

TEST REPORT

Product AM Sniper2.4 Trade mark **Angry Miao**

Model/Type reference AM20 **Serial Number** N/A

Report Number EED32P80758101

FCC ID 2A3FY-AM20 Date of Issue Jun. 14, 2023

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Angry Miao Technology Co., Limited 2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Mark Chen

Aaron Ma

Reviewed by:

Tom Chen

Date:

Jun. 14, 2023

Check No.: 6312240523

Page 2 of 38 Report No.: EED32P80758101

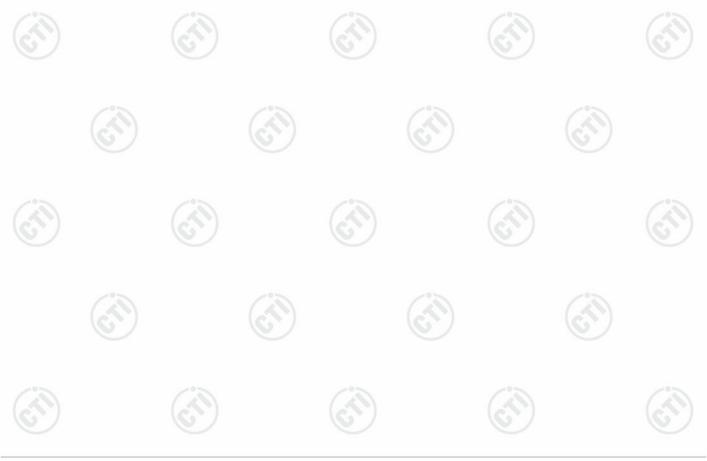
Content

1 COVER PAGE	1
2 CONTENT	
3 VERSION	
4 TEST SUMMARY	
5 GENERAL INFORMATION	
5.1 CLIENT INFORMATION	4
5.2 GENERAL DESCRIPTION OF EUT	 5
5.3 TEST CONFIGURATION5.4 TEST ENVIRONMENT	
5.5 DESCRIPTION OF SUPPORT UNITS	 8
5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	 8
6 EQUIPMENT LIST	 9
7 TEST RESULTS AND MEASUREMENT DATA	12
7.1 ANTENNA REQUIREMENT	13 14 15
7.6 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
8 APPENDIX 2.4G	
9 PHOTOGRAPHS OF TEST SETUP	
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	31

Report No.: EED32P80758101

3 Version

Version No.	Date	6	Description	
00	Jun. 14, 2023		Original	
	*	10	0	
	(2)	(92)	(3)	(67)


Report No. : EED32P80758101 Page 4 of 38

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	N/A	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Angry Miao Technology Co., Limited
Address of Applicant:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China
Manufacturer:	Angry Miao Technology Co., Limited
Address of Manufacturer:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China

5.2 General Description of EUT

Product Name:	AM Sniper2.4	(3)	(1)	
Model No.:	AM20	(67)	(0,0)	
Trade mark:	Angry Miao			
Product Type:	☐ Mobile ☐ Portable			
Test software of EUT:	nRF_DTM	(1)		
Operation Frequency:	2402MHz~2480MHz	(6,7,3)		(6)
Modulation Type:	GFSK			
Number of Channel:	23			
Antenna Type:	PCB Antenna		/°N	
Antenna Gain:	0.35dBi	(6/17)	(61)	
Power Supply:	DC 5V			
Test Voltage:	DC 5V			
Sample Received Date:	May 24, 2023			
Sample tested Date:	May 24, 2023 to Jun. 06, 2	023		(41)

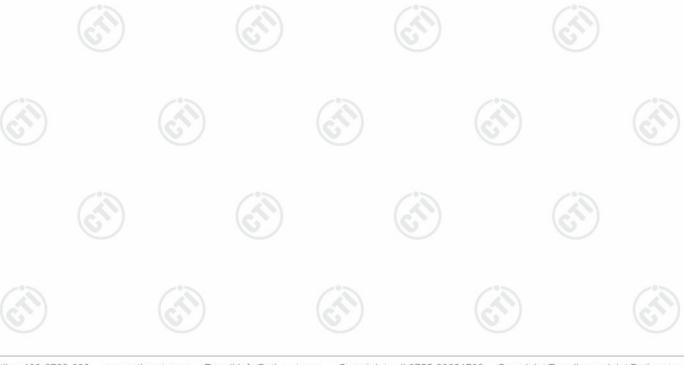
Page 6 of 38 Report No.: EED32P80758101

	10%		10%		100
)	Operatio	n Frequency	each of chan	nel	(21)
Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2456MHz	21	2476MHz
2	2404MHz	12	2458MHz	22	2478MHz
3	2406MHz	13	2460MHz	23	2480MHz
4	2408MHz	14	2462MHz		
5	2410MHz	15	2464MHz		
6	2436MHz	16	2466MHz		(3)
7	2438MHz	17	2468MHz		(0,0)
8	2440MHz	18	2470MHz		
9	2442MHz	19	2472MHz		
10	2444MHz	20	2474MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH1)	2402MHz
The middle channel (CH12)	2458MHz
The highest channel (CH23)	2480MHz


Report No. : EED32P80758101 Page 7 of 38

5.3 Test Configuration

EUT Test Software Sett	tings:					
Software:	nRF_DTM	nRF_DTM				
EUT Power Grade:	Class2 (Power level is selected)	Class2 (Power level is built-in set parameters and cannot be changed selected)				
Use test software to set t transmitting of the EUT.	the lowest frequency, the midd	e frequency and the highes	st frequency keep			
Test Mode	Modulation	Channel	Frequency(MHz)			
Mode a	GFSK	CH1	2402			
Mode b	GFSK	CH12	2458			
Mode c	GFSK	CH23	2480			

5.4 Test Environment

Operating Environment	Operating Environment:							
Radiated Spurious Emis	ssions:							
Temperature:	22~25.0 °C			(20)				
Humidity:	50~55 % RH	(0,)		(0,)				
Atmospheric Pressure:	1010mbar							
RF Conducted:								
Temperature:	22~25.0 °C	6.5			(:)			
Humidity:	50~55 % RH	(1)	(62)		(62)			
Atmospheric Pressure:	1010mbar							

Report No. : EED32P80758101 Page 8 of 38

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	ASUS	FL8700J	FCC&CE	CTI

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

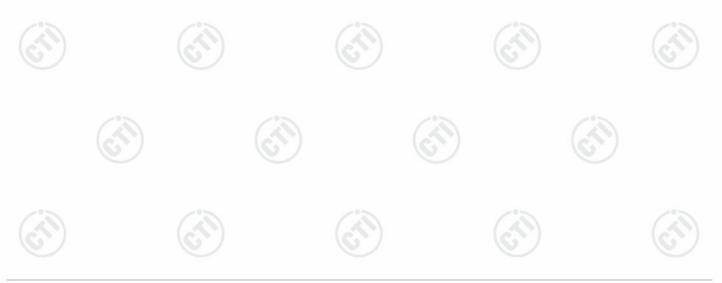

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

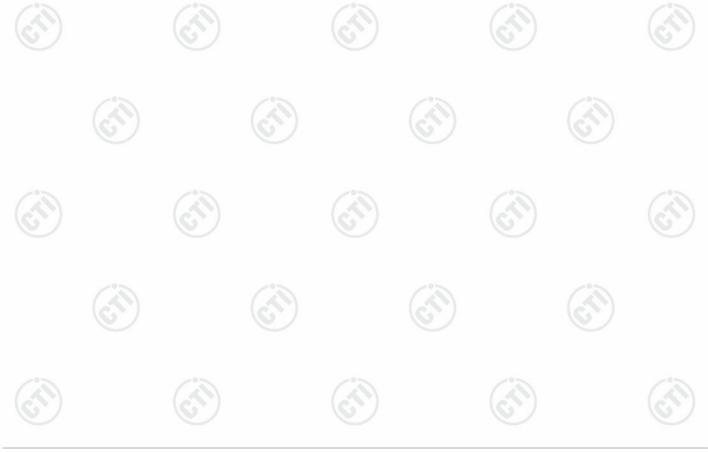
5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



Report No. : EED32P80758101 Page 9 of 38

6 Equipment List


RF test system					
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-23-2022	12-22-2023
Signal Generator	Keysight	N5182B	MY53051549	12-19-2022	12-18-2023
Signal Generator	Agilent	N5181A	MY46240094	12-19-2022	12-18-2023
DC Power	Keysight	E3642A	MY56376072	12-19-2022	12-18-2023
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	06-11-2022	06-10-2023
RF control unit	JS Tonscend	JS0806-2	158060006	12-23-2022	12-22-2023
Communication test	R&S	CMW500	120765	12-23-2022	12-22-2023
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-01-2022	06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518		

Page 10 of 38 Report No.: EED32P80758101

					100
	3M Semi-ar	nechoic Chamber (2)	- Radiated disturb	ance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3	<u> </u>	05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024
Multi device maturo Controller		NCD/070/10711112	<u> </u>		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Microwave Preamplifier	Agilent	Agilent 8449B		06/20/2022	06/19/2023
Test software	Fara	EZ-EMC	EMEC-3A1-Pre		<u> </u>

Report No. : EED32P80758101 Page 11 of 38

					100	
		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		- 6	
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024	
Spectrum Analyzer TRILOG	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024	
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024	
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023	
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(D	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	CO-	(2	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		6	
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(<i></i>	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(D	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001		Ca	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32P80758101 Page 12 of 38

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

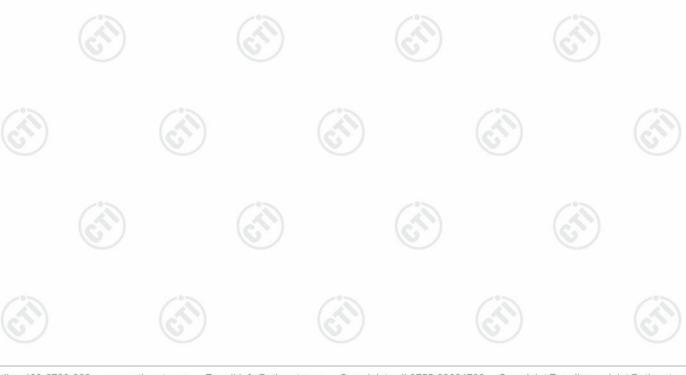
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 0.35dBi.

7.2 Maximum Conducted Output Power

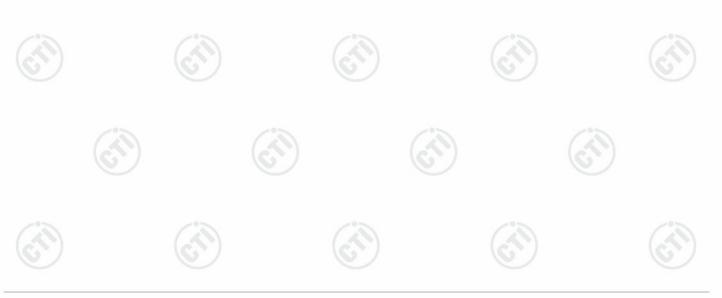
nt: 47 CFR Part 15C Section 15.247 ((b)(3)
ANSI C63.10 2013	
Control Computer Power Supply Potent Table	RF test System Instrument
Remark: Offset=Cable loss+ atten	uation factor.
a) Set the RBW ≥ DTS bandwidthb) Set VBW ≥ 3 × RBW.	h. (C)
 c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to de 	etermine the peak amplitude level.
	(1)
Refer to clause 5.3	(25)
Refer to Appendix 2.4G	
	ANSI C63.10 2013 Control Control Control Control Control Control Power Supply Actening Power Power Power Supply Actening Power Pow



Report No.: EED32P80758101 Page 14 of 38

7.3 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Power Supply Power Supply Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G

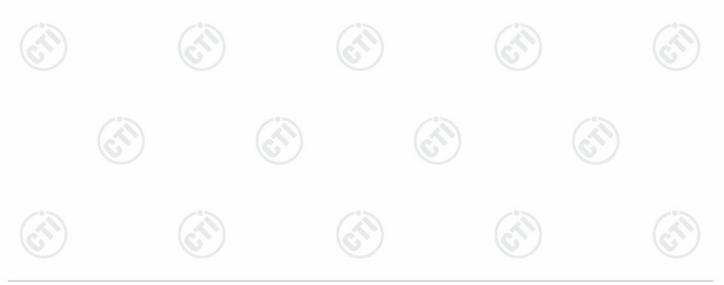


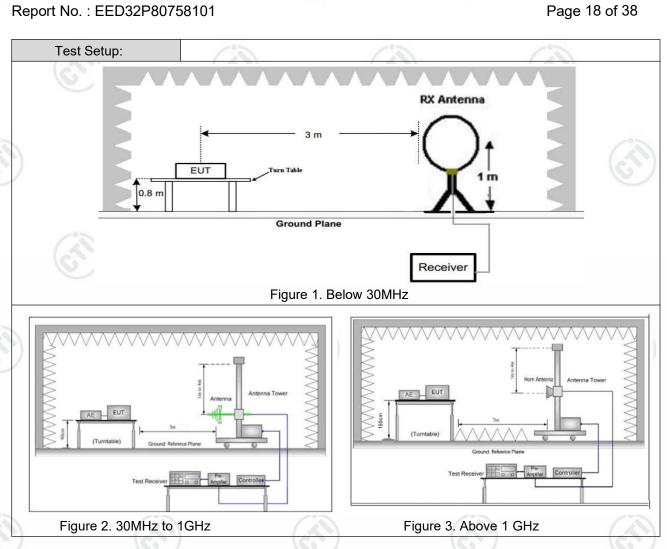
7.4 Maximum Power Spectral Density

47 CFR Part 15C Section 15.247 (e)
ANSI C63.10 2013
Control Computer Power Power Power Power Power Table EUT RF test System System Attenuator Instrument
Remark: Offset=Cable loss+ attenuation factor.
a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
≤8.00dBm/3kHz
Refer to clause 5.3
Refer to Appendix 2.4G

7.5 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Power Poort Poort Poort Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G

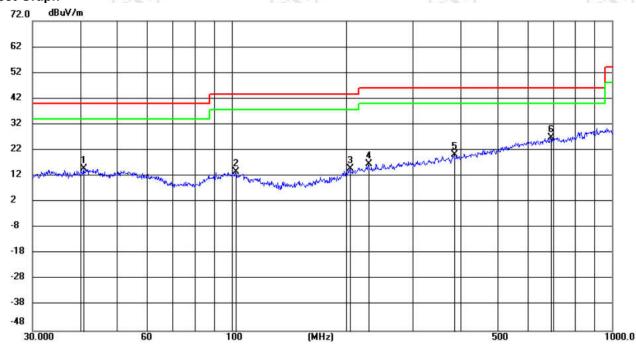



7.6 Radiated Spurious Emission & Restricted bands

16.7	165		163		16.	<i></i>				
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205						
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak				
	Above 1GHz		Peak	1MHz	3MHz	Peak				
			Peak	1MHz	10kHz	Average				
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m				
	0.009MHz-0.490MHz 24		400/F(kHz)	-	-/0>	300				
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(A)	30				
	1.705MHz-30MHz		30	-	-	30				
	30MHz-88MHz		100	40.0	Quasi-peak	3				
	88MHz-216MHz		150	43.5	Quasi-peak	3				
	216MHz-960MHz	6	200	46.0	Quasi-peak	3				
	960MHz-1GHz	960MHz-1GHz		54.0	Quasi-peak	3				
	Above 1GHz		500	54.0	Average	3				
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20d quip	IB above the imment under t	maximum est. This p	permitted ave	erage emission				

Report No.: EED32P80758101 Page 19 of 38

Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The tab was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5
	meters above the ground at a 3 meter semi-anechoic camber. The tab was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:
	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be the which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from
	 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (f the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specific Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of th EUT would be reported. Otherwise the emissions that did not have 10d margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete
Test Mode:	Refer to clause 5.3
Test Results:	Pass



Report No.: EED32P80758101 Page 20 of 38

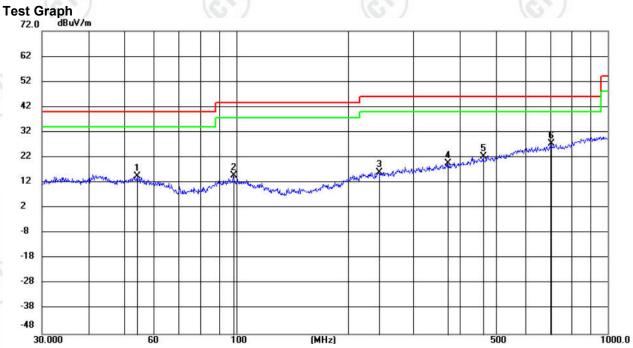
Radiated Spurious Emission below 1GHz:

During the test, the Radiated Spurious Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel for 2.4G was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		40.8875	0.36	14.50	14.86	40.00	-25.14	peak	199	248	
2		102.4314	0.02	13.70	13.72	43.50	-29.78	peak	100	48	
3		205.2788	0.90	13.97	14.87	43.50	-28.63	peak	100	69	
4		228.8111	2.00	14.78	16.78	46.00	-29.22	peak	199	38	
5		385.3480	1.06	19.08	20.14	46.00	-25.86	peak	199	300	
6	*	691.0167	2.22	24.68	26.90	46.00	-19.10	peak	199	258	





Vertical:

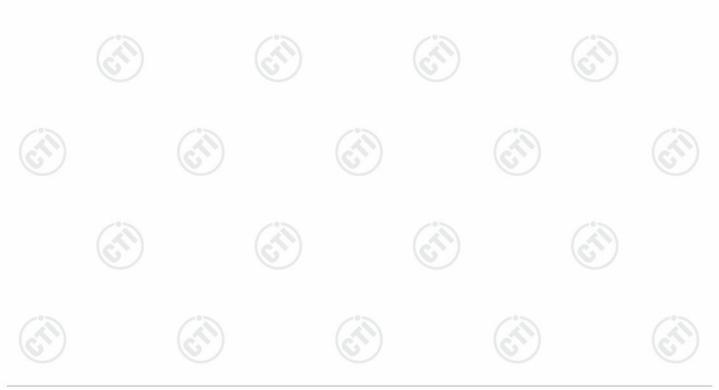
No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	54.2515	0.48	13.97	14.45	40.00	-25.55	peak	200	79	
2	98.2796	1.05	13.82	14.87	43.50	-28.63	peak	100	238	
3	241.7187	0.85	15.23	16.08	46.00	-29.92	peak	100	352	
4	370.8974	0.85	18.77	19.62	46.00	-26.38	peak	100	38	
5	462.5888	1.66	20.73	22.39	46.00	-23.61	peak	100	227	
6 *	704.8437	2.59	24.83	27.42	46.00	-18.58	peak	100	174	

Report No.: EED32P80758101 Page 22 of 38

Radiated Spurious Emission above 1GHz:

Mode	:		2.4G Transmitti	ng	Channel:		2402 MHz	2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1269.2269	0.98	38.92	39.90	74.00	34.10	Pass	Н	PK
2	2044.5044	4.69	37.42	42.11	74.00	31.89	Pass	Н	PK
3	4805.1203	-16.23	54.45	38.22	74.00	35.78	Pass	Н	PK
4	7207.2805	-11.83	53.04	41.21	74.00	32.79	Pass	Н	PK
5	10279.4853	-6.60	48.44	41.84	74.00	32.16	Pass	Н	PK
6	13672.7115	-1.74	46.71	44.97	74.00	29.03	Pass	Н	PK
7	1261.4261	0.96	39.44	40.40	74.00	33.60	Pass	V	PK
8	1796.6797	3.27	39.29	42.56	74.00	31.44	Pass	V	PK
9	3190.0127	-20.37	61.07	40.70	74.00	33.30	Pass	V	PK
10	4794.1196	-16.25	53.25	37.00	74.00	37.00	Pass	V	PK
11	7205.2804	-11.83	50.93	39.10	74.00	34.90	Pass	V	PK
12	11310.554	-6.57	48.97	42.40	74.00	31.60	Pass	V	PK

Mode	:		2.4G Transmitti	ing	Channel:		2458 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1213.8214	0.83	39.63	40.46	74.00	33.54	Pass	Н	PK
2	1777.4777	3.20	38.12	41.32	74.00	32.68	Pass	Н	PK
3	4428.0952	-17.02	53.37	36.35	74.00	37.65	Pass	Н	PK
4	5695.1797	-13.94	52.54	38.60	74.00	35.40	Pass	Н	PK
5	7413.2942	-11.46	50.17	38.71	74.00	35.29	Pass	Н	PK
6	10807.5205	-6.24	47.85	41.61	74.00	32.39	Pass	Н	PK
7	1372.8373	1.30	39.33	40.63	74.00	33.37	Pass	V	PK
8	1855.0855	3.69	38.06	41.75	74.00	32.25	Pass	V	PK
9	4196.0797	-18.03	54.42	36.39	74.00	37.61	Pass	V	PK
10	5760.184	-13.71	51.83	38.12	74.00	35.88	Pass	V	PK
11	8369.358	-10.99	48.93	37.94	74.00	36.06	Pass	V	PK
12	9906.4604	-7.08	47.30	40.22	74.00	33.78	Pass	V	PK

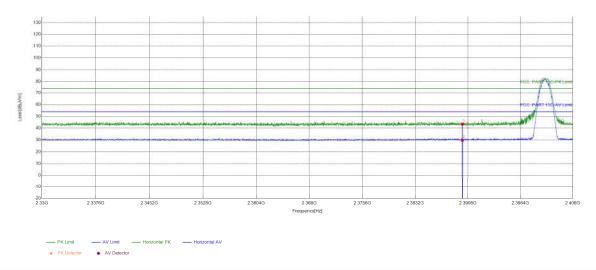


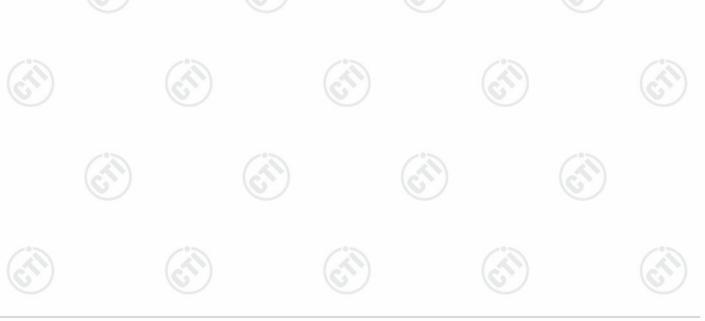
Report No.: EED32P80758101 Page 23 of 38

20%			200		20%			0.50	
М	Mode:		2.4G Transmitti	ing		Channel:		2480 MHz	<u>z</u>
N	O Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1299.2299	1.06	39.23	40.29	74.00	33.71	Pass	Н	PK
2	1700.6701	2.94	38.60	41.54	74.00	32.46	Pass	Н	PK
3	4391.0927	-17.06	53.21	36.15	74.00	37.85	Pass	Н	PK
4	5960.1973	-13.22	52.03	38.81	74.00	35.19	Pass	Н	PK
5	7364.291	-11.58	50.34	38.76	74.00	35.24	Pass	Н	PK
6	9867.4578	-7.17	48.94	41.77	74.00	32.23	Pass	Н	PK
7	1292.8293	1.04	39.23	40.27	74.00	33.73	Pass	V	PK
8	1903.6904	4.04	37.96	42.00	74.00	32.00	Pass	V	PK
Ę.	4199.0799	-18.02	56.91	38.89	74.00	35.11	Pass	V	PK
10	5760.184	-13.71	52.08	38.37	74.00	35.63	Pass	V	PK
1	1 7193.2796	-11.83	52.03	40.20	74.00	33.80	Pass	V	PK
1:	9210.414	-7.89	48.81	40.92	74.00	33.08	Pass	V	PK

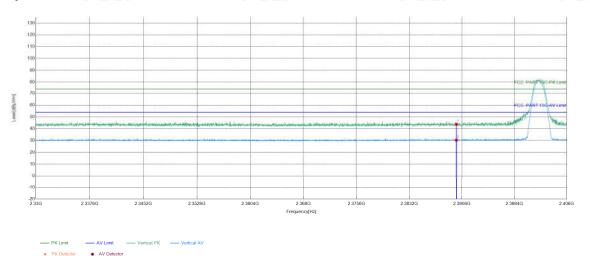
Remark:

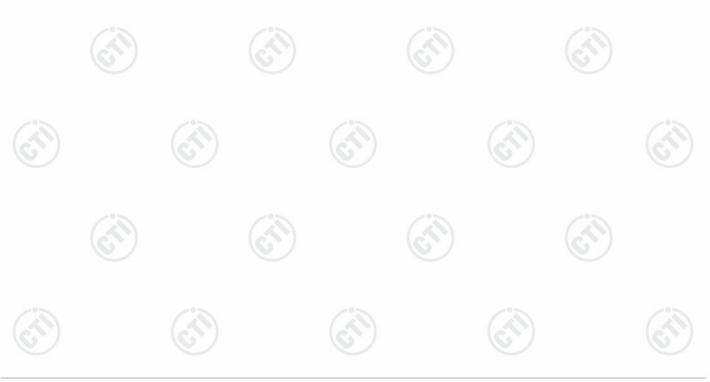
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



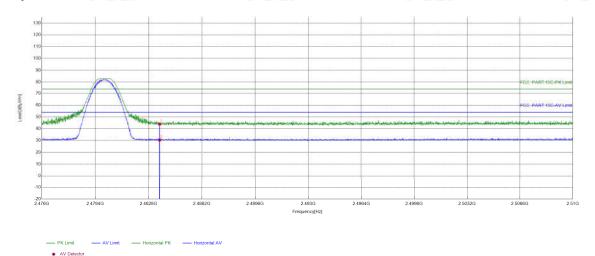

Restricted bands:

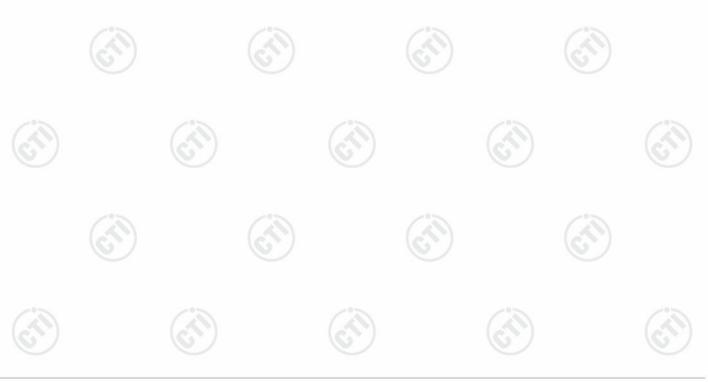
Test plot as follows:


	Suspected List									
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	37.80	43.57	74.00	30.43	PASS	Horizontal	PK
	2	2390	5.77	24.04	29.81	54.00	24.19	PASS	Horizontal	AV



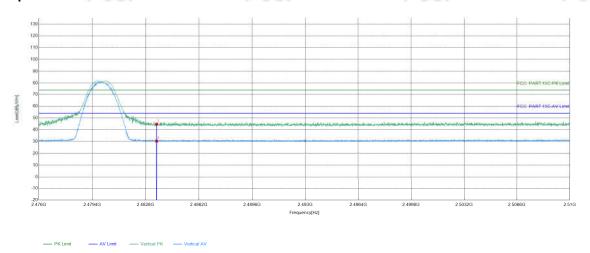
A. A. T. J.		10.4.	15.4
Mode:	2.4G Transmitting	Test_Frequency:	2402MHz
Remark:			


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	38.13	43.90	74.00	30.10	PASS	Vertical	PK
2	2390	5.77	24.54	30.31	54.00	23.69	PASS	Vertical	AV



	15/4/1-7	10.4.	15.4.7
Mode:	2.4G Transmitting	Test_Frequency:	2480MHz
Remark:			

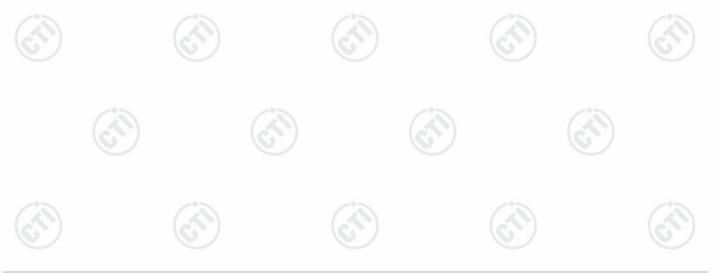
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	37.43	44.00	74.00	30.00	PASS	Horizontal	PK
2	2483.5	6.57	23.91	30.48	54.00	23.52	PASS	Horizontal	AV



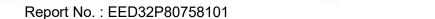
Report No.: EED32P80758101 Page 27 of 38

		10.4	15.4.7
Mode:	2.4G Transmitting	Test_Frequency:	2480MHz
Remark:			

Test Graph


	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2483.5	6.57	38.10	44.67	74.00	29.33	PASS	Vertical	PK
	2	2483.5	6.57	23.80	30.37	54.00	23.63	PASS	Vertical	AV

Note:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 28 of 38

Appendix 2.4G

Refer to Appendix: 2.4G of EED32P80758101.

