

TEST REPORT

- Product Trade mark Model/Type reference Serial Number **Report Number** FCC ID Date of Issue **Test Standards Test result**
- AM RGB 65 :

- : AM28
- : N/A
- : EED32Q80671701
- : 2A3FY-AM28
- Jul. 02, 2024
- 47 CFR Part 15 Subpart C
- PASS

Prepared for:

Angry Miao Technology Co., Limited 2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Firazer. Lo Zhenxia Wen Reviewed by: Zhenxia Wen Frazer Li Lavon N Date: Jul. 02, 2024 Aaron Ma Check No.: 1856210524

Hotline:400-6788-333

Report Seal

Page 2 of 49

2	Version					
	Version No.	Date		Descriptio	on	
(1)	00	ul. 02, 2024		Original		
L		(A)	(A)		(A)	

Page 3 of 49

2 VERSION			
3 CONTENT			
4 TEST SUMMARY			
5 GENERAL INFORMATION			
 5.1 CLIENT INFORMATION	Ттร		<u>.</u>
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASURE	MENT DATA	<u> </u>	
 7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT 7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL D 7.6 BAND EDGE MEASUREMENTS AN 7.7 RADIATED SPURIOUS EMISSION 	POWER ENSITY ND CONDUCTED SPURIOUS EM	ISSION	
8 APPENDIX BLUETOOTH LE			
9 PHOTOGRAPHS OF TEST SETU			

4 Test Summary

Page 4 of 49

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Angry Miao Technology Co., Limited	
Address of Applicant:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China	
Manufacturer:	Angry Miao Technology Co., Limited	2
Address of Manufacturer:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China	
Factory:	Angry Miao Technology Co., Limited	
Address of Factory:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China	

Page 5 of 49

5.2 General Description of EUT

Product Name:	AM RGB 65						
Model No.:	AM28		(3		1		
Trade mark:	Angry Miao	(\mathcal{O})	6)	67		
Product Type:	🗌 Mobile	⊠ Portable	Fix Location	6 	\smile		
Operation Frequency:	2402MHz~24	480MHz					
Modulation Type:	GFSK		13	10			
Transfer Rate:	🛛 1Mbps 🛛	2Mbps	(25)	(25)			
Number of Channel:	40		U	U			
Antenna Type:	PIFA Antenna						
Antenna Gain:	1.05dBi	~	~		25		
Power Supply:	Battery:	DC 3.8V)			
Test Voltage:	DC 3.3V						
Sample Received Date:	May 21, 2024						
Sample tested Date:	May 30, 2024 to Jun. 18, 2024						

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

(\mathcal{S})	Channel	Frequency	
The	lowest channel (CH0)	2402MHz	
The	middle channel (CH19)	2440MHz	
The	highest channel (CH39)	2480MHz	(2)

5.3 Test Configuration

EUT Test Software	e Settings:			
Software:	nRF_DT	M.exe	5)	(25)
EUT Power Grade:	Default (selected		et parameters and o	cannot be changed and
Use test software to transmitting of the I	•	ncy, the middle frequer	ncy and the highest t	frequency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	CH0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	CH39	2480
Mode d	GFSK	2Mbps	CH0	2402
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH39	2480

5.4 Test Environment

	Operating Environment	::				
260	Radiated Spurious Emi	ssions:				
AN.	Temperature:	22~25.0 °C	(9)	(2)		(2)
2	Humidity:	50~55 % RH		(U)		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	(\mathcal{O})		(\mathcal{O})	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:	·				
	Temperature:	22~25.0 °C	2	1		13
	Humidity:	50~55 % RH	S.)	$(c^{(n)})$		$(a^{(n)})$
	Atmospheric Pressure:	1010mbar		U		U

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment						
Description	Manufacturer	Model No.	Certification	Supplied by		
Netbook	HP	14-ce0061TX	FCC&CE	СТІ		
Netbook	HP	HP ZHAN-66 Pro	FCC&CE	СТІ		
	S)	A 14 G4	67	6		
Netbook	DELL	Dell G16 7620	FCC&CE	СТІ		

5.6 Test Location

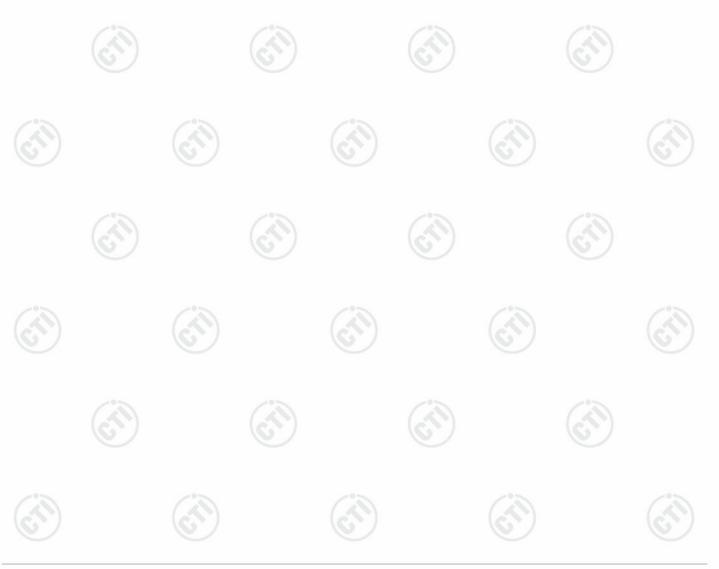
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164



Page 8 of 49

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	PE nower conducted	0.46dB (30MHz-1GHz)	
	RF power, conducted	0.55dB (1GHz-40GHz)	
		3.3dB (9kHz-30MHz)	
3	Dedicted Sourieus emission test	4.3dB (30MHz-1GHz) 4.5dB (1GHz-18GHz)	
3	Radiated Spurious emission test		
		3.4dB (18GHz-40GHz)	
	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

6 Equipment List

		RF te	st system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication test set	R&S	CMW500	107929	06-28-2023	06-27-2024
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-12-2023	12-10-2024
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0	(3)
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025

	Cond	ducted disturba	ance lest		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025
Temperature/ Humidity Indicator	Defu	TH128	/	04-25-2024	04-24-2025
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024
Barometer	changchun	DYM3	1188		
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	/	- 20

Equipment	Manufacturer	Model	Serial No.	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber & Accessory Equipment	Ток	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Multi device	maturo	NCD/070/10711112			(
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/2025
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023 06/13/2024	06/19/2024 06/12/2025
Test software	Fara	EZ-EMC	EMEC-3A1-Pre		

Page 11 of 49

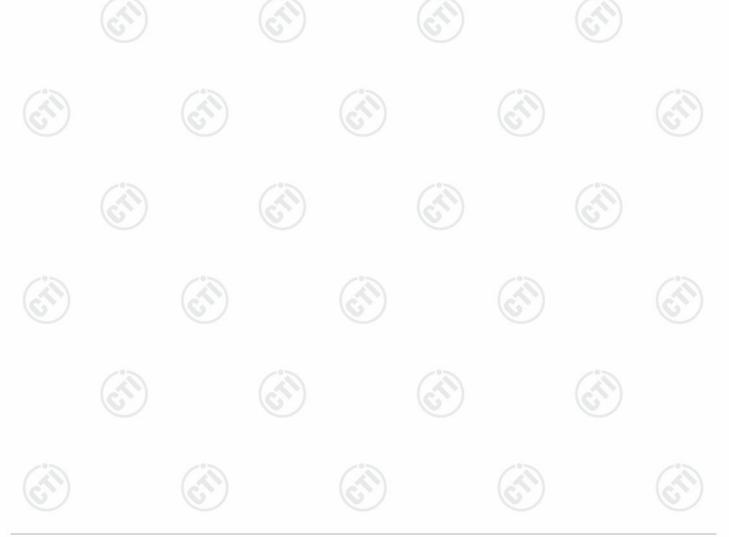
		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		6	
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-12-2024	04-11-2025	
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024	
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(9	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(3	- 0	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	$(\underline{\mathbb{C}})$		
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(- 6	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		9	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001		- 0	
)	67	(C)	N.	67	0	

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

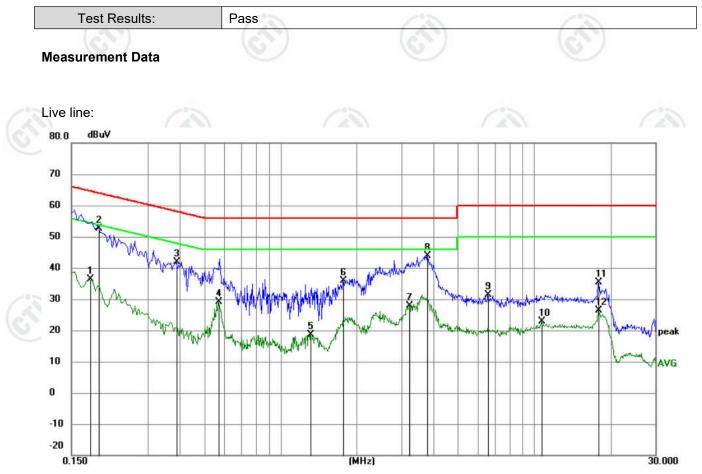
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos

The antenna is PIFA antenna. The best case gain of the antenna is 1.05dBi.

Page 13 of 49

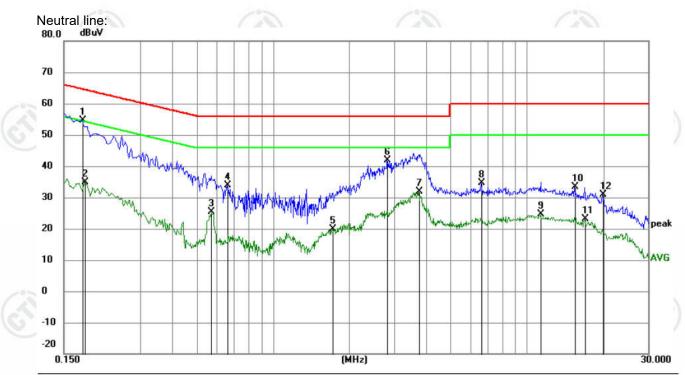
	Test Requirement:	47 CFR Part 15C Section 15.	207	67
	Test Method:	ANSI C63.10: 2013		
	Test Frequency Range:	150kHz to 30MHz		
1	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto	13
6	Limit:	(5)	Limit (c	dBuV)
\sim		Frequency range (MHz)	Quasi-peak	Average
		0.15-0.5	66 to 56*	56 to 46*
		0.5-5	56	46
		5-30	60	50
		* Decreases with the logarithr		00
	Test Setup:			
3		AC Mains	AE	Test Receiver
6.	Test Procedure:	 The mains terminal disturbution The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the r The tabletop EUT was pla ground reference plane. A placed on the horizontal g The test was performed with the EUT shall be 0.4 m vertical ground reference reference plane. The LISI unit under test and bor mounted on top of the gro the closest points of the line 	to AC power source letwork) which provides cables of all other SN 2, which was bonder as the LISN 1 for the was used to connect r ating of the LISN was r aced upon a non-meta and for floor-standing a round reference plane. th a vertical ground ref from the vertical grou plane was bonded N 1 was placed 0.8 m ded to a ground ref und reference plane. T LISN 1 and the EUT. A t was at least 0.8 m from	through a LISN 1 (L s a $50\Omega/50\mu$ H + 5Ω line units of the EUT we do to the ground referen- unit being measured. multiple power cables to not exceeded. Illic table 0.8m above to rrangement, the EUT we ference plane. The rear and reference plane. The to the horizontal group from the boundary of the ference plane for LIS his distance was betwee All other units of the E m the LISN 2.
	Test Mode:	 5) In order to find the maxim and all of the interface ca ANSI C63.10: 2013 on col All modes were tested, only the 	bles must be changed nducted measurement.	according to



Page 14 of 49

Report No. : EED32Q80671701

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
5			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1770	26.36	9.90	36.26	54.63	-18.37	AVG	
19	2	*	0.1914	42.80	9.91	52.71	63.98	-11.27	QP	
-	3		0.3885	32.08	9.76	41.84	58.10	-16.26	QP	
-	4		0.5685	19.37	9.65	29.02	46.00	-16.98	AVG	
-	5		1.3110	8.81	9.74	18.55	46.00	-27.45	AVG	
1	6		1.7700	26.18	9.75	35.93	56.00	-20.07	QP	
-	7		3.2100	18.19	9.79	27.98	46.00	-18.02	AVG	
3	8		3.7860	34.18	9.80	43.98	56.00	-12.02	QP	
<u>}</u> -	9		6.5625	21.47	9.85	31.32	60.00	-28.68	QP	
-	10		10.6889	12.99	9.83	22.82	50.00	-27.18	AVG	
-	11		17.9384	25.37	9.96	35.33	60.00	-24.67	QP	
	12		17.9384	16.54	9.96	26.50	50.00	-23.50	AVG	

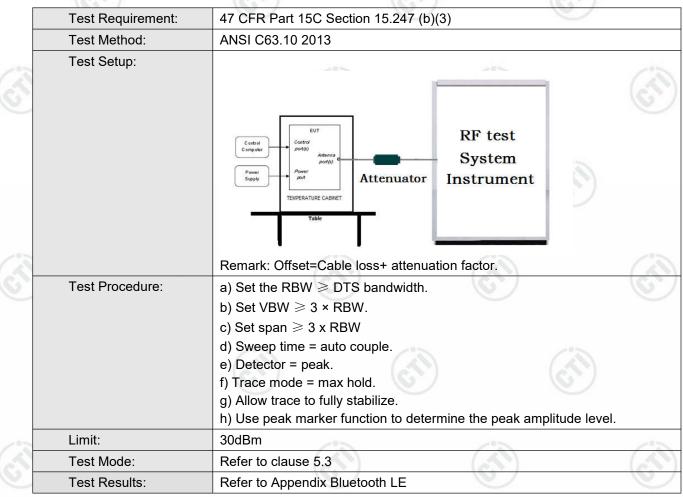

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 49

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
*	0.1770	44.63	9.90	54.53	64.63	-10.10	QP	
	0.1815	25.01	9.90	34.91	54.42	-19.51	AVG	
	0.5730	15.62	9.64	25.26	46.00	-20.74	AVG	
	0.6585	24.05	9.83	33.88	56.00	-22.12	QP	
	1.7160	10.15	9.75	19.90	46.00	-26.10	AVG	
	2.8140	32.01	9.77	41.78	56.00	-14.22	QP	
	3.7410	22.03	9.80	31.83	46.00	-14.17	AVG	
	6.6030	24.66	9.85	34.51	60.00	-25.49	QP	
	11.3460	14.80	9.84	24.64	50.00	-25.36	AVG	
	15.4050	23.46	9.87	33.33	60.00	-26.67	QP	
	16.8495	13.13	9.92	23.05	50.00	-26.95	AVG	
	19.8465	20.86	10.03	30.89	60.00	-29.11	QP	
		MHz * 0.1770 0.1815 0.5730 0.6585 1.7160 2.8140 3.7410 6.6030 11.3460 15.4050 16.8495	Mk. Freq. Level MHz dBuV * 0.1770 44.63 0.1815 25.01 0.5730 15.62 0.6585 24.05 1.7160 10.15 2.8140 32.01 3.7410 22.03 6.6030 24.66 11.3460 14.80 15.4050 23.46 16.8495 13.13	Mk. Freq. Level Factor MHz dBuV dB * 0.1770 44.63 9.90 * 0.1815 25.01 9.90 0.5730 15.62 9.64 0.6585 24.05 9.83 1.7160 10.15 9.75 2.8140 32.01 9.77 3.7410 22.03 9.80 6.6030 24.66 9.85 11.3460 14.80 9.84 15.4050 23.46 9.87 16.8495 13.13 9.92	Mk. Freq. Level Factor ment MHz dBuV dB dBuV * 0.1770 44.63 9.90 54.53 0.1815 25.01 9.90 34.91 0.5730 15.62 9.64 25.26 0.6585 24.05 9.83 33.88 1.7160 10.15 9.75 19.90 2.8140 32.01 9.77 41.78 3.7410 22.03 9.80 31.83 6.6030 24.66 9.85 34.51 11.3460 14.80 9.84 24.64 15.4050 23.46 9.87 33.33 16.8495 13.13 9.92 23.05	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV dBuV * 0.1770 44.63 9.90 54.53 64.63 0.1815 25.01 9.90 34.91 54.42 0.5730 15.62 9.64 25.26 46.00 0.6585 24.05 9.83 33.88 56.00 1.7160 10.15 9.75 19.90 46.00 2.8140 32.01 9.77 41.78 56.00 3.7410 22.03 9.80 31.83 46.00 6.6030 24.66 9.85 34.51 60.00 11.3460 14.80 9.84 24.64 50.00 15.4050 23.46 9.87 33.33 60.00 16.8495 13.13 9.92 23.05 50.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dDU dDU	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB Detector * 0.1770 44.63 9.90 54.53 64.63 -10.10 QP 0.1815 25.01 9.90 34.91 54.42 -19.51 AVG 0.5730 15.62 9.64 25.26 46.00 -20.74 AVG 0.6585 24.05 9.83 33.88 56.00 -22.12 QP 1.7160 10.15 9.75 19.90 46.00 -26.10 AVG 2.8140 32.01 9.77 41.78 56.00 -14.22 QP 3.7410 22.03 9.80 31.83 46.00 -25.49 QP 6.6030 24.66 9.85 34.51 60.00 -25.49 QP 11.3460 14.80 9.84 24.64 50.00 -25.67 QP 15.4050 23.46 <td< td=""></td<>

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 49

7.3 Maximum Conducted Output Power

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

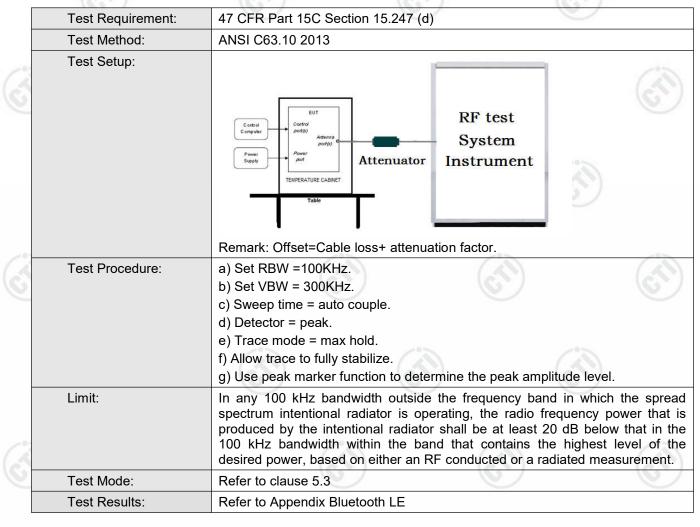
7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Control Computer Supply Fourier Supply TEMPERATURE CABNET Table
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set RBW = 100 kHz.
	 b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

Page 18 of 49

7.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Power Supply TemPERATURE CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
Limit:	≤8.00dBm/3kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE



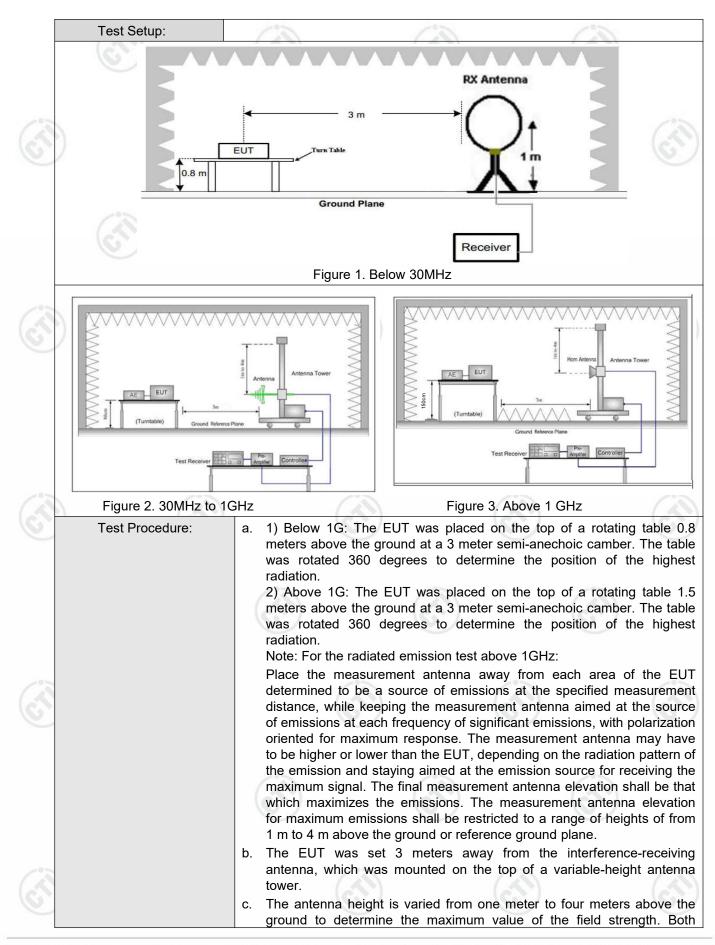
Page 19 of 49

7.6 Band Edge measurements and Conducted Spurious Emission

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 20 of 49

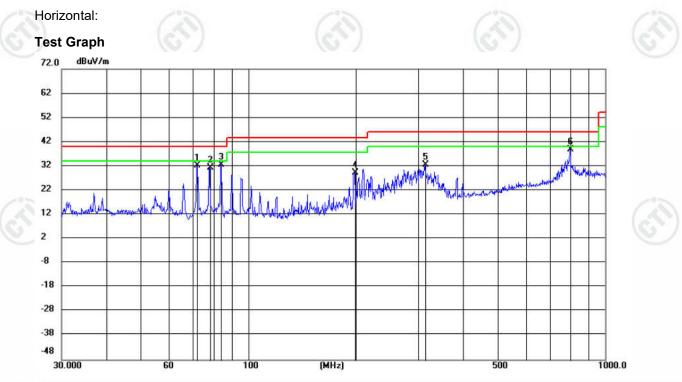
7.7 Radiated Spurious Emission & Restricted bands


	A CAT I							1
	Test Requirement:	47 CFR Part 15C Secti	on 1	15.209 and 1	5.205		C	
	Test Method:	ANSI C63.10 2013						
	Test Site:	Measurement Distance	: 3m	n (Semi-Anec	hoic Cha	mbe	er)	
	Receiver Setup:	Frequency	9	Detector	RB	W	VBW	Remark
9		0.009MHz-0.090MH	lz	Peak	10k	Hz	30kHz	Peak
		0.009MHz-0.090MH	lz	Average	10k	Hz	30kHz	Average
		0.090MHz-0.110MH	lz	Quasi-pea	k 10k	Hz	30kHz	Quasi-peak
		0.110MHz-0.490MH	lz	Peak	10k	Hz	30kHz	Peak
		0.110MHz-0.490MH	lz	Average	10k	Hz	30kHz	Average
		0.490MHz -30MHz		Quasi-pea	k 10k	Hz	30kHz	Quasi-peak
		30MHz-1GHz		Quasi-pea	k 100	kHz	300kHz	Quasi-peak
13			2	Peak	1M	Ηz	3MHz	Peak
6		Above 1GHz		Peak	1M	Ηz	10kHz	Average
	Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m) F	Remark	Measuremen distance (m)
		0.009MHz-0.490MHz	24	100/F(kHz)	-		- 20%	300
		0.490MHz-1.705MHz	24	000/F(kHz)	-		- (8	30
		1.705MHz-30MHz		30	-		N. Contraction of the second s	30
		30MHz-88MHz		100	40.0	Qı	uasi-peak	3
		88MHz-216MHz		150	43.5	Qı	uasi-peak	3
		216MHz-960MHz	9	200	46.0	Qu	uasi-peak	3
S.		960MHz-1GHz)	500	54.0	Qu	uasi-peak	3
		Above 1GHz		500	54.0	ļ	verage	3
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rad	s 20c equip	dB above the oment under	maximul test. This	n pe	rmitted av	erage emissior

CTI华测检测

Report No. : EED32Q80671701

horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the f. limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. Repeat above procedures until all frequencies measured was complete. i. Refer to clause 5.3 Test Mode: Pass Test Results:

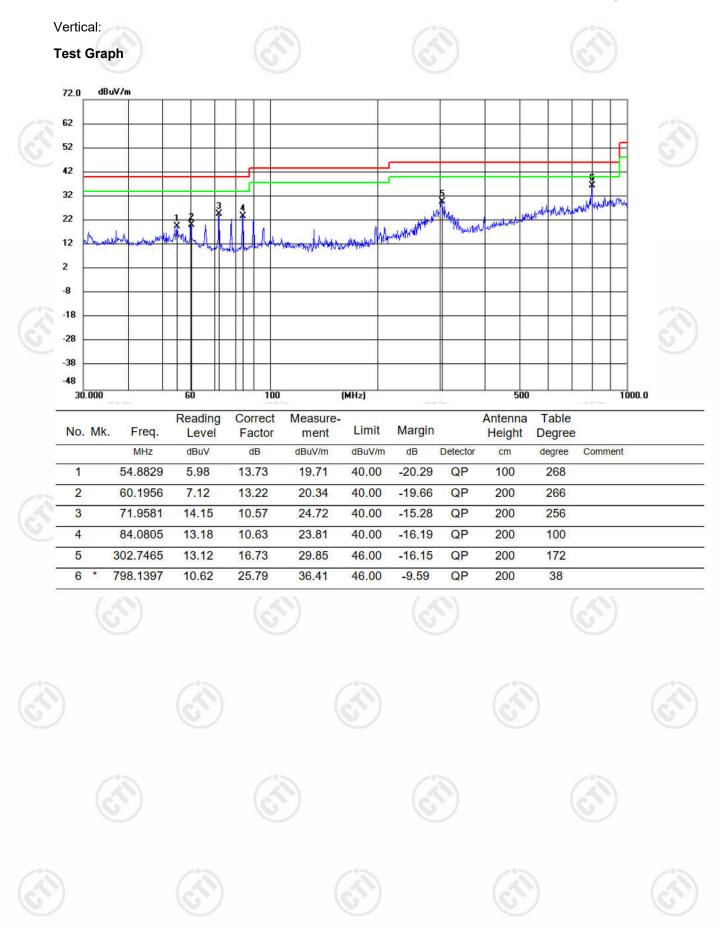


Page 22 of 49

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		72.0463	21.57	10.55	32.12	40.00	-7.88	QP	199	331	
2		78.1662	21.61	9.86	31.47	40.00	-8.53	QP	199	352	
3		84.0952	21.85	10.63	32.48	40.00	-7.52	QP	199	352	
4		198.8318	16.68	12.67	29.35	43.50	-14.15	QP	199	352	
5		313.4408	15.59	16.94	32.53	46.00	-13.47	QP	100	90	
6	*	797.8598	13.21	25.78	38.99	46.00	-7.01	QP	199	193	


Page 23 of 49

S

Page 24 of 49

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

arity Remark
I PK
I PK
/ PK
 / / /

					\sim				
Mode	e:		BLE GFSK Tra	nsmitting		Channel:		2440 MHz	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1445.0445	8.05	37.81	45.86	74.00	28.14	Pass	Н	PK
2	1991.4992	8.99	43.49	52.48	74.00	21.52	Pass	Н	PK
3	5309.1539	-11.91	54.30	42.39	74.00	31.61	Pass	Н	PK
4	6656.2438	-8.17	53.76	45.59	74.00	28.41	Pass	Н	PK
5	7205.2804	-7.82	65.05	57.23	74.00	16.77	Pass	Н	PK
6	7206.2804	-7.81	57.79	49.98	54.00	4.02	Pass	Н	AV
7	13674.7116	5.38	41.32	46.70	74.00	27.30	Pass	Н	PK
8	1352.0352	7.98	38.01	45.99	74.00	28.01	Pass	V	PK
9	1994.6995	8.99	37.43	46.42	74.00	27.58	Pass	V	PK
10	4747.1165	-13.60	50.57	36.97	74.00	37.03	Pass	V	PK
11	7206.2804	-7.81	62.85	55.04	74.00	18.96	Pass	V	PK
12	7206.2804	-7.81	55.57	47.76	54.00	6.24	Pass	V	AV
13	12010.6007	-0.21	47.50	47.29	74.00	26.71	Pass	V	PK
14	15176.8118	7.67	39.65	47.32	74.00	26.68	Pass	V	PK
	(6.2)	•	(C) /		10.7		10	S 1	

Page 26 of 49

-	202						1	10-1-1		
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Conic I	1	1993.2993	8.99	44.60	53.59	74.00	20.41	Pass	н	PK
0	2	4000.0667	-16.51	58.45	41.94	74.00	32.06	Pass	Н	PK
	3	5327.1551	-11.85	53.78	41.93	74.00	32.07	Pass	Н	PK
	4	6636.2424	-8.37	58.03	49.66	74.00	24.34	Pass	Н	PK
	5	11694.5796	-0.18	44.97	44.79	74.00	29.21	Pass	Н	PK
	6	14184.7456	7.19	39.71	46.90	74.00	27.10	Pass	Н	PK
	7	7440.296	-6.29	59.54	53.25	54.00	0.75	Pass	Н	AV
	8	1991.0991	8.99	37.98	46.97	74.00	27.03	Pass	V	PK
	9	4794.1196	-13.46	53.56	40.10	74.00	33.90	Pass	V	PK
	10	5996.1997	-10.95	49.93	38.98	74.00	35.02	Pass	V	PK
3	11	7439.296	-6.30	58.89	52.59	74.00	21.41	Pass	V	PK
	12	9918.4612	-1.46	49.08	47.62	74.00	26.38	Pass	V	PK
-	13	14186.7458	7.18	39.51	46.69	74.00	27.31	Pass	V	PK

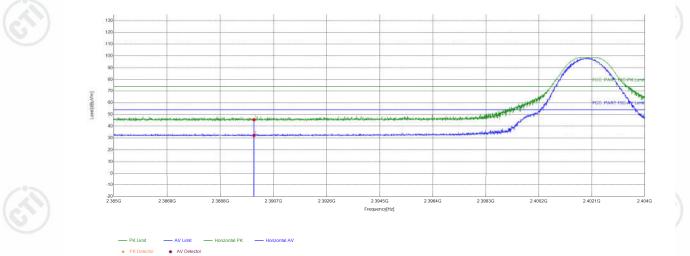
Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Page 27 of 49

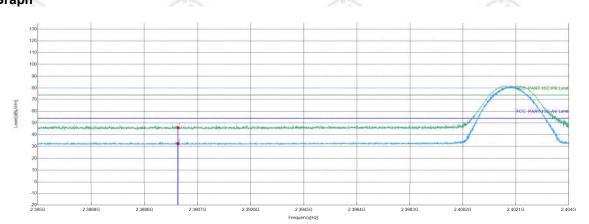


Test plot as follows:

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2024/06/08
Remark	, ©	(C)	S

Test Graph

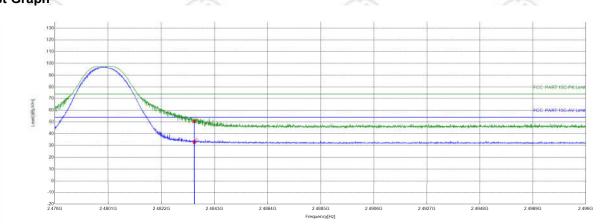
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	35.61	45.57	74.00	28.43	PASS	Horizontal	PK
2	2390	9.96	22.30	32.26	54.00	21.74	PASS	Horizontal	AV



Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
et_Engineer	chenjun	Test_Date	2024/06/08
et_Engineer	chenjun	Test_Date	2024/06/08

Test Graph


		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12		1	2		2°3
Suspect	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	36.04	46.00	74.00	28.00	PASS	Vertical	PK
2	2390	9.96	22.57	32.53	54.00	21.47	PASS	Vertical	AV
	57		(C)		(CT)			ST/	

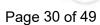






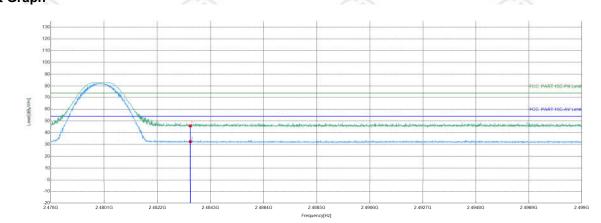

	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer c	chenjun	Test_Date	2024/06/08

### Test Graph




# PK Limit AV Limit Horizontal PK Horizontal AV * AV Detector

1° 20	(J. 1997)		1°2		12		1	2		2°2
<u>S</u>	Suspecte	d List								
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	40.15	50.53	74.00	23.47	PASS	Horizontal	PK
	2	2483.5	10.38	22.30	32.68	54.00	21.32	PASS	Horizontal	AV
-	6			67		6			67)	







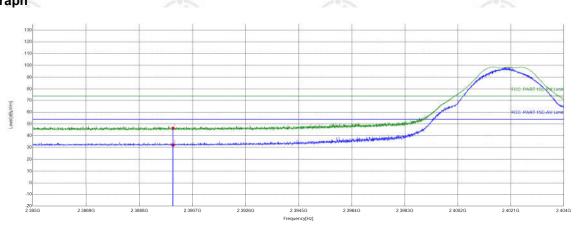

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	chenjun	Test_Date	2024/06/08

### Test Graph



# PK Limit AV Limit Vertical PK Vertical AV * AV Detector

(* D			1°2		12		1	2		2°2
<u>s</u>	Suspecte	d List								
9	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	35.42	45.80	74.00	28.20	PASS	Vertical	PK
	2	2483.5	10.38	22.07	32.45	54.00	21.55	PASS	Vertical	AV
-	6			67		6			ST)	

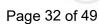






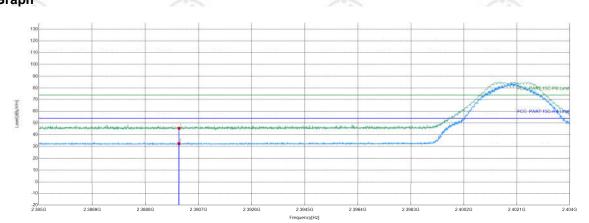

Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz	
Tset_Engineer	chenjun	Test_Date	2024/06/08	6

### Test Graph




# PK Limit — AV Limit — Horizontal PK — Horizontal AV PK Detector AV Detector

		1°2		12		1	2		13
Suspect	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	36.47	46.43	74.00	27.57	PASS	Horizontal	PK
2	2390	9.96	22.12	32.08	54.00	21.92	PASS	Horizontal	AV
	57)		(C)		GT)			(CT)	







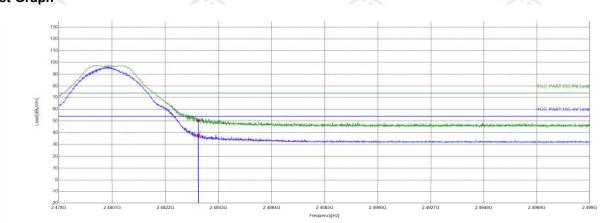

Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2024/06/08

### Test Graph



# PK Limit — AV Limit — Vertical PK — Vertical AV PK Detector AV Detector

		1°2		12		1	2		2°2
Suspect	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	35.53	45.49	74.00	28.51	PASS	Vertical	PK
2	2390	9.96	22.54	32.50	54.00	21.50	PASS	Vertical	AV
	51		(C)	•	(CT)		2	S	



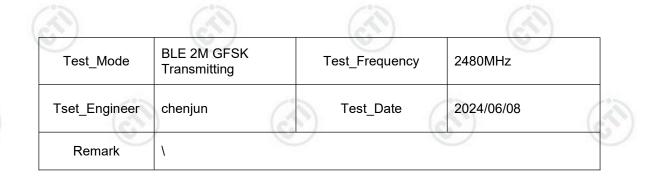




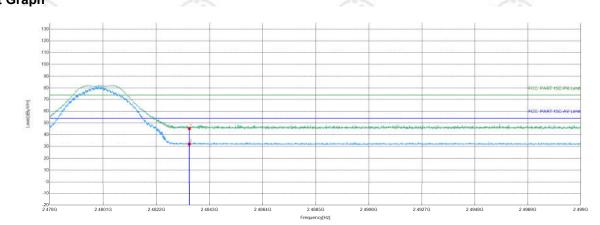

S)		(GN)		
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz	
Tset_Engineer	chenjun	Test_Date	2024/06/08	6
Remark	١			

### Test Graph




# PK Limit AV Limit Horizontal PK Horizontal AV * AV Detector

<* >>	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )		1°2		12		1	2		13
$\leq$	Suspecte	d List								
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	39.81	50.19	74.00	23.81	PASS	Horizontal	PK
	2	2483.5	10.38	27.48	37.86	54.00	16.14	PASS	Horizontal	AV
-	6			67		(C)			S)	










### Test Graph



# * AV Detecto

		1°2		2°2		1	5		13	
Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	10.38	34.92	45.30	74.00	28.70	PASS	Vertical	PK	
2	2483.5	10.38	21.75	32.13	54.00	21.87	PASS	Vertical	AV	
			67		G			GT		

### Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor





Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com