

TEST REPORT

Product Black Diamond 75

Trade mark **DRY STUDIO**

Model/Type reference **DR001 Serial Number** N/A

Report Number EED32P80600802

FCC ID : 2A3FY-DR001 Date of Issue : Jun. 21, 2023

Test Standards : 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Angry Miao Technology Co., Limited 2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town, Xiangzhou District, Zhuhai, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

martin Lee

Martin Lee

MOVIN

Reviewed by:

Date:

Tom Chen

Jun. 21, 2023

Aaron Ma

Check No.: 6113260423

Report No.: EED32P80600802

Page 2 of 38

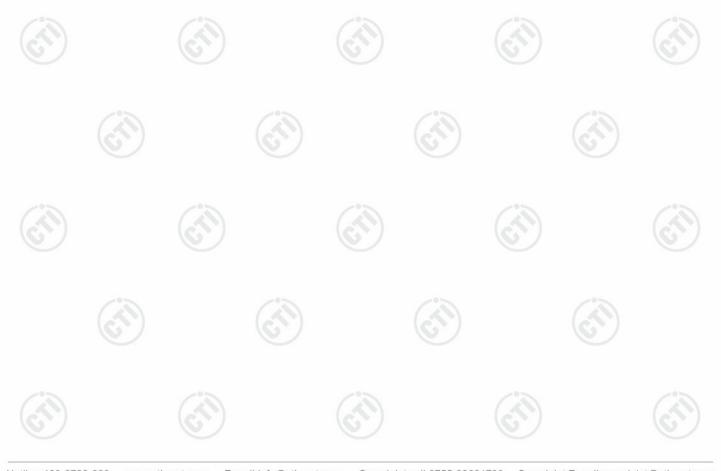
Content

1 CONTENT	•••••	2
2 VERSION		
3 TEST SUMMARY		
4 GENERAL INFORMATION		5
4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPORT UNITS 4.6 TEST LOCATION 4.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)		5
5 EQUIPMENT LIST		
6 TEST RESULTS AND MEASUREMENT DATA		
6.1 ANTENNA REQUIREMENT		13 16 17 18
7 APPENDIX BLE	•••••	35
8 PHOTOGRAPHS OF TEST SETUP		
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		38

Report No.: EED32P80600802

2 Version

Version No.	Date	6	Description	
00	Jun. 21, 2023		Original	
	° N		-0	
-((50)	(20)	(5,0)	(0,1)


Report No.: EED32P80600802 Page 4 of 38

3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.


4 General Information

4.1 Client Information

Applicant:	Angry Miao Technology Co., Limited	
Address of Applicant:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town,Xiangzhou District, Zhuhai,China	
Manufacturer:	Angry Miao Technology Co., Limited	(65)
Address of Manufacturer:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town,Xiangzhou District, Zhuhai,China	

4.2 General Description of EUT

Product Name:	Black Diam	ond 75	(41)		(41)	
Model No.:	DR001					
Hardware Version:	P0					
Software Version:	V1.0					
Trade mark:	DRY STUD	10				
Device type:	Portable	(0)		(0)		6
Operation Frequency:	2402MHz~2	2480MHz				
Modulation Type:	GFSK		11 22			
Number of Channel:	23		(3)			
Antenna Type:	PIFA Anten	na	(0,)		(0,)	
Antenna Gain:	1.0dBi					
Power Supply:	USB port:	DC 5V				
	Battery:	DC 3.8V		(3)		(3)
Test Voltage:	DC 3.8V	(67.)		(62)		(6)
Sample Received Date:	Apr. 28, 202	23				
Sample tested Date:	Apr. 28, 202	23 to Jun. 09,	2023			

Page 6 of 38 Report No.: EED32P80600802

100		100		1		100	\
Operation F	requency eac	h of channe		(6))	(67))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	7	2438MHz	13	2460MHz	19	2472MHz
2	2404MHz	8	2440MHz	14	2462MHz	20	2474MHz
3	2406MHz	9	2442MHz	15	2464MHz	21	2476MHz
4	2408MHz	10	2444MHz	16	2466MHz	22	2478MHz
5	2410MHz	11	2456MHz	17	2468MHz	23	2480MHz
6	2436MHz	12	2458MHz	18	2470MHz	130	(

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH1)	2402MHz
The middle channel (CH12)	2458MHz
The highest channel (CH23)	2480MHz

4.3 Test Configuration

EUT Test Software Settings:						
Software:	DTM.exe	(41)	(2)			
EUT Power Grade:	Class2 (Power level is bu selected)	ilt-in set parameters and	cannot be changed and			
Use test software to set the transmitting of the EUT.	lowest frequency, the middle fr	equency and the highes	t frequency keep			
Test Mode	Modulation	Channel	Frequency(MHz)			
Mode a	GFSK	CH1	2402			
Mode b	GFSK	CH12	2458			
Mode c	GFSK	CH23	2480			

Report No.: EED32P80600802 Page 7 of 38

4.4 Test Environment

	Operating Environment	:					
	Radiated Spurious Emi	ssions:					
	Temperature:	22~25.0 °C	(4)		(41)		(41)
1	Humidity:	50~55 % RH	0		(0)		6
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C		(3)		(30)	
	Humidity:	50~55 % RH		(0,)		(0,)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C	(3)		(3)		
r)	Humidity:	50~55 % RH	(6,2)		(6,2,2)		(6,7,2)
	Atmospheric Pressure:	1010mbar					

4.5 Description of Support Units

The EUT has been tested independently.

4.6 Test Location

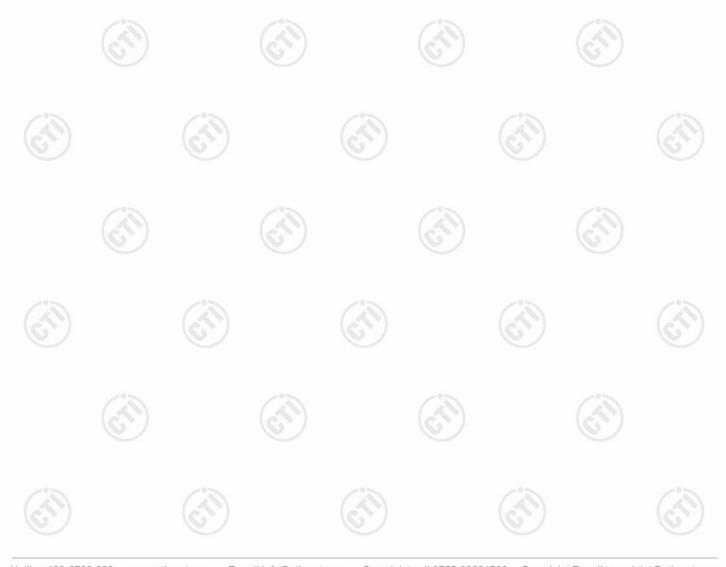
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



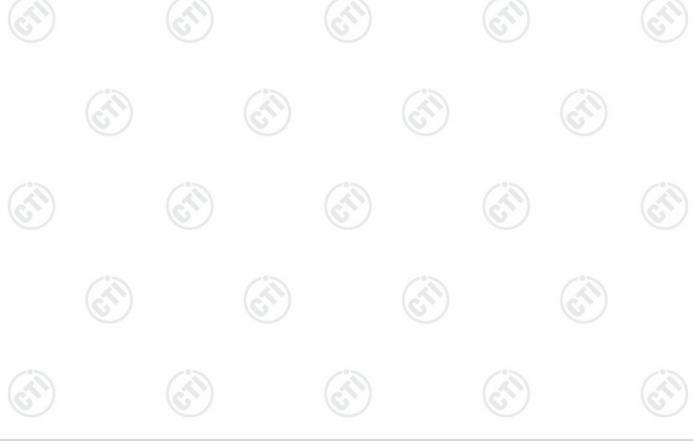
4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Churique emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
10		3.4dB (18GHz-40GHz)
()	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32P80600802 Page 9 of 38

5 Equipment List

		RF te	st system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication tset set	R&S	CMW500	107929	07-06-2022	07-05-2023
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023
Spectrum Analyzer	R&S	FSV40	101200	08-01-2022	07-31-2023
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	07-06-2022	07-05-2023
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(File)	


Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-06-2022 05-05-2023	05-05-2023 05-04-2024		
Temperature/ Humidity Indicator	Defu	TH128	1				
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023		
Barometer	changchun	DYM3	1188		(3)		
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	07-13-2022	07-12-2023		
ISN	TESEQ	ISN T800	30297	01-04-2022	12-29-2023		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 10 of 38 Report No.: EED32P80600802

3M Semi-anechoic Chamber (2)- Radiated disturbance Test										
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date					
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025					
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023					
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025					
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024					
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/23/2022	12/23/2023					
Multi device Controller	maturo	NCD/070/10711112								
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024					
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023					

Report No.: EED32P80600802 Page 11 of 38

	9					
		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	(i)	6	
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024	
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023 12-22-2023	
Communication test set	R&S	CMW500	102898	12-23-2022		
Temperature/	biaozhi	GM1360	EE1186631	02-15-2023	02-14-2024	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(<u> </u>	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	City	()	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(C)	©	
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	/		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(٠	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(in	(2	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No.: EED32P80600802 Page 12 of 38

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

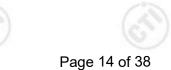
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

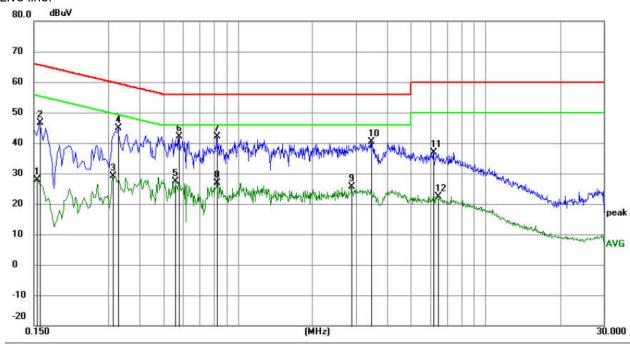
EUT Antenna: Please see Internal photos

The antenna is PIFA Antenna. The best case gain of the antenna is 1.0dBi.


Report No.: EED32P80600802 Page 13 of 38

6.2 AC Power Line Conducted Emissions

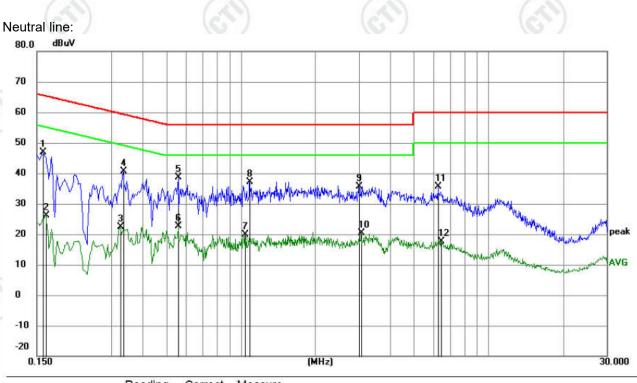
0.	Z AC POWEI LINE	onducted Emissions		(20)				
	Test Requirement:	47 CFR Part 15C Section 15.2	207					
	Test Method:	ANSI C63.10: 2013						
	Test Frequency Range:	150kHz to 30MHz						
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, St	weep time=auto					
		Fraguency range (MHz)	Limit (d	BuV)				
3		Frequency range (MHz)	Quasi-peak	Average				
	Limit:	0.15-0.5	66 to 56*	56 to 46*				
	LIIIII.	0.5-5	56	46				
		5-30	60	50				
		* Decreases with the logarithm	of the frequency.					
	Test Setup:	Shielding Room EUT LISN1	AE LISN2 AC Ground Reference Plane	Test Receiver				
	Test Procedure:	 The mains terminal disturb room. The EUT was connected to Impedance Stabilization Not impedance. The power cab connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ection. In order to find the maximule equipment and all of the interest and solution. 	o AC power source throetwork) which provides of all other units of N 2, which was bonded e way as the LISN 1 foet outlet strip was used SN provided the rating sed upon a non-metallic and for floor-standing arround reference plane, the a vertical ground referom the vertical ground reference und reference plane. The to a ground reference plane. The of the LISN 1 and the quipment was at least 0 m emission, the relativiterface cables must be	ough a LISN 1 (Line a 50Ω/50μH + 5Ω linear the EUT were do to the ground or the unit being to connect multiple of the LISN was not be table 0.8m above the rangement, the EUT was been cerebrated by the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. e positions of				
	Exploratory Test Mode:	Non-hopping transmitting mod data type at the lowest, middle	e, high channel.					
	Final Test Mode:	Through Pre-scan, find the mo						
	Test Results:	Pass						



Measurement Data

Live line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1545	18.00	9.87	27.87	55.75	-27.88	AVG	
2	0.1590	36.77	9.87	46.64	65.52	-18.88	QP	
3	0.3120	19.03	10.06	29.09	49.92	-20.83	AVG	
4	0.3300	34.72	10.04	44.76	59.45	-14.69	QP	
5	0.5595	17.47	10.02	27.49	46.00	-18.51	AVG	
6 *	0.5775	32.20	10.04	42.24	56.00	-13.76	QP	
7	0.8250	32.17	9.85	42.02	56.00	-13.98	QP	
8	0.8250	16.99	9.85	26.84	46.00	-19.16	AVG	
9	2.8725	15.86	9.79	25.65	46.00	-20.35	AVG	
10	3.4395	30.48	9.79	40.27	56.00	-15.73	QP	
11	6.1845	27.17	9.79	36.96	60.00	-23.04	QP	
12	6.4455	12.58	9.79	22.37	50.00	-27.63	AVG	



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1590	37.13	9.87	47.00	65.52	-18.52	QP		
2		0.1635	16.30	9.87	26.17	55.28	-29.11	AVG		
3		0.3255	12.39	10.04	22.43	49.57	-27.14	AVG		
4		0.3345	30.48	10.04	40.52	59.34	-18.82	QP		
5	*	0.5595	28.54	10.02	38.56	56.00	-17.44	QP		
6		0.5595	12.49	10.02	22.51	46.00	-23.49	AVG		
7		1.0410	9.95	9.83	19.78	46.00	-26.22	AVG		
8		1.0859	27.34	9.83	37.17	56.00	-18.83	QP		
9		3.0030	25.88	9.79	35.67	56.00	-20.33	QP		
10		3.0660	10.56	9.79	20.35	46.00	-25.65	AVG		
11		6.2700	25.78	9.79	35.57	60.00	-24.43	QP		
12		6.4230	7.94	9.79	17.73	50.00	-32.27	AVG		

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Maximum Conducted Output Power

47 CFR Part 15C Section 15.247 (b)(3)	
ANSI C63.10 2013	
Control Computer Power Supply Power Table RF test System System Instrument Table	
Remark: Offset=Cable loss+ attenuation factor.	
 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	(C)
30dBm	_ · · ·
Refer to clause 5.3	
Refer to Appendix 2.4G	
	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. a) Set the RBW > DTS bandwidth. b) Set VBW > 3 × RBW. c) Set span > 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 30dBm Refer to clause 5.3

Report No.: EED32P80600802 Page 17 of 38

6.4 DTS Bandwidth

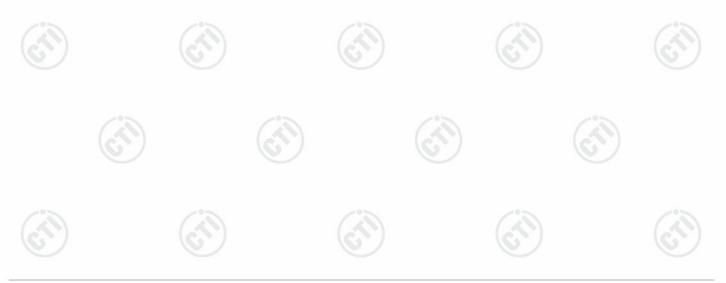
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Power Supph Power Supph Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G

6.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Control Control Control Power Supply Power TEMPERATURE CABNET	RF test System Instrument
	Remark: Offset=Cable loss+ attenua	ation factor.
Test Procedure:	within the RBW.	S bandwidth.
Limit:	≤8.00dBm/3kHz	
Test Mode:	Refer to clause 5.3	-05
Test Results:	Refer to Appendix 2.4G	

6.6 Band Edge measurements and Conducted Spurious Emission

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10 2013
2002	Test Setup:	Control Control Control Power Power Poort Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
2.5	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix 2.4G



6.7 Radiated Spurious Emission & Restricted bands

	16.7		1800		16.7			
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	(6)			
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance	n (Semi-Anech	noic Cham	ber)	-51			
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak		
	Above 4011		Peak	1MHz	3MHz	Peak		
	Above 1GHz		Peak	1MHz	10kHz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m)		
	/ / / / / /		400/F(kHz)	-	-/0>	300		
			1000/F(kHz)	-	(A)	30		
			30	-	-	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz	10	200	46.0	Quasi-peak	3		
	960MHz-1GHz		500	54.0	Quasi-peak	3		
	Above 1GHz		500	54.0	Average	3		
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20d quip	IB above the i	maximum est. This p	permitted ave	erage emission		

Report No.: EED32P80600802 Page 21 of 38

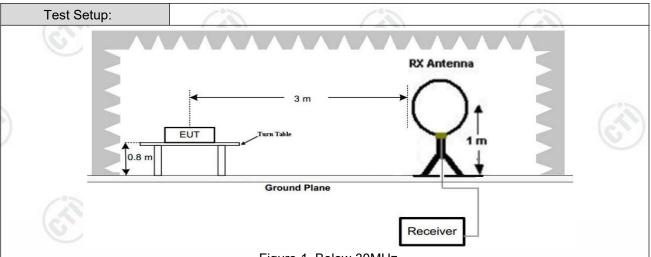


Figure 1. Below 30MHz

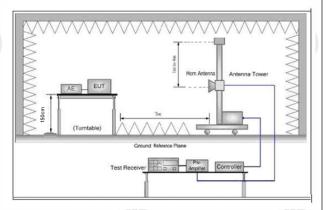


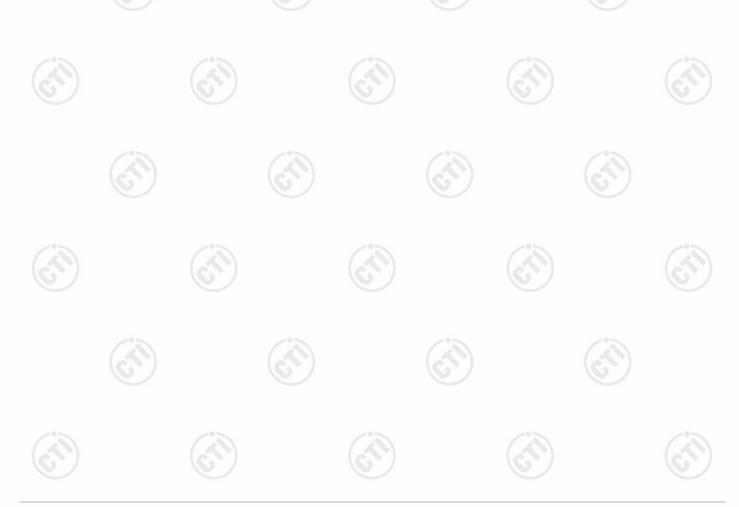
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

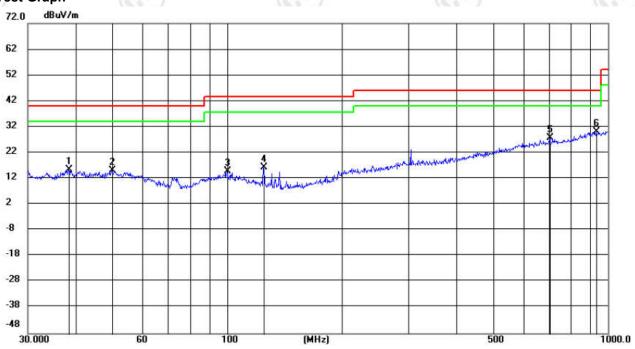
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channe (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.

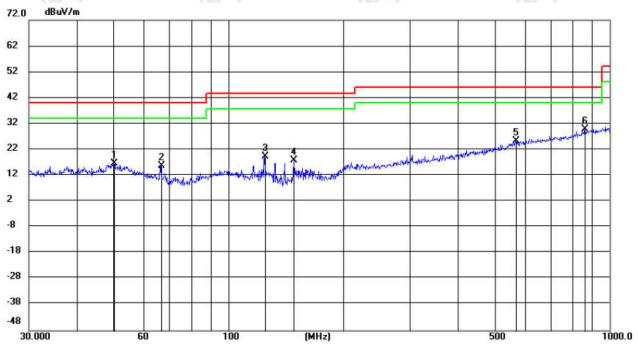


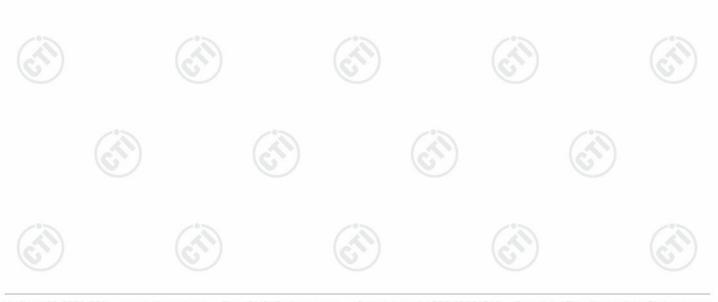
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode c was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.3596	1.35	14.24	15.59	40.00	-24.41	QP	200	352	
2		49.9952	0.80	14.27	15.07	40.00	-24.93	QP	200	352	
3		99.9828	0.66	14.05	14.71	43.50	-28.79	QP	200	352	
4	;	124.9846	6.03	10.43	16.46	43.50	-27.04	QP	200	352	
5		704.8437	2.80	24.83	27.63	46.00	-18.37	QP	100	278	
6	*	933.0891	1.43	28.58	30.01	46.00	-15.99	QP	200	168	





Report No.: EED32P80600802 Page 24 of 38

Vertical:

. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	11	Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	50.1357	2.45	14.26	16.71	40.00	-23.29	QP	100	98	
	66.5806	4.64	11.26	15.90	40.00	-24.10	QP	100	281	
	124.6346	8.82	10.49	19.31	43.50	-24.19	QP	100	0	
	148.8058	7.76	9.97	17.73	43.50	-25.77	QP	100	342	
	567.0198	2.11	23.21	25.32	46.00	-20.68	QP	200	47	
*	860.3368	2.33	27.62	29.95	46.00	-16.05	QP	100	332	
	2:	MHz 50.1357 66.5806 124.6346 148.8058 567.0198	Mk. Freq. Level MHz dBuV 50.1357 2.45 66.5806 4.64 8.82 148.8058 7.76 567.0198 2.11	Mk. Freq. Level Factor MHz dBuV dB 50.1357 2.45 14.26 66.5806 4.64 11.26 124.6346 8.82 10.49 148.8058 7.76 9.97 567.0198 2.11 23.21	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 50.1357 2.45 14.26 16.71 66.5806 4.64 11.26 15.90 124.6346 8.82 10.49 19.31 148.8058 7.76 9.97 17.73 56.567.0198 2.11 23.21 25.32	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 50.1357 2.45 14.26 16.71 40.00 66.5806 4.64 11.26 15.90 40.00 124.6346 8.82 10.49 19.31 43.50 148.8058 7.76 9.97 17.73 43.50 567.0198 2.11 23.21 25.32 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB 50.1357 2.45 14.26 16.71 40.00 -23.29 66.5806 4.64 11.26 15.90 40.00 -24.10 124.6346 8.82 10.49 19.31 43.50 -24.19 148.8058 7.76 9.97 17.73 43.50 -25.77 56.567.0198 2.11 23.21 25.32 46.00 -20.68	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 50.1357 2.45 14.26 16.71 40.00 -23.29 QP 66.5806 4.64 11.26 15.90 40.00 -24.10 QP 3 124.6346 8.82 10.49 19.31 43.50 -24.19 QP 4 148.8058 7.76 9.97 17.73 43.50 -25.77 QP 5 567.0198 2.11 23.21 25.32 46.00 -20.68 QP	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 50.1357 2.45 14.26 16.71 40.00 -23.29 QP 100 2 66.5806 4.64 11.26 15.90 40.00 -24.10 QP 100 3 124.6346 8.82 10.49 19.31 43.50 -24.19 QP 100 4 148.8058 7.76 9.97 17.73 43.50 -25.77 QP 100 5 567.0198 2.11 23.21 25.32 46.00 -20.68 QP 200	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB uV/m dB uV/m </td

Radiated Spurious Emission above 1GHz:

Mode	: :		2.4G GFSK Tra	nsmitting		Channel:		2402 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1395.2395	1.38	38.64	40.02	74.00	33.98	Pass	Н	PK
2	1913.8914	4.10	37.50	41.60	74.00	32.40	Pass	Н	PK
3	5024.1349	-15.79	52.39	36.60	74.00	37.40	Pass	Н	PK
4	7205.2804	-11.83	51.83	40.00	74.00	34.00	Pass	Н	PK
5	10378.4919	-6.32	47.01	40.69	74.00	33.31	Pass	Н	PK
6	12529.6353	-4.62	48.40	43.78	74.00	30.22	Pass	Н	PK
7	1397.6398	1.38	40.34	41.72	74.00	32.28	Pass	V	PK
8	1922.6923	4.15	37.87	42.02	74.00	31.98	Pass	V	PK
9	3199.0133	-20.35	62.02	41.67	74.00	32.33	Pass	V	PK
10	4804.1203	-16.23	55.02	38.79	74.00	35.21	Pass	V	PK
11	7206.2804	-11.83	53.84	42.01	74.00	31.99	Pass	V	PK
12	13747.7165	-1.70	45.81	44.11	74.00	29.89	Pass	V	PK

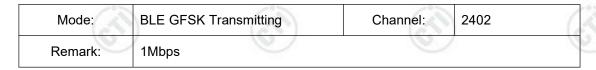
Mo	de:		2.4G GFSK Tra	insmitting		Channel:		2458 MHz	2
N	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1292.8293	1.04	39.02	40.06	74.00	33.94	Pass	Н	PK
2	1809.4809	3.35	37.76	41.11	74.00	32.89	Pass	Н	PK
3	4350.09	-17.14	53.70	36.56	74.00	37.44	Pass	Н	PK
4	5839.1893	-13.59	51.36	37.77	74.00	36.23	Pass	Н	PK
5	8928.3952	-9.00	49.17	40.17	74.00	33.83	Pass	Н	PK
6	12501.6334	-4.82	48.16	43.34	74.00	30.66	Pass	Н	PK
7	1158.8159	0.82	39.35	40.17	74.00	33.83	Pass	V	PK
8	1828.0828	3.50	38.75	42.25	74.00	31.75	Pass	V	PK
9	4916.1277	-16.14	53.37	37.23	74.00	36.77	Pass	V	PK
10	7373.2916	-11.56	54.23	42.67	74.00	31.33	Pass	V	PK
1	10249.4833	-6.80	49.36	42.56	74.00	31.44	Pass	V	PK
12	14393.7596	1.11	43.43	44.54	74.00	29.46	Pass	V	PK

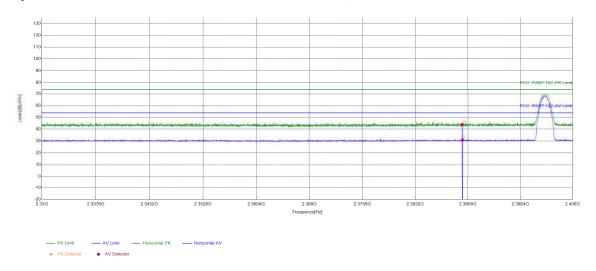
Report No.: EED32P80600802 Page 26 of 38

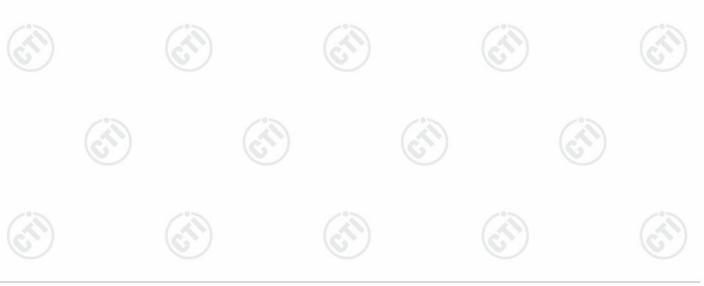
		10%		20%		20%			0.50	
	Mode	:		2.4G GFSK Tra	nsmitting		Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1229.623	0.88	39.47	40.35	74.00	33.65	Pass	Н	PK
	2	1792.6793	3.25	38.55	41.80	74.00	32.20	Pass	Н	PK
	3	3883.0589	-19.12	54.31	35.19	74.00	38.81	Pass	Н	PK
	4	6451.2301	-12.77	51.29	38.52	74.00	35.48	Pass	Н	PK
	5	8880.392	-9.26	49.04	39.78	74.00	34.22	Pass	Н	PK
	6	12426.6284	-4.72	48.33	43.61	74.00	30.39	Pass	Н	PK
	7	1319.832	1.13	39.53	40.66	74.00	33.34	Pass	V	PK
Ī	8	1881.4881	3.89	38.32	42.21	74.00	31.79	Pass	V	PK
Ī	9	3191.0127	-20.37	59.75	39.38	74.00	34.62	Pass	V	PK
Ī	10	4959.1306	-15.98	54.24	38.26	74.00	35.74	Pass	V	PK
3	11	7440.296	-11.34	54.00	42.66	74.00	31.34	Pass	V	PK
V	12	10854.5236	-6.31	47.77	41.46	74.00	32.54	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

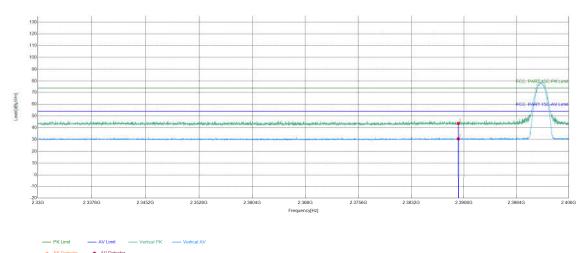


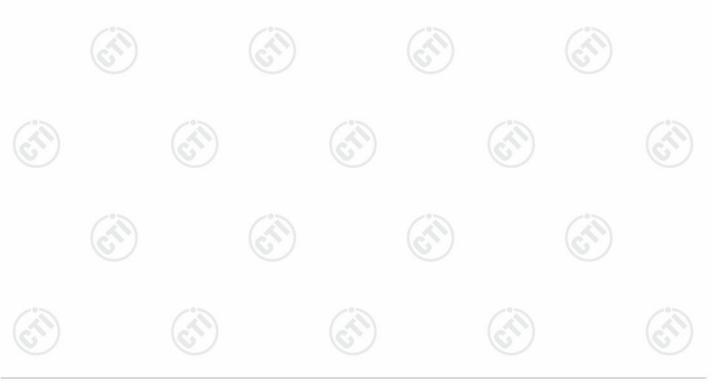



Restricted bands:

Test plot as follows:

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	38.36	44.13	74.00	29.87	PASS	Horizontal	PK
Ī	2	2390	5.77	25.03	30.80	54.00	23.20	PASS	Horizontal	AV

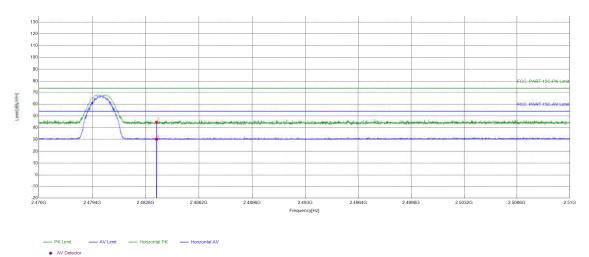


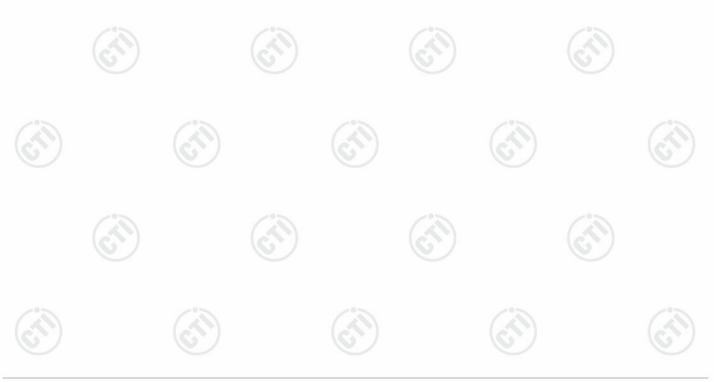


Page 28 of 38

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	1Mbps		

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2390	5.77	37.91	43.68	74.00	30.32	PASS	Vertical	PK
	2	2390	5.77	24.83	30.60	54.00	23.40	PASS	Vertical	AV

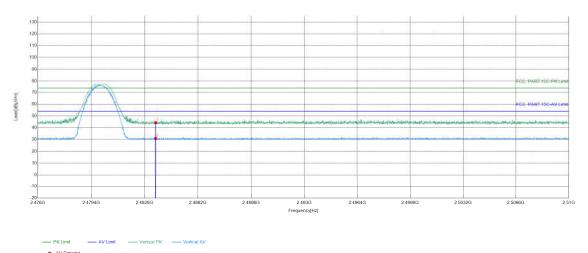


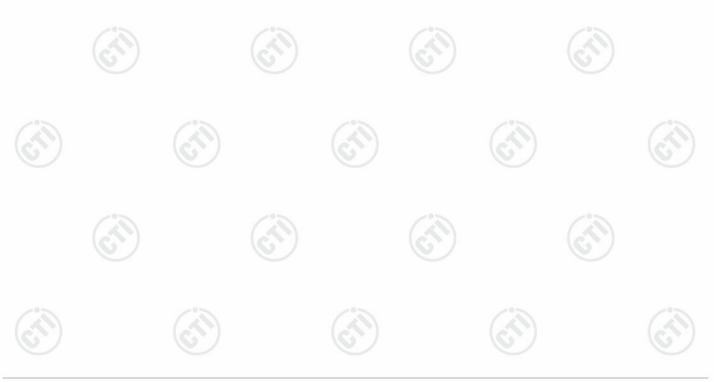


Page 29 of 38

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	1Mbps		

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ſ	1	2483.5	6.57	38.09	44.66	74.00	29.34	PASS	Horizontal	PK
Ī	2	2483.5	6.57	23.75	30.32	54.00	23.68	PASS	Horizontal	AV

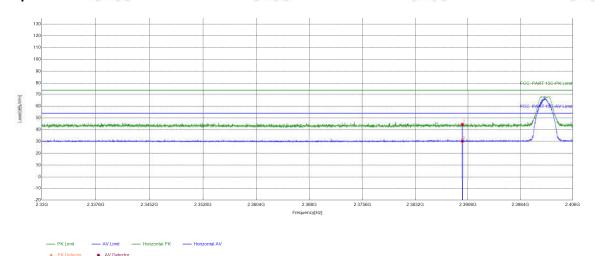


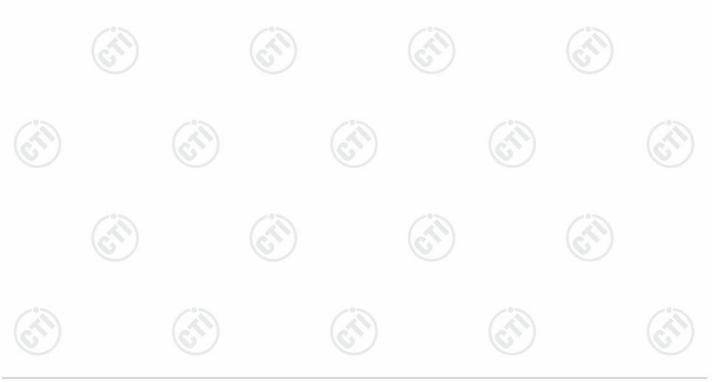


Page 30 of 38

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	1Mbps		

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	37.80	44.37	74.00	29.63	PASS	Vertical	PK
2	2483.5	6.57	24.27	30.84	54.00	23.16	PASS	Vertical	AV

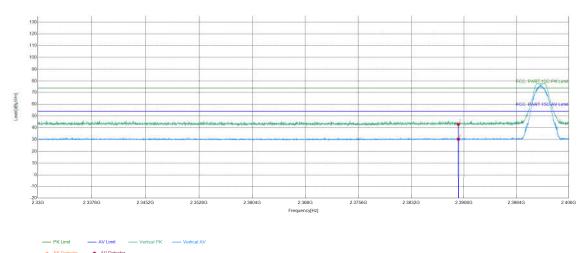


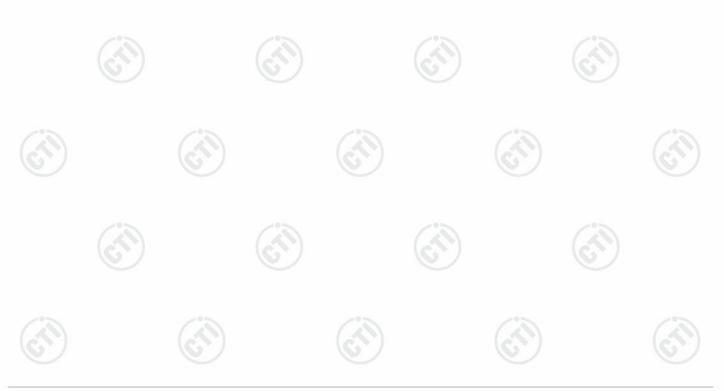


Page 31 of 38

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	2Mbps		

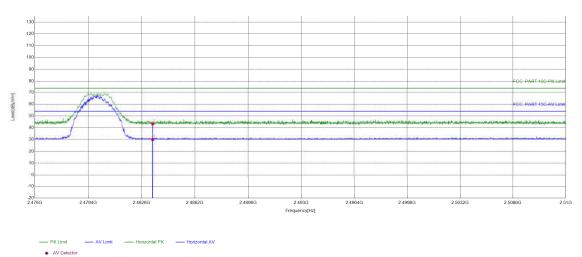
Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390	5.77	38.76	44.53	74.00	29.47	PASS	Horizontal	PK		
2	2390	5.77	24.60	30.37	54.00	23.63	PASS	Horizontal	AV		

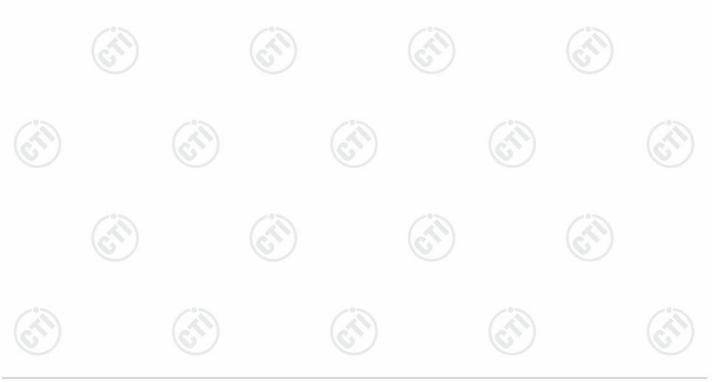




Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	2Mbps		

	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
Ī	1	2390	5.77	37.20	42.97	74.00	31.03	PASS	Vertical	PK		
	2	2390	5.77	24.54	30.31	54.00	23.69	PASS	Vertical	AV		

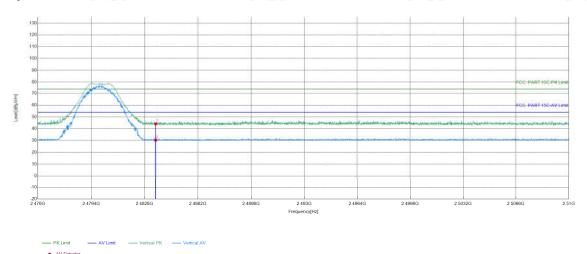




Page 33 of 38

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	2Mbps		

	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
ſ	1	2483.5	6.57	36.76	43.33	74.00	30.67	PASS	Horizontal	PK		
	2	2483.5	6.57	23.46	30.03	54.00	23.97	PASS	Horizontal	AV		



Report No.: EED32P80600802

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	2Mbps		

Test Graph

Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2483.5	6.57	37.62	44.19	74.00	29.81	PASS	Vertical	PK			
2	2483.5	6.57	23.84	30.41	54.00	23.59	PASS	Vertical	AV			

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 35 of 38

Appendix BLE

Refer to Appendix: 2.4G of EED32P80600802.

