RF TEST REPORT **Applicant** UAB TELTONIKA TELEMATICS FCC ID 2A3HUFMM880 **Product** Fleet Management System Brand TELTONIKA TELEMATICS Model FMM880-Q3AB0 **Report No.** R2408A1081-R2 Issue Date September 12, 2024 Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2023)/ FCC CFR 47 Part 24E (2023). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Prepared by: Xu Ying Approved by: Xu Kai # Eurofins TA Technology (Shanghai) Co., Ltd. Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 ## **TABLE OF CONTENT** | 4 | |----| | 4 | | 4 | | 4 | | 5 | | 5 | | 5 | | 6 | | 7 | | 8 | | 8 | | 9 | | 12 | | 12 | | 15 | | 19 | | 20 | | 21 | | | **Summary of measurement results** Report No.: R2408A1081-R2 | No. | Test Case | Clause in FCC rules | Verdict | |-----|---|---------------------|---------| | 1 | RF Power Output and Effective Isotropic | 2.1046 | PASS | | - | Radiated Power | 24.232(c) | | | 2 | Radiated Spurious Emission | 2.1053 / 24.238(a) | PASS | Date of Testing: August 28, 2024 ~ August 10, 2024 Date of Sample Received: August 28, 2024 Note: PASS: The EUT complies with the essential requirements in the standard. FAIL: The EUT does not comply with the essential requirements in the standard. All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. Only Radiated Spurious Emission is tested for FMM880-Q3AB0 in this report, and because of the change of antenna gain, Effective Isotropic Radiated Power also re evaluated. Other test items refer to the Module report (Report No.: R2003A0152-R2V1, FCC ID: XMR201910BG95M3). 1. Test Laboratory 1.1. Notes of the test report This report shall not be reproduced in full or partial, without the written approval of Eurofins TA **Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. 1.2. Test facility FCC (Designation number: CN1179, Test Firm Registration Number: 446626) Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements. A2LA (Certificate Number: 3857.01) Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement. 1.3. Testing Location Company: Eurofins TA Technology (Shanghai) Co., Ltd. Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: https://www.eurofins.com/electrical-and-electronics E-mail: Kain.Xu@cpt.eurofinscn.com 2. General Description of Equipment under Test ## 2.1. Applicant and Manufacturer Information | Applicant | UAB TELTONIKA TELEMATICS | |----------------------|--| | Applicant address | Saltoniskiu st. 9B-1, Vilnius, Lithuania | | Manufacturer | UAB TELTONIKA TELEMATICS | | Manufacturer address | Saltoniskiu st. 9B-1, Vilnius, Lithuania | #### 2.2. General information | EUT Description | | | | | | | | |------------------------------|---------------------------|--------------------|-------------|--|--|--|--| | Model | FMM880-Q3AB0 | | | | | | | | SN | MPY23IE0X005305 | | | | | | | | Hardware Version | FMM880-11 | | | | | | | | Software Version | FMB.Ver.03.28.07 | | | | | | | | Power Supply | External power supply | у | | | | | | | Antenna Type | Internal Antenna | | | | | | | | Antenna Gain | 1.04 dBi | | | | | | | | Test Mode(s) | GSM1900; LTE-M Band 2/25; | | | | | | | | Test Modulation | (GSM/GPRS) GMSK, | (EGPRS) GMSK/ 8PSI | ζ; | | | | | | Test Modulation | (LTE-M) QPSK, 16QAM; | | | | | | | | LTE Category | M1 | | | | | | | | | GSM 1900: 30.87 dBm | | | | | | | | Maximum E.I.R.P | LTE-M Band 2: | 21.96 dBm | | | | | | | | LTE-M Band 25: | 5: 21.55 dBm | | | | | | | Rated Power Supply Voltage | 12V | | | | | | | | Operating Voltage | Minimum: 10V Max | kimum: 30V | | | | | | | Operating Temperature | Lowest: -20°C Hig | ghest: +85°C | | | | | | | Testing Temperature | Lowest: -30°C Hig | ghest: +50°C | | | | | | | | Band | Tx (MHz) | Rx (MHz) | | | | | | Operating Frequency Reports | GSM1900 | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | Operating Frequency Range(s) | LTE-M Band 2 | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | | LTE-M Band 25 | 1850 ~ 1915 | 1930 ~ 1995 | | | | | #### Note: ^{1.} The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the applicant. ## 3. Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Test standards: FCC CFR 47 Part 24E (2023) FCC CFR47 Part 2 (2023) Reference standard: ANSI C63.26-2015 KDB 971168 D01 Power Meas License Digital Systems v03r01 ## 4. Test Configuration Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (X axis, vertical polarization for GSM Band and Y axis, horizontal polarization for LTE-M Band) and the worst case was recorded. All mode and data rates and positions and RB size and modulations were investigated. Subsequently, only the worst case emissions are reported. The following testing in LTE-M is set based on the maximum RF Output Power. Test modes are chosen to be reported as the worst case configuration below: | Took Home | Modes/Modulation | |--|------------------| | Test items | GSM 1900 | | DE Dower Output and Effective Instrume Padiated | GSM | | RF Power Output and Effective Isotropic Radiated Power | GPRS | | Power | EGPRS | | Radiated Spurious Emission | GSM | Test modes are chosen to be reported as the worst case configuration below for LTE-M Band 2/25: | Test items | | Baı | ndwid | lth (M | Hz) | | Modulation | | RB | | | Test Channel | | | |---|-----|---|-------|--------|-----|----|------------|-------|----|-----|------|--------------|---|---| | | 1.4 | 3 | 5 | 10 | 15 | 20 | QPSK | 16QAM | 1 | 50% | 100% | L | M | Н | | RF Power Output
and Effective
Isotropic Radiated
Power | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Radiated Spurious
Emission | 0 | - | 0 | - | - | 0 | 0 | - | 0 | - | - | - | 0 | , | | Note | | The mark "O" means that this configuration is chosen for testing. The mark "-" means that this configuration is not testing. | | | | | | | | | | | | | Eurofins TA Technology (Shanghai) Co., Ltd. TA-MB-05-002R This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd. #### 5. Test Case #### 5.1.RF Power Output and Effective Isotropic Radiated Power #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|------------------| | 15°C ~ 35°C | 20% ~ 80% | 86 kPa ~ 106 kPa | #### **Methods of Measurement** During the process of the testing, The EUT was connected to the Base Station Simulator with a known loss. The EUT is controlled by the Base Station Simulator test set to ensure max power transmission with proper modulation. ERP can then be calculated as follows: EIRP (dBm) = Output Power (dBm) + Antenna Gain (dBi) EIRP (dBm) = ERP (dBm) + 2.15 (dB.) #### **Test Setup** #### Limits No specific RF power output requirements in part 2.1046. Rule Part 24.232(c) Mobile and portable stations are limited to 2 watts EIRP. Rule Part 24.232(e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. | Limit | ≤ 2 W (33 dBm) | |-------|----------------| #### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB for RF power output, k = 2, U = 1.19 dB for EIRP. #### **Test Results** Refer to the section 6.1 of this report for test data. 5.2. Radiated Spurious Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|------------------| | 15°C ~ 35°C | 20% ~ 80% | 86 kPa ~ 106 kPa | #### **Method of Measurement** - 1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26-2015. - 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). - 3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver. - 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr). - 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. - 7. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga 8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dB. Report No.: R2408A1081-R2 The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration. #### **Test setup** eurofins #### 9KHz~30MHz 30MHz~1GHz #### **Above 1GHz** Note: Area side: 2.4mX3.6m #### Limits Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB." Limit -13 dBm #### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB. #### **Test Results** Refer to the section 6.2 of this report for test data. 6. Test Results ## 6.1.RF Power Output and Effective Isotropic Radiated Power | | | Maxim | um Output
(dBm) | Power | EIRP (dBm) | | | | |-----------|----------|---------|--------------------|---------|------------|---------|--------|--| | CSM 10 | Channel | Channel | Channel | Channel | Channel | Channel | | | | GSWI 19 | GSM 1900 | | | 810 | 512 | 661 | 810 | | | | | | | 1909.8 | 1850.2 | 1880 | 1909.8 | | | | (MHz) | (MHz) | (MHz) | (MHz) | (MHz) | (MHz) | | | | GSM(GMSK) | Results | 29.83 | 29.74 | 29.71 | 30.87 | 30.78 | 30.75 | | | | 1TXslot | 29.80 | 29.66 | 29.59 | 30.84 | 30.70 | 30.63 | | | GPRS | 2TXslots | 28.56 | 28.71 | 28.50 | 29.60 | 29.75 | 29.54 | | | (GMSK) | 3TXslots | 27.90 | 27.53 | 27.22 | 28.94 | 28.57 | 28.26 | | | | 4TXslots | 26.26 | 25.87 | 25.56 | 27.30 | 26.91 | 26.60 | | | | 1TXslot | 25.23 | 25.17 | 24.78 | 26.27 | 26.21 | 25.82 | | | EGPRS | 2TXslots | 24.20 | 24.04 | 24.01 | 25.24 | 25.08 | 25.05 | | | EGPRS | 3TXslots | 22.45 | 22.01 | 21.94 | 23.49 | 23.05 | 22.98 | | | | 4TXslots | 21.23 | 21.02 | 20.74 | 22.27 | 22.06 | 21.78 | | | Band 2 | Channel/
Frequency | Index | RB#
RB start | | ed Power
Bm) | EIRP (dBm) | | |------------|-----------------------|-------|-----------------|-------|-----------------|------------|-------| | | (MHz) | | RD Start | QPSK | 16QAM | QPSK | 16QAM | | | 18607/1850.7 | 0 | 1#0 | 20.92 | 19.64 | 21.96 | 20.68 | | | 18007/1830.7 | 0 | 6#0 | 18.71 | 19.02 | 19.75 | 20.06 | | 1.4MHz | 18900/1880 | 0 | 1#0 | 19.87 | 19.61 | 20.91 | 20.65 | | 1.41011 12 | 10900/1000 | 0 | 6#0 | 18.38 | 18.19 | 19.42 | 19.23 | | | 19193/1909.3 | 0 | 1#5 | 20.17 | 19.08 | 21.21 | 20.12 | | | 19193/1909.3 | 0 | 6#0 | 18.35 | 18.68 | 19.39 | 19.72 | | | 18615/1851.5 | 0 | 1#0 | 20.38 | 19.68 | 21.42 | 20.72 | | | 10013/1031.3 | 0 | 6#0 | 18.78 | 18.91 | 19.82 | 19.95 | | 3MHz | 18900/1880 | 0 | 1#0 | 20.21 | 19.27 | 21.25 | 20.31 | | JIVII IZ | 10900/1000 | 0 | 6#0 | 18.45 | 18.73 | 19.49 | 19.77 | | | 19185/1908.5 | 1 | 1#5 | 20.02 | 19.11 | 21.06 | 20.15 | | | 19 103/ 1900.3 | 1 | 6#0 | 18.41 | 18.74 | 19.45 | 19.78 | | | 18625/1852.5 | 0 | 1#0 | 20.08 | 20.29 | 21.12 | 21.33 | | | 10023/1032.3 | 0 | 6#0 | 19.47 | 19.66 | 20.51 | 20.70 | | 5MHz | 18900/1880 | 0 | 1#0 | 20.05 | 19.71 | 21.09 | 20.75 | | SIVII IZ | 10900/1000 | 0 | 6#0 | 19.24 | 19.38 | 20.28 | 20.42 | | | 19175/1907.5 | 0 | 1#5 | 19.68 | 20.02 | 20.72 | 21.06 | | | 19173/1907.3 | 3 | 6#0 | 19.28 | 19.40 | 20.32 | 20.44 | Page 12 of 21 | | • | | | | | | | |--------|--------------|----|-----|-------|-------|-------|-------| | | 19650/1955 | 3 | 1#0 | 19.92 | 20.19 | 20.96 | 21.23 | | 10MHz | 18650/1855 | 0 | 4#0 | 20.07 | 19.83 | 21.11 | 20.87 | | | 18900/1880 | 0 | 1#0 | 19.96 | 19.53 | 21.00 | 20.57 | | | 10900/1000 | 0 | 4#0 | 19.78 | 20.11 | 20.82 | 21.15 | | | 19150/1905 | 4 | 1#5 | 19.88 | 19.51 | 20.92 | 20.55 | | | 19150/1905 | 7 | 4#2 | 20.01 | 20.14 | 21.05 | 21.18 | | | 18675/1857.5 | 3 | 1#0 | 20.22 | 20.11 | 21.26 | 21.15 | | | 16075/1657.5 | 0 | 6#0 | 20.13 | 20.26 | 21.17 | 21.30 | | 15MHz | 18900/1880 | 0 | 1#0 | 20.14 | 19.81 | 21.18 | 20.85 | | TOMINZ | | 0 | 6#0 | 20.05 | 19.95 | 21.09 | 20.99 | | 40. | 19125/1902.5 | 8 | 1#5 | 19.95 | 19.51 | 20.99 | 20.55 | | | 19125/1902.5 | 11 | 6#0 | 19.88 | 19.87 | 20.92 | 20.91 | | | 18700/1860 | 3 | 1#0 | 20.17 | 19.96 | 21.21 | 21.00 | | | 18700/1800 | 0 | 6#0 | 20.08 | 20.01 | 21.12 | 21.05 | | 20MH- | 18900/1880 | 0 | 1#0 | 19.90 | 19.59 | 20.94 | 20.63 | | 20MHz | 10900/1000 | 0 | 6#0 | 19.86 | 19.97 | 20.90 | 21.01 | | | 19100/1900 | 12 | 1#5 | 19.76 | 19.34 | 20.80 | 20.38 | | | 19100/1900 | 15 | 6#0 | 19.83 | 20.04 | 20.87 | 21.08 | | Band 25 | Channel/
Frequency | Index | RB#
RB start | | ed Power
Bm) | EIRP | (dBm) | |--------------|-----------------------|-------|-----------------|-------|-----------------|-------|-------| | | (MHz) | | | QPSK | 16QAM | QPSK | 16QAM | | | 26047/1850.7 | 0 | 1#0 | 20.51 | 19.47 | 21.55 | 20.51 | | | 20047/1000.7 | 0 | 6#0 | 18.36 | 18.71 | 19.40 | 19.75 | | 1.4MHz | 26365/1882.5 | 0 | 1#0 | 19.61 | 19.32 | 20.65 | 20.36 | | 1.4101⊓∠ | 20303/1002.3 | 0 | 6#0 | 17.95 | 17.89 | 18.99 | 18.93 | | | 26683/1914.3 | 0 | 1#5 | 19.55 | 19.71 | 20.59 | 20.75 | | 20003/1914. | 20003/1914.3 | 0 | 6#0 | 18.31 | 18.13 | 19.35 | 19.17 | | 26055/1851.5 | 0 | 1#0 | 19.90 | 19.63 | 20.94 | 20.67 | | | | 20055/1851.5 | 0 | 6#0 | 18.24 | 18.21 | 19.28 | 19.25 | | | 26365/1882.5 | 0 | 1#0 | 19.68 | 19.44 | 20.72 | 20.48 | | 3MHz | 20303/1002.3 | 0 | 6#0 | 18.13 | 18.02 | 19.17 | 19.06 | | | 26675/1913.5 | 1 | 1#5 | 19.72 | 19.58 | 20.76 | 20.62 | | | 20075/1915.5 | 1 | 6#0 | 18.21 | 18.19 | 19.25 | 19.23 | | | 26065/1852.5 | 0 | 1#0 | 19.89 | 20.03 | 20.93 | 21.07 | | | 20003/1032.3 | 0 | 6#0 | 19.31 | 19.45 | 20.35 | 20.49 | | 5MHz | 26365/1882.5 | 0 | 1#0 | 19.67 | 19.96 | 20.71 | 21.00 | | SIVITZ | 20303/1002.3 | 0 | 6#0 | 19.13 | 19.21 | 20.17 | 20.25 | | | 26665/1012.5 | 0 | 1#5 | 19.66 | 19.88 | 20.70 | 20.92 | | | 26665/1912.5 | 3 | 6#0 | 19.33 | 19.48 | 20.37 | 20.52 | | | 26000/1955 | 3 | 1#0 | 19.78 | 19.93 | 20.82 | 20.97 | | 10MHz | 26090/1855 | 0 | 4#0 | 19.79 | 19.63 | 20.83 | 20.67 | | | 26365/1882.5 | 0 | 1#0 | 19.68 | 19.98 | 20.72 | 21.02 | | | • | | | | | | | |------------------------------|--------------|-----|-------|-------|-------|-------|-------| | | | 0 | 4#0 | 19.67 | 19.47 | 20.71 | 20.51 | | | 26640/1910 | 4 | 1#5 | 19.64 | 19.94 | 20.68 | 20.98 | | | 20040/1910 | 7 | 4#2 | 19.78 | 19.52 | 20.82 | 20.56 | | | 26115/1857.5 | 3 | 1#0 | 19.88 | 19.97 | 20.92 | 21.01 | | | | 0 | 6#0 | 19.81 | 19.91 | 20.85 | 20.95 | | 1 5 M LL - | | 0 | 1#0 | 19.71 | 19.98 | 20.75 | 21.02 | | 15MHz 26365/1882.5 | 0 | 6#0 | 19.75 | 19.84 | 20.79 | 20.88 | | | | 26615/1907.5 | 8 | 1#5 | 19.68 | 19.89 | 20.72 | 20.93 | | | 20015/1907.5 | 11 | 6#0 | 19.78 | 19.89 | 20.82 | 20.93 | | | 26140/1860 | 3 | 1#0 | 19.71 | 19.94 | 20.75 | 20.98 | | | 20140/1000 | 0 | 6#0 | 19.87 | 19.93 | 20.91 | 20.97 | | 20MH= | 26265/1002.5 | 0 | 1#0 | 19.67 | 19.85 | 20.71 | 20.89 | | 20MHz 26 | 26365/1882.5 | 0 | 6#0 | 19.76 | 19.84 | 20.80 | 20.88 | | | 26500/1005 | 12 | 1#5 | 19.73 | 19.87 | 20.77 | 20.91 | | | 26590/1905 | 15 | 6#0 | 19.81 | 19.93 | 20.85 | 20.97 | ## 6.2. Radiated Spurious Emission Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report. Report No.: R2408A1081-R2 GSM 1900 CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | Result
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|--------------------------|----------------|----------------|---------------| | 2 | 3760.00 | -66.47 | 2.60 | 12.50 | Vertical | -56.57 | -13.00 | 43.57 | 14 | | 3 | 5640.00 | -64.02 | 3.30 | 12.50 | Vertical | -54.82 | -13.00 | 41.82 | 75 | | 4 | 7520.00 | -58.48 | 4.20 | 12.20 | Vertical | -50.48 | -13.00 | 37.48 | 26 | | 5 | 9400.00 | -56.76 | 4.30 | 11.10 | Vertical | -49.96 | -13.00 | 36.96 | 152 | | 6 | 11280.00 | -52.99 | 5.90 | 11.90 | Vertical | -46.99 | -13.00 | 33.99 | 75 | | 7 | 13160.00 | -54.20 | 5.70 | 14.00 | Vertical | -45.90 | -13.00 | 32.90 | 14 | | 8 | 15040.00 | -53.77 | 5.80 | 13.10 | Vertical | -46.47 | -13.00 | 33.47 | 125 | | 9 | 16920.00 | -54.97 | 6.10 | 14.60 | Vertical | -46.47 | -13.00 | 33.47 | 14 | | 10 | 18800.00 | | | | | | | | | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. LTE Band 2 1.4MHz CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | Result
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|--------------------------|----------------|----------------|---------------| | 2 | 3759.00 | -67.47 | 2.60 | 12.50 | Horizontal | -57.57 | -13.00 | 44.57 | 14 | | 3 | 5637.30 | -64.91 | 3.30 | 12.50 | Horizontal | -55.71 | -13.00 | 42.71 | 36 | | 4 | 7520.00 | -58.03 | 4.20 | 12.20 | Horizontal | -50.03 | -13.00 | 37.03 | 2 | | 5 | 9400.00 | -54.49 | 4.30 | 11.10 | Horizontal | -47.69 | -13.00 | 34.69 | 114 | | 6 | 11280.00 | -51.54 | 5.90 | 11.90 | Horizontal | -45.54 | -13.00 | 32.54 | 147 | | 7 | 13160.00 | -52.43 | 5.70 | 14.00 | Horizontal | -44.13 | -13.00 | 31.13 | 35 | | 8 | 15036.40 | -52.73 | 5.80 | 13.10 | Horizontal | -45.43 | -13.00 | 32.43 | 22 | | 9 | 16914.20 | -53.02 | 6.10 | 14.60 | Horizontal | -44.52 | -13.00 | 31.52 | 14 | | 10 | 18800.00 | | - | I | | 1 | | ı | ł | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ^{2.} The worst emission was found in the antenna is Vertical position. ^{2.} The worst emission was found in the antenna is Horizontal position. #### LTE Band 2 5MHz CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | Result
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|--------------------------|----------------|----------------|---------------| | 2 | 3755.40 | -68.15 | 2.60 | 12.50 | Horizontal | -58.25 | -13.00 | 45.25 | 21 | | 3 | 5632.10 | -64.67 | 3.30 | 12.50 | Horizontal | -55.47 | -13.00 | 42.47 | 135 | | 4 | 7509.20 | -57.41 | 4.20 | 12.20 | Horizontal | -49.41 | -13.00 | 36.41 | 251 | | 5 | 9388.20 | -54.09 | 4.30 | 11.10 | Horizontal | -47.29 | -13.00 | 34.29 | 46 | | 6 | 11265.00 | -52.31 | 5.90 | 11.90 | Horizontal | -46.31 | -13.00 | 33.31 | 87 | | 7 | 13152.60 | -52.33 | 5.70 | 14.00 | Horizontal | -44.03 | -13.00 | 31.03 | 12 | | 8 | 15040.20 | -52.53 | 5.80 | 13.10 | Horizontal | -45.23 | -13.00 | 32.23 | 254 | | 9 | 16926.20 | -54.00 | 6.10 | 14.60 | Horizontal | -45.50 | -13.00 | 32.50 | 13 | | 10 | 18800.00 | | | | | | | | | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. #### LTE Band 2 20MHz CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | Result
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|--------------------------|----------------|----------------|---------------| | 2 | 3742.30 | -68.51 | 2.60 | 12.50 | Horizontal | -58.61 | -13.00 | 45.61 | 26 | | 3 | 5609.90 | -65.23 | 3.30 | 12.50 | Horizontal | -56.03 | -13.00 | 43.03 | 185 | | 4 | 7480.80 | -57.32 | 4.20 | 12.20 | Horizontal | -49.32 | -13.00 | 36.32 | 3 | | 5 | 9351.40 | -54.14 | 4.30 | 11.10 | Horizontal | -47.34 | -13.00 | 34.34 | 78 | | 6 | 11220.60 | -53.18 | 5.90 | 11.90 | Horizontal | -47.18 | -13.00 | 34.18 | 90 | | 7 | 13090.80 | -52.66 | 5.70 | 14.00 | Horizontal | -44.36 | -13.00 | 31.36 | 45 | | 8 | 14959.20 | -51.41 | 5.80 | 13.10 | Horizontal | -44.11 | -13.00 | 31.11 | 135 | | 9 | 16831.00 | -53.22 | 6.10 | 14.60 | Horizontal | -44.72 | -13.00 | 31.72 | 2 | | 10 | 18800.00 | | | | | | | | | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ^{2.} The worst emission was found in the antenna is Horizontal position. ^{2.} The worst emission was found in the antenna is Horizontal position. **RF Test Report** LTE Band 25 1.4MHz CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | Result
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|--------------------------|----------------|----------------|---------------| | 2 | 3763.80 | -67.03 | 2.60 | 12.50 | Horizontal | -57.13 | -13.00 | 44.13 | 189 | | 3 | 5645.90 | -65.07 | 3.30 | 12.50 | Horizontal | -55.87 | -13.00 | 42.87 | 76 | | 4 | 7530.00 | -57.67 | 4.20 | 12.20 | Horizontal | -49.67 | -13.00 | 36.67 | 40 | | 5 | 9412.50 | -54.62 | 4.30 | 11.10 | Horizontal | -47.82 | -13.00 | 34.82 | 275 | | 6 | 11295.00 | -52.17 | 5.90 | 11.90 | Horizontal | -46.17 | -13.00 | 33.17 | 263 | | 7 | 13177.50 | -54.20 | 5.70 | 14.00 | Horizontal | -45.90 | -13.00 | 32.90 | 101 | | 8 | 15060.00 | -53.02 | 5.80 | 13.10 | Horizontal | -45.72 | -13.00 | 32.72 | 2 | | 9 | 16942.50 | -53.61 | 6.10 | 14.60 | Horizontal | -45.11 | -13.00 | 32.11 | 251 | | 10 | 18825.00 | | | | | | | | | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. #### LTE Band 25 5MHz CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | Result
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|--------------------------|----------------|----------------|---------------| | 2 | 3760.80 | -69.21 | 2.60 | 12.50 | Horizontal | -59.31 | -13.00 | 46.31 | 31 | | 3 | 5641.30 | -65.29 | 3.30 | 12.50 | Horizontal | -56.09 | -13.00 | 43.09 | 64 | | 4 | 7530.00 | -57.68 | 4.20 | 12.20 | Horizontal | -49.68 | -13.00 | 36.68 | 215 | | 5 | 9412.50 | -53.94 | 4.30 | 11.10 | Horizontal | -47.14 | -13.00 | 34.14 | 255 | | 6 | 11295.00 | -52.56 | 5.90 | 11.90 | Horizontal | -46.56 | -13.00 | 33.56 | 312 | | 7 | 13177.50 | -53.80 | 5.70 | 14.00 | Horizontal | -45.50 | -13.00 | 32.50 | 182 | | 8 | 15060.00 | -53.05 | 5.80 | 13.10 | Horizontal | -45.75 | -13.00 | 32.75 | 3 | | 9 | 16942.50 | -53.35 | 6.10 | 14.60 | Horizontal | -44.85 | -13.00 | 31.85 | 0 | | 10 | 18825.00 | | | | | - | | - | - | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ^{2.} The worst emission was found in the antenna is Horizontal position. ^{2.} The worst emission was found in the antenna is Horizontal position. #### LTE Band 25 20MHz CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | Result
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|--------------------------|----------------|----------------|---------------| | 2 | 3747.30 | -68.63 | 2.60 | 12.50 | Horizontal | -58.73 | -13.00 | 45.73 | 245 | | 3 | 5620.70 | -64.05 | 3.30 | 12.50 | Horizontal | -54.85 | -13.00 | 41.85 | 220 | | 4 | 7496.00 | -56.06 | 4.20 | 12.20 | Horizontal | -48.06 | -13.00 | 35.06 | 84 | | 5 | 9370.00 | -52.85 | 4.30 | 11.10 | Horizontal | -46.05 | -13.00 | 33.05 | 295 | | 6 | 11244.00 | -52.63 | 5.90 | 11.90 | Horizontal | -46.63 | -13.00 | 33.63 | 0 | | 7 | 13118.00 | -52.77 | 5.70 | 14.00 | Horizontal | -44.47 | -13.00 | 31.47 | 309 | | 8 | 14992.00 | -51.37 | 5.80 | 13.10 | Horizontal | -44.07 | -13.00 | 31.07 | 295 | | 9 | 16866.00 | -53.71 | 6.10 | 14.60 | Horizontal | -45.21 | -13.00 | 32.21 | 0 | | 10 | 18740.00 | | | | | | | | | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ^{2.} The worst emission was found in the antenna is Horizontal position. Report No.: R2408A1081-R2 ### 7. Main Test Instruments | Name | Manufacturer | Type | Serial
Number | Calibration
Date | Expiration Date | |--------------------------|--------------|------------|------------------|---------------------|-----------------| | Spectrum Analyzer | R&S | FSV30 | 104028 | 2024-05-07 | 2025-05-06 | | Loop Antenna | SCHWARZBECK | FMZB1519 | 1519-047 | 2023-04-16 | 2026-04-15 | | TRILOG Broadband Antenna | SCHWARZBECK | VULB 9163 | 1439 | 2024-07-06 | 2027-07-05 | | Horn Antenna | SCHWARZBECK | BBHA 9120D | 01799 | 2022-09-01 | 2025-08-31 | | Software | R&S | EMC32 | 10.35.10 | 1 | / | ## **ANNEX A: The EUT Appearance** The EUT Appearance is submitted separately. ## **ANNEX B: Test Setup Photos** The Test Setup Photos is submitted separately. ***** END OF REPORT *****