

# **RF Test Report**

Issued Date: Dec. 09, 2021

Applicant : Chinotech International Limited

Product Type : Wireless LoRaWAN Gateway

Trade Name : Enlighten, ChinoINT

Model Number : EL-WGW-923, SECIHWLGE923

FCC ID : 2A3GL-SECIHWLGE923

EUT Rated Voltage : DC 5V, 1000mA

Test Voltage : 120 Vac / 60 Hz

Receive Date : Oct. 14, 2021

Test Period : Nov. 26, 2021

Applicable Standard : FCC 47 CFR PART 15 SUBPART C

ANSI C63.10:2013

Test Result : Complied

## **Testing Laboratory**

## **Eurofins Wireless Testing Service (Shenzhen) Co., Ltd.**

101-104, 1F, A building, Safflower ridge industrial area,

Taoyuan street, Nanshan district, Shenzhen

Tel: +86-755-23987770 / Fax: +86-755-26637771

http://www.atl-lab.com.tw/e-index.htm

American Association for Laboratory Accreditation number: 3464.02

Test Firm MRA designation number: CN1168

**Note:** This report shall not be reproduced except in full, without the written approval of Eurofins Wireless Testing Service (Shenzhen) Co., Ltd. This document may be altered or revised by Eurofins Wireless Testing Service (Shenzhen) Co., Ltd. personnel only and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA, or any government agencies. The test results in the report only apply to the tested sample.

Approved By : Bouret - Wu Tested By

: 100. Zeno

(Leo Zeng)

Certificate #3464.02

(Baret Wu) (Testing Engineer)



# **Revision History**

| Rev. | Issue Date    | Revisions     |
|------|---------------|---------------|
| 00   | Dec. 09, 2021 | Initial Issue |
|      |               |               |
|      |               |               |
|      |               |               |



# **TABLE OF CONTENTS**

| 1 | General Information                              | 4  |
|---|--------------------------------------------------|----|
|   | 1.1. Summary of Test Result                      | 4  |
|   | 1.2. Measurement Uncertainty                     | 5  |
| 2 | EUT Description                                  | 6  |
|   | 2.1. EUT description                             | 6  |
|   | 2.2. Channel numbers and channel list            | 7  |
| 3 | Test Methodology                                 | 8  |
|   | 3.1. Mode of Operation                           | 8  |
|   | 3.2. EUT Test Step                               | g  |
|   | 3.3. Configuration of Test System Details        | g  |
|   | 3.4. Test Instruments                            | 10 |
|   | 3.5. Test Site Environment                       | 11 |
| 4 | Measurement Procedure                            | 11 |
|   | 4.1. Maximum Conducted Output Power Measurement  | 11 |
|   | 4.2. Radiated Emission Measurement               | 12 |
|   | 4.3. 20dB RF Bandwidth Measurement               | 15 |
|   | 4.4. Carrier Frequency Separation Measurement    | 16 |
|   | 4.5. Number of Hopping Measurement               | 17 |
|   | 4.6. Time of Occupancy (Dwell Time) Measurement  | 18 |
|   | 4.7. Out of Band Conducted Emissions Measurement |    |
|   | 4.8. Antenna Measurement                         | 19 |
| 5 | Test Results                                     | 20 |
|   | Annex A. Conducted Test Results                  | 20 |
|   | Anney R. Padiated Emission Measurement           | 20 |



# 1 General Information

# 1.1. Summary of Test Result

| FCC Standard    | Item                                    | Result | Remark |
|-----------------|-----------------------------------------|--------|--------|
| 15.203          | Antenna Requirement                     | PASS   |        |
| 15.207          | AC Power Conducted Emission             | PASS   |        |
| 15.247(b)(2)    | Max. Output Power                       | PASS   |        |
| 15.247(d)       | Transmitter Radiated Emissions          | PASS   |        |
| 15.247(a)(1)    | 20dB RF Bandwidth                       | PASS   |        |
| 15.247(a)(1)    | Carrier Frequency Separation            | PASS   |        |
| 15.247(a)(1)(i) | Number of Hopping                       | PASS   |        |
| 15.247(a)(1)(i) | Time of Occupancy (Dwell Time)          | PASS   |        |
| 15.247(d)       | Out of Band Conducted Spurious Emission | PASS   |        |

| Standard                          | Description                                                                                                                                                                              |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CFR47, Part 15, Subpart C §15.247 | Intentional Radiators                                                                                                                                                                    |
| ANSI C63. 10: 2013                | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                                                                                           |
| ANSI C63. 4: 2014                 | American National Standard for methods of measurement of radio – noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz                    |
| DA 00-705                         | Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems                                                                                                          |
| KDB558074 D01 v05r02              | GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES |

The test results of this report relate only to the tested sample(s) identified in this report. Manufacturer or whom it may concern should recognize the pass or fail of the test result.

### Decision Rule

- Uncertainty is not included.
- $\hfill \square$  Uncertainty is included.



A Test Lab Techno Corp. tested the above equipment under the requirements outlined in the above standards. All indications of Pass/Fail in this report are opinions expressed by A Test Lab Techno Corp. Based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

A Test Lab Techno Corp. will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

### 1.2. Measurement Uncertainty

| Test Item              | Frequency Range     | Uncertainty (dB) |  |
|------------------------|---------------------|------------------|--|
| Conducted Emission     | 9kHz ~ 150KHz       | 2.7              |  |
| Conducted Emission     | 150kHz ~ 30MHz      | 2.7              |  |
|                        | 9kHz ~ 30MHz        | 1.7              |  |
|                        | 30MHz ~ 1000MHz     | 5.7              |  |
| Radiated Emission      | 1000MHz ~ 18000MHz  | 5.5              |  |
|                        | 18000MHz ~ 26500MHz | 4.8              |  |
|                        | 26500MHz ~ 40000MHz | 4.8              |  |
| Conducted Output Power | +0.27 dB / -0.28 dB |                  |  |
| RF Bandwidth           | 4.96%               |                  |  |
| Power Spectral Density | +0.71 dB / -0.77 dB |                  |  |



# 2 **EUT Description**

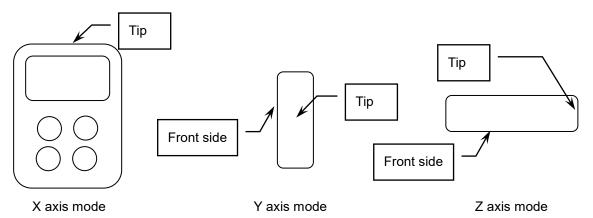
# 2.1. EUT description

| Applicant                    | Chinotech International Limited D6B-1, 17/F, Block B, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK                                 |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Manufacturer                 | Enlighten Company Limited<br>Rm 12, 12/F, Blk A, Profit Industrial Building, No.1-15 Kwai Fung Crescent, Kwai<br>Chung, N.T. Hong Kong |  |  |
| Product                      | Wireless LoRaWAN Gateway                                                                                                               |  |  |
| Trade Name                   | Enlighten, ChinoINT                                                                                                                    |  |  |
| Model Number                 | EL-WGW-923, SECIHWLGE923                                                                                                               |  |  |
| Models different description | Due to market demand, the models are differ from each other in brand, the PCB layor circuit, and schematic design are the same.        |  |  |
| FCC ID                       | 2A3GL-SECIHWLGE923                                                                                                                     |  |  |
| Frequency Range              | 915MHz-924.6 MHz                                                                                                                       |  |  |
| Modulation Type              | CSS, FSK                                                                                                                               |  |  |
| Number of Channels           | 25 Channel                                                                                                                             |  |  |
| Antenna Type                 | External antenna                                                                                                                       |  |  |
| Antenna Gain                 | 2.5 dBi                                                                                                                                |  |  |
| Operate Temp. Range          | <b>5~40</b> ℃                                                                                                                          |  |  |



# 2.2. Channel numbers and channel list

| Channel No. | Frequency | Channel No. | Frequency |
|-------------|-----------|-------------|-----------|
|             | (MHz)     |             | (MHz)     |
| 1           | 915.0     | 14          | 920.2     |
| 2           | 915.4     | 15          | 920.6     |
| 3           | 915.8     | 16          | 921.0     |
| 4           | 916.2     | 17          | 921.4     |
| 5           | 916.6     | 18          | 921.8     |
| 6           | 917.0     | 19          | 922.2     |
| 7           | 917.4     | 20          | 922.6     |
| 8           | 917.8     | 21          | 923.0     |
| 9           | 918.2     | 22          | 923.4     |
| 10          | 918.6     | 23          | 923.8     |
| 11          | 919.0     | 24          | 924.2     |
| 12          | 919.4     | 25          | 924.6     |
| 13          | 919.8     |             |           |



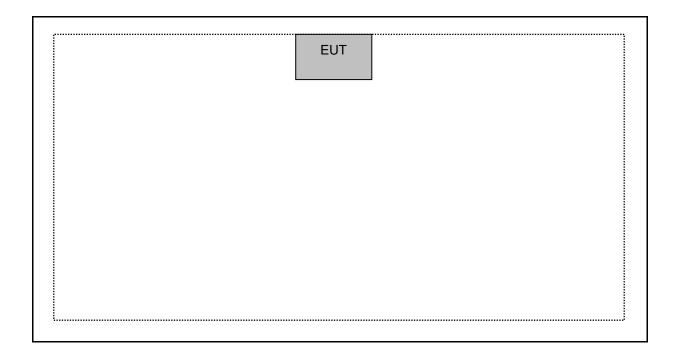

# 3 Test Methodology

# 3.1. Mode of Operation

| Test Mode                  | Note                                                                 |
|----------------------------|----------------------------------------------------------------------|
| Mode 1: Transmitter Mode   | EUT works in normal mode                                             |
|                            | The manufacturer burn the firmware version in EUT in advance control |
| Mode 2: Continuous TX Mode | the EUT to TX continuously, without test software and related power  |
|                            | level setting parameter.                                             |
|                            |                                                                      |

Then, the above highest fundamental level mode of the configuration of the EUT and antenna was chosen for all final test items. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.






# 3.2. EUT Test Step

1 Setup the EUT and simulators as shown on 4.1 to 4.7.

| Meas | Measurement Software |          |            |  |
|------|----------------------|----------|------------|--|
| No.  | Description          | Software | Version    |  |
| 1    | Radiated Emission    | EZ EMC   | ATL-03A1-1 |  |

# 3.3. Configuration of Test System Details





### 3.4. Test Instruments

For Radiated Emissions Test Period: Nov. 26, 2021

| Equipment                          | Manufacturer | Model Number | Serial Number | Cal. Date  | Cal. Period |
|------------------------------------|--------------|--------------|---------------|------------|-------------|
| Preamplifier<br>(10 kHz~3 GHz)     | EMCI         | EMC001330    | 980300        | 09/01/2021 | 1 year      |
| Preamplifier<br>(0.1 GHz~26.5 GHz) | EMCI         | EMC012645SE  | 980318        | 09/01/2021 | 1 year      |
| Bilog Antenna<br>(30 MHz~1.4 GHz)  | Schwarzbeck  | VULB 9168    | 672           | 10/17/2021 | 1 year      |
| Horn Antenna<br>(1 GHz~18 GHz)     | ETS          | 3117         | 00204949      | 10/17/2021 | 1 year      |
| Horn Antenna<br>(18 GHz~26.5 GHz)  | ETS          | 3160-09      | 00202549      | 10/17/2021 | 1 year      |
| Receiver<br>(3 Hz~26.5 GHz)        | Keysight     | N9038A       | MY51210179    | 09/01/2021 | 1 year      |
| Spectrum Analyzer<br>(3 Hz~43 GHz) | Keysight     | N9030A       | MY55410268    | 09/01/2021 | 1 year      |
| Cable<br>(30 MHz~1 GHz)            | EMCI         | N/A          | 1066LFC       | 09/01/2021 | 1 year      |
| Cable<br>(1 GHz~18 GHz)            | EMCI         | N/A          | 160719        | 09/01/2021 | 1 year      |
| Cable<br>(1 GHz~18 GHz)            | EMCI         | N/A          | 160324        | 09/01/2021 | 1 year      |
| Cable<br>(1 GHz~18 GHz)            | EMCI         | N/A          | 160322        | 09/01/2021 | 1 year      |
| Loop Antenna                       | EMCI         | LPA600       | 272           | 09/01/2021 | 1 year      |
| Test Site                          | OuHeng       | MFAC3M       | RE-026        | 02/23/2021 | 1 year      |

For Conducted

Test Period: Nov. 26, 2021

|        | Equipment     | Manufacturer | Model Number | Serial Number | Cal. Date  | Cal. Period |
|--------|---------------|--------------|--------------|---------------|------------|-------------|
| O<br>t | Preamplifier  | EMCI         | EMC001330    | 980300        | 09/01/2021 | 1 year      |
| e      | Preamplifier  | EMCI         | EMC012645SE  | 980318        | 09/01/2021 | 1 year      |
| :      | Bilog Antenna | Schwarzbeck  | VULB 9168    | 672           | 10/15/2021 | 1 year      |

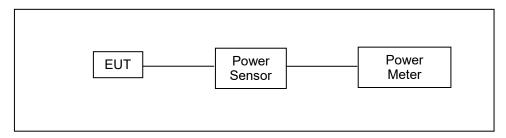
N

Note: N.C.R. = No Calibration Request.



### 3.5. Test Site Environment

| Items                      | Required (IEC 60068-1) | Actual |
|----------------------------|------------------------|--------|
| Temperature (°C)           | 15-35                  | 26     |
| Humidity (%RH)             | 25-75                  | 60     |
| Barometric pressure (mbar) | 860-1060               | 990    |


### 4 Measurement Procedure

### 4.1. Maximum Conducted Output Power Measurement

#### ■ Limit

■ For fh systems operating in the 902-928 MHz band, systems using less than 50 fH channels but at least 25 fH channels < 0.25 watt.

### ■ Test Setup



#### **■** Test Procedure

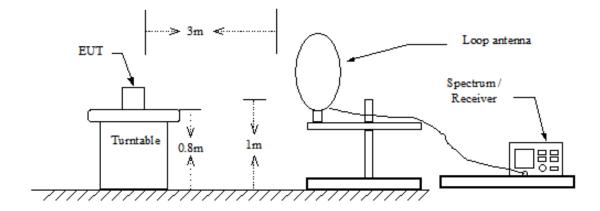
Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The tests below are run with the EUT's transmitter set at high power in TX mode. The EUT is needed to force selection of output power level and channel number. While testing, EUT was set to transmit continuously. Remove the Subjective device's antenna and connect the RF output port to power sensor. The maximum peak output power shall not exceed 1 watt.

Use a direct connection between the antenna port of transmitter and the power sensor, for prevent the power sensor input attenuation 40-50 dB. Set the RBW Bandwidth of the emission or use a channel power meter mode. For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt (+30 dBm). For antennas with gains greater than 6 dBi, transmitter output level must be decreased by an amount equal to (GAIN - 6)/3 dBm. The antenna port of the EUT was connected to the input of a power sensor. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.



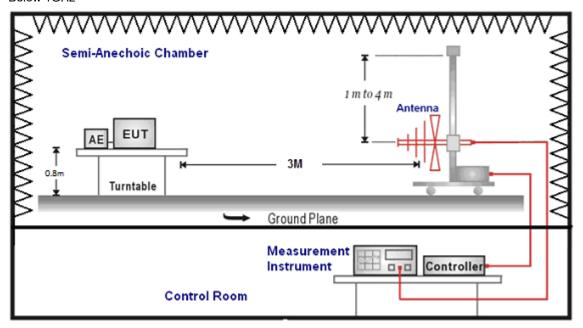
### 4.2. Radiated Emission Measurement

#### ■ Limit

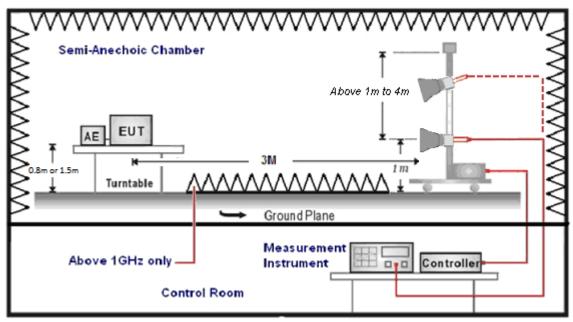

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency     | Field Strength  | Measurement Distance |
|---------------|-----------------|----------------------|
| (MHz)         | (μV/m at meter) | (meters)             |
| 0.009 - 0.490 | 2400 / F (kHz)  | 300                  |
| 0.490 – 1.705 | 24000 / F (kHz) | 30                   |
| 1.705 – 30.0  | 30              | 30                   |
| 30 - 88       | 100**           | 3                    |
| 88-216        | 150**           | 3                    |
| 216-960       | 200**           | 3                    |
| Above 960     | 500             | 3                    |

<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


### ■ Setup

 $9kHz \sim 30MHz$ 






### Below 1GHz



#### Above 1GHz





#### **■** Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 or 1.5 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 9 kHz to 26.5 GHz is investigated.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna was used in frequencies 1 – 26.5 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20dB/decade).

For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m).

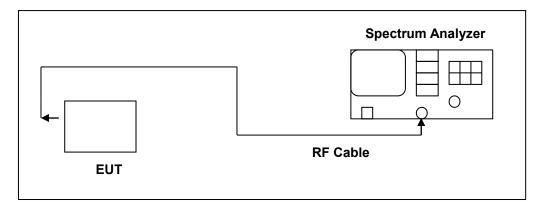
The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

- (1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB)
  - FI= Reading of the field intensity.
  - AF= Antenna factor.
  - CL= Cable loss.
  - P.S Amplitude is auto calculate in spectrum analyzer.
- (2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB)

The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:

- (a) For fundamental frequency: Transmitter Output < +30dBm
- (b) For spurious frequency: Spurious emission limits = fundamental emission limit /10

Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.




### 4.3. 20dB RF Bandwidth Measurement

#### ■ Limit

N/A

### ■ Test Setup

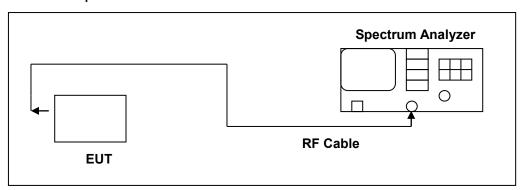


#### **■** Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = approx. 2 to 3 times the 20dB bandwidth, centered on a hopping frequency
- 2. RBW ≥ 1% of the 20dB span
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The EUT was transmitting at its maximum data rate. The marker-to-peak function was used to set the marker to the peak of the emission. The marker-delta function was used to measure 20dB down one side of the emission. The marker-delta function and marker was moved to the other side of the emission until it was even with the reference marker. The marker-delta reading at this point was the 20dB bandwidth of the emission.




### 4.4. Carrier Frequency Separation Measurement

#### ■ Limit

Title 47 of the CFR, Part 15 Subpart (c) 15.247(a)(1) requires the measurement of the bandwidth of the transmission between the -20 dB points on the transmitted spectrum. The results of this test determine the limits for channel spacing. The channel spacing shall be a minimum of 25 kHz or the 20 dB bandwidth, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.

### ■ Test Setup

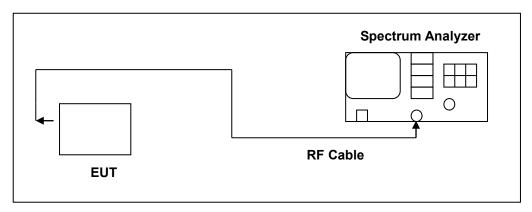


#### ■ Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth frequency hopping function of the EUT was enabled. The following spectrum analyzer settings were used:

- 1. Span = wide enough to capture the peaks of two adjacent channels
- 2. Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span
- 3. Video (or Average) Bandwidth (VBW) ≥ RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.




### 4.5. Number of Hopping Measurement

#### ■ Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dBbandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50hopping frequencies and the average time of occupancy on any frequency shall not begreater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hoppingchannel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and theaverage time of occupancy on any frequency shall not be greater than 0.4 seconds within a10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500kHz.

#### ■ Test Setup

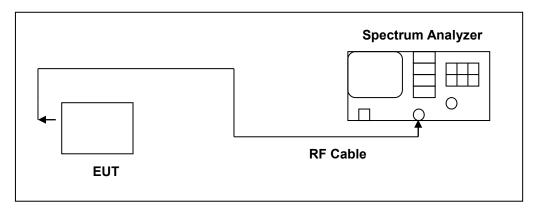


#### ■ Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = the frequency band of operation
- 2. RBW ≥ 1% of the span
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize.




### 4.6. Time of Occupancy (Dwell Time) Measurement

#### ■ Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dBbandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50hopping frequencies and the average time of occupancy on any frequency shall not begreater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hoppingchannel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and theaverage time of occupancy on any frequency shall not be greater than 0.4 seconds within a10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500kHz

#### ■ Test Setup

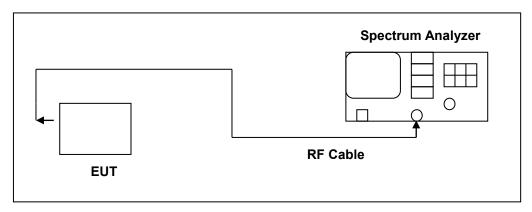


#### ■ Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the spectrum through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth hopping function of the EUT was enabled. The following spectrum analyzer settings were used:

- 1. Span = zero span, centered on a hopping channel
- 2. RBW = 1 MHz
- 3. VBW ≥ RBW
- 4. Sweep = as necessary to capture the entire dwell time per hopping channel
- 5. Detector function = peak
- 6. Trace = max hold

The marker-delta function was used to determine the dwell time.




#### 4.7. Out of Band Conducted Emissions Measurement

#### ■ Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

#### ■ Test Setup



#### **■** Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. In any 100 kHz bandwidth outside the EUT pass band, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function. All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the pass band. The test was performed at 3 channels (Channel 0, 39, 78)

### 4.8. Antenna Measurement

#### ■ Limit

For intentional device, according to 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And According to 15.247 (b)(4), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### ■ Antenna Connector Construction

See section 2 – antenna information.

The external antenna is soldered on the product, so user can only use the antenna provided by the responsible party.

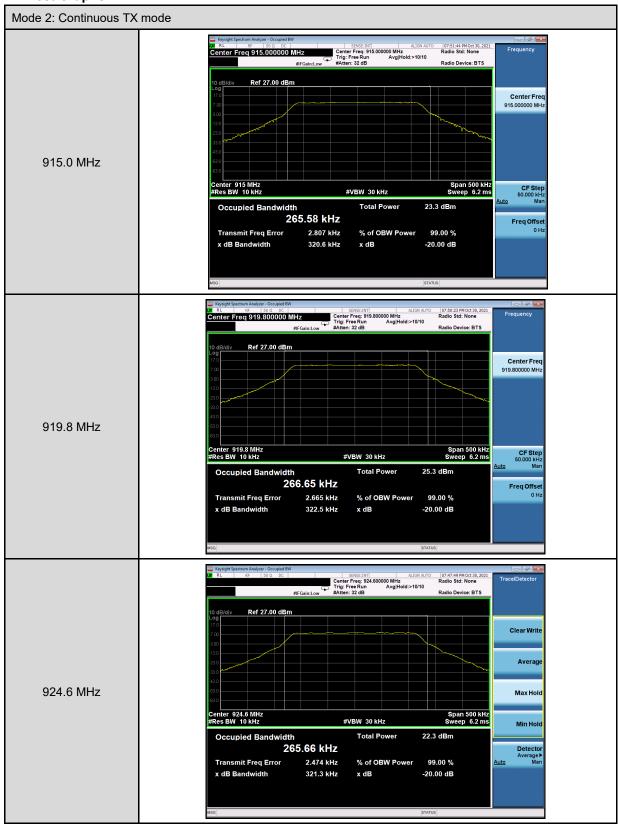


# 5 Test Results

### **Annex A. Conducted Test Results**

# **Maximum Conducted Output Power Measurement**

| Test Mode | Frequency | Average Power |       | Peak  | Limit |        |
|-----------|-----------|---------------|-------|-------|-------|--------|
|           | (MHz)     | (dBm)         | (W)   | (dBm) | (W)   | (W)    |
|           | 915.0     | 12.90         | 0.019 | 12.96 | 0.020 | < 0.25 |
| Mode 2    | 919.8     | 15.42         | 0.035 | 15.96 | 0.039 | < 0.25 |
|           | 924.6     | 13.55         | 0.023 | 13.61 | 0.023 | < 0.25 |


Note: The relevant measured result has the offset with cable loss already.

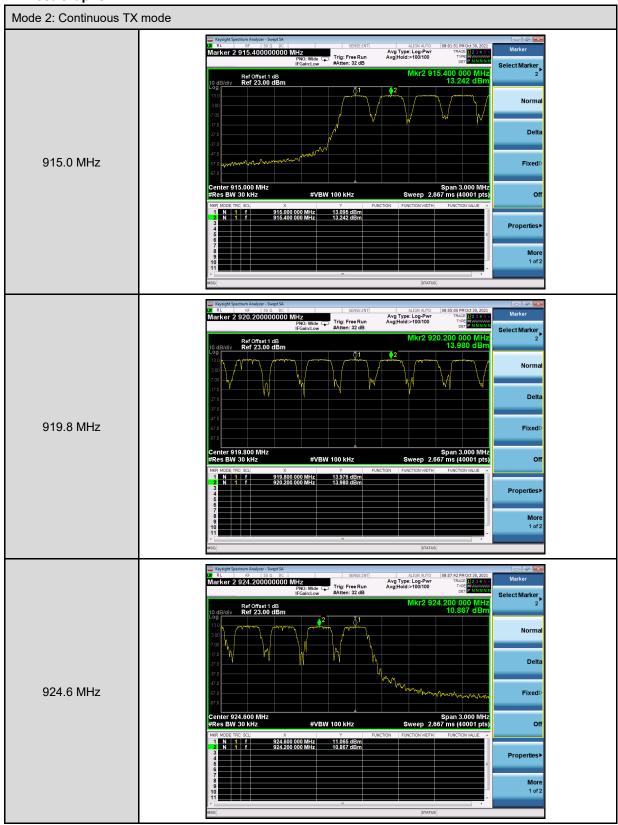
### 20dB RF Bandwidth Measurement

| Test Mode | Frequency<br>(MHz) | Measurement Results<br>(KHz) |  |  |
|-----------|--------------------|------------------------------|--|--|
|           | 915.0              | 320.6                        |  |  |
| Mode 2    | 919.8              | 322.5                        |  |  |
|           | 924.6              | 321.3                        |  |  |



### ■ Test Graphs



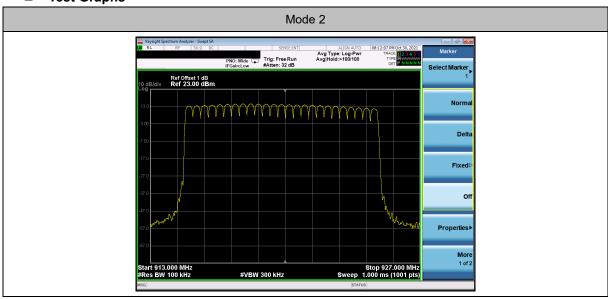



### **Carrier Frequency Separation Measurement**

| Test Mode | Frequency<br>(MHz) | Measurement Results<br>(KHz) | Limit<br>(KHz) |
|-----------|--------------------|------------------------------|----------------|
|           | 915.0              | 400                          | > 320.6        |
| Mode 2    | 919.8              | 400                          | > 322.5        |
|           | 924.6              | 400                          | > 321.3        |



### ■ Test Graphs

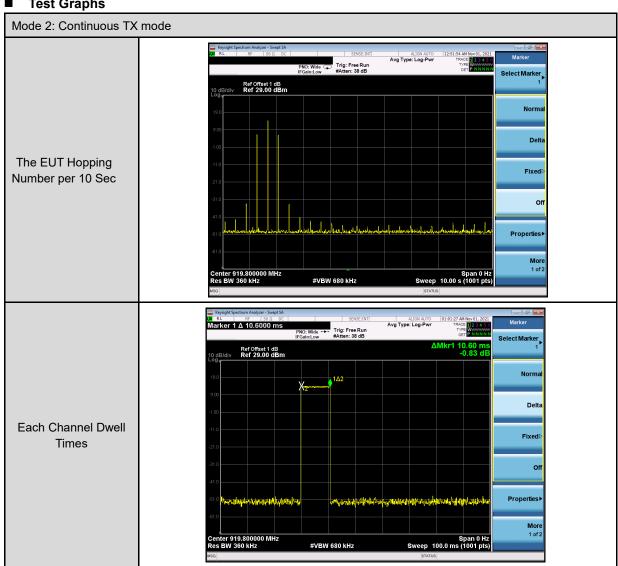





### **Number of Hopping Measurement**

| Test Mode | Frequency Range<br>(MHz) | Measurement Results<br>(Ch) |
|-----------|--------------------------|-----------------------------|
| Mode 2    | 915-924.6                | 25                          |

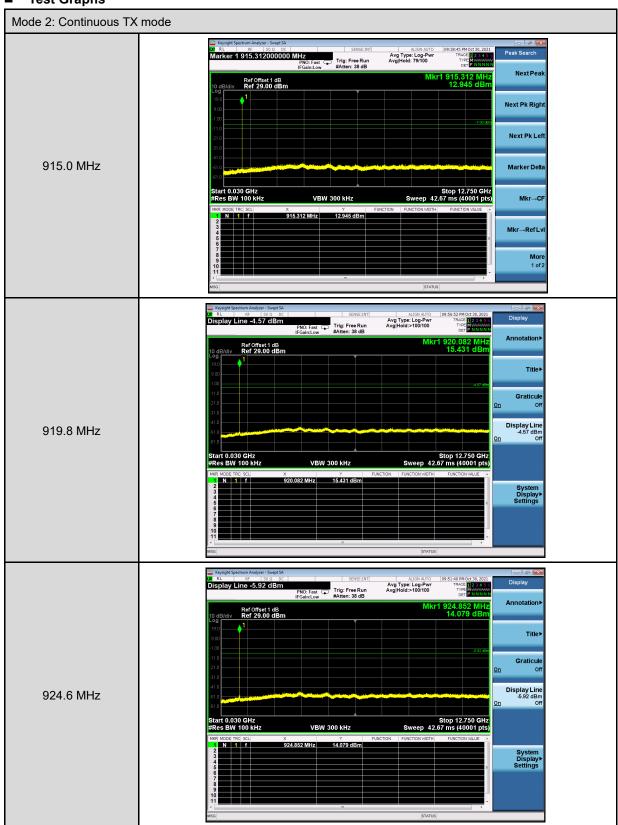
### ■ Test Graphs



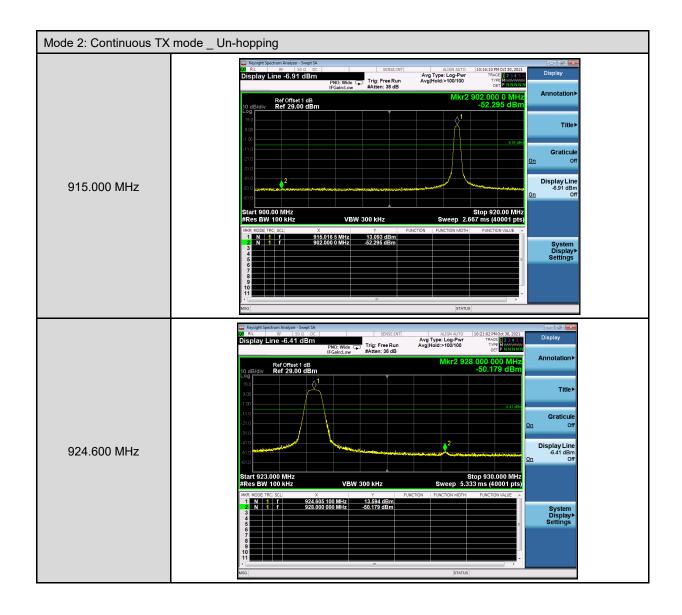



### Time of Occupancy (Dwell Time) Measurement

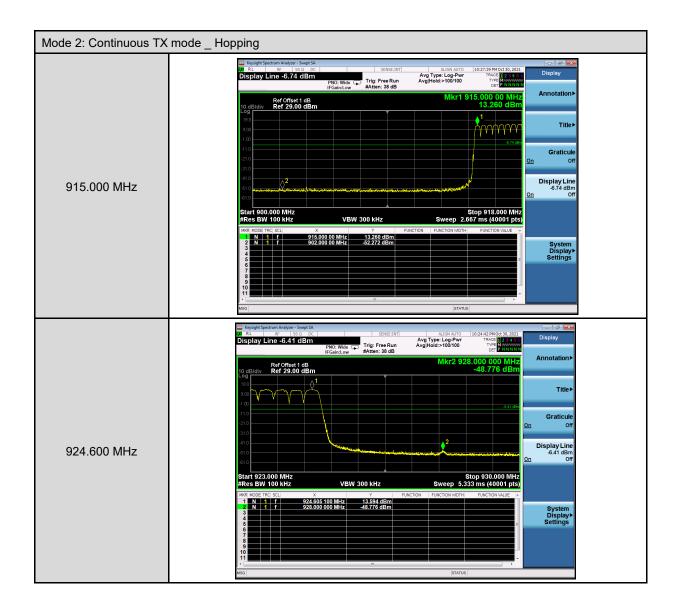
| Mode 2: Continuous TX mode             |                |  |  |  |  |  |  |
|----------------------------------------|----------------|--|--|--|--|--|--|
| DH1                                    |                |  |  |  |  |  |  |
| The EUT Hopping Number per 10 Sec (1). | 5 times/10 sec |  |  |  |  |  |  |
| Each Channel Dwell Times (2)           | 10.6 ms (sec)  |  |  |  |  |  |  |
| Dwell Times on 10 Sec (1) * (2)        | 53 ms (sec)    |  |  |  |  |  |  |
| LIMIT(msec)                            | < = 400        |  |  |  |  |  |  |


### **Test Graphs**






### **Out of Band Conducted Emissions Measurement**


### Test Graphs







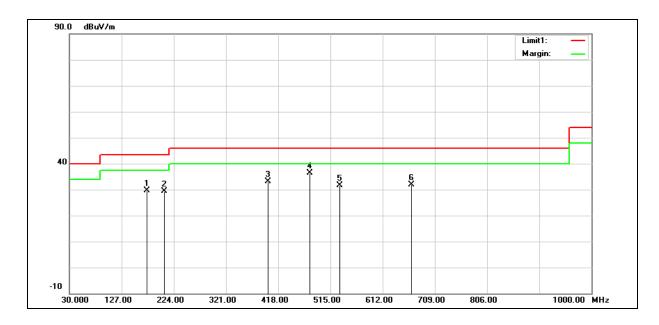






### **Annex B. Radiated Emission Measurement**

### Harmonic


Below 1GHz

Standard: FCC Part 15.247 Test Distance: 3 m

Test item: Radiated Emission Power: DC 5 V

Mode: Mode 1 Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60  $^{\circ}$ RH

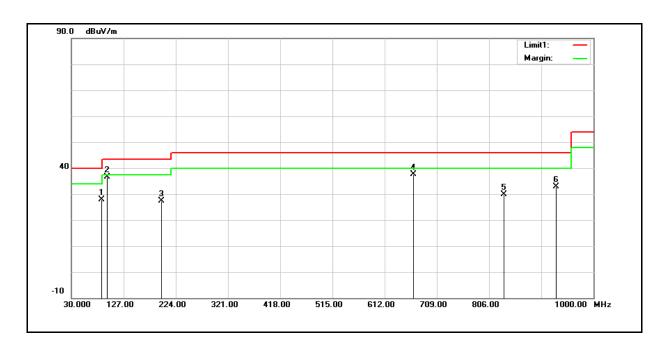
Ant.Polar.: Horizontal



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 174.5300  | 41.50   | -11.98         | 29.52    | 43.50    | -13.98 | QP     |
| 2   | 206.5400  | 44.06   | -14.61         | 29.45    | 43.50    | -14.05 | QP     |
| 3   | 398.6000  | 41.07   | -7.99          | 33.08    | 46.00    | -12.92 | QP     |
| 4   | 476.2000  | 42.14   | -5.82          | 36.32    | 46.00    | -9.68  | QP     |
| 5   | 532.4600  | 36.00   | -4.40          | 31.60    | 46.00    | -14.40 | QP     |
| 6   | 665.3500  | 33.77   | -1.95          | 31.82    | 46.00    | -14.18 | QP     |

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

Example: 29.52=-11.98+41.50


- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



Test item: Radiated Emission Power: DC 5 V

Mode: Mode 1 Temp.( $^{\circ}$ )/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ )/60 %RH

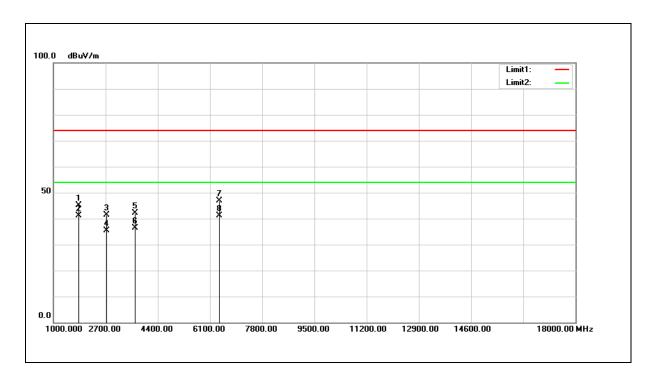
Ant.Polar.: Vertical



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 86.2600   | 43.83   | -16.03         | 27.80    | 40.00    | -12.20 | QP     |
| 2   | 95.9600   | 52.17   | -15.54         | 36.63    | 43.50    | -6.87  | QP     |
| 3   | 197.8100  | 41.83   | -14.36         | 27.47    | 43.50    | -16.03 | QP     |
| 4   | 665.3500  | 39.49   | -1.95          | 37.54    | 46.00    | -8.46  | QP     |
| 5   | 833.1600  | 29.43   | 0.55           | 29.98    | 46.00    | -16.02 | QP     |
| 6   | 931.1300  | 31.68   | 1.31           | 32.99    | 46.00    | -13.01 | QP     |

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.




### Above 1GHz

Standard: FCC Part 15.247 Test Distance: 3 m

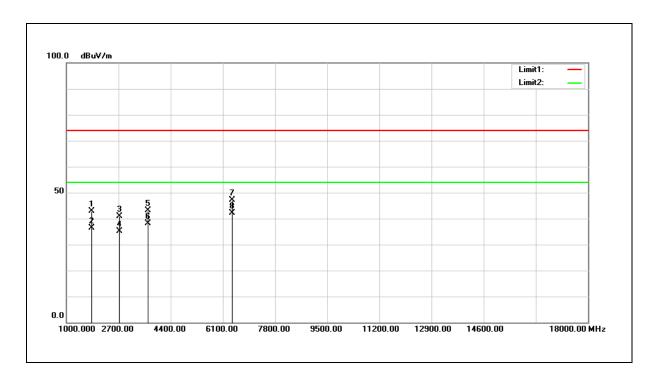
Test item: Radiated Emission Power: DC 5 V

Frequency: 915.0 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60 %RH

Mode: Mode 2
Ant.Polar.: Horizontal



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1833.000  | 58.34   | -13.10         | 45.24    | 74.00    | -28.76 | peak   |
| 2   | 1833.000  | 54.35   | -13.10         | 41.25    | 54.00    | -12.75 | AVG    |
| 3   | 2745.000  | 51.00   | -9.65          | 41.35    | 74.00    | -32.65 | peak   |
| 4   | 2745.000  | 44.91   | -9.65          | 35.26    | 54.00    | -18.74 | AVG    |
| 5   | 3660.000  | 50.40   | -8.18          | 42.22    | 74.00    | -31.78 | peak   |
| 6   | 3660.000  | 44.54   | -8.18          | 36.36    | 54.00    | -17.64 | AVG    |
| 7   | 6405.000  | 49.20   | -2.22          | 46.98    | 74.00    | -27.02 | peak   |
| 8   | 6405.000  | 43.47   | -2.22          | 41.25    | 54.00    | -12.75 | AVG    |


- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



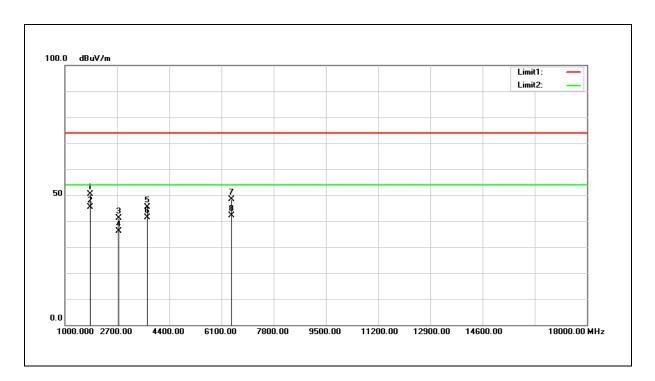
Test item: Radiated Emission Power: DC 5 V

Frequency: 915.0 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60 %RH

Mode: Mode 2
Ant.Polar.: Vertical



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1830.000  | 56.11   | -13.12         | 42.99    | 74.00    | -31.01 | peak   |
| 2   | 1830.000  | 49.38   | -13.12         | 36.26    | 54.00    | -17.74 | AVG    |
| 3   | 2745.000  | 50.48   | -9.65          | 40.83    | 74.00    | -33.17 | peak   |
| 4   | 2745.000  | 44.88   | -9.65          | 35.23    | 54.00    | -18.77 | AVG    |
| 5   | 3660.000  | 51.33   | -8.18          | 43.15    | 74.00    | -30.85 | peak   |
| 6   | 3660.000  | 46.33   | -8.18          | 38.15    | 54.00    | -15.85 | AVG    |
| 7   | 6405.000  | 49.23   | -2.22          | 47.01    | 74.00    | -26.99 | peak   |
| 8   | 6405.000  | 44.38   | -2.22          | 42.16    | 54.00    | -11.84 | AVG    |


- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



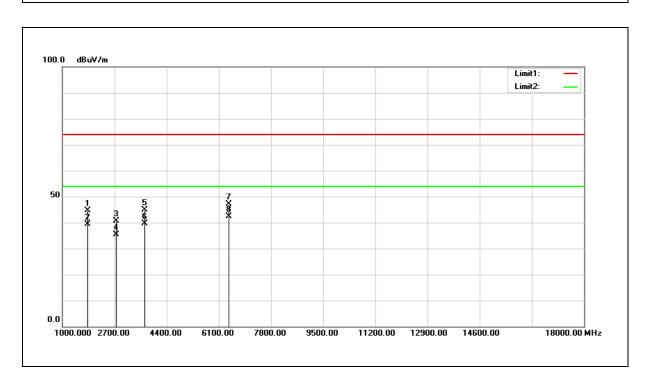
Test item: Radiated Emission Power: DC 5 V

Frequency: 919.8 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60  $^{\circ}$ RH

Mode: Mode 2
Ant.Polar.: Horizontal



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1833.000  | 63.48   | -13.10         | 50.38    | 74.00    | -23.62 | peak   |
| 2   | 1833.000  | 58.46   | -13.10         | 45.36    | 54.00    | -8.64  | AVG    |
| 3   | 2759.400  | 50.82   | -9.59          | 41.23    | 74.00    | -32.77 | peak   |
| 4   | 2759.400  | 45.84   | -9.59          | 36.25    | 54.00    | -17.75 | AVG    |
| 5   | 3679.200  | 53.50   | -8.13          | 45.37    | 74.00    | -28.63 | peak   |
| 6   | 3679.200  | 49.49   | -8.13          | 41.36    | 54.00    | -12.64 | AVG    |
| 7   | 6438.600  | 50.45   | -2.19          | 48.26    | 74.00    | -25.74 | peak   |
| 8   | 6438.600  | 44.34   | -2.19          | 42.15    | 54.00    | -11.85 | AVG    |


- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



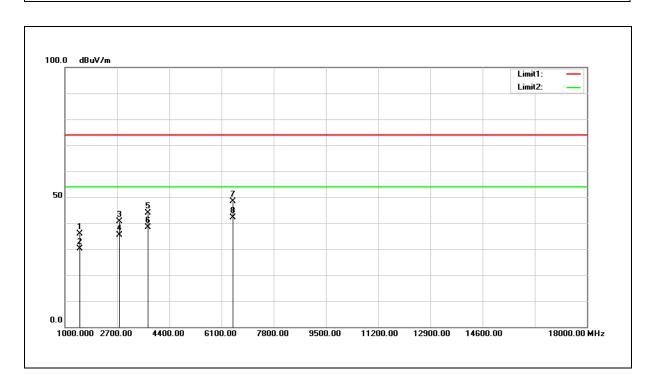
Test item: Radiated Emission Power: DC 5 V

Frequency: 919.8 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60 %RH

Mode: Mode 2
Ant.Polar.: Vertical



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1833.000  | 57.74   | -13.10         | 44.64    | 74.00    | -29.36 | peak   |
| 2   | 1833.000  | 52.46   | -13.10         | 39.36    | 54.00    | -14.64 | AVG    |
| 3   | 2759.400  | 50.19   | -9.59          | 40.60    | 74.00    | -33.40 | peak   |
| 4   | 2759.400  | 44.85   | -9.59          | 35.26    | 54.00    | -18.74 | AVG    |
| 5   | 3679.200  | 52.97   | -8.13          | 44.84    | 74.00    | -29.16 | peak   |
| 6   | 3679.200  | 47.67   | -8.13          | 39.54    | 54.00    | -14.46 | AVG    |
| 7   | 6438.600  | 49.38   | -2.19          | 47.19    | 74.00    | -26.81 | peak   |
| 8   | 6438.600  | 44.55   | -2.19          | 42.36    | 54.00    | -11.64 | AVG    |


- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



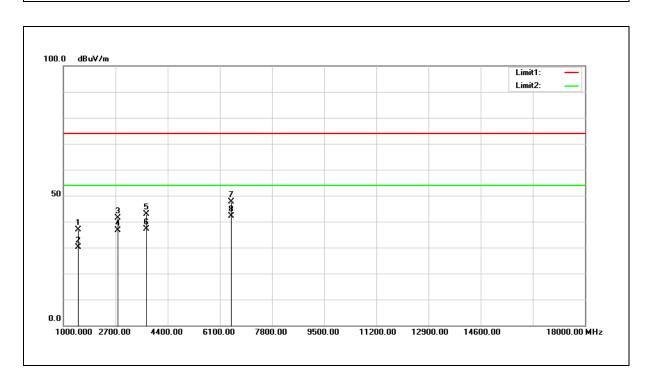
Test item: Radiated Emission Power: DC 5 V

Frequency: 924.6 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60  $^{\circ}$ RH

Mode: Mode 2
Ant.Polar.: Horizontal



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1489.200  | 51.86   | -16.02         | 35.84    | 74.00    | -38.16 | peak   |
| 2   | 1489.200  | 46.27   | -16.02         | 30.25    | 54.00    | -23.75 | AVG    |
| 3   | 2773.800  | 50.17   | -9.53          | 40.64    | 74.00    | -33.36 | peak   |
| 4   | 2773.800  | 44.79   | -9.53          | 35.26    | 54.00    | -18.74 | AVG    |
| 5   | 3698.400  | 51.94   | -8.09          | 43.85    | 74.00    | -30.15 | peak   |
| 6   | 3698.400  | 46.54   | -8.09          | 38.45    | 54.00    | -15.55 | AVG    |
| 7   | 6472.200  | 50.57   | -2.16          | 48.41    | 74.00    | -25.59 | peak   |
| 8   | 6472.200  | 44.32   | -2.16          | 42.16    | 54.00    | -11.84 | AVG    |


- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



Test item: Radiated Emission Power: DC 5 V

Frequency: 924.6 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60 %RH

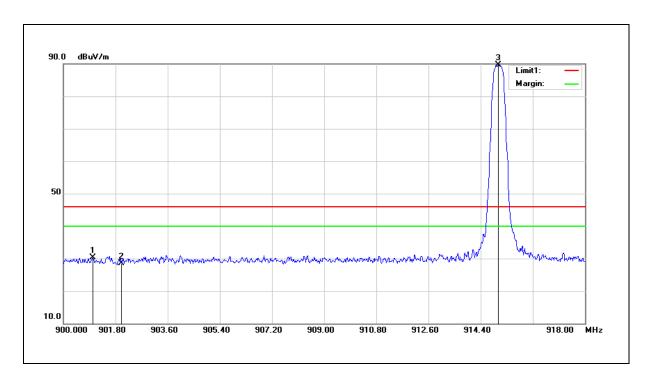
Mode: Mode 2
Ant.Polar.: Vertical



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 1489.200  | 52.78   | -16.02         | 36.76    | 74.00    | -37.24 | peak   |
| 2   | 1489.200  | 46.25   | -16.02         | 30.23    | 54.00    | -23.77 | AVG    |
| 3   | 2773.800  | 50.95   | -9.53          | 41.42    | 74.00    | -32.58 | peak   |
| 4   | 2773.800  | 46.09   | -9.53          | 36.56    | 54.00    | -17.44 | AVG    |
| 5   | 3698.400  | 50.95   | -8.09          | 42.86    | 74.00    | -31.14 | peak   |
| 6   | 3698.400  | 45.24   | -8.09          | 37.15    | 54.00    | -16.85 | AVG    |
| 7   | 6472.200  | 49.67   | -2.16          | 47.51    | 74.00    | -26.49 | peak   |
| 8   | 6472.200  | 44.29   | -2.16          | 42.13    | 54.00    | -11.87 | AVG    |

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.




# **Band Edge**

Standard: FCC Part 15.247 Test Distance: 3 m

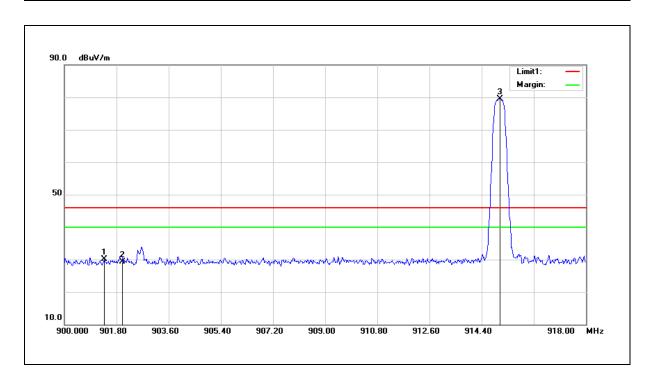
Test item: Band edge Power: DC 5 V

Frequency: 915.0 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60  $^{\circ}$ RH

Mode: Mode 2
Ant.Polar.: Horizontal



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 901.0260  | 29.32   | 1.03           | 30.35    | 46.00    | -15.65 | peak   |
| 2   | 902.0000  | 27.48   | 1.04           | 28.52    | 46.00    | -17.48 | peak   |
| 3   | 915.0120  | 88.47   | 1.16           | 89.63    |          |        |        |


- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



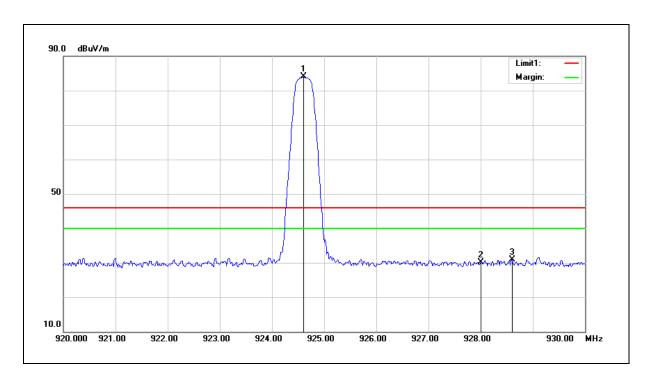
Test item: Band edge Power: DC 5 V

Frequency: 915.0 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60  $^{\circ}$ RH

Mode: Mode 2
Ant.Polar.: Vertical



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 901.3860  | 29.04   | 1.03           | 30.07    | 46.00    | -15.93 | peak   |
| 2   | 902.0000  | 28.23   | 1.04           | 29.27    | 46.00    | -16.73 | peak   |
| 3   | 915.0300  | 78.43   | 1.16           | 79.59    |          |        |        |


- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



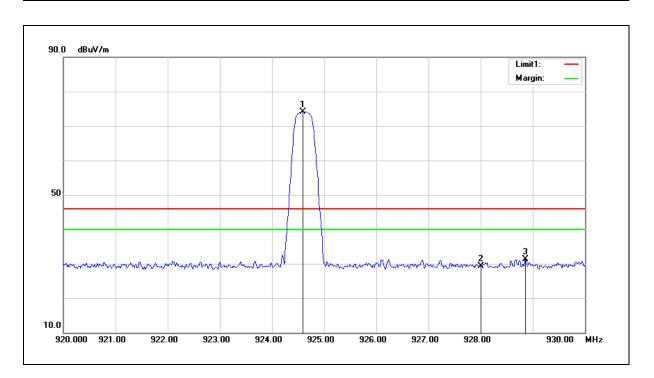
Test item: Band edge Power: DC 5 V

Frequency: 924.6 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60  $^{\circ}$ RH

Mode: Mode 2
Ant.Polar.: Horizontal



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 924.6100  | 82.76   | 1.25           | 84.01    |          |        |        |
| 2   | 928.0000  | 28.79   | 1.28           | 30.07    | 46.00    | -15.93 | peak   |
| 3   | 928.6000  | 29.62   | 1.29           | 30.91    | 46.00    | -15.09 | peak   |


- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



Test item: Band edge Power: DC 5 V

Frequency: 924.6 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60  $^{\circ}$ RH

Mode: Mode 2
Ant.Polar.: Vertical



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 924.5900  | 72.95   | 1.25           | 74.20    |          |        |        |
| 2   | 928.0000  | 28.00   | 1.28           | 29.28    | 46.00    | -16.72 | peak   |
| 3   | 928.8600  | 30.07   | 1.29           | 31.36    | 46.00    | -14.64 | peak   |

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.
- 4. The test mode was worst case.