RF TEST REPORT **Applicant** UAB TELTONIKA TELEMATICS FCC ID 2A3HUTAT141 **Product** Asset Tracker **Brand** TELTONIKA TELEMATICS Model TAT141-Q3IB0 **Report No.** R2306A0734-R1 Issue Date November 9, 2023 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2022)/ FCC CFR 47 Part 22H (2022). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Xn Ying Prepared by: Xu Ying Xikei Approved by: Xu Kai TA Technology (Shanghai) Co., Ltd. Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 ### Report No.: R2306A0734-R1 ## **TABLE OF CONTENT** | 1. | Test | Laboratory | 4 | |----|--------|--|----| | | 1.1. | Notes of the Test Report | | | | 1.2. | Test Facility | | | | 1.3. | Testing Location | | | 2. | Gen | eral Description of Equipment Under Test | 5 | | | 2.1. | Applicant and Manufacturer Information | | | | 2.2. | General Information | 5 | | 3. | App | lied Standards | 6 | | 4. | Test | Configuration | 7 | | 5. | | Case | | | | 5.1. | RF Power Output and Effective Radiated Power | 9 | | | 5.2. | Radiated Spurious Emission | 10 | | 6. | Test | Result | 13 | | | 6.1. | RF Power Output and Effective Radiated Power | 13 | | | 6.2. | Radiated Spurious Emission | 16 | | 7. | Mair | n Test Instruments | 20 | | ΑI | NNEX / | A: The EUT Appearance | 21 | | ΔΙ | NNFX | B: Test Setup Photos | 22 | RF Test Report No.: R2306A0734-R1 ## **Summary of Measurement Results** | No. | Test Case | Clause in FCC rules | Verdict | |-----|--|------------------------|---------| | 1 | RF Power Output and Effective Radiated Power | 2.1046
22.913(a)(5) | PASS | | 2 | Radiated Spurious Emission | 2.1053 / 22.917 (a) | PASS | Date of Testing: July 21, 2023 ~ August 7, 2023 Date of Sample Received: June 27, 2023 Note: PASS: The EUT complies with the essential requirements in the standard. FAIL: The EUT does not comply with the essential requirements in the standard. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report only tests Radiated Spurious Emission, and because of the change of antenna gain, Effective Radiated Power also re evaluated. For other test items, please refer to Module Report (Report No: R2003A0152-R1 for GSM 850 and LTE-M Band 5; R2003A0152-R4 for NB-IoT Band 5, FCC ID: XMR201910BG95M3). 1. Test Laboratory 1.1. Notes of the Test Report This report shall not be reproduced in full or partial, without the written approval of **TA Technology** Report No.: R2306A0734-R1 (Shanghai) Co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. 1.2. Test Facility FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements. A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement. 1.3. Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com # 2. General Description of Equipment Under Test ## 2.1. Applicant and Manufacturer Information | Applicant | UAB TELTONIKA TELEMATICS | |----------------------|--| | Applicant address | Saltoniskiu st. 9B-1, LT-08105, Vilnius, Lithuania | | Manufacturer | UAB TELTONIKA TELEMATICS | | Manufacturer address | Saltoniskiu st. 9B-1, LT-08105, Vilnius, Lithuania | | Factory | UAB TELTONIKA EMS | | Factory address | Ditvos st. 6, LT-02121, Vilnius, Lithuania | Report No.: R2306A0734-R1 ## 2.2. General Information | EUT Description | | | | | | | | | |--------------------------------------|--|---------------------|-----------|--|--|--|--|--| | Model | TAT141-Q3IB0 | | | | | | | | | SN | MPH22LH02033088 | | | | | | | | | Hardware Version | TAT141-20 | | | | | | | | | Software Version | FMB.Ver.55.00.16 | | | | | | | | | Power Supply | Battery | | | | | | | | | Antenna Type | Internal Antenna | | | | | | | | | Antenna Gain | -1.5 dBi | | | | | | | | | Test Mode(s) | GSM 850; LTE-M Band | 5; NB-IoT Band 5 | | | | | | | | | (GSM)GMSK, (EGPRS |) GMSK/ 8PSK; | | | | | | | | Test Modulation | (LTE-M) QPSK, 16QAM | 1 | | | | | | | | | (NB-IoT) BPSK, QPSK | | | | | | | | | GPRS Multislot Class | 33 | | | | | | | | | EGPRS Multislot Class 33 | | | | | | | | | | LTE-M Category | M1 | | | | | | | | | NB-IoT Category | NB2 | | | | | | | | | NB-IoT Deployment | stand-alone | | | | | | | | | NB-IoT Sub-carrier spacing | 3.75KHz, 15KHz | | | | | | | | | NB-IoT Ntones | single-tone, multi-tone | | | | | | | | | | GSM850 | | | | | | | | | Maximum E.R.P. | LTE-M Band 5 | 17.22 dBm | | | | | | | | | NB-IoT Band 5 | nd 5 17.09 dBm | | | | | | | | Rated Power Supply Voltage | 7.2 V | | | | | | | | | Operating Voltage | Minimum: 6.12V Max | kimum: 8.28V | | | | | | | | Operating Temperature | Lowest: -20°C High | est: +60°C | | | | | | | | Testing Temperature | Lowest: -30°C High | est: +50°C | | | | | | | | | Band | Tx (MHz) | Rx (MHz) | | | | | | | Operating Fraguency Banga(s) | GSM850 | 824 ~ 849 | 869 ~ 894 | | | | | | | Operating Frequency Range(s) | LTE-M Band 5 | 824 ~ 849 | 869 ~ 894 | | | | | | | | NB-IoT Band 5 | 824 ~ 849 869 ~ 894 | | | | | | | | Note: 1. The EUT is sent from the ap | Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant. | | | | | | | | TA Technology (Shanghai) Co., Ltd. TA-MB-05-001R Page 5 of 22 ## 3. Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Report No.: R2306A0734-R1 Test standards: FCC CFR 47 Part 22H (2022) FCC CFR47 Part 2 (2022) Reference standard: ANSI C63.26-2015 KDB 971168 D01 Power Meas License Digital Systems v03r01 ## 4. Test Configuration Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Z axis, horizontal polarization for GSM/ NB-IoT Band; Y axis, horizontal polarization for LTE-M Band) and the worst case was recorded. Report No.: R2306A0734-R1 For LTE-M, all mode and data rates and positions and RB size and modulations were investigated. For NB-IoT, all modes as Subcarrier Spacing, modulations, Channel were investigated. Subsequently, only the worst case emissions are reported. The following testing in GSM / LTE-M / NB-IoT is set based on the maximum RF Output Power. Test modes are chosen as the worst case configuration below for GSM 850. | Toot items | Modes/Modulation | | | | |--|------------------|--|--|--| | Test items | GSM 850 | | | | | RF Power Output and Effective Radiated power | GSM/GPRS/EGPRS | | | | | Radiated Spurious Emission | GSM | | | | Test modes are chosen as the worst case configuration below for LTE-M Band 5. | <u> </u> | | | | | | | | | | | | | |---|----------------------------|---|---------|----|------|-------|---|-----------------|------|---|---|---| | Test items | Bandwidth (MHz) Modulation | | ulation | RB | | | | Test
Channel | | | | | | | 1.4 | 3 | 5 | 10 | QPSK | 16QAM | 1 | 50% | 100% | L | М | Н | | RF Power Output and
Effective Radiated power | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Radiated Spurious
Emission | 0 | - | 0 | 0 | 0 | - | 0 | - | - | - | 0 | - | #### Note - 1. The mark "O" means that this configuration is chosen for testing. - 2. The mark "-" means that this configuration is not testing. TA Technology (Shanghai) Co., Ltd. RF Test Report No.: R2306A0734-R1 Test modes are chosen as the worst case configuration below for NB-IoT Band 5. | Test items | Deployment
mode | Subcarrier (kHz | • | Modu | lation | Test | Cha | nnel | |---|--------------------|-----------------|----|------|--------|------|-----|------| | | Stand-alone | 3.75 | 15 | BPSK | QPSK | L | M | Н | | RF Power Output and
Effective Radiated power | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Radiated Spurious
Emission | 0 | - | 0 | - | 0 | 0 | 0 | 0 | ### Note - 1. The mark "O" means that this configuration is chosen for testing. - 2. The mark "-" means that this configuration is not testing. ### 5. Test Case ## 5.1. RF Power Output and Effective Radiated Power #### **Ambient Condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | Report No.: R2306A0734-R1 #### **Methods of Measurement** During the process of the testing, The EUT was connected to the Base Station Simulator with a known loss. The EUT is controlled by the Base Station Simulator test set to ensure max power transmission with proper modulation. ERP can then be calculated as follows: EIRP (dBm) = Output Power (dBm) + Antenna Gain (dBi) EIRP (dBm) = ERP (dBm) + 2.15 (dB). ### **Test Setup** #### Limits No specific RF power output requirements in part 2.1046. Rule Part 22.913(a)(5) specifies that "Mobile/portable stations are limited to 7 watts ERP". | Limit | ≤ 7 W (38.45 dBm) | |---------|-----------------------| | Ellille | = 7 VV (00: 10 dB111) | ### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB for RF power output, k = 2, U = 1.19 dB for ERP. #### **Test Results** Refer to the section 6.1 of this report for test data. 5.2. Radiated Spurious Emission ## Ambient Condition | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | Report No.: R2306A0734-R1 #### **Method of Measurement** - 1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26-2015. - 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). - 3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver. - 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=100kHz, VBW=300kHz, and the maximum value of the receiver should be recorded as (Pr). - 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. - 7. The measurement results are obtained as described below: Power (EIRP) = PMea - PAg - Pcl + Ga The measurement results are amend as described below: Power (EIRP) = PMea - Pcl + Ga 8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dB. RF Test Report No.: R2306A0734-R1 The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration. ## **Test Setup** ### 9KHz~30MHz ### 30MHz~1GHz ### **Above 1GHz** Note: Area side: 2.4mX3.6m #### Limits Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) Db." Report No.: R2306A0734-R1 | Limit | -13 dBm | |-------|---------| |-------|---------| ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB. #### **Test Results** Refer to the section 6.2 of this report for test data. Report No.: R2306A0734-R1 ## 6. Test Result ## 6.1. RF Power Output and Effective Radiated Power | | Outp | ut Power(| dBm) | ERP (dBm) | | | | |------------|----------|-----------|---------|-----------|---------|---------|-------| | | Channel | Channel | Channel | Channel | Channel | Channel | | | GSM 85 | 128 | 190 | 251 | 128 | 190 | 251 | | | | 824.2 | 836.6 | 848.8 | 824.2 | 836.6 | 848.8 | | | | | (MHz) | (MHz) | (MHz) | (MHz) | (MHz) | (MHz) | | GSM | Results | 32.13 | 32.2 | 32.24 | 28.48 | 28.55 | 28.59 | | | 1TXslot | 32.20 | 32.05 | 32.07 | 28.55 | 28.40 | 28.42 | | GPRS/EGPRS | 2TXslots | 31.05 | 31.10 | 31.12 | 27.40 | 27.45 | 27.47 | | (GMSK) | 3TXslots | 29.51 | 29.10 | 29.14 | 25.86 | 25.45 | 25.49 | | | 4TXslots | 27.97 | 28.10 | 28.13 | 24.32 | 24.45 | 24.48 | | | 1TXslot | 25.07 | 25.01 | 25.00 | 21.42 | 21.36 | 21.35 | | EGPRS | 2TXslots | 24.32 | 24.12 | 24.20 | 20.67 | 20.47 | 20.55 | | (8PSK) | 3TXslots | 22.16 | 22.07 | 22.42 | 18.51 | 18.42 | 18.77 | | | 4TXslots | 20.87 | 21.02 | 21.03 | 17.22 | 17.37 | 17.38 | Report No.: R2306A0734-R1 | LTE-M
Band5 | Channel/
Frequency(MHz) | Index | RB#
RBstart | • | t Power
Bm) | ERP(| (dBm) | |----------------|----------------------------|-------|----------------|-------|----------------|-------|-------| | Dallus | Frequency(Winz) | | RDStart | QPSK | 16QAM | QPSK | 16QAM | | | 20407/824.7 | 0 | 1#0 | 20.87 | 19.51 | 17.22 | 15.86 | | | 20407/024.7 | 0 | 6#0 | 18.82 | 19.48 | 15.17 | 15.83 | | 1.4MHz | 20525/836.5 | 0 | 1#0 | 20.24 | 20.45 | 16.59 | 16.80 | | 1.410172 | 20020/000.0 | 0 | 6#0 | 18.83 | 18.39 | 15.18 | 14.74 | | | 20643/848.3 | 0 | 1#5 | 20.44 | 19.36 | 16.79 | 15.71 | | | 20043/040.3 | 0 | 6#0 | 18.61 | 19.31 | 14.96 | 15.66 | | | 20415/925 5 | 0 | 1#0 | 20.50 | 20.38 | 16.85 | 16.73 | | | 20415/825.5 | 0 | 6#0 | 18.79 | 19.02 | 15.14 | 15.37 | | 3MHz | 20525/836.5 | 0 | 1#0 | 20.53 | 20.07 | 16.88 | 16.42 | | SIVITZ | 20525/636.5 | 0 | 6#0 | 18.91 | 18.99 | 15.26 | 15.34 | | | 20635/847.5 | 1 | 1#5 | 20.44 | 19.42 | 16.79 | 15.77 | | | 20033/047.3 | 1 | 6#0 | 18.67 | 19.09 | 15.02 | 15.44 | | | 20425/826.5 | 0 | 1#0 | 20.37 | 20.68 | 16.72 | 17.03 | | | 20425/626.5 | 0 | 6#0 | 19.94 | 19.73 | 16.29 | 16.08 | | 5MHz | 20525/836.5 | 0 | 1#0 | 20.41 | 20.58 | 16.76 | 16.93 | | SIVITZ | 20020/000.5 | 0 | 6#0 | 19.97 | 19.89 | 16.32 | 16.24 | | | 20625/846.5 | 3 | 1#5 | 20.03 | 20.41 | 16.38 | 16.76 | | | 20025/640.5 | 3 | 6#0 | 19.86 | 19.91 | 16.21 | 16.26 | | | 20450/829 | 0 | 1#0 | 20.37 | 20.78 | 16.72 | 17.13 | | | 20430/029 | 0 | 4#0 | 20.56 | 20.28 | 16.91 | 16.63 | | 10MHz | 20E2E/826 E | 0 | 1#0 | 20.41 | 20.74 | 16.76 | 17.09 | | IUIVIMZ | 20525/836.5 | 0 | 4#0 | 20.53 | 20.32 | 16.88 | 16.67 | | | 20600/944 | 7 | 1#5 | 20.02 | 20.34 | 16.37 | 16.69 | | | 20600/844 | 7 | 4#2 | 20.30 | 20.08 | 16.65 | 16.43 | RF Test Report Report No.: R2306A0734-R1 | NB-IoT | Modula | Sub-carrier | Ntonoo | • | Power (de | • | ERP(dBm) | | | | |------------|--------|------------------|--------|--------|-----------|--------|----------|--------|--------|--| | Band 5 | tion | spacing
(KHz) | Ntones | 20402/ | 20525/ | 20648/ | 20402/ | 20525/ | 20648/ | | | | | (14.12) | | 824.2 | 836.5 | 848.8 | 824.2 | 836.5 | 848.8 | | | | | 3.75 | 1@0 | 20.71 | 20.67 | 20.62 | 17.06 | 17.02 | 16.97 | | | | BPSK | 3.75 | 1@47 | 20.64 | 20.64 | 20.57 | 16.99 | 16.99 | 16.92 | | | | BESK | 15 | 1@0 | 20.68 | 20.52 | 20.74 | 17.03 | 16.87 | 17.09 | | | | | | 1@11 | 20.67 | 20.41 | 20.73 | 17.02 | 16.76 | 17.08 | | | Standalone | | 3.75 | 1@0 | 20.71 | 20.70 | 20.63 | 17.06 | 17.05 | 16.98 | | | | | | 1@47 | 20.72 | 20.48 | 20.59 | 17.07 | 16.83 | 16.94 | | | | QPSK | 45 | 1@0 | 20.65 | 20.47 | 20.68 | 17.00 | 16.82 | 17.03 | | | | | 15 | 1@11 | 20.64 | 20.55 | 20.73 | 16.99 | 16.90 | 17.08 | | | | | 15 | 12@0 | 19.51 | 19.54 | 19.35 | 15.86 | 15.89 | 15.70 | | ## 6.2. Radiated Spurious Emission Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report. Report No.: R2306A0734-R1 GSM 850 CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1673.20 | -59.99 | 1.70 | 8.70 | Horizontal | -55.14 | -13.00 | 42.14 | 13 | | 3 | 2509.80 | -53.90 | 2.30 | 12.00 | Horizontal | -46.35 | -13.00 | 33.35 | 135 | | 4 | 3346.40 | -63.53 | 2.70 | 12.70 | Horizontal | -55.68 | -13.00 | 42.68 | 267 | | 5 | 4183.00 | -63.31 | 3.00 | 12.50 | Horizontal | -55.96 | -13.00 | 42.96 | 46 | | 6 | 5019.60 | -59.08 | 3.40 | 12.50 | Horizontal | -52.13 | -13.00 | 39.13 | 306 | | 7 | 5856.20 | -60.33 | 3.40 | 12.80 | Horizontal | -53.08 | -13.00 | 40.08 | 2 | | 8 | 6692.80 | -58.48 | 4.10 | 11.50 | Horizontal | -53.23 | -13.00 | 40.23 | 113 | | 9 | 7529.40 | -55.83 | 4.20 | 12.20 | Horizontal | -49.98 | -13.00 | 36.98 | 24 | | 10 | 8366.00 | -56.47 | 4.30 | 12.50 | Horizontal | -50.42 | -13.00 | 37.42 | 186 | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. 2. The worst emission was found in the antenna is Horizontal position. LTE-M Band 5 1.4MHz CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1673.00 | -65.60 | 1.70 | 8.70 | Horizontal | -60.75 | -13.00 | 47.75 | 75 | | 3 | 2509.50 | -62.80 | 2.30 | 12.00 | Horizontal | -55.25 | -13.00 | 42.25 | 14 | | 4 | 3343.20 | -67.73 | 2.70 | 12.70 | Horizontal | -59.88 | -13.00 | 46.88 | 44 | | 5 | 4179.00 | -64.67 | 3.00 | 12.50 | Horizontal | -57.32 | -13.00 | 44.32 | 75 | | 6 | 5014.80 | -61.75 | 3.40 | 12.50 | Horizontal | -54.80 | -13.00 | 41.80 | 14 | | 7 | 5850.60 | -60.88 | 3.40 | 12.80 | Horizontal | -53.63 | -13.00 | 40.63 | 34 | | 8 | 6686.40 | -58.49 | 4.10 | 11.50 | Horizontal | -53.24 | -13.00 | 40.24 | 17 | | 9 | 7522.20 | -56.07 | 4.20 | 12.20 | Horizontal | -50.22 | -13.00 | 37.22 | 277 | | 10 | 8358.00 | -55.12 | 4.30 | 12.50 | Horizontal | -49.07 | -13.00 | 36.07 | 222 | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. 2. The worst emission was found in the antenna is Horizontal position. TA Technology (Shanghai) Co., Ltd. TA-MB-05-001R #### LTE-M Band 5 5MHz CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1668.60 | -66.46 | 1.70 | 8.70 | Horizontal | -61.61 | -13.00 | 48.61 | 34 | | 3 | 2503.30 | -63.35 | 2.30 | 12.00 | Horizontal | -55.80 | -13.00 | 42.80 | 17 | | 4 | 3336.00 | -67.10 | 2.70 | 12.70 | Horizontal | -59.25 | -13.00 | 46.25 | 72 | | 5 | 4170.00 | -64.29 | 3.00 | 12.50 | Horizontal | -56.94 | -13.00 | 43.94 | 75 | | 6 | 5004.00 | -61.67 | 3.40 | 12.50 | Horizontal | -54.72 | -13.00 | 41.72 | 96 | | 7 | 5838.00 | -60.88 | 3.40 | 12.80 | Horizontal | -53.63 | -13.00 | 40.63 | 78 | | 8 | 6672.00 | -56.79 | 4.10 | 11.50 | Horizontal | -51.54 | -13.00 | 38.54 | 165 | | 9 | 7506.00 | -55.86 | 4.20 | 12.20 | Horizontal | -50.01 | -13.00 | 37.01 | 74 | | 10 | 8340.00 | -55.80 | 4.30 | 12.50 | Horizontal | -49.75 | -13.00 | 36.75 | 55 | Report No.: R2306A0734-R1 Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. LTE-M Band 5 10MHz CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1664.40 | -62.57 | 1.70 | 8.70 | Horizontal | -57.72 | -13.00 | 44.72 | 156 | | 3 | 2496.60 | -63.30 | 2.30 | 12.00 | Horizontal | -55.75 | -13.00 | 42.75 | 72 | | 4 | 3326.00 | -65.95 | 2.70 | 12.70 | Horizontal | -58.10 | -13.00 | 45.10 | 32 | | 5 | 4157.50 | -64.21 | 3.00 | 12.50 | Horizontal | -56.86 | -13.00 | 43.86 | 175 | | 6 | 4989.00 | -62.47 | 3.40 | 12.50 | Horizontal | -55.52 | -13.00 | 42.52 | 46 | | 7 | 5820.50 | -59.47 | 3.40 | 12.80 | Horizontal | -52.22 | -13.00 | 39.22 | 75 | | 8 | 6652.00 | -59.28 | 4.10 | 11.50 | Horizontal | -54.03 | -13.00 | 41.03 | 88 | | 9 | 7483.50 | -55.63 | 4.20 | 12.20 | Horizontal | -49.78 | -13.00 | 36.78 | 27 | | 10 | 8315.00 | -55.48 | 4.30 | 12.50 | Horizontal | -49.43 | -13.00 | 36.43 | 314 | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. TA Technology (Shanghai) Co., Ltd. TA-MB-05-001R ^{2.} The worst emission was found in the antenna is Horizontal position. ^{2.} The worst emission was found in the antenna is Horizontal position. #### NB-IoT Band 5 15KHz+QPSK CH-Low | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1648.20 | -65.58 | 1.70 | 8.70 | Horizontal | -60.73 | -13.00 | 47.73 | 15 | | 3 | 2472.30 | -65.15 | 2.30 | 12.00 | Horizontal | -57.60 | -13.00 | 44.60 | 225 | | 4 | 3296.40 | -68.16 | 2.70 | 12.70 | Horizontal | -60.31 | -13.00 | 47.31 | 90 | | 5 | 4120.50 | -64.99 | 3.00 | 12.50 | Horizontal | -57.64 | -13.00 | 44.64 | 15 | | 6 | 4944.60 | -62.71 | 3.40 | 12.50 | Horizontal | -55.76 | -13.00 | 42.76 | 63 | | 7 | 5768.70 | -62.30 | 3.40 | 12.80 | Horizontal | -55.05 | -13.00 | 42.05 | 112 | | 8 | 6592.80 | -59.29 | 4.10 | 11.50 | Horizontal | -54.04 | -13.00 | 41.04 | 15 | | 9 | 7416.90 | -56.82 | 4.20 | 12.20 | Horizontal | -50.97 | -13.00 | 37.97 | 225 | | 10 | 8241.00 | -56.56 | 4.30 | 12.50 | Horizontal | -50.51 | -13.00 | 37.51 | 204 | Report No.: R2306A0734-R1 Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ### NB-IoT Band 5 15KHz+QPSK CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1673.00 | -66.09 | 1.70 | 8.70 | Horizontal | -61.24 | -13.00 | 48.24 | 204 | | 3 | 2509.50 | -66.34 | 2.30 | 12.00 | Horizontal | -58.79 | -13.00 | 45.79 | 315 | | 4 | 3346.00 | -68.17 | 2.70 | 12.70 | Horizontal | -60.32 | -13.00 | 47.32 | 315 | | 5 | 4182.50 | -65.08 | 3.00 | 12.50 | Horizontal | -57.73 | -13.00 | 44.73 | 135 | | 6 | 5019.00 | -60.76 | 3.40 | 12.50 | Horizontal | -53.81 | -13.00 | 40.81 | 225 | | 7 | 5855.50 | -61.15 | 3.40 | 12.80 | Horizontal | -53.90 | -13.00 | 40.90 | 309 | | 8 | 6692.00 | -59.51 | 4.10 | 11.50 | Horizontal | -54.26 | -13.00 | 41.26 | 120 | | 9 | 7528.50 | -56.32 | 4.20 | 12.20 | Horizontal | -50.47 | -13.00 | 37.47 | 240 | | 10 | 8365.00 | -55.89 | 4.30 | 12.50 | Horizontal | -49.84 | -13.00 | 36.84 | 167 | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. TA Technology (Shanghai) Co., Ltd. TA-MB-05-001R Page 18 of 22 ^{2.} The worst emission was found in the antenna is Horizontal position. ^{2.} The worst emission was found in the antenna is Horizontal position. NB-IoT Band 5 15KHz+QPSK CH-High | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | ERP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|-----------------------|----------------|----------------|---------------| | 2 | 1697.80 | -66.86 | 1.70 | 8.70 | Horizontal | -62.01 | -13.00 | 49.01 | 0 | | 3 | 2546.70 | -66.98 | 2.30 | 12.00 | Horizontal | -59.43 | -13.00 | 46.43 | 312 | | 4 | 3395.60 | -68.10 | 2.70 | 12.70 | Horizontal | -60.25 | -13.00 | 47.25 | 93 | | 5 | 4244.50 | -64.23 | 3.00 | 12.50 | Horizontal | -56.88 | -13.00 | 43.88 | 0 | | 6 | 5093.40 | -61.59 | 3.40 | 12.50 | Horizontal | -54.64 | -13.00 | 41.64 | 0 | | 7 | 5942.30 | -61.30 | 3.40 | 12.80 | Horizontal | -54.05 | -13.00 | 41.05 | 78 | | 8 | 6791.20 | -60.57 | 4.10 | 11.50 | Horizontal | -55.32 | -13.00 | 42.32 | 215 | | 9 | 7640.10 | -57.52 | 4.20 | 12.20 | Horizontal | -51.67 | -13.00 | 38.67 | 42 | | 10 | 8489.00 | -55.34 | 4.30 | 12.50 | Horizontal | -49.29 | -13.00 | 36.29 | 12 | Report No.: R2306A0734-R1 Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ^{2.} The worst emission was found in the antenna is Horizontal position. RF Test Report Report No.: R2306A0734-R1 ## 7. Main Test Instruments | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration Date | |-------------------------------------|--------------|------------|------------------|---------------------|-----------------| | Wideband radio communication tester | R&S | CMW500 | 113645 | 2023-03-16 | 2024-03-15 | | Signal Analyzer | R&S | FSV30 | 104028 | 2023-05-12 | 2024-05-11 | | Loop Antenna | SCHWARZBECK | FMZB1519 | 1519-047 | 2023-04-16 | 2026-04-15 | | TRILOG
Broadband
Antenna | Schwarzbeck | VULB 9163 | 01439 | 2021-06-30 | 2024-06-29 | | Horn Antenna | Schwarzbeck | BBHA 9120D | 1594 | 2020-12-17 | 2023-12-16 | | Software | R&S | EMC32 | 10.35.10 | 1 | 1 | # **ANNEX A: The EUT Appearance** The EUT Appearance is submitted separately. Report No.: R2306A0734-R1 ## **ANNEX B: Test Setup Photos** The Test Setup Photos is submitted separately. ***** END OF REPORT ***** Report No.: R2306A0734-R1