

RF TEST REPORT

Applicant UAB TELTONIKA TELEMATICS

FCC ID 2A3HUFMM920

Product Fleet Management System

Brand TELTONIKA TELEMATICS

Model FMM920-Q3IB0

Report No. R2208A0723-R4

Issue Date September 16, 2022

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2021)/ FCC CFR 47 Part 22H (2021). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Kai

TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

Report No.: R2208A0723-R4

1. Te	est Laboratory	4
1.1.	Notes of the Test Report	
1.2.		
1.3.		
2. G	eneral Description of Equipment under Test	5
2.1.	Applicant and Manufacturer Information	
2.2.	General Information	5
3. Ap	oplied Standards	6
4. Te	est Configuration	7
5. Te	est Case	
5.1.	RF Power Output and Effective Radiated Power	8
5.2.	Radiated Spurious Emission	9
6. Te	est Result	12
6.1.	RF Power Output and Effective Radiated Power	12
6.2.	Radiated Spurious Emission	13
7. Ma	ain Test Instruments	15
ANNE	X A: The EUT Appearance	16
ANNE	X B: Test Setup Photos	17

RF Test Report Report No.: R2208A0723-R4

Summary of measurement results

No.	Test Case	Clause in FCC rules	Verdict
1	RF Power Output and Effective Radiated Power	2.1046 22.913(a)(5)	PASS
2	Radiated Spurious Emission	2.1053 / 22.917 (a)	PASS

Date of Testing: August 11, 2022 ~ August 15, 2022

Date of Sample Received: August 5, 2022

Note: PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard.

All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

This report only tests Effective Radiated Power and Radiated Spurious Emission. For other test items, please refer to Module Report (Report No: R2003A0152-R4, FCC ID: XMR201910BG95M3).

RF Test Report No.: R2208A0723-R4

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology**

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

conditions and modes of operation as described herein. Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform measurement.

1.3. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: Building 3, No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

F Test Report Report No.: R2208A0723-R4

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant	UAB TELTONIKA TELEMATICS
Applicant address	Saltoniskiu st. 9B-1,Vilnius,Lithuania
Manufacturer	UAB TELTONIKA TELEMATICS
Manufacturer address	Saltoniskiu st. 9B-1,Vilnius,Lithuania
Factory	UAB TELTONIKA EMS
Factory address	Ditvos st. 6, Vilnius,Lithuania

2.2. General Information

EUT Description							
Model	FMM920-Q3IB0						
IMEI	863257068183666		_				
Hardware Version	FMM920-03		_				
Software Version	FMB.Ver.03.28.02						
Power Supply	External power supply						
Antenna Type	Fixed Internal Antenna						
Antenna Gain	2.07 dBi		_				
Test Mode(s)	NB-IoT Band 5;						
Test Modulation	BPSK, QPSK						
Category	NB2		_				
Deployment	stand-alone						
Sub-carrier spacing	3.75KHz, 15KHz						
Ntones	single-tone, multi-tone						
Maximum E.R.P.	20.66 dBm						
Rated Power Supply Voltage	12V						
Operating Voltage	Minimum: 10V Maxim	num: 30V					
Operating Temperature	Lowest: -20°C Highe	est: +85°C					
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)				
Operating Frequency Range(s)	NB-IoT Band 5	824 ~ 849	869 ~ 894				

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-001R

F Test Report Report No.: R2208A0723-R4

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR 47 Part 22H (2021)

FCC CFR47 Part 2 (2021)

Reference standard:

ANSI C63.26-2015

KDB 971168 D01 Power Meas License Digital Systems v03r01

4. Test Configuration

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Z axis, vertical polarization) and the worst case was recorded.

All modes as Subcarrier Spacing, modulations, Channel were investigated.

Subsequently, only the worst case emissions are reported.

The following testing in NB-IOT is set based on the maximum RF Output Power.

The following testing in different mode is set to detail in the following table:

Test modes are chosen as the worst case configuration below for NB-IoT Band 5.

Test items	Modes	Deployment mode	Subcarrier Spacing (kHz)		Modulation		Test Channel		
		Stand-alone	3.75	15	BPSK	QPSK	L	М	Н
RF power output and									
Effective Radiated	NB-IoT B5	0	0	0	0	0	0	0	0
power									
Radiated Spurious	NB-IoT B5	0		0		0	0	0	0
Emission	כם וטו-טוו		-		-				

Note

- 1. The mark "O" means that this configuration is chosen for testing.
- 2. The mark "-" means that this configuration is not testing.

5. Test Case

5.1. RF Power Output and Effective Radiated Power

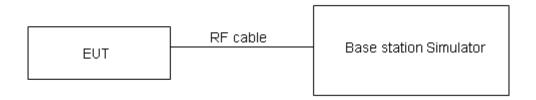
Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Report No.: R2208A0723-R4

Methods of Measurement

During the process of the testing, The EUT was connected to the Base Station Simulator with a known loss. The EUT is controlled by the Base Station Simulator test set to ensure max power transmission with proper modulation.


ERP can then be calculated as follows:

EIRP (dBm) = Output Power (dBm) - Losses (dB) + Antenna Gain (dBi)

where:dBd refers to gain relative to an ideal dipole.

EIRP (dBm) = ERP (dBm) + 2.15 (dB).

Test Setup

Limits

No specific RF power output requirements in part 2.1046.

Rule Part 22.913(a)(5) specifies that "Mobile/portable stations are limited to 7 watts ERP".

Limit	≤ 7 W (38.45 dBm)
-------	-------------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB for RF power output, k = 2, U = 1.19 dB for ERP.

Test Results

Refer to the section 6.1 of this report for test data.

F Test Report Report No.: R2208A0723-R4

5.2. Radiated Spurious Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

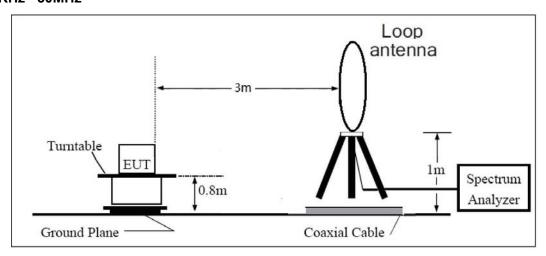
- 1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26-2015.
- 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).
- 3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=100kHz,VBW=300kHz, and the maximum value of the receiver should be recorded as (Pr).
- 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 7. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

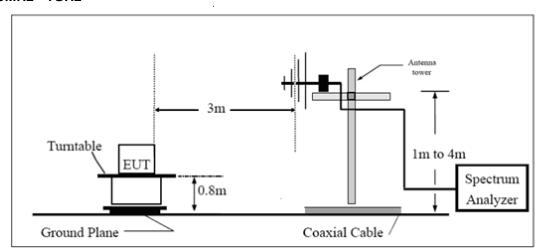
The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl + Ga

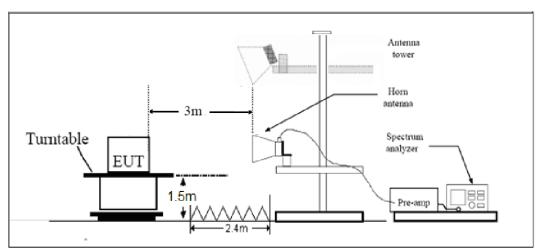
8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP



Report No.: R2208A0723-R4 = EIRP-2.15dB.


The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration.

Test setup


9KHz~ 30MHz

30MHz~1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

RF Test Report Report No.: R2208A0723-R4

Limits

Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB."

Limit	-13 dBm
	1

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Test Results

Refer to the section 6.2 of this report for test data.

6. Test Result

6.1. RF Power Output and Effective Radiated Power

RF Power Output refer to Module Report

	10 Tower output refer to module report											
Mada	Modulation	Sub-carrier	Nitomoo		output Pov /mid/high c	` '	ERP (dBm)					
Mode	Modulation	spacing	Ntones	20402/	20525/	20648/	20402/	20525/	20648/			
		(KHz)		824.2	836.5	848.8	824.2	836.5	848.8			
		2.75	1@0	20.71	20.67	20.62	20.63	20.59	20.54			
	BPSK	3.75	1@47	20.64	20.64	20.57	20.56	20.56	20.49			
		15	1@0	20.68	20.52	20.74	20.6	20.44	20.66			
ND IsT			1@11	20.67	20.41	20.73	20.59	20.33	20.65			
NB-IoT Band 5		3.75	1@0	20.71	20.70	20.63	20.63	20.62	20.55			
Danu 5			1@47	20.72	20.48	20.59	20.64	20.4	20.51			
	QPSK	15	1@0	20.65	20.47	20.68	20.57	20.39	20.6			
	_		1@11	20.64	20.55	20.73	20.56	20.47	20.65			
		15	12@0	19.51	19.54	19.35	19.43	19.46	19.27			

Report No.: R2208A0723-R4

RF Test Report Report Report No.: R2208A0723-R4

6.2. Radiated Spurious Emission

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report.

LTE Band 5 CH-Low

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1648.20	-55.72	1.70	8.70	Vertical	-50.87	-13.00	37.87	225
3	2472.30	-55.14	2.30	12.00	Vertical	-47.59	-13.00	34.59	135
4	3296.40	-66.70	2.70	12.70	Vertical	-58.85	-13.00	45.85	45
5	4120.50	-62.81	3.00	12.50	Vertical	-55.46	-13.00	42.46	0
6	4944.60	-62.12	3.40	12.50	Vertical	-55.17	-13.00	42.17	0
7	5768.70	-61.19	3.40	12.80	Vertical	-53.94	-13.00	40.94	0
8	6592.80	-59.44	4.10	11.50	Vertical	-54.19	-13.00	41.19	225
9	7416.90	-56.37	4.20	12.20	Vertical	-50.52	-13.00	37.52	225
10	8241.00	-56.18	4.30	12.50	Vertical	-50.13	-13.00	37.13	45

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

LTE Band 5 CH-Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1673.00	-61.85	1.70	8.70	Vertical	-57.00	-13.00	44.00	45
3	2509.50	-66.05	2.30	12.00	Vertical	-58.50	-13.00	45.50	315
4	3346.00	-65.89	2.70	12.70	Vertical	-58.04	-13.00	45.04	45
5	4182.50	-62.71	3.00	12.50	Vertical	-55.36	-13.00	42.36	225
6	5019.00	-59.97	3.40	12.50	Vertical	-53.02	-13.00	40.02	45
7	5855.50	-59.39	3.40	12.80	Vertical	-52.14	-13.00	39.14	135
8	6692.00	-58.75	4.10	11.50	Vertical	-53.50	-13.00	40.50	0
9	7528.50	-55.09	4.20	12.20	Vertical	-49.24	-13.00	36.24	135
10	8365.00	-54.61	4.30	12.50	Vertical	-48.56	-13.00	35.56	90

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Vertical position.

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-001R

^{2.} The worst emission was found in the antenna is Vertical position.

LTE Band 5 CH-High

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1697.80	-54.88	1.70	8.70	Vertical	-50.03	-13.00	37.03	180
3	2546.70	-63.57	2.30	12.00	Vertical	-56.02	-13.00	43.02	225
4	3395.60	-66.10	2.70	12.70	Vertical	-58.25	-13.00	45.25	90
5	4244.50	-63.89	3.00	12.50	Vertical	-56.54	-13.00	43.54	90
6	5093.40	-60.49	3.40	12.50	Vertical	-53.54	-13.00	40.54	0
7	5942.30	-60.50	3.40	12.80	Vertical	-53.25	-13.00	40.25	135
8	6791.20	-61.41	4.10	11.50	Vertical	-56.16	-13.00	43.16	0
9	7640.10	-56.24	4.20	12.20	Vertical	-50.39	-13.00	37.39	135
10	8489.00	-55.04	4.30	12.50	Vertical	-48.99	-13.00	35.99	90

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

^{2.} The worst emission was found in the antenna is Vertical position.

7. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Signal Analyzer	R&S	FSV40	101297	2021-12-12	2022-12-11
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2020-04-02	2023-04-01
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	01111	2019-09-12	2022-09-11
Horn Antenna	Schwarzbeck	BBHA 9120D	1594	2020-12-17	2023-12-16
Software	R&S	EMC32	10.35.10	/	/

******END OF REPORT ******

ANNEX A: The EUT Appearance

The EUT Appearance is submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos is submitted separately.