

Report No.: EED32P80965001 Page 1 of 49

TEST REPORT

Product AM Relic 80 Trade mark **Angry Miao**

Model/Type reference AM21 N/A **Serial Number**

Report Number EED32P80965001

FCC ID : 2A3FY-AM21 Date of Issue : Sep. 08, 2023

Test Standards : 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Angry Miao Technology Co., Limited 2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town, Xiangzhou District, Zhuhai, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark chen

favor Ma

Reviewed by:

Tom Chen

Sep. 08, 2023

Aaron Ma

Mark Chen

Check No.: 9811280623

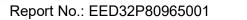
Date:

Report No.: EED32P80965001

Page 2 of 49

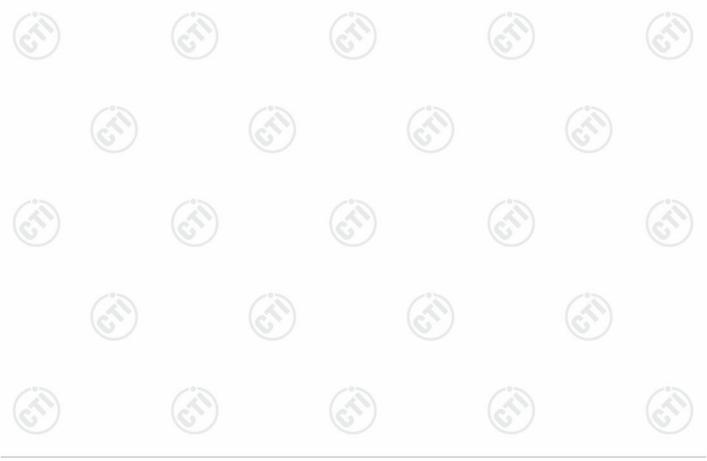
Content

1 CONTENT	2
2 VERSION	3
3 TEST SUMMARY	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
5 EQUIPMENT LIST	9
6 TEST RESULTS AND MEASUREMENT DATA	12
6.1 ANTENNA REQUIREMENT	
7 APPENDIX BLE	36
8 PHOTOGRAPHS OF TEST SETUP	
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	39



2 Version

Version No.	Date	Description		
00	Sep. 08, 2023	3 Original		
	200	*>	(0)	100
((3.5)		(55)	(6,0)

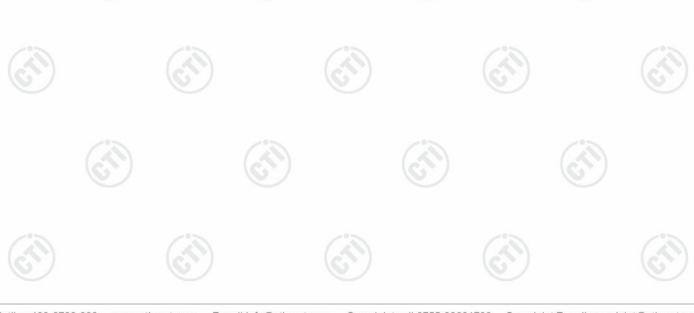

Report No.: EED32P80965001 Page 4 of 49

3 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.


4 General Information

4.1 Client Information

Applicant:	Angry Miao Technology Co., Limited
Address of Applicant:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town,Xiangzhou District, Zhuhai,China
Manufacturer:	Angry Miao Technology Co., Limited
Address of Manufacturer:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town,Xiangzhou District, Zhuhai,China
Factory:	Angry Miao Technology Co., Limited
Address of Factory:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town, Xiangzhou District, Zhuhai, China

4.2 General Description of EUT

Product Name:	AM Relic 80
Model No.:	AM21
Trade mark:	Angry Miao
Device type:	Portable
Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK
Transfer Rate:	⊠ 1Mbps ⊠ 2Mbps
Number of Channel:	40
Antenna Type:	PIFA Antenna
Antenna Gain:	2.0dBi
Power Supply:	Battery DC 3.8V
Test Voltage:	DC 3.8V
Sample Received Date:	Aug. 22, 2023
Sample tested Date:	Aug. 22, 2023 to Aug. 30, 2023

Report No.: EED32P80965001 Page 6 of 49

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Software	Settings:				
Software:	nRF_DTM	(,	((1)	(25)	
EUT Power Grade:	Power Grade: Class2 (Power level is built-in set parameters and cannot be char selected)				
Use test software to transmitting of the E	set the lowest frequency UT.	y, the middle frequ	ency and the highest f	requency keep	
Test Mode	Modulation	Rate	Channel	Frequency(MHz)	
Mode a	GFSK	1Mbps	CH0	2402	
Mode b	GFSK	1Mbps	CH19	2440	
Mode c	GFSK	1Mbps	CH39	2480	
Mode d	GFSK	2Mbps	CH0	2402	
Mode e	Mode e GFSK		CH19	2440	
Mode f	GFSK	2Mbps	CH39	2480	

Report No.: EED32P80965001 Page 7 of 49

4.4 Test Environment

	Operating Environment	:					
	Radiated Spurious Emi	ssions:					
	Temperature:	22~25.0 °C	(4)		(41)		(41)
1	Humidity:	50~55 % RH	0		(0)		6
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C		(3)		(30)	
	Humidity:	50~55 % RH		(0,)		(0,)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C	(3)		(3)		
r)	Humidity:	50~55 % RH	(6,2)		(6,2,2)		(6,7)
	Atmospheric Pressure:	1010mbar					

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	CE&FCC	СТІ
				(3)

4.6 Test Location

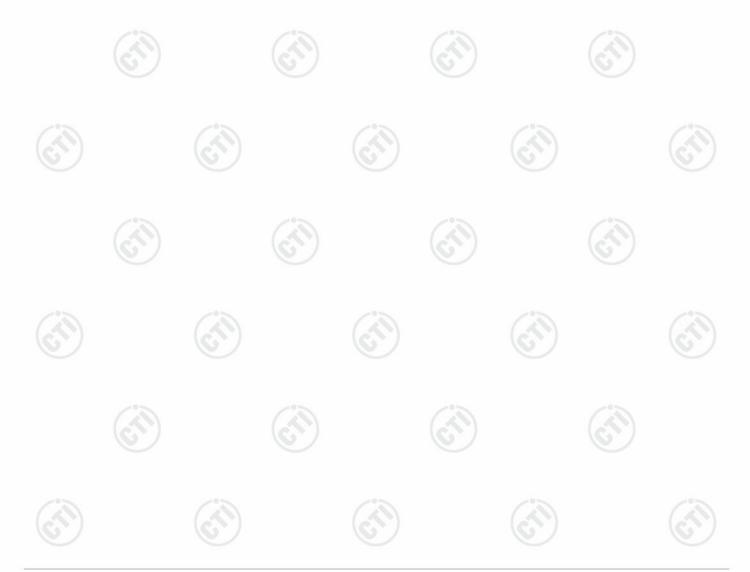
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

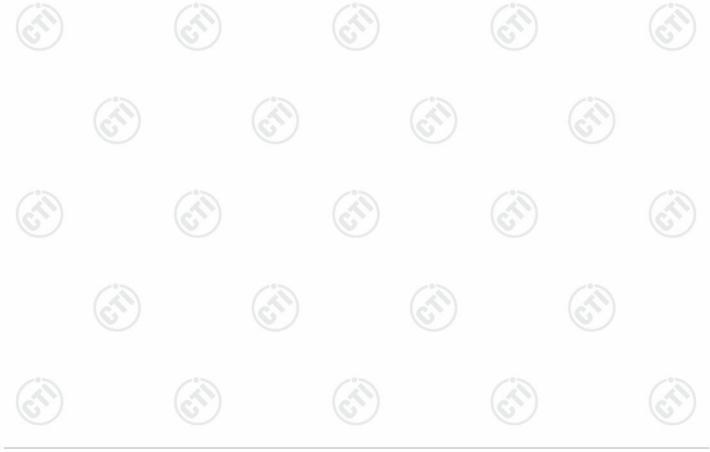
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Churique emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32P80965001 Page 9 of 49

5 Equipment List

RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication tset set	R&S	CMW500	107929	06-28-2023	06-27-2024	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023	
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023	05-31-2024	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(File)		

Conducted disturbance Test									
			Serial	Cal. date	Cal. Due date				
Equipment	Manufacturer Model No.		Number	(mm-dd-yyyy)	(mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024				
Temperature/ Humidity Indicator	Defu	TH128	1		(
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023				
Barometer	changchun	DYM3	1188		/° ~				
Test software	Fara	EZ-EMC	EMC-CON 3A1.1		(C(1))				



Page 10 of 49 Report No.: EED32P80965001

	OW COM-ai	echoic Chamber (2)-	radiated distarb	dilec rest	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024
Multi device Controller	maturo	NCD/070/10711112			- (
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023	06/19/2024
Test software	Fara	EZ-EMC	EMEC-3A1-Pre		J

Report No.: EED32P80965001 Page 11 of 49

				/	100	
		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		6	
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024	
Spectrum Analyzer TRILOG	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024	
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024	
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024	
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(3)	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		(2	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(C)	6	
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(<i></i>	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(D	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(A)	- (2	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No.: EED32P80965001 Page 12 of 49

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

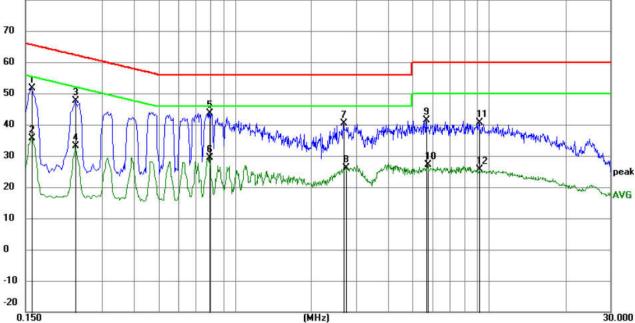
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PIFA Antenna. The best case gain of the antenna is 2.0dBi.

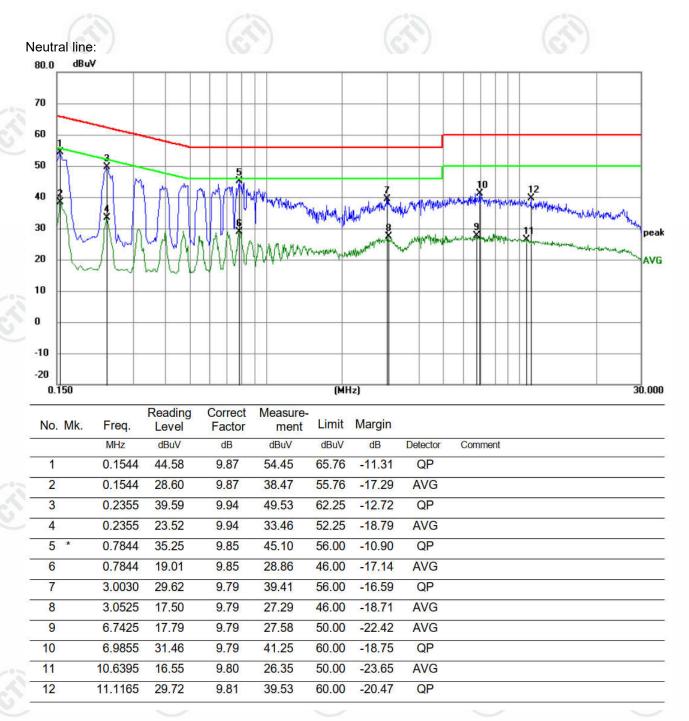
Report No.: EED32P80965001 Page 13 of 49

6.2 AC Power Line Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.2	07	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	weep time=auto	
•		Limit (d	BuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
Limit:	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm		30
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 AC Ground Reference Plane	Test Receiver
 Test Procedure: Exploratory Test Mode:	 The mains terminal disturb room. The EUT was connected to Impedance Stabilization Neimpedance. The power cab connected to a second LIS reference plane in the sam measured. A multiple socke power cables to a single LI exceeded. The tabletop EUT was place ground reference plane. Ar placed on the horizontal ground reference plane. Ar vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated ed. In order to find the maximular equipment and all of the interest ANSI C63.10: 2013 on conditional control of the lowest, middle at type at the lowest, middle 	AC power source throetwork) which provides of all other units of N 2, which was bonded e way as the LISN 1 foet outlet strip was used SN provided the rating and for floor-standing arround reference plane, the a vertical ground reference to a ground reference plane. The to a ground reference plane. The of the LISN 1 and the puipment was at least 0 m emission, the relative erface cables must be ducted measurement.	ough a LISN 1 (Line a 50Ω/50μH + 5Ω linear the EUT were do to the ground or the unit being to connect multiple of the LISN was not considered to the EUSN was not considered to the LISN was not considered to the LISN was not considered to the EUSN
Final Test Mode:	Through Pre-scan, find the mo Only the worst case is recorde		(is)
Test Results:	Pass		

Measurement Data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	41.76	9.87	51.63	65.52	-13.89	QP	
2	0.1590	25.88	9.87	35.75	55.52	-19.77	AVG	
3	0.2355	37.65	9.94	47.59	62.25	-14.66	QP	
4	0.2355	23.14	9.94	33.08	52.25	-19.17	AVG	
5 *	0.7934	33.83	9.85	43.68	56.00	-12.32	QP	
6	0.7934	19.57	9.85	29.42	46.00	-16.58	AVG	
7	2.6700	30.71	9.79	40.50	56.00	-15.50	QP	
8	2.7239	16.36	9.79	26.15	46.00	-19.85	AVG	
9	5.6625	31.56	9.78	41.34	60.00	-18.66	QP	
10	5.7435	17.29	9.78	27.07	50.00	-22.93	AVG	
11	9.1545	30.77	9.78	40.55	60.00	-19.45	QP	
12	9.1725	15.73	9.78	25.51	50.00	-24.49	AVG	



Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Maximum Conducted Output Power

10.0	164 / 164 / 164 /	
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Power ports) Power port Power Table RF test System System Instrument	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set apap ≥ 3 × RBW. 	(C)
	 c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	/ 5
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix BLE	

Report No.: EED32P80965001 Page 17 of 49

6.4 DTS Bandwidth

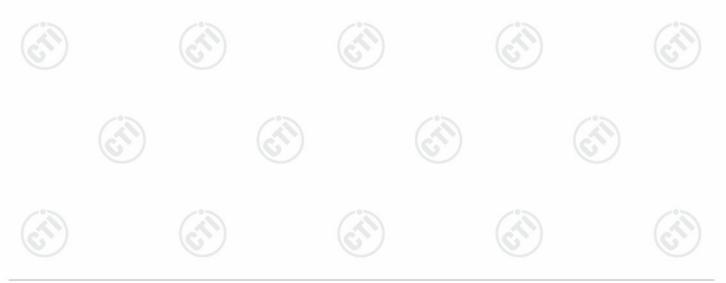
10.0	103 / 103 / 103 /
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Power Supply Power poof Table RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix BLE

6.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10 2013	
Test Setup:	70°	
	Control Control Control Power Power Supply Attenuator TEMPERATURE CABRIET Table	RF test System Instrument
	Remark: Offset=Cable loss+ attenua	ition factor.
Test Procedure:	within the RBW.	bandwidth.
Limit:	≤8.00dBm/3kHz	
Test Mode:	Refer to clause 5.3	-05
Test Results:	Refer to Appendix BLE	

6.6 Band Edge measurements and Conducted Spurious Emission

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Ī	Test Method:	ANSI C63.10 2013
27000	Test Setup:	Control Compules Power Supply Power Table RF test System System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
YAL TO SEE	Test Procedure:	 a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix BLE



6.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	6			
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013						
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	1	Detector	RBW	VBW	Remark		
rtocontor Cotap.	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak		
	Above 4015		Peak	1MHz	3MHz	Peak		
	Above 1GHz		Peak	1MHz	10kHz	Average		
Limit:	Frequency	l	eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m		
	(/ / / / / / / / / / / / / / / / / / /		400/F(kHz)	-	-/*>	300		
			1000/F(kHz)	-	(()	30		
	1.705MHz-30MHz		30	-	-6	30		
	30MHz-88MHz	100		40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz	9	200	46.0	Quasi-peak	3		
	960MHz-1GHz	1	500	54.0	Quasi-peak	3		
	Above 1GHz		500	54.0	Average	3		
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level rad	20d quip	IB above the i oment under to	maximum est. This p	permitted ave	erage emissior		

Report No.: EED32P80965001 Page 21 of 49

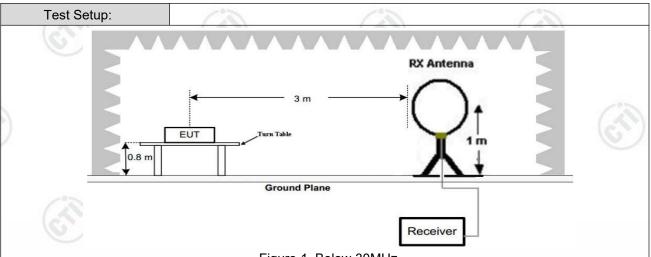
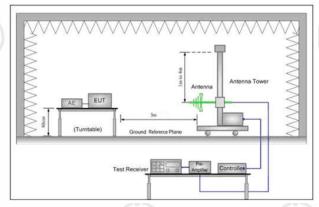



Figure 1. Below 30MHz

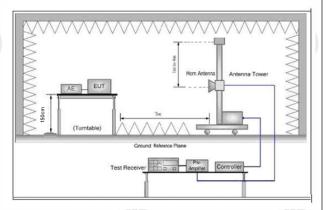


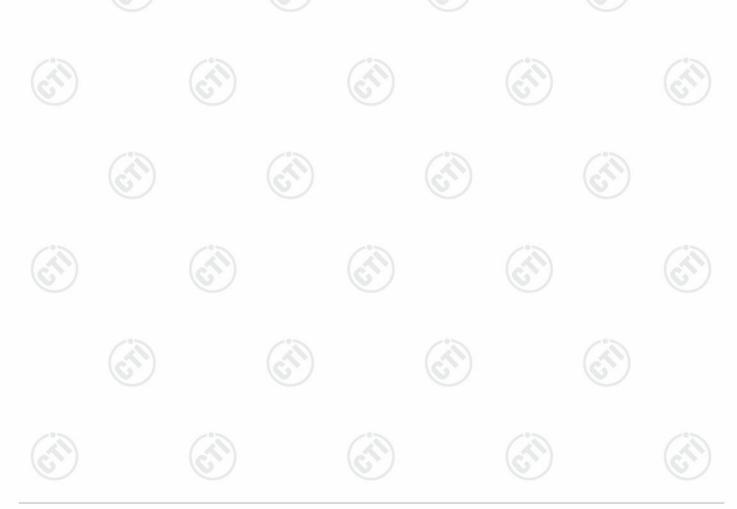
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

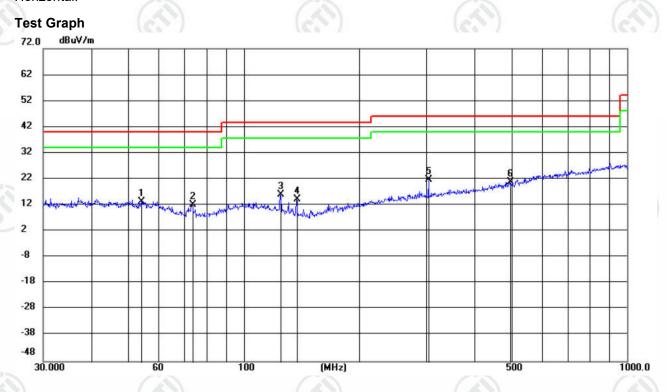
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.

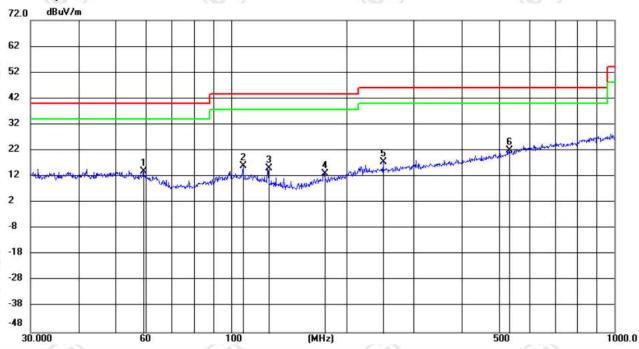


Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode c was recorded in the report.

Horizontal:

No. N	Λk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		54.2609	0.19	13.29	13.48	40.00	-26.52	peak	100	265	
2		73.6041	2.66	9.37	12.03	40.00	-27.97	peak	100	99	
3	ģ	124.9846	5.23	10.68	15.91	43.50	-27.59	peak	199	352	
4	19	137.4684	4.88	9.26	14.14	43.50	-29.36	peak	100	192	
5 *	*	304.2363	5.71	16.13	21.84	46.00	-24.16	peak	100	48	
6		495.3261	1.18	19.56	20.74	46.00	-25.26	peak	199	186	





Report No.: EED32P80965001 Page 24 of 49

Vertical:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	59.1598	1.00	13.00	14.00	40.00	-26.00	peak	100	280	
	107.5666	3.16	12.93	16.09	43.50	-27.41	peak	100	50	
	125.0066	4.62	10.68	15.30	43.50	-28.20	peak	200	99	
	175.0368	1.96	11.23	13.19	43.50	-30.31	peak	100	164	
	249.9942	3.15	14.26	17.41	46.00	-28.59	peak	200	99	
*	530.8454	1.69	20.45	22.14	46.00	-23.86	peak	100	29	
		MHz 59.1598 107.5666 125.0066 175.0368 249.9942	Mk. Freq. Level MHz dBuV 59.1598 1.00 107.5666 3.16 125.0066 4.62 175.0368 1.96 249.9942 3.15	Mk. Freq. Level Factor MHz dBuV dB 59.1598 1.00 13.00 107.5666 3.16 12.93 125.0066 4.62 10.68 175.0368 1.96 11.23 249.9942 3.15 14.26	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 59.1598 1.00 13.00 14.00 107.5666 3.16 12.93 16.09 125.0066 4.62 10.68 15.30 175.0368 1.96 11.23 13.19 249.9942 3.15 14.26 17.41	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m 40.00 4	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 59.1598 1.00 13.00 14.00 40.00 -26.00 107.5666 3.16 12.93 16.09 43.50 -27.41 125.0066 4.62 10.68 15.30 43.50 -28.20 175.0368 1.96 11.23 13.19 43.50 -30.31 249.9942 3.15 14.26 17.41 46.00 -28.59	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m<	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 59.1598 1.00 13.00 14.00 40.00 -26.00 peak 100 107.5666 3.16 12.93 16.09 43.50 -27.41 peak 100 125.0066 4.62 10.68 15.30 43.50 -28.20 peak 200 175.0368 1.96 11.23 13.19 43.50 -30.31 peak 100 249.9942 3.15 14.26 17.41 46.00 -28.59 peak 200	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 59.1598 1.00 13.00 14.00 40.00 -26.00 peak 100 280 107.5666 3.16 12.93 16.09 43.50 -27.41 peak 100 50 125.0066 4.62 10.68 15.30 43.50 -28.20 peak 200 99 175.0368 1.96 11.23 13.19 43.50 -30.31 peak 100 164 249.9942 3.15 14.26 17.41 46.00 -28.59 peak 200 99

Radiated Spurious Emission above 1GHz:

BLE_1M:

Mode	:		BLE GFSK Trai	nsmitting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1335.8336	1.18	38.32	39.50	74.00	34.50	Pass	Н	PK
2	1752.6753	3.12	38.15	41.27	74.00	32.73	Pass	Н	PK
3	3197.0131	-20.36	59.46	39.10	74.00	34.90	Pass	Н	PK
4	4803.1202	-16.23	70.29	54.06	74.00	19.94	Pass	Н	PK
5	4804.1203	-16.23	60.95	44.72	54.00	9.28	Pass	Н	AV
6	7206.2804	-11.83	62.94	51.11	74.00	22.89	Pass	Н	PK
7	9607.4405	-7.37	50.65	43.28	74.00	30.72	Pass	Н	PK
8	1319.2319	1.12	37.98	39.10	74.00	34.90	Pass	V	PK
9	1824.2824	3.46	37.42	40.88	74.00	33.12	Pass	V	PK
10	3190.0127	-20.37	57.85	37.48	74.00	36.52	Pass	V	PK
11	4803.1202	-16.23	73.40	57.17	74.00	16.83	Pass	V	PK
12	4805.1203	-16.23	66.88	50.65	54.00	3.35	Pass	V	AV
13	7205.2804	-11.83	64.48	52.65	74.00	21.35	Pass	V	PK
14	9608.4406	-7.37	50.53	43.16	74.00	30.84	Pass	V	PK

Mod	de:		BLE GFSK Tra	nsmitting		Channel:		2440 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1374.4374	1.30	38.22	39.52	74.00	34.48	Pass	Н	PK
2	1714.6715	2.99	38.25	41.24	74.00	32.76	Pass	Н	PK
3	3327.0218	-19.91	58.72	38.81	74.00	35.19	Pass	Н	PK
4	4879.1253	-16.21	70.30	54.09	74.00	19.91	Pass	Н	PK
5	4881.1254	-16.21	65.33	49.12	54.00	4.88	Pass	Н	AV
6	7319.288	-11.65	57.06	45.41	74.00	28.59	Pass	Н	PK
7	11328.5552	-6.48	50.05	43.57	74.00	30.43	Pass	Н	PK
8	1397.2397	1.38	39.41	40.79	74.00	33.21	Pass	V	PK
9	1841.2841	3.59	38.03	41.62	74.00	32.38	Pass	V	PK
10	3189.0126	-20.37	59.80	39.43	74.00	34.57	Pass	V	PK
11	4879.1253	-16.21	70.26	54.05	74.00	19.95	Pass	V	PK
12	4881.1254	-16.21	65.53	49.32	54.00	4.68	Pass	V	AV
13	7319.288	-11.65	57.12	45.47	74.00	28.53	Pass	V	PK
14	12508.6339	-4.77	48.84	44.07	74.00	29.93	Pass	V	PK

Report No.: EED32P80965001 Page 26 of 49

	200		20%			20%			
Mode	:		BLE GFSK Trai	nsmitting		Channel:		2480 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1389.2389	1.36	38.25	39.61	74.00	34.39	Pass	Н	PK
2	1854.0854	3.69	37.70	41.39	74.00	32.61	Pass	Н	PK
3	3316.0211	-19.86	56.81	36.95	74.00	37.05	Pass	Н	PK
4	4960.1307	-15.97	71.88	55.91	74.00	18.09	Pass	Н	PK
5	4961.1307	-15.97	66.89	50.92	54.00	3.08	Pass	Н	AV
6	7441.2961	-11.34	57.75	46.41	74.00	27.59	Pass	Н	PK
7	12015.601	-5.34	48.85	43.51	74.00	30.49	Pass	Н	PK
8	1439.4439	1.42	39.17	40.59	74.00	33.41	Pass	V	PK
9	1841.0841	3.59	37.65	41.24	74.00	32.76	Pass	V	PK
10	3421.0281	-20.16	55.93	35.77	74.00	38.23	Pass	V	PK
11	4960.1307	-15.97	70.34	54.37	74.00	19.63	Pass	V	PK
12	4961.1307	-15.97	65.42	49.45	54.00	4.55	Pass	V	AV
13	7439.296	-11.34	57.36	46.02	74.00	27.98	Pass	V	PK
14	11383.5589	-6.21	48.28	42.07	74.00	31.93	Pass	V	PK

BLE_2M:

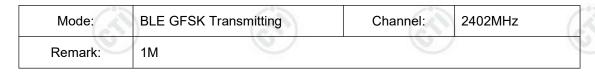
Mode):		BLE GFSK Trai	nsmitting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1404.6405	1.39	38.25	39.64	74.00	34.36	Pass	Н	PK
2	1741.4741	3.08	38.76	41.84	74.00	32.16	Pass	Н	PK
3	3192.0128	-20.37	58.67	38.30	74.00	35.70	Pass	Н	PK
4	4803.1202	-16.23	68.24	52.01	74.00	21.99	Pass	Н	PK
5	7204.2803	-11.84	58.81	46.97	74.00	27.03	Pass	Н	PK
6	12346.6231	-5.24	48.94	43.70	74.00	30.30	Pass	Н	PK
7	1463.0463	1.44	38.42	39.86	74.00	34.14	Pass	V	PK
8	1902.0902	4.04	37.82	41.86	74.00	32.14	Pass	V	PK
9	3190.0127	-20.37	59.14	38.77	74.00	35.23	Pass	V	PK
10	4805.1203	-16.23	68.06	51.83	74.00	22.17	Pass	V	PK
11	7204.2803	-11.84	58.06	46.22	74.00	27.78	Pass	V	PK
12	11847.5898	-5.97	49.12	43.15	74.00	30.85	Pass	V	PK

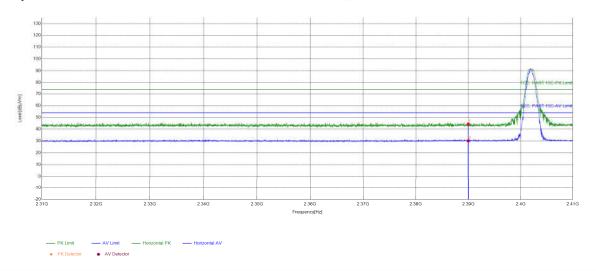
Report No.: EED32P80965001 Page 27 of 49

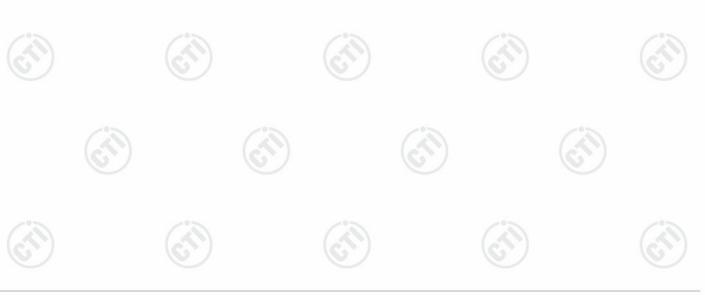
					/ //			100	
Mode	: :		BLE GFSK Trai	nsmitting		Channel:		2440 MHz	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1467.2467	1.45	39.19	40.64	74.00	33.36	Pass	Н	PK
2	1849.0849	3.64	38.08	41.72	74.00	32.28	Pass	Н	PK
3	3585.039	-20.32	57.50	37.18	74.00	36.82	Pass	Н	PK
4	4879.1253	-16.21	70.81	54.60	74.00	19.40	Pass	Н	PK
5	4880.1253	-16.21	62.17	45.96	54.00	8.04	Pass	Н	AV
6	7321.2881	-11.65	56.02	44.37	74.00	29.63	Pass	Н	PK
7	12572.6382	-4.31	49.57	45.26	74.00	28.74	Pass	Н	PK
8	1400.44	1.39	38.58	39.97	74.00	34.03	Pass	V	PK
9	1850.085	3.66	38.58	42.24	74.00	31.76	Pass	V	PK
10	3586.0391	-20.32	57.98	37.66	74.00	36.34	Pass	V	PK
11	4881.1254	-16.21	70.22	54.01	74.00	19.99	Pass	V	PK
12	4880.1253	-16.21	62.71	46.50	54.00	7.50	Pass	V	AV
13	7321.2881	-11.65	56.67	45.02	74.00	28.98	Pass	V	PK
14	13827.7218	-1.72	46.70	44.98	74.00	29.02	Pass	V	PK

Mode	:		BLE GFSK Trai	nsmitting		Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1400.6401	1.39	38.43	39.82	74.00	34.18	Pass	Н	PK
2	1840.6841	3.59	37.79	41.38	74.00	32.62	Pass	Н	PK
3	3820.0547	-19.21	55.51	36.30	74.00	37.70	Pass	Н	PK
4	4959.1306	-15.98	70.40	54.42	74.00	19.58	Pass	Н	PK
5	4960.1307	-15.97	63.65	47.68	54.00	6.32	Pass	Н	AV
6	7440.296	-11.34	57.59	46.25	74.00	27.75	Pass	Н	PK
7	11959.5973	-5.48	49.25	43.77	74.00	30.23	Pass	Н	PK
8	1329.2329	1.16	38.59	39.75	74.00	34.25	Pass	V	PK
9	1786.0786	3.23	37.86	41.09	74.00	32.91	Pass	V	PK
10	3809.0539	-19.22	54.52	35.30	74.00	38.70	Pass	V	PK
11	4959.1306	-15.98	69.37	53.39	74.00	20.61	Pass	V	PK
12	7438.2959	-11.35	56.74	45.39	74.00	28.61	Pass	V	PK
13	12617.6412	-4.25	48.10	43.85	74.00	30.15	Pass	V	PK

Remark:

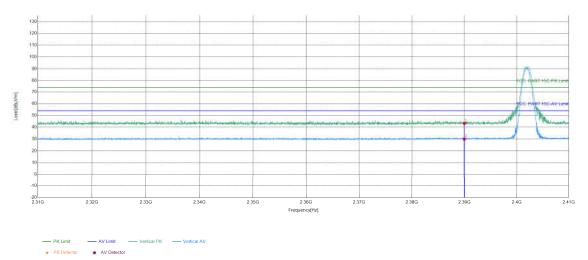

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



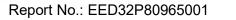

Restricted bands:

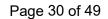
Test plot as follows:

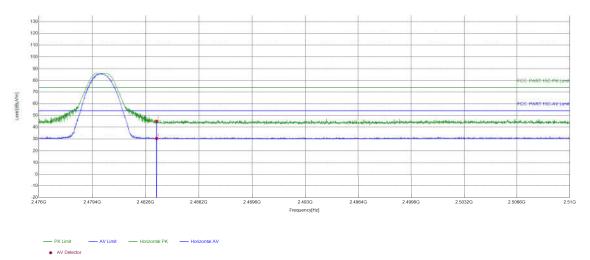


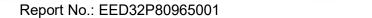

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	38.65	44.42	74.00	29.58	PASS	Horizontal	PK
Ī	2	2390	5.77	24.38	30.15	54.00	23.85	PASS	Horizontal	AV

Mode:	BLE GFSK Transmitting	Channel:	2402MHz
Remark:	1M		

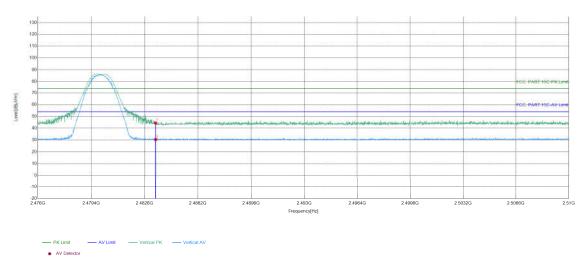


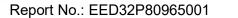

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2390	5.77	37.53	43.30	74.00	30.70	PASS	Vertical	PK
	2	2390	5.77	24.18	29.95	54.00	24.05	PASS	Vertical	AV


Page 29 of 49

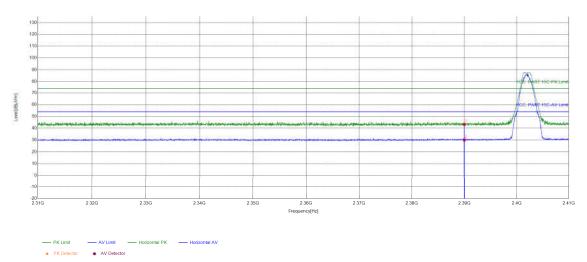

Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	1M		

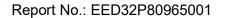
	Suspected List											
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	2483.5	6.57	38.58	45.15	74.00	28.85	PASS	Horizontal	PK		
	2	2483.5	6.57	23.92	30.49	54.00	23.51	PASS	Horizontal	AV		

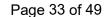



Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	1M		

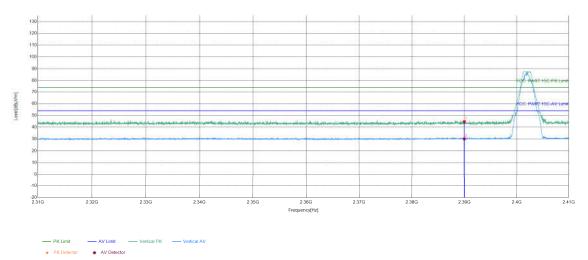
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	37.84	44.41	74.00	29.59	PASS	Vertical	PK
2	2483.5	6.57	23.85	30.42	54.00	23.58	PASS	Vertical	AV

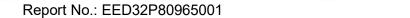


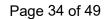

Mode:	BLE GFSK Transmitting	Channel:	2402MHz
Remark:	2M		



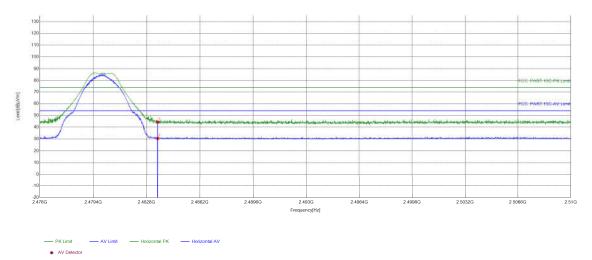
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2390	5.77	37.62	43.39	74.00	30.61	PASS	Horizontal	PK
	2	2390	5.77	24.29	30.06	54.00	23.94	PASS	Horizontal	AV

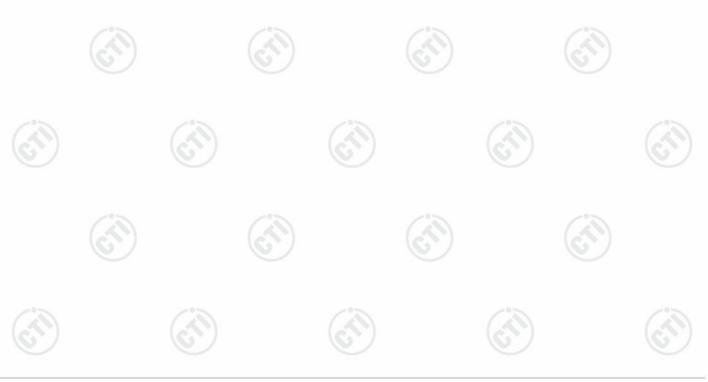



Mode:	BLE GFSK Transmitting	Channel:	2402MHz
Remark:	2M		



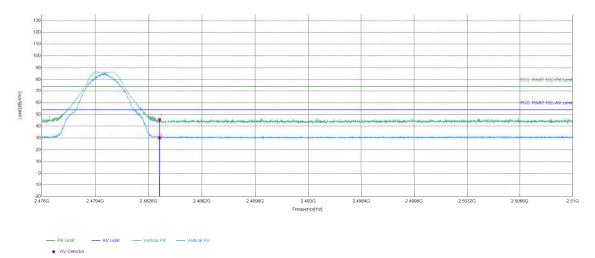
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2390	5.77	38.96	44.73	74.00	29.27	PASS	Vertical	PK
	2	2390	5.77	24.36	30.13	54.00	23.87	PASS	Vertical	AV





Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	2M		

	Suspecte	d List								
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	37.79	44.36	74.00	29.64	PASS	Horizontal	PK
	2	2483.5	6.57	23.95	30.52	54.00	23.48	PASS	Horizontal	AV



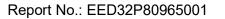
Report No.: EED32P80965001 Page 35 of 49

Mode:	BLE GFSK Transmitting	Channel:	2480MHz
Remark:	2M		

Test Graph

	Suspecte	d List								
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	39.20	45.77	74.00	28.23	PASS	Vertical	PK
	2	2483.5	6.57	23.54	30.11	54.00	23.89	PASS	Vertical	AV

Note:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix BLE

Refer to Appendix: Bluetooth LE of EED32P80965001.

