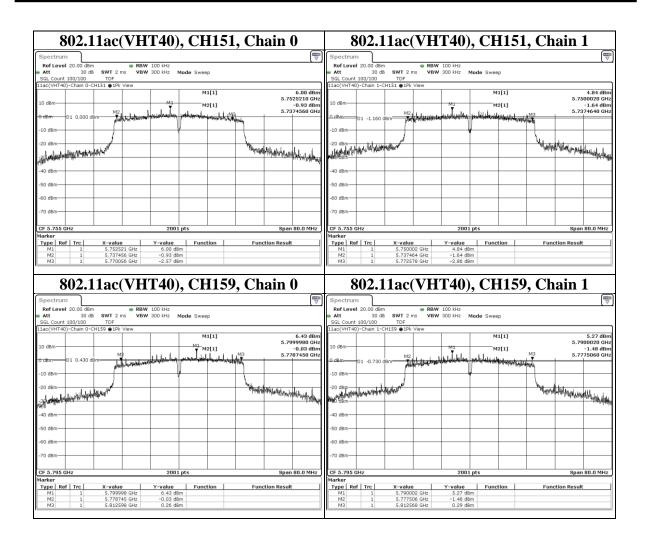
Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

:+886-2-7737-3000 Telephone Facsimile (FAX):+886-3-583-7948



Doc No: 17-EM-F0878 / 6.0

Page : 25 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A


| Mode            | СН  | Freq  | 6dB BW  | V (MHz) | Limit | Dogult |
|-----------------|-----|-------|---------|---------|-------|--------|
| Mode            | Сп  | (MHz) | Chain 0 | Chain 1 | (MHz) | Result |
| 802.11ac(VHT40) | 151 | 5755  | 32.6    | 35.114  | 0.5   | Pass   |
|                 | 159 | 5795  | 33.853  | 35.063  | 0.5   | Pass   |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

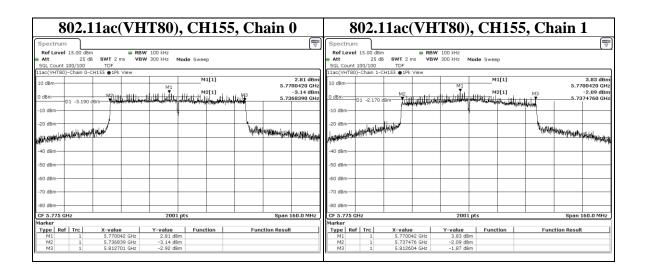
Page : 26 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 27 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A


| Mode            | СП  | Freq  | 6dB BW (MHz) |         | Limit | Dogult |
|-----------------|-----|-------|--------------|---------|-------|--------|
| Mode            | СН  | (MHz) | Chain 0      | Chain 1 | (MHz) | Result |
| 802.11ac(VHT80) | 155 | 5775  | 75.862       | 75.129  | 0.5   | Pass   |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948 Doc No: 17-EM-F0878 / 6.0



Page : 28 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948



Page : 29 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## 9.2. 26dB Bandwidth

## **Test procedure**

- a. Set RBW = approximately 1% of the emission bandwidth.
- b. Set the VBW > RBW.
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

## **Test Setup**



The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



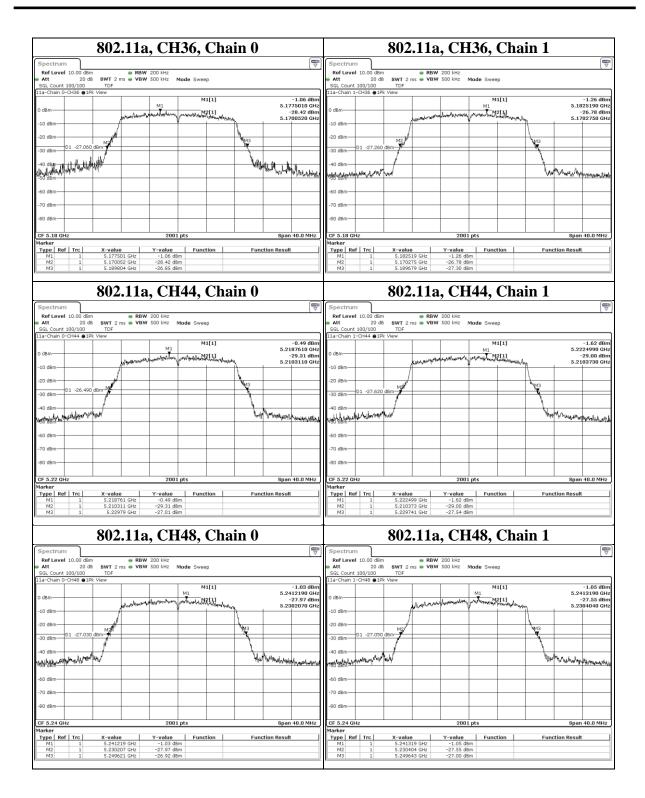
Doc No: 17-EM-F0878 / 6.0

Page : 30 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## **Test Data**

| Mode    | Mode CH |       | 26dB BV | V (MHz) | Limit | Result |
|---------|---------|-------|---------|---------|-------|--------|
| Mode    | СП      | (MHz) | Chain 0 | Chain 1 | (MHz) | Result |
|         | 36      | 5180  | 19.752  | 19.404  | N/A   | Pass   |
|         | 44      | 5220  | 19.479  | 19.368  | N/A   | Pass   |
|         | 48      | 5240  | 19.414  | 19.239  | N/A   | Pass   |
|         | 52      | 5260  | 19.701  | 19.939  | N/A   | Pass   |
| 802.11a | 60      | 5300  | 19.793  | 19.981  | N/A   | Pass   |
|         | 64      | 5320  | 19.935  | 19.923  | N/A   | Pass   |
|         | 100     | 5500  | 19.728  | 19.706  | N/A   | Pass   |
|         | 116     | 5580  | 19.829  | 19.649  | N/A   | Pass   |
|         | 140     | 5700  | 19.984  | 20.188  | N/A   | Pass   |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



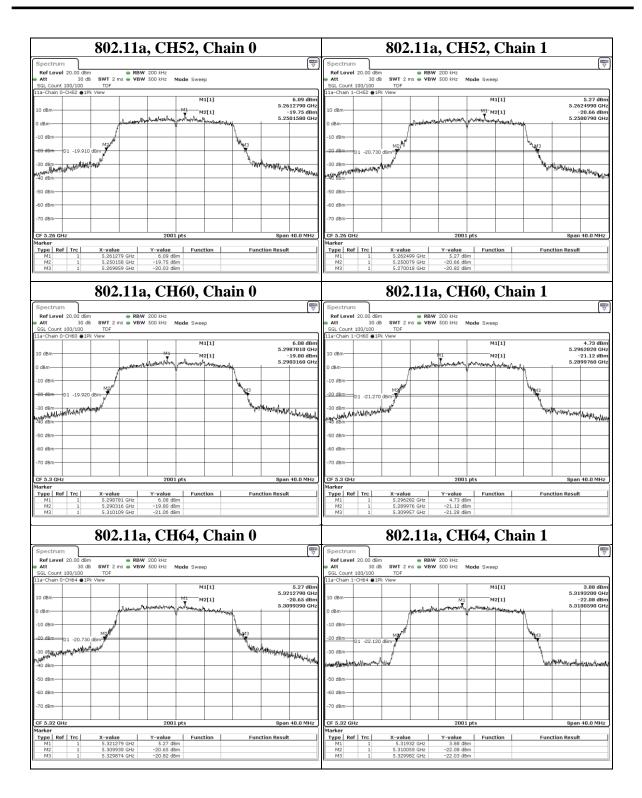

Doc No: 17-EM-F0878 / 6.0

Page : 31 of 158

Issued date : 2022/2/17

FCC ID : 2A3HV-CIC15A




#### **Underwriters Laboratories Taiwan Co., Ltd.**

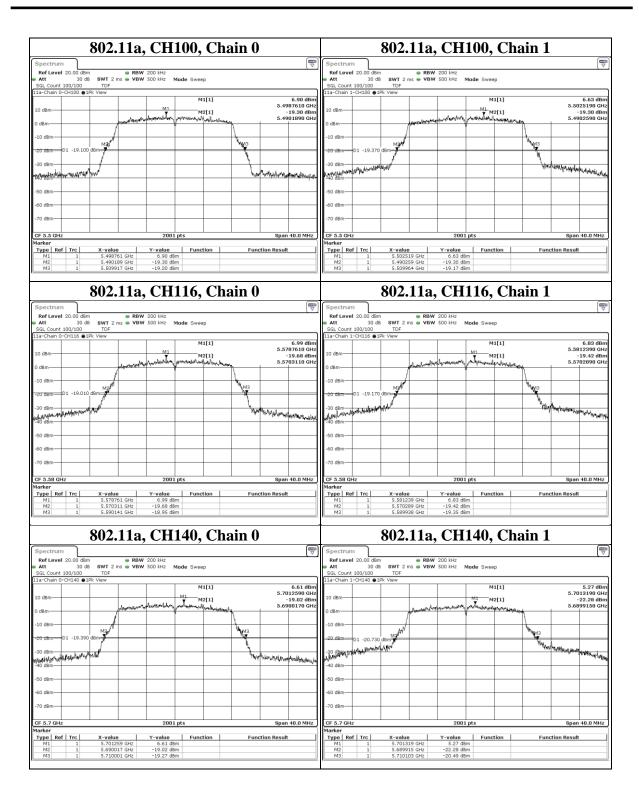
Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 32 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A




#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 33 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



### **Underwriters Laboratories Taiwan Co., Ltd.**

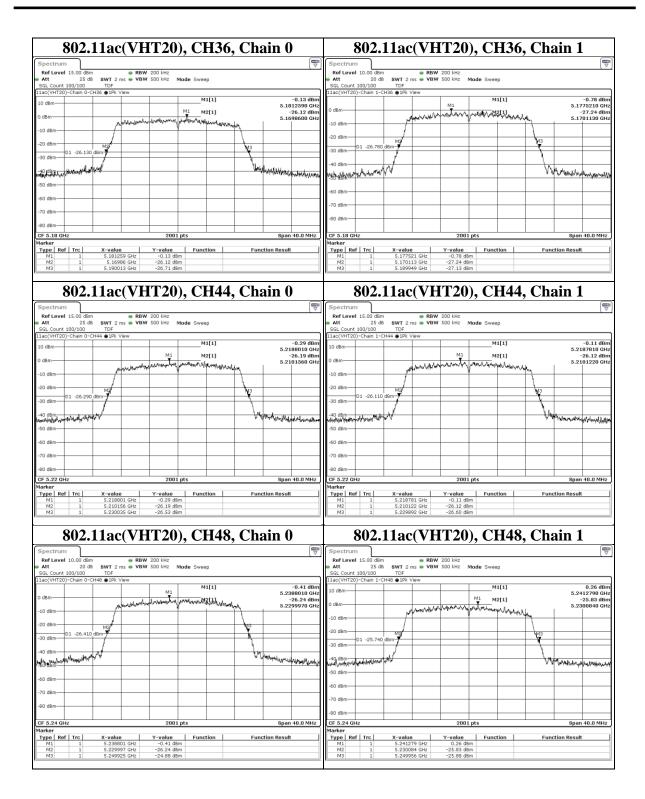
Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 34 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

| Mode            | ode CH |       |         | 26dB BW (MHz) |       | Result |
|-----------------|--------|-------|---------|---------------|-------|--------|
| 5.5000          | 0.10   | (MHz) | Chain 0 | Chain 1       | (MHz) |        |
|                 | 36     | 5180  | 20.153  | 19.837        | N/A   | Pass   |
|                 | 44     | 5220  | 19.879  | 19.769        | N/A   | Pass   |
|                 | 48     | 5240  | 19.929  | 19.872        | N/A   | Pass   |
|                 | 52     | 5260  | 20      | 19.812        | N/A   | Pass   |
| 802.11ac(VHT20) | 60     | 5300  | 20.028  | 19.903        | N/A   | Pass   |
|                 | 64     | 5320  | 20.223  | 19.81         | N/A   | Pass   |
|                 | 100    | 5500  | 19.986  | 19.938        | N/A   | Pass   |
|                 | 116    | 5580  | 19.951  | 19.875        | N/A   | Pass   |
|                 | 140    | 5700  | 20.155  | 20.536        | N/A   | Pass   |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

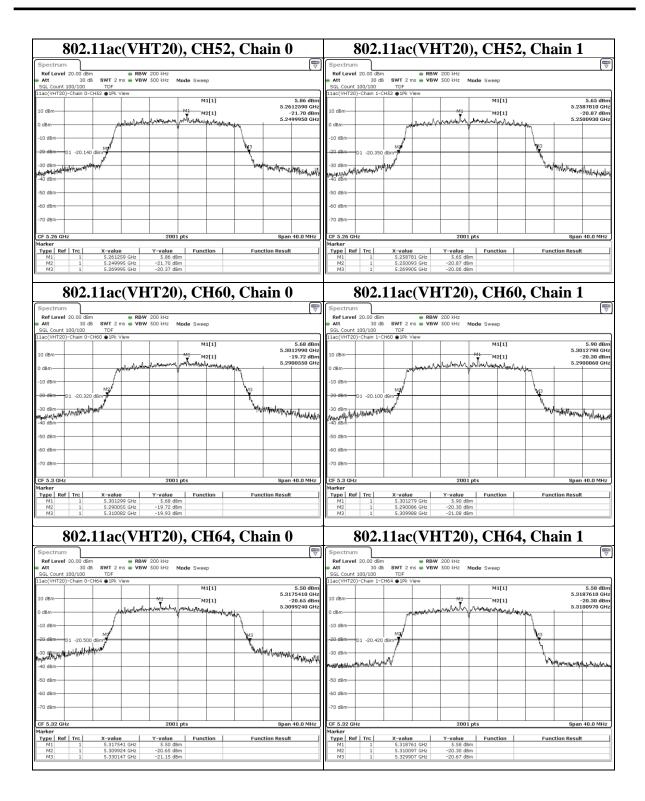

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948 Doc No: 17-EM-F0878 / 6.0



Test report No. : 4790239884-US-R1-V0 Page : 35 of 158

Doc No: 17-EM-F0878 / 6.0

Page : 35 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



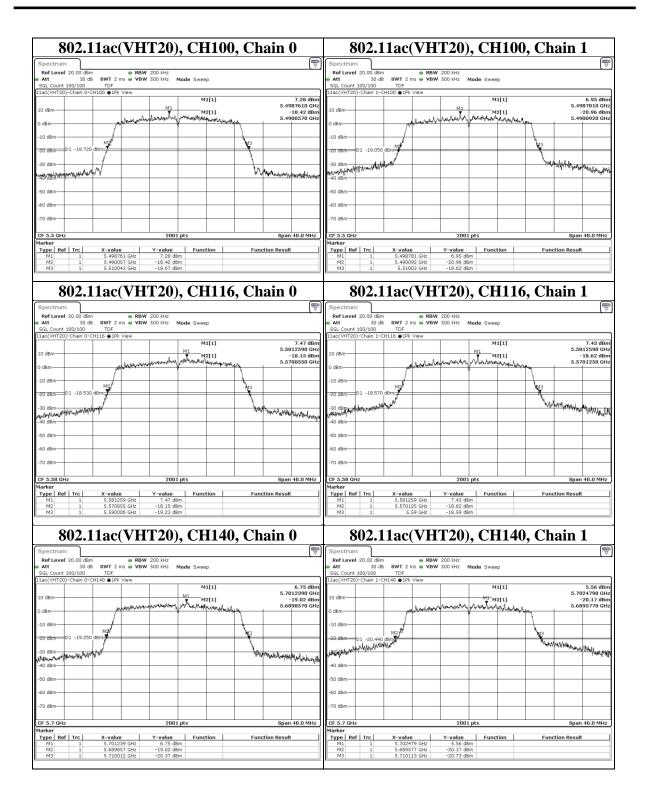

### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 36 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A




### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948



Page : 37 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

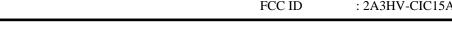
Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948

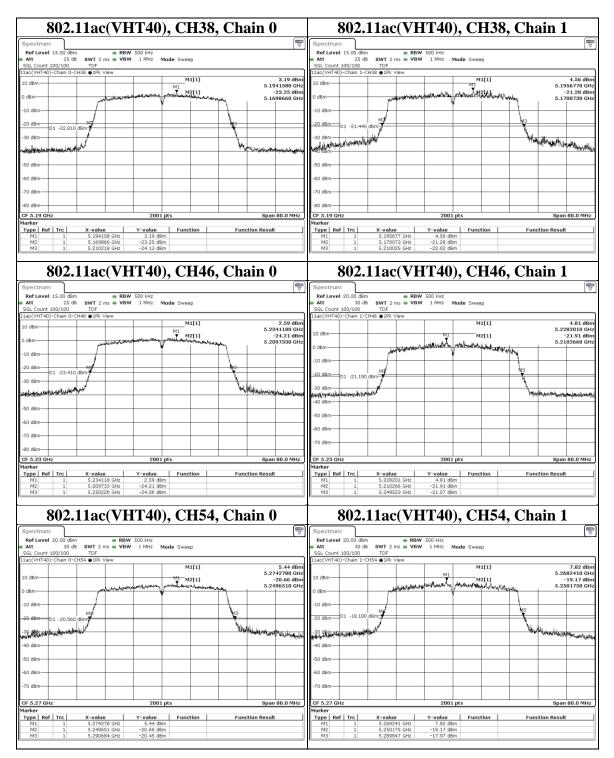
Doc No: 17-EM-F0878 / 6.0



Doc No: 17-EM-F0878 / 6.0

Page : 38 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A


| Mode            | СН  | Freq  | 26dB BV | W (MHz) | Limit | Result |
|-----------------|-----|-------|---------|---------|-------|--------|
| Mode            | СП  | (MHz) | Chain 0 | Chain 1 | (MHz) | Result |
|                 | 38  | 5190  | 40.352  | 39.952  | N/A   | Pass   |
|                 | 46  | 5230  | 40.494  | 39.257  | N/A   | Pass   |
|                 | 54  | 5270  | 41.033  | 39.672  | N/A   | Pass   |
| 802.11ac(VHT40) | 62  | 5310  | 40.396  | 39.418  | N/A   | Pass   |
|                 | 102 | 5510  | 40.287  | 39.85   | N/A   | Pass   |
|                 | 110 | 5550  | 41.152  | 40.854  | N/A   | Pass   |
|                 | 134 | 5670  | 43.929  | 50.566  | N/A   | Pass   |


Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



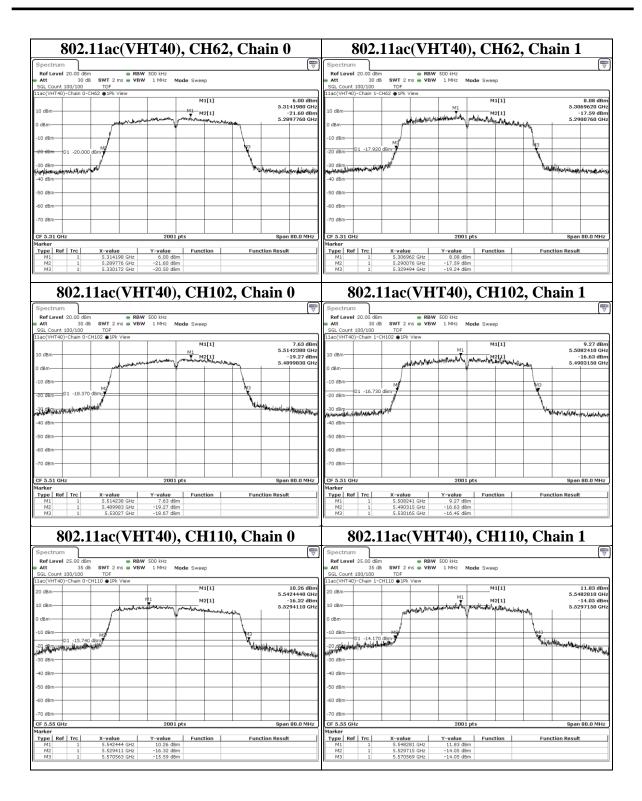
Doc No: 17-EM-F0878 / 6.0

Page : 39 of 158 Issued date : 2022/2/17 FCC ID : 2A3HV-CIC15A





### **Underwriters Laboratories Taiwan Co., Ltd.**


Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 40 of 158

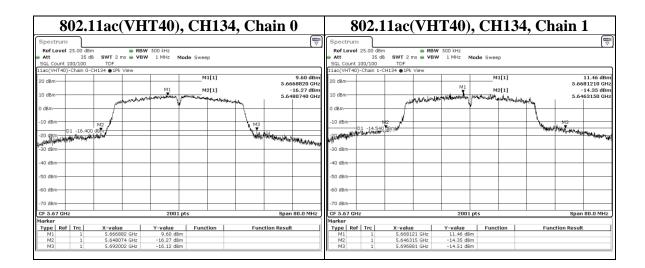
Issued date : 2022/2/17

FCC ID : 2A3HV-CIC15A



#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan


Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948

Doc No: 17-EM-F0878 / 6.0



Doc No: 17-EM-F0878 / 6.0

Page : 41 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



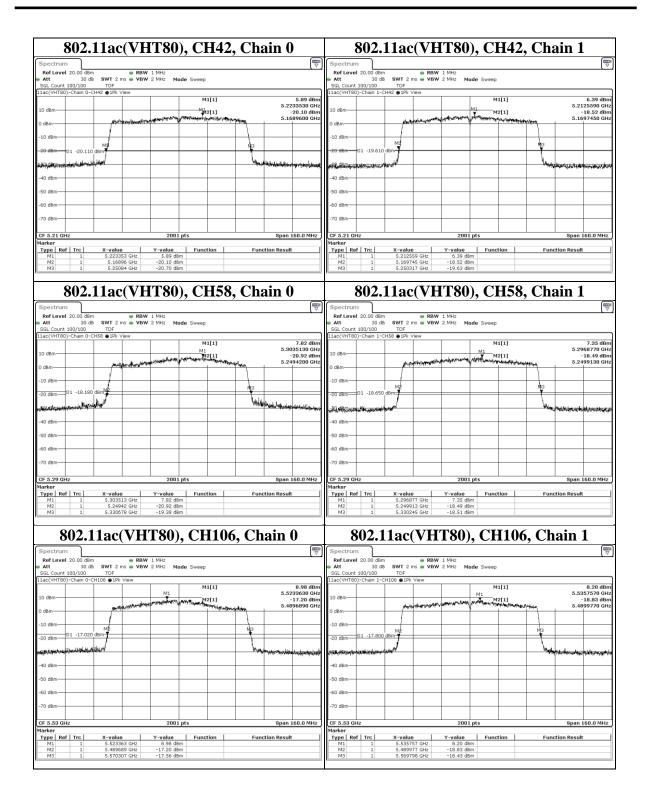
Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 42 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

| Mode                          | СН  | Freq  | 26dB BV | V (MHz) | Limit | Dogult |
|-------------------------------|-----|-------|---------|---------|-------|--------|
| Mode                          | Сп  | (MHz) | Chain 0 | Chain 1 | (MHz) | Result |
|                               | 42  | 5210  | 81.881  | 80.572  | N/A   | Pass   |
| 902 11 <sub>00</sub> (VIIT90) | 58  | 5290  | 81.258  | 80.332  | N/A   | Pass   |
| 802.11ac(VHT80)               | 106 | 5530  | 80.618  | 79.821  | N/A   | Pass   |
|                               | 122 | 5610  | 81.44   | 102.578 | N/A   | Pass   |

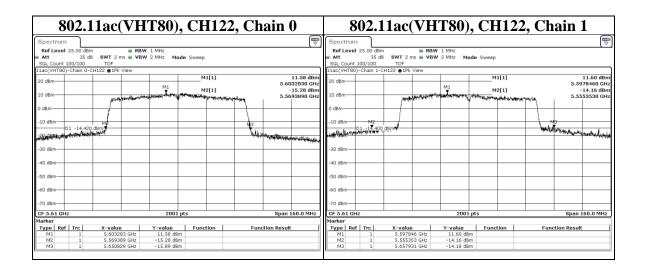

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Test report No. : 4790239884-US-R1-V0 Page : 43 of 158

Doc No: 17-EM-F0878 / 6.0

Page : 43 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A




#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 44 of 158 Issued date : 2022/2/17 FCC ID : 2A3HV-CIC15A



Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 45 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

### 9.3. Occupied Bandwidth

### **Test procedure**

- a. Set center frequency to the nominal EUT channel center frequency.
- b. Set span = 1.5 times to 5.0 times the OBW.
- c. Set RBW = 1% to 5% of the OBW
- d. Set  $VBW \ge 3 \times RBW$
- e. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f. Use the 99% power bandwidth function of the instrument (if available).
- g. If the instrument does not have a 99% power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

### **Test Setup**



The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 46 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# **Test Data**

### 802.11a

| Cl. 1   | Channel Frequency | Occupied Bandwidth (MHz) |         |  |  |
|---------|-------------------|--------------------------|---------|--|--|
| Channel | (MHz)             | Chain 0                  | Chain 1 |  |  |
| 36      | 5180              | 17.02                    | 16.67   |  |  |
| 44      | 5220              | 17.00                    | 16.63   |  |  |
| 48      | 5240              | 16.86                    | 16.67   |  |  |
| 52      | 5260              | 17.06                    | 16.75   |  |  |
| 60      | 5300              | 16.98                    | 16.81   |  |  |
| 64      | 5320              | 16.99                    | 16.78   |  |  |
| 100     | 5500              | 16.96                    | 16.70   |  |  |
| 116     | 5580              | 17.00                    | 16.77   |  |  |
| 140     | 5700              | 17.06                    | 16.76   |  |  |
| 149     | 5745              | 16.99                    | 16.84   |  |  |
| 157     | 5785              | 17.10                    | 16.93   |  |  |
| 165     | 5825              | 17.10                    | 16.92   |  |  |

#### 802.11ac (VHT20)

| Characal Characal | Channel Frequency | Occupied Bandwidth (MHz) |         |  |  |  |
|-------------------|-------------------|--------------------------|---------|--|--|--|
| Channel           | (MHz)             | Chain 0                  | Chain 1 |  |  |  |
| 36                | 5180              | 17.94                    | 17.67   |  |  |  |
| 44                | 5220              | 17.91                    | 17.65   |  |  |  |
| 48                | 5240              | 17.85                    | 17.58   |  |  |  |
| 52                | 5260              | 18.01                    | 17.74   |  |  |  |
| 60                | 5300              | 17.94                    | 17.68   |  |  |  |
| 64                | 5320              | 17.93                    | 17.71   |  |  |  |
| 100               | 5500              | 17.89                    | 17.74   |  |  |  |
| 116               | 5580              | 17.92                    | 17.69   |  |  |  |
| 140               | 5700              | 17.98                    | 17.72   |  |  |  |
| 149               | 5745              | 17.94                    | 17.86   |  |  |  |
| 157               | 5785              | 18.03                    | 17.91   |  |  |  |
| 165               | 5825              | 18.04                    | 17.87   |  |  |  |

# Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

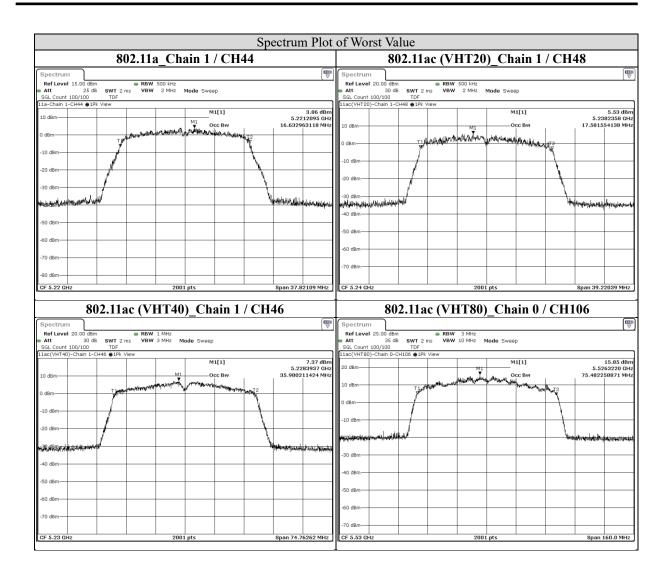


Page : 47 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

### 802.11ac (VHT40)

| Chl     | Channel Frequency | Occupied Bandwidth (MHz) |         |  |  |  |
|---------|-------------------|--------------------------|---------|--|--|--|
| Channel | (MHz)             | Chain 0                  | Chain 1 |  |  |  |
| 38      | 5190              | 36.13                    | 36.48   |  |  |  |
| 46      | 5230              | 36.17                    | 35.98   |  |  |  |
| 54      | 5270              | 36.33                    | 36.21   |  |  |  |
| 62      | 5310              | 36.13                    | 36.09   |  |  |  |
| 102     | 5510              | 36.10                    | 36.29   |  |  |  |
| 110     | 5550              | 36.41                    | 36.56   |  |  |  |
| 134     | 5670              | 36.10                    | 36.74   |  |  |  |
| 151     | 5755              | 36.52                    | 37.11   |  |  |  |
| 159     | 5795              | 36.74                    | 37.07   |  |  |  |

### 802.11ac (VHT80)

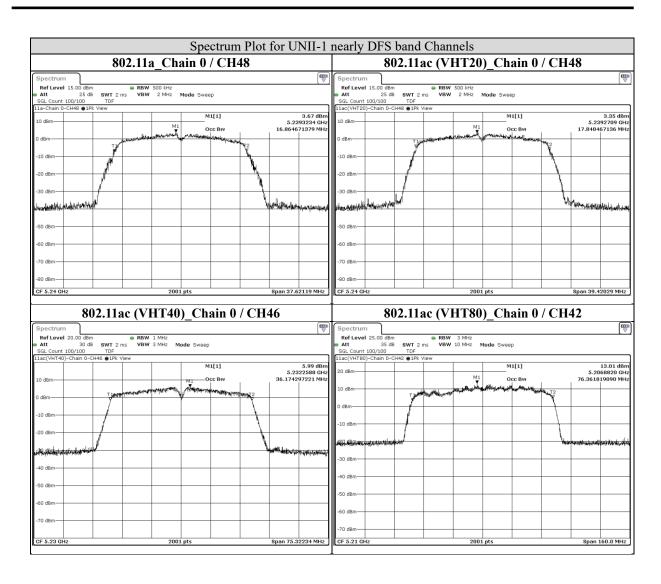

| Channel | Channel Frequency | Occupied Bandwidth (MHz) |         |  |  |
|---------|-------------------|--------------------------|---------|--|--|
| Channel | (MHz)             | Chain 0                  | Chain 1 |  |  |
| 42      | 5210              | 76.36                    | 76.04   |  |  |
| 58      | 5290              | 75.72                    | 75.88   |  |  |
| 106     | 5530              | 75.48                    | 75.80   |  |  |
| 122     | 5610              | 76.44                    | 77.08   |  |  |
| 155     | 5775              | 78.12                    | 77.96   |  |  |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 48 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



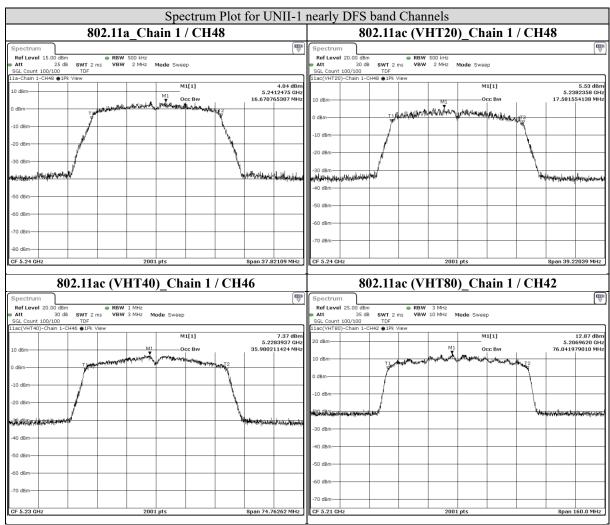

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 49 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A




### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 50 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



Note: The observed T2 is all <5250 MHz, so UNII-1 band channels which in nearly DFS band no need for DFS function.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 51 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# 9.4. Conducted output power

### **Requirements**

| Operation Band |           | EUT Category                      | Limit                                                                                                                                                                                                   |
|----------------|-----------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |           | Outdoor Access Point              | 1 Watt (30 dBm) Max. e.i.r.p $\leq 125 \text{mW}(21 \text{ dBm})$ at any elevation angle above 30 degrees as measured from the horizon If $G_{TX} > 6 \text{ dBi}$ , then $P_{Out} = 30 - (G_{TX} - 6)$ |
| U-NII-1        |           | Fixed point-to-point Access Point | 1 Watt (30 dBm)<br>If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$                                                                                                                            |
|                |           | Indoor Access Point               | 1 Watt (30 dBm)<br>If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$                                                                                                                              |
|                | √         | Client device                     | 250mW (24 dBm)<br>If $G_{TX} > 6$ dBi, then $P_{Out} = 23.98 - (G_{TX} - 6)$                                                                                                                            |
| U-NII-2A       |           | $\checkmark$                      | 250mW (24 dBm) or 11 dBm+10 log B*<br>If $G_{TX} > 6$ dBi, then $P_{Out} = 23.98 - (G_{TX} - 6)$                                                                                                        |
| U-NII-2C       | $\sqrt{}$ |                                   | 250mW (24 dBm) or 11 dBm+10 log B*  If $G_{TX} > 6$ dBi, then $P_{Out} = 23.98 - (G_{TX} - 6)$                                                                                                          |
| U-NII-3        |           | $\checkmark$                      | For Point-to-multipoint systems (P2M): 1 Watt (30 dBm). If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$<br>For Point-to-point systems (P2P): 1 Watt (30 dBm)                                    |

#### Note:

- 1.  $P_{Out} = maximum conducted output power in dBm,$
- 2.  $G_{TX}$  = the maximum transmitting antenna directional gain in dBi.
- 3. B is the 26 dB emission bandwidth in megahertz
- 4. Directional Gain =  $G_{ant} + 10 \log (Nant) dBi$ .

Nant: Number of Transmit Antennas

G1, G2,..., Gn: Gain of Individual Antennas (Same for Each Antenna)

5. Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for  $N_{ANT} \le 4$ ;

Array Gain = 0 dB (i.e., no array gain) for channel widths  $\geq$  40 MHz for any  $N_{ANT}$ ;

Array Gain =  $5 \log(N_{ANT}/N_{SS})$  dB or 3 dB, whichever is less for 20-MHz channel widths with  $N_{ANT} \ge 5$ .

Doc No: 17-EM-F0878 / 6.0

### Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 52 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

### **Test Procedure**

### For Average Power Measurement

#### **Test method PM-G**

#### For 802.11a, 802.11ac (VHT20), 802.11ac (VHT40)

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst and set the detector to AVERAGE. Duty factor is not added to measured value.

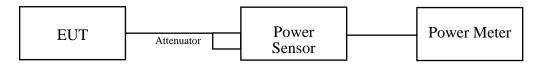
#### Test method SA-1

#### For 802.11ac (VHT80)

- a. Set span to encompass the entire 26 dB EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- b. Set sweep trigger\*.
- c. Set RBW = 1 MHz.
- d. Set  $VBW \ge 3 MHz$
- e. Number of points in sweep  $\geq 2$  Span / RBW.
- f. Sweep time  $\leq$  (number of points in sweep) \* T
- g. Using emission bandwidth to determine the frequency span for integration the channel bandwidth.
- h. Detector = RMS.
- i. Trace mode = max hold.
- j. Allow max hold to run for at least 60 seconds, or longer as needed to allow the trace to stabilize.
- \* If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle  $\ge$  98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948


Doc No: 17-EM-F0878 / 6.0



Page : 53 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

### **Test Setup**

### For Average Power Measurement



The loss between RF output port of the EUT and the input port of the Power Meter has been taken into consideration.



The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 54 of 158 Issued date : 2022/2/17 FCC ID : 2A3HV-CIC15A

# **Test Data**

### 802.11a

| Channel    | Channel<br>Frequency |         | Conducted (dBm) | Total<br>Power | Total<br>Power | Power<br>Limit | Pass/Fail |
|------------|----------------------|---------|-----------------|----------------|----------------|----------------|-----------|
| 5-111-15-1 | (MHz)                | Chain 0 | Chain 1         | (mW)           | (dBm)          | (dBm)          |           |
| 36         | 5180                 | 9.35    | 8.96            | 16.482         | 12.17          | 23.98          | PASS      |
| 44         | 5220                 | 9.12    | 9.20            | 16.482         | 12.17          | 23.98          | PASS      |
| 48         | 5240                 | 9.43    | 9.41            | 17.498         | 12.43          | 23.98          | PASS      |
| 52         | 5260                 | 15.64   | 15.34           | 70.795         | 18.50          | 23.94          | PASS      |
| 60         | 5300                 | 15.51   | 15.34           | 69.823         | 18.44          | 23.96          | PASS      |
| 64         | 5320                 | 15.27   | 15.49           | 69.024         | 18.39          | 23.99          | PASS      |
| 100        | 5500                 | 16.54   | 16.43           | 89.125         | 19.50          | 23.94          | PASS      |
| 116        | 5580                 | 16.46   | 16.19           | 85.901         | 19.34          | 23.93          | PASS      |
| 140        | 5700                 | 16.49   | 15.96           | 83.946         | 19.24          | 24             | PASS      |
| 149        | 5745                 | 17.06   | 16.26           | 93.111         | 19.69          | 30             | PASS      |
| 157        | 5785                 | 16.61   | 15.83           | 84.14          | 19.25          | 30             | PASS      |
| 165        | 5825                 | 17.37   | 16.52           | 99.541         | 19.98          | 30             | PASS      |

Note: The directional gain = 4.63 dBi < 6 dBi, so the power limit shall not be reduced.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 55 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

### 802.11ac (VHT20)

| Channel | Channel<br>Frequency | Maximum Conducted<br>Power (dBm) |         | Total<br>Power | Total<br>Power | Power<br>Limit | Pass/Fail |
|---------|----------------------|----------------------------------|---------|----------------|----------------|----------------|-----------|
|         | (MHz)                | Chain 0                          | Chain 1 | (mW)           | (dBm)          | (dBm)          |           |
| 36      | 5180                 | 9.57                             | 9.59    | 18.155         | 12.59          | 23.98          | PASS      |
| 44      | 5220                 | 9.47                             | 9.71    | 18.197         | 12.60          | 23.98          | PASS      |
| 48      | 5240                 | 9.57                             | 9.93    | 18.88          | 12.76          | 23.98          | PASS      |
| 52      | 5260                 | 15.42                            | 15.32   | 68.865         | 18.38          | 23.96          | PASS      |
| 60      | 5300                 | 15.44                            | 15.40   | 69.663         | 18.43          | 23.98          | PASS      |
| 64      | 5320                 | 15.02                            | 15.15   | 64.565         | 18.10          | 23.96          | PASS      |
| 100     | 5500                 | 16.82                            | 16.81   | 96.161         | 19.83          | 23.99          | PASS      |
| 116     | 5580                 | 16.86                            | 16.64   | 94.624         | 19.76          | 23.98          | PASS      |
| 140     | 5700                 | 16.77                            | 16.37   | 90.782         | 19.58          | 23.98          | PASS      |
| 149     | 5745                 | 16.84                            | 16.24   | 90.365         | 19.56          | 30             | PASS      |
| 157     | 5785                 | 16.44                            | 15.74   | 81.47          | 19.11          | 30             | PASS      |
| 165     | 5825                 | 16.72                            | 16.01   | 86.896         | 19.39          | 30             | PASS      |

Note: The directional gain = 4.63 dBi < 6 dBi, so the power limit shall not be reduced.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 56 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

### 802.11ac (VHT40)

| Channel | Channel<br>Frequency | Maximum Conducted Power (dBm) |         | Total<br>Power | Total<br>Power | Power<br>Limit | Pass/Fail |
|---------|----------------------|-------------------------------|---------|----------------|----------------|----------------|-----------|
|         | (MHz)                | Chain 0                       | Chain 1 | (mW)           | (dBm)          | (dBm)          |           |
| 38      | 5190                 | 12.26                         | 12.11   | 33.113         | 15.20          | 23.98          | PASS      |
| 46      | 5230                 | 11.77                         | 11.82   | 30.269         | 14.81          | 23.98          | PASS      |
| 54      | 5270                 | 15.33                         | 14.96   | 65.464         | 18.16          | 23.98          | PASS      |
| 62      | 5310                 | 15.32                         | 15.04   | 65.917         | 18.19          | 23.98          | PASS      |
| 102     | 5510                 | 16.72                         | 16.74   | 94.189         | 19.74          | 23.98          | PASS      |
| 110     | 5550                 | 19.37                         | 19.23   | 170.216        | 22.31          | 23.98          | PASS      |
| 134     | 5670                 | 19.38                         | 19.09   | 167.88         | 22.25          | 23.98          | PASS      |
| 151     | 5755                 | 19.24                         | 18.77   | 159.221        | 22.02          | 30             | PASS      |
| 159     | 5795                 | 19.06                         | 18.58   | 152.757        | 21.84          | 30             | PASS      |

Note: The directional gain = 4.63 dBi < 6 dBi, so the power limit shall not be reduced.

### 802.11ac (VHT80)

| Channel | Channel Conducted Power (dBm) |         | Total<br>Power | Total<br>Power | Power<br>Limit | Pass/Fail |      |  |
|---------|-------------------------------|---------|----------------|----------------|----------------|-----------|------|--|
|         | (MHz)                         | Chain 0 | Chain 1        | (mW)           | (dBm)          | (dBm)     |      |  |
| 42      | 5210                          | 14.63   | 14.38          | 56.494         | 17.52          | 23.98     | PASS |  |
| 58      | 5290                          | 15.49   | 15.23          | 68.707         | 18.37          | 23.98     | PASS |  |
| 106     | 5530                          | 16.10   | 16.20          | 82.414         | 19.16          | 23.98     | PASS |  |
| 122     | 5610                          | 19.57   | 19.35          | 176.604        | 22.47          | 23.98     | PASS |  |
| 155     | 5775                          | 19.33   | 18.72          | 160.325        | 22.05          | 30        | PASS |  |

Note: The directional gain = 4.63 dBi < 6 dBi, so the power limit shall not be reduced.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 57 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# 9.5. Power Spectral Density

### **Requirements**

| <b>Operation Band</b> |              | <b>EUT Category</b>               | Limit                                                                                                                                                           |
|-----------------------|--------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |              | Outdoor Access Point              | $17 \text{dBm/ MHz}$ If $G_{TX} > 6 \text{ dBi}$ , then $PSD = 17 - (G_{TX} - 6)$                                                                               |
| II NII 1              |              | Fixed point-to-point Access Point | 17 dBm/MHz<br>If $G_{TX} > 23 dBi$ , then $PSD = 17 - (G_{TX} - 23)$                                                                                            |
| U-NII-1               |              | Indoor Access Point               | $17 \text{dBm/ MHz}$ If $G_{TX} > 6 \text{ dBi}$ , then $PSD = 17 - (G_{TX} - 6)$                                                                               |
|                       | $\checkmark$ | Client device                     | $11 \text{dBm/ MHz}$ If $G_{TX} > 6 \text{ dBi}$ , then $PSD = 11 - (G_{TX} - 6)$                                                                               |
| U-NII-2A              |              | √                                 | $11 dBm/ MHz$ If $G_{TX} > 6 dBi$ , then $PSD = 11 - (G_{TX} - 6)$                                                                                              |
| U-NII-2C              |              | V                                 | $11 \text{dBm/ MHz}$ If $G_{TX} > 6 \text{ dBi}$ , then $PSD = 11 - (G_{TX} - 6)$                                                                               |
| U-NII-3               | <b>√</b>     |                                   | For Point-to-multipoint systems (P2M): $30dBm/500kHz$ . If $G_{TX} > 6$ dBi, then $PSD = 30 - (G_{TX} - 6)$<br>For Point-to-point systems (P2P): $30dBm/500kHz$ |

#### Note

- 1. PSD = power spectral density that he same method as used to determine the conducted output power shall be used to determine the power spectral density. And power spectral density in dBm/MHz
- 2.  $G_{TX}$  = the maximum transmitting antenna directional gain in dBi.
- 3. Directional Gain =  $G_{ant} + 10 \log (Nant) dBi$ .

Nant: Number of Transmit Antennas

G1, G2,..., Gn: Gain of Individual Antennas (Same for Each Antenna)

4. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

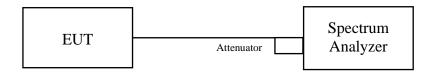


Page : 58 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

### **Test procedure**

### For U-NII-1, U-NII-2A, U-NII-2C band:

#### Using method as below:


- a. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b. Set RBW = 1 MHz, Set VBW  $\geq$  3 RBW, Detector = RMS
- c. Sweep time = auto, trigger set to "free run".
- d. Trace average at least 100 traces in power averaging mode.
- e. Record the max value. (if Duty cycle <98 %, add 10 log (1/duty cycle))

#### For U-NII-3 band:

#### Using method as below:

- a. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b. Set RBW = 300 kHz, Set VBW  $\geq$  1 MHz, Detector = RMS
- c. Use the peak marker function to determine the maximum power level in any 300 kHz band segment within the fundamental EBW.
- d. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10 log (500 kHz/300kHz)
- e. Sweep time = auto, trigger set to "free run".
- f. Trace average at least 100 traces in power averaging mode.
- g. Record the max value. (if Duty cycle <98 %, add 10 log (1/duty cycle))

### **Test Setup**



The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 59 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

## **Test Data**

### For U-NII-1, U-NII-2A, U-NII-2C band

#### 802.11a

| Channel | Frequency | PSD w/o d<br>(dBm/ | •       | Total PSD<br>with duty<br>factor | PSD<br>Maximum<br>Limit | Pass/Fail |  |
|---------|-----------|--------------------|---------|----------------------------------|-------------------------|-----------|--|
|         | (MHz)     | Chain 0            | Chain 1 | (dBm/MHz)                        | (dBm/MHz)               |           |  |
| 36      | 5180      | -1.62              | -1.60   | 1.6                              | 9.36                    | PASS      |  |
| 44      | 5220      | -1.03              | -1.42   | 1.99                             | 9.36                    | PASS      |  |
| 48      | 5240      | -1.15              | -1.20   | 2.04                             | 9.36                    | PASS      |  |
| 52      | 5260      | 4.77               | 4.62    | 7.91                             | 9.36                    | PASS      |  |
| 60      | 5300      | 4.82               | 4.35    | 7.8                              | 9.36                    | PASS      |  |
| 64      | 5320      | 4.70               | 4.29    | 7.71                             | 9.36                    | PASS      |  |
| 100     | 5500      | 6.16               | 5.57    | 9.09                             | 9.36                    | PASS      |  |
| 116     | 5580      | 5.82               | 5.72    | 8.98                             | 9.36                    | PASS      |  |
| 140     | 5700      | 5.67               | 4.88    | 8.5                              | 9.36                    | PASS      |  |

### Note:

- 1. Directional gain = 7.64 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 60 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

### 802.11ac (VHT20)

| Channel | Frequency | Frequency (dBm/MHz) (MHz) |         | Total PSD<br>with duty<br>factor | PSD<br>Maximum<br>Limit | Pass/Fail |
|---------|-----------|---------------------------|---------|----------------------------------|-------------------------|-----------|
|         | (WIFIZ)   | Chain 0                   | Chain 1 | (dBm/MHz)                        | (dBm/MHz)               |           |
| 36      | 5180      | -1.24                     | -0.83   | 2.2                              | 9.36                    | PASS      |
| 44      | 5220      | -0.99                     | -0.90   | 2.29                             | 9.36                    | PASS      |
| 48      | 5240      | -1.11                     | -0.54   | 2.41                             | 9.36                    | PASS      |
| 52      | 5260      | 4.26                      | 4.50    | 7.61                             | 9.36                    | PASS      |
| 60      | 5300      | 4.76                      | 4.26    | 7.75                             | 9.36                    | PASS      |
| 64      | 5320      | 4.14                      | 4.31    | 7.46                             | 9.36                    | PASS      |
| 100     | 5500      | 5.94                      | 5.81    | 9.11                             | 9.36                    | PASS      |
| 116     | 5580      | 6.15                      | 6.06    | 9.34                             | 9.36                    | PASS      |
| 140     | 5700      | 6.09                      | 5.47    | 9.02                             | 9.36                    | PASS      |

### Note:

- 1. Directional gain = 7.64 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 61 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

### 802.11ac (VHT40)

| Channel | Frequency (MHz) | PSD w/o d<br>(dBm/ | luty factor<br>(MHz) | Total PSD<br>with duty<br>factor | PSD<br>Maximum<br>Limit | Pass/Fail |
|---------|-----------------|--------------------|----------------------|----------------------------------|-------------------------|-----------|
|         | (WIIIZ)         | Chain 0            | Chain 1              | (dBm/MHz)                        | (dBm/MHz)               |           |
| 38      | 5190            | -1.30              | -1.27                | 2.08                             | 9.36                    | PASS      |
| 46      | 5230            | -1.06              | -1.49                | 2.09                             | 9.36                    | PASS      |
| 54      | 5270            | 1.43               | 1.45                 | 4.8                              | 9.36                    | PASS      |
| 62      | 5310            | 1.39               | 1.79                 | 4.95                             | 9.36                    | PASS      |
| 102     | 5510            | 3.84               | 3.29                 | 6.93                             | 9.36                    | PASS      |
| 110     | 5550            | 5.77               | 5.43                 | 8.96                             | 9.36                    | PASS      |
| 134     | 5670            | 6.12               | 5.35                 | 9.11                             | 9.36                    | PASS      |

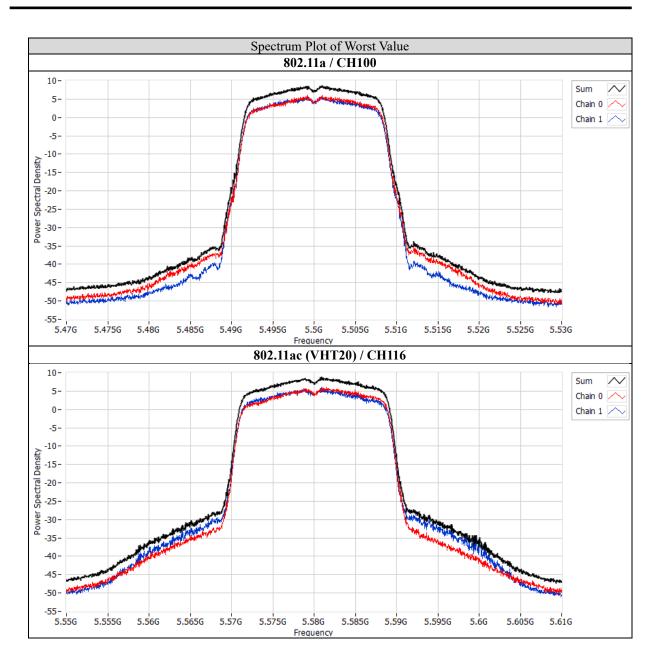
#### Note:

- 1. Directional gain = 7.64 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.

### 802.11ac (VHT80)

| Channel | Frequency<br>(MHz) |         | luty factor<br>/MHz) | Total PSD<br>with duty<br>factor | PSD<br>Maximum<br>Limit | Pass/Fail |
|---------|--------------------|---------|----------------------|----------------------------------|-------------------------|-----------|
|         | (MITZ)             | Chain 0 | Chain 1              | (dBm/MHz)                        | (dBm/MHz)               |           |
| 42      | 5210               | -1.91   | -1.81                | 1.81                             | 9.36                    | PASS      |
| 58      | 5290               | -0.14   | -0.32                | 3.44                             | 9.36                    | PASS      |
| 106     | 5530               | 1.51    | -0.46                | 4.31                             | 9.36                    | PASS      |
| 122     | 5610               | 3.62    | 3.30                 | 7.13                             | 9.36                    | PASS      |

### Note:

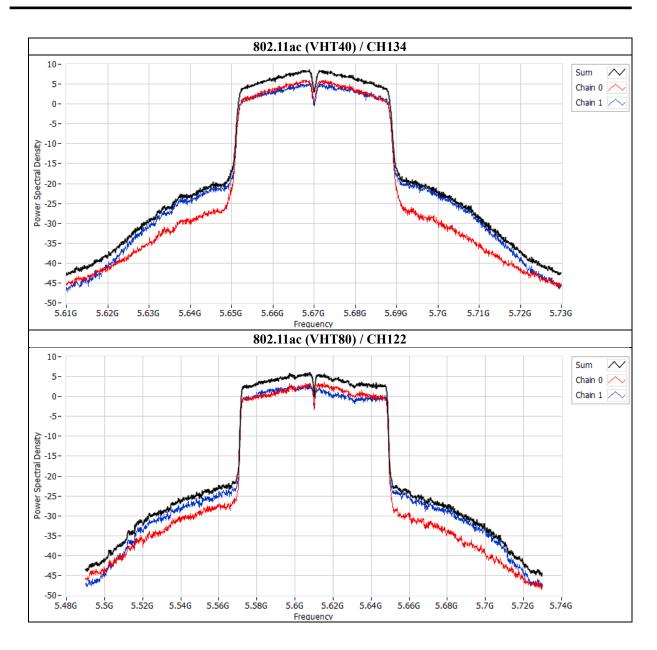

- 1. Directional gain = 7.64 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.

### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 62 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A




### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 63 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 64 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

#### For U-NII-3 Band

#### 802.11a

| Channel | Frequency (MHz) |         | o duty<br>tor<br>00 kHz) | Total PSD<br>w/o BWCF<br>(dBm/300 | Total PSD<br>with<br>BWCF | Total PSD with duty factor | Limit<br>(dBm/500 | Pass /<br>Fail |
|---------|-----------------|---------|--------------------------|-----------------------------------|---------------------------|----------------------------|-------------------|----------------|
|         | (IVIIIZ)        | Chain 0 | Chain 1                  | kHz)                              | (dBm/500<br>kHz)          | (dBm/500<br>kHz)           | kHz)              | ran            |
| 149     | 5745            | 3.67    | 3.07                     | 6.39                              | 8.61                      | 8.81                       | 28.36             | PASS           |
| 157     | 5785            | 3.35    | 2.11                     | 5.78                              | 8.00                      | 8.2                        | 28.36             | PASS           |
| 165     | 5825            | 4.03    | 3.14                     | 6.62                              | 8.84                      | 9.04                       | 28.36             | PASS           |

#### Note:

- 1. Directional gain = 7.64 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.
- 3. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(500 kHz/300kHz).

### 802.11ac (VHT20)

| Channel | Frequency (MHz) | fac     | o duty<br>tor<br>00 kHz) | Total PSD<br>w/o BWCF<br>(dBm/300 | Total PSD with BWCF | Total PSD with duty factor | Limit<br>(dBm/500 | Pass /<br>Fail |
|---------|-----------------|---------|--------------------------|-----------------------------------|---------------------|----------------------------|-------------------|----------------|
|         | (1/112)         | Chain 0 | Chain 1                  | kHz)                              | (dBm/500<br>kHz)    | (dBm/500<br>kHz)           | kHz)              | 1 441          |
| 149     | 5745            | 3.51    | 3.16                     | 6.35                              | 8.57                | 8.79                       | 28.36             | PASS           |
| 157     | 5785            | 3.34    | 2.41                     | 5.91                              | 8.13                | 8.35                       | 28.36             | PASS           |
| 165     | 5825            | 3.83    | 2.49                     | 6.22                              | 8.44                | 8.66                       | 28.36             | PASS           |

#### Note:

- 1. Directional gain = 7.64 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.
- 3. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(500 kHz/300kHz).

#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 65 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

#### 802.11ac (VHT40)

| Channel |          |         | PSD w/o duty<br>factor<br>(dBm/300 kHz) |                  | Total PSD<br>with<br>BWCF | Total PSD with duty factor | Limit<br>(dBm/500 | Pass /<br>Fail |
|---------|----------|---------|-----------------------------------------|------------------|---------------------------|----------------------------|-------------------|----------------|
|         | (IVIIIZ) | Chain 0 | Chain 1                                 | (dBm/300<br>kHz) | (dBm/500<br>kHz)          | (dBm/500<br>kHz)           | kHz)              | ran            |
| 151     | 5755     | 3.14    | 2.52                                    | 5.85             | 8.07                      | 8.42                       | 28.36             | PASS           |
| 159     | 5795     | 3.21    | 2.31                                    | 5.79             | 8.01                      | 8.36                       | 28.36             | PASS           |

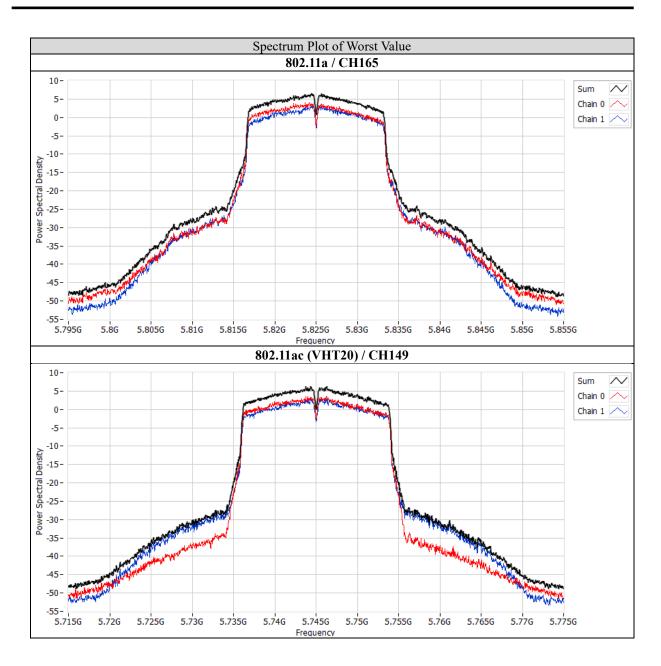
#### Note:

- 1. Directional gain = 7.64 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.
- 3. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where  $BWCF = 10\log(500 \text{ kHz}/300\text{kHz})$ .

#### 802.11ac (VHT80)

| Channel | Frequency (MHz) | fac     | o duty<br>tor<br>00 kHz) | Total PSD<br>w/o BWCF<br>(dBm/300 | Total PSD with BWCF | Total PSD with duty factor | Limit<br>(dBm/500 | Pass /<br>Fail |
|---------|-----------------|---------|--------------------------|-----------------------------------|---------------------|----------------------------|-------------------|----------------|
|         | (IVIIIZ)        | Chain 0 | Chain 1                  | kHz)                              | (dBm/500<br>kHz)    | (dBm/500<br>kHz)           | kHz)              | ran            |
| 155     | 5775            | -0.31   | -0.34                    | 2.69                              | 4.91                | 5.57                       | 28.36             | PASS           |

#### Note:

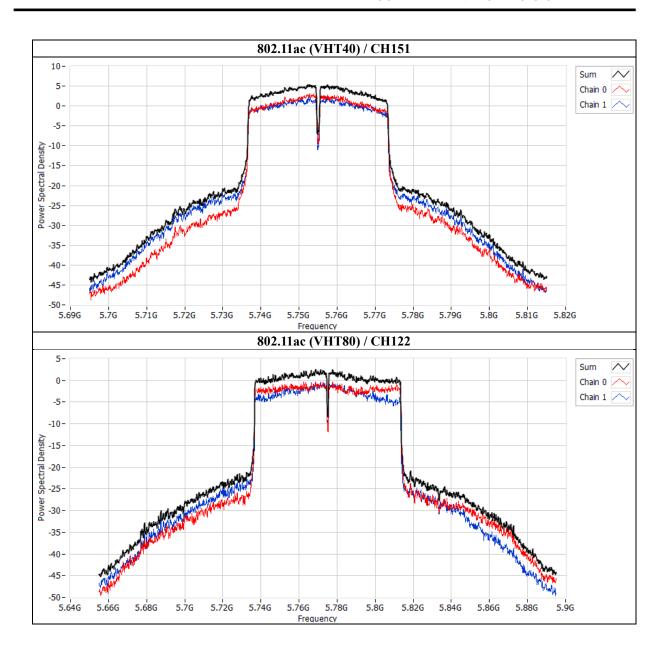

- 1. Directional gain = 7.64 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.
- 3. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(500 kHz/300kHz).

#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 66 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A




### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 67 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A



### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 68 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# 9.6. Frequency Stability

### **Requirements**

The frequency of the carrier signal shall be maintained within band of operation.

### **Test procedure**

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 Minutes.
- e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 Minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

### **Test Setup**



#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 69 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# **Test Data**

|                   | Frequency Stability Versus Temp. |                                |                   |                                |                   |                                |                   |                                |                   |
|-------------------|----------------------------------|--------------------------------|-------------------|--------------------------------|-------------------|--------------------------------|-------------------|--------------------------------|-------------------|
|                   |                                  |                                |                   | Operating F                    | requency: 51      | 80 MHz                         |                   |                                |                   |
|                   | Power                            | 0 Mi                           | nute              | 2 Mi                           | inute             | 5 Mi                           | inute             | 10 M                           | inute             |
| <b>TEMP.</b> (°C) | Supply<br>(Vac)                  | Measured<br>Frequency<br>(MHz) | Freq. Drift (ppm) |
| 50                | 120                              | 5180.0197                      | 3.80              | 5180.0183                      | 3.53              | 5180.0191                      | 3.69              | 5180.0202                      | 3.90              |
| 40                | 120                              | 5180.0175                      | 3.38              | 5180.0179                      | 3.46              | 5180.0158                      | 3.05              | 5180.0146                      | 2.82              |
| 30                | 120                              | 5179.9972                      | -0.54             | 5179.9944                      | -1.08             | 5179.9963                      | -0.71             | 5179.9951                      | -0.95             |
| 20                | 120                              | 5180.0133                      | 2.57              | 5180.0124                      | 2.39              | 5180.0149                      | 2.88              | 5180.0156                      | 3.01              |
| 10                | 120                              | 5179.9896                      | -2.01             | 5179.9866                      | -2.59             | 5179.9848                      | -2.93             | 5179.9852                      | -2.86             |
| 0                 | 120                              | 5180.0188                      | 3.63              | 5180.0143                      | 2.76              | 5180.0184                      | 3.55              | 5180.0183                      | 3.53              |
| -10               | 120                              | 5180.0265                      | 5.12              | 5180.0267                      | 5.15              | 5180.027                       | 5.21              | 5180.024                       | 4.63              |
| -20               | 120                              | 5180.0038                      | 0.73              | 5180.0052                      | 1.00              | 5180.0042                      | 0.81              | 5180.0051                      | 0.98              |
| -30               | 120                              | 5179.9829                      | -3.30             | 5179.9849                      | -2.92             | 5179.9835                      | -3.19             | 5179.9829                      | -3.30             |
|                   | Dawan                            | 0 Mi                           | inute             | 2 Mi                           | inute             | 5 Mi                           | inute             | 10 M                           | linute            |
| <b>TEMP.</b> (°C) | Power<br>Supply<br>(Vac)         | Measured<br>Frequency<br>(MHz) | Freq. Drift (ppm) |
| 20                | 138                              | 5180.0124                      | 2.39              | 5180.012                       | 2.32              | 5180.0142                      | 2.74              | 5180.0149                      | 2.88              |
| 20                | 120                              | 5180.0133                      | 2.57              | 5180.0124                      | 2.39              | 5180.0149                      | 2.88              | 5180.0156                      | 3.01              |
| 20                | 102                              | 5180.0124                      | 2.39              | 5180.0128                      | 2.47              | 5180.0156                      | 3.01              | 5180.0161                      | 3.11              |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 70 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# 9.7. Radiated Spurious Emission

### **Requirements**

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

| Frequency(MHz) | Field strength<br>(microvolts/meter) | Measurement distance (meters) |
|----------------|--------------------------------------|-------------------------------|
| 0.009-0.490    | 2400/F(kHz)                          | 300                           |
| 0.490-1.705    | 24000/F(kHz)                         | 30                            |
| 1.705-30.0     | 30                                   | 30                            |
| 30-88          | 100                                  | 3                             |
| 88-216         | 150                                  | 3                             |
| 216-960        | 200                                  | 3                             |
| Above 960      | 500                                  | 3                             |

#### NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level  $(dBuV/m) = 20 \log Emission level (uV/m)$ .
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 6.0

Page : 71 of 158

Issued date : 2022/2/17

FCC ID : 2A3HV-CIC15A

#### Limits of unwanted emission out of the restricted bands

| Applio               | able To                | Limit                                                                                   |                                                                                             |  |
|----------------------|------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| 789033 D02 General U | NII Test Procedure New | Field Stre                                                                              | ngth at 3m                                                                                  |  |
| Rules v02r01         |                        | PK:74 (dBμV/m)                                                                          | AV:54 (dBμV/m)                                                                              |  |
| Frequency Band       | Applicable To          | EIRP Limit                                                                              | Equivalent Field<br>Strength at 3m                                                          |  |
| 5150~5250 MHz        | 15.407(b)(1)           |                                                                                         |                                                                                             |  |
| 5250~5350 MHz        | 15.407(b)(2)           | PK:-27 (dBm/MHz)                                                                        | $PK:68.2(dB\mu V/m)$                                                                        |  |
| 5470~5725 MHz        | 15.407(b)(3)           |                                                                                         |                                                                                             |  |
| 5725~5850 MHz        | 15.407(b)(4)(i)        | PK:-27 (dBm/MHz) *1<br>PK:10 (dBm/MHz) *2<br>PK:15.6 (dBm/MHz) *3<br>PK:27 (dBm/MHz) *4 | PK: 68.2(dBμV/m) *1<br>PK:105.2 (dBμV/m) *2<br>PK: 110.8(dBμV/m) *3<br>PK:122.2 (dBμV/m) *4 |  |

<sup>\*1</sup> beyond 75 MHz or more above of the band edge.

#### Note:

The following formula is used to convert the effective isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts)}.$$

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

<sup>\*2</sup> below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

<sup>\*3</sup> below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

<sup>\*4</sup> from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.



Page : 72 of 158

Issued date : 2022/2/17

FCC ID : 2A3HV-CIC15A

### **Test Procedures**

[For  $9 \text{ kHz} \sim 30 \text{ MHz}$ ]

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. For measurement below 30MHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

#### NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

### [For above 30 MHz]

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

#### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX ) :+886-3-583-7948

Doc No: 17-EM-F0878 / 6.0



Doc No: 17-EM-F0878 / 6.0

Page : 73 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

#### Note:

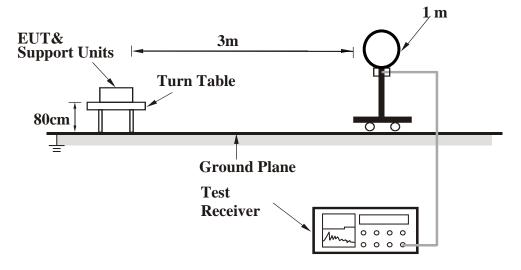
a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

- b. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is  $\geq$  1/T (Duty cycle  $\leq$  98%) or 10Hz (Duty cycle  $\geq$  98%) for Average detection (AV) at frequency above 1GHz.

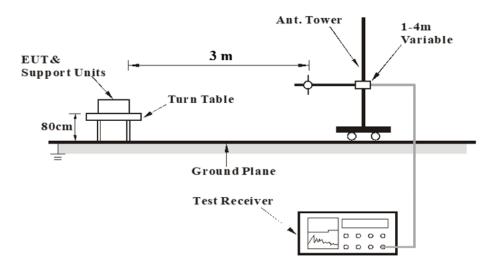
| Configuration    | Average |        |  |  |
|------------------|---------|--------|--|--|
| Configuration    | RBW     | VBW    |  |  |
| 802.11a          |         | 1kHz   |  |  |
| 802.11n (HT20)   |         | 1kHz   |  |  |
| 802.11n (HT40)   | 1MHz    | 2kHz   |  |  |
| 802.11ac (VHT80) |         | 5.1kHz |  |  |

Note: Refer to section 6.6 for duty cycle.

- d. All modes of operation were investigated (includes all external accessories) and the worst-case emissions are reported, the other emission levels were low against the limit.
- e. Test data of Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- f. Test data of Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- g. Test data of Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- h. Test data of Notation "@" = Fundamental Frequency
- i. Test data of Notation " \* " = Only required peak limit or the peak result under 20 dB above and complies with AVG limit, AVG result is deemed to comply with AVG limit.


Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan




Page : 74 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

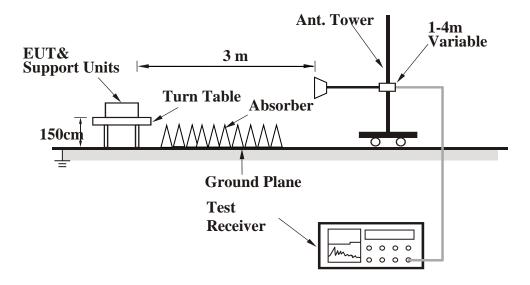
# **Test Setup**

<Frequency Range 9 kHz ~ 30 MHz>



<Frequency Range 30 MHz ~ 1 GHz >




### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 75 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# <Frequency Range above 1 GHz>



For the actual test configuration, please refer to the Setup Configurations.

### **Underwriters Laboratories Taiwan Co., Ltd.**

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Page : 76 of 158
Issued date : 2022/2/17
FCC ID : 2A3HV-CIC15A

# **Test Data**

### **Above 1 GHz**

| Mode 802.11a | Channel | 36 |
|--------------|---------|----|
|--------------|---------|----|

| Polarization | Notation | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|--------------|----------|-----------|---------|---------|----------|----------|--------|--------|
|              |          | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| Horizontal   |          | 5149.8    | 48.86   | 13.43   | 62.29    | 74       | -11.71 | PK     |
|              |          | 5149.8    | 35.2    | 13.43   | 48.63    | 54       | -5.37  | AVG    |
|              | @        | 5180      | 97.96   | 13.4    | 111.36   | N/A      | N/A    | PK     |
|              | @        | 5180      | 90.12   | 13.4    | 103.52   | N/A      | N/A    | AVG    |
|              | *        | 10360     | 38.68   | 17.39   | 56.07    | 68.2     | -12.13 | PK     |
| Vertical     |          | 5105.35   | 37.54   | 13.46   | 51       | 74       | -23    | PK     |
|              |          | 5148.75   | 33.23   | 13.42   | 46.65    | 54       | -7.35  | AVG    |
|              | @        | 5180      | 88.07   | 13.4    | 101.47   | N/A      | N/A    | PK     |
|              | @        | 5180      | 87.09   | 13.4    | 100.49   | N/A      | N/A    | AVG    |
|              | *        | 10360     | 49 87   | 17 39   | 67.26    | 68.2     | -0.94  | PK     |

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan