

Page 1 of 47

С

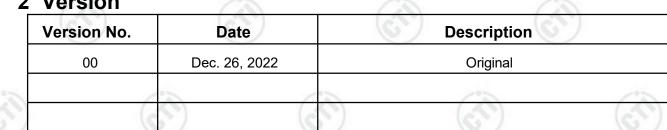
Product	:	AM 65 LES	S
Trade mark		Angry Miao	
Model/Type reference	ce :	AM12	
Serial Number	:	N/A	
Report Number	:	EED32081	956601
FCC ID	:	2A3FY-AM	12
Date of Issue	:	Dec. 26, 20	22
Test Standards	:	47 CFR Pa	rt 15 Subpart
Test result	~	PASS	

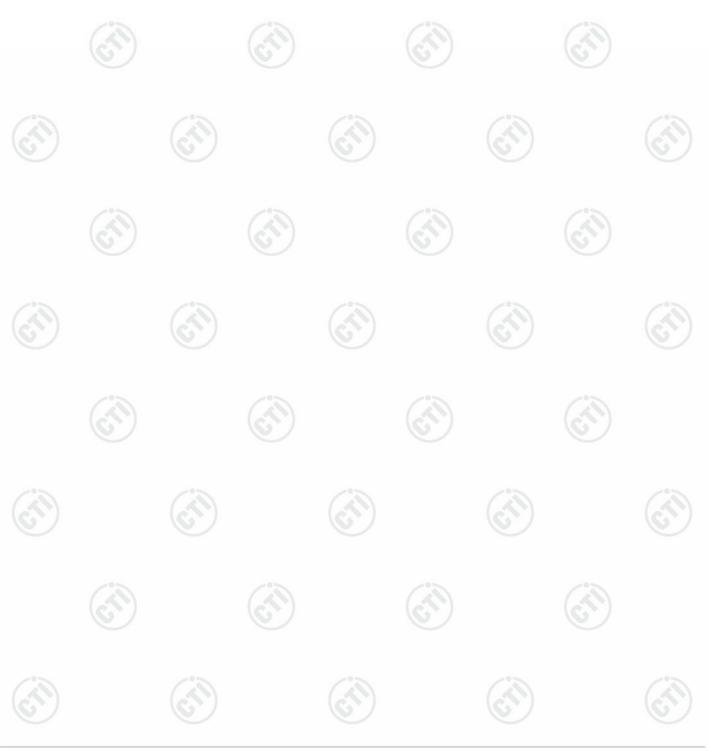
Prepared for:

Angry Miao Technology Co., Limited 2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town, Xiangzhou District, Zhuhai, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385


Page 2 of 47


2 VERSION		
3 TEST SUMMARY		
4 GENERAL INFORMATION		
4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPORT UNIT 4.6 TEST LOCATION		
5 EQUIPMENT LIST		
6 TEST RESULTS AND MEASURE		
6.2 AC POWER LINE CONDUCTED E	MISSIONS POWER	
6.4 DTS BANDWIDTH	ENSITY	
6.4 DTS BANDWIDTH 6.5 MAXIMUM POWER SPECTRAL DE 6.6 BAND EDGE MEASUREMENTS AN		

2 Version

3 Test Summary

5 rest Summary			
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	
		0.5	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

4 General Information

4.1 Client Information

Applicant:	Angry Miao Technology Co., Limited
Address of Applicant:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town, Xiangzhou District, Zhuhai, China
Manufacturer:	Angry Miao Technology Co., Limited
Address of Manufacturer:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town, Xiangzhou District, Zhuhai, China

4.2 General Description of EUT

and the law of the law	and the second se	and the former of the second se	
Product Name:	AM 65 LESS		
Model No.:	AM12		
Trade mark:	Angry Miao		
Device type:	Fix Location		
Operation Frequency:	2402MHz~2480MHz		
Modulation Type:	GFSK	6.	(C)
Transfer Rate:	⊠ 1Mbps ⊠ 2Mbps		
Number of Channel:	40		
Antenna Type:	PIFA Antenna		
Antenna Gain:	1.47dBi		
Power Supply:	DC 5V 1.8A (By USB Port) DC 3.8V (Battery)		
Test Voltage:	AC 120V	~~~	25
Sample Received Date:	Dec. 07, 2022		
Sample tested Date:	Dec. 07, 2022 to Dec. 19, 2022	U	e

Page 5 of 47

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: C'>

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Softwar	e Settings:			
Software:	nRF_DTM	-0-	-0-	-01
EUT Power Grade	: Default (Po selected)	ower level is built-in s	set parameters and c	cannot be changed and
Use test software t transmitting of the	o set the lowest frequenc EUT.	y, the middle freque	ncy and the highest f	frequency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СН0	2402
Mode b	GFSK	1Mbps	СН19	2440
Mode c	GFSK	1Mbps	CH39	2480
Mode d	GFSK	2Mbps	CH0	2402
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH39	2480

4.4 Test Environment

16.3	6.2		6.31		0.2					
Operating Environr	nent:									
Radiated Spurious	Radiated Spurious Emissions:									
Temperature:	22~25.0 °C									
Humidity:	50~55 % RH	(A)								
Atmospheric Pressu	re: 1010mbar	(C)		67		67				
Conducted Emission	ons:									
Temperature:	22~25.0 °C									
Humidity:	50~55 % RH		(in)		$\langle \rangle$					
Atmospheric Pressu	re: 1010mbar		(\mathcal{C})		(\mathcal{O})					
RF Conducted:										
Temperature:	22~25.0 °C									
Humidity:	50~55 % RH	2°2		2°2		<">>				
Atmospheric Pressu	re: 1010mbar	(\mathcal{A})				(\mathcal{A})				
	1									

4.5 Description of Support Units

The EUT has been tested with associated equipment below. support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Lenovo	E49	FCC&CE	СТІ

4.6 Test Location

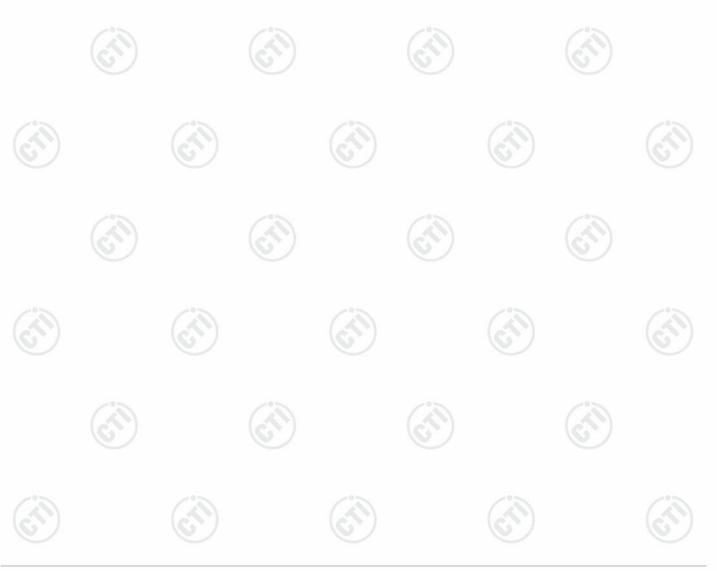
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164



Page 9 of 47

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(A)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5 Equipment List

		BT/WIFI/SR	D RF test system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)
Communicatio n tset set	R&S	CMW500	107929	07-06-2022	07-05-2023
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-15-2022	09-14-2023
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023
RF control unit(power unit)	MWRF-test	MW100- RFCB	MW220620CTI-42	07-06-2022	07-05-2023
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0		

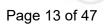
		Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
ReceiverR&STemperature/ HumidityDefuIndicatorLISNR&S		ESCI	100435	05-04-2022	05-05-2023		
		TH128	1				
		ENV216	100098	03-01-2022	02-28-2023		
Barometer	changchun	DYM3	1188				

Page 11 of 47

	3M Semi-an	echoic Chamber (2)	- Radiated distur	bance Test		
Equipment Manufacturer 3M Chamber & Accessory TDK Equipment		Model	Serial No.	Cal. Date	Due Date 05-21-2025	
		SAC-3		05-22-2022		
Receiver R&S		ESCI7	100938-003	09-28-2022	09-27-2023	
TRILOG Broadband schwarzbeck Antenna		VULB 9163	9163-618	05-22-2022	05-21-2023	
Multi device Controller	maturo	NCD/070/10711112			- 63	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024	
Loop Antenna Schwarzbeck		FMZB 1519B	1519B-076	04-17-2021	04-16-2024	
Microwave Preamplifier	Agilent	8449B	3008A02425	06-20-2022	06-19-2023	

Page 12 of 47

		OM full sussels to f	2h awah aw		
		3M full-anechoic (Cal. Date	Cal. Due date
Equipment	Manufacturer	Model No.	Serial Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3	6	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		- 0
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u></u>	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- (- 6
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		9_
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u> -</u>	- 6
Cable line	Times	HF160-KMKM-3.00M	393493-0001	9	6

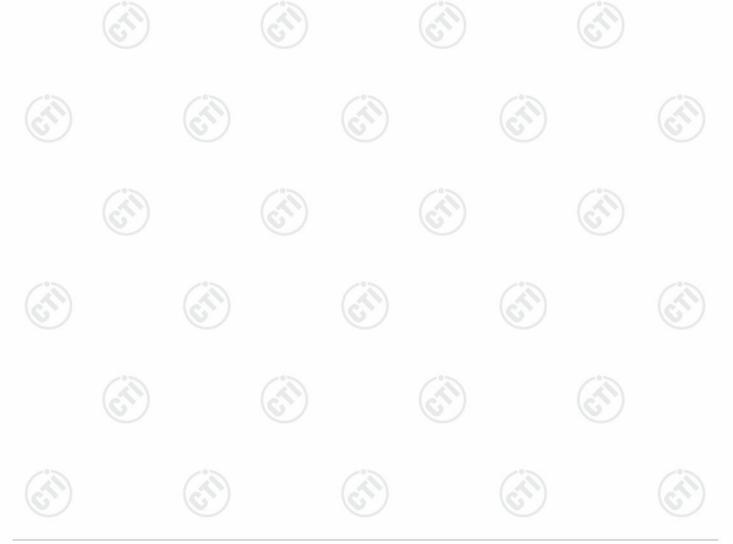


6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

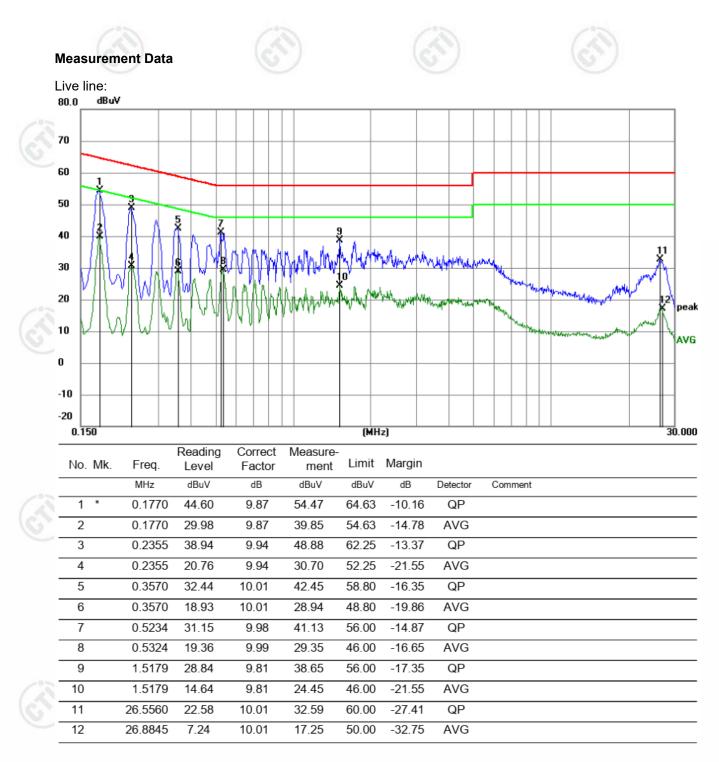
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

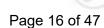
EUT Antenna:	Please see Internal photos

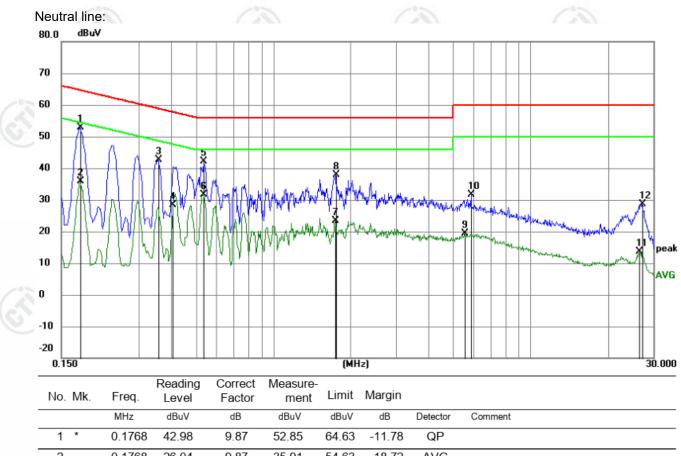
The antenna is PIFA Antenna. The best case gain of the antenna is 1.47dBi.

Page 14 of 47

6.2 AC Power Line Conducted Emissions

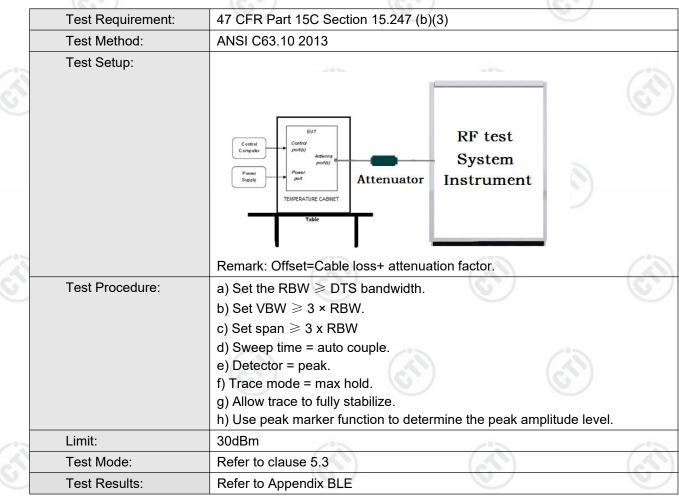

Test Method: Test Frequency Range: Receiver setup: Limit:	ANSI C63.10: 2013 150kHz to 30MHz RBW=9 kHz, VBW=30 kHz, Sv Frequency range (MHz)		
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv		
Limit:	Frequency range (MHz)		
Limit:	Frequency range (MHZ)	Limit (dl	BuV)
Limit:		Quasi-peak	Average
LIMIL.	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	of the frequency.	-
Test Setup:	AC Mains	AE uso uso USN2 + AC Ground Reference Plane	Test Receiver
Test Procedure:	 Impedance Stabilization Nei impedance. The power cabiconnected to a second LISI reference plane in the same measured. A multiple socker power cables to a single LIS exceeded. 3) The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the groun between the closest points the EUT and associated eq 5) In order to find the maximum 	etwork) which provides oles of all other units of N 2, which was bonded e way as the LISN 1 for et outlet strip was used SN provided the rating ed upon a non-metallic of for floor-standing arro ound reference plane, h a vertical ground reference from the vertical ground lane was bonded to the 1 was placed 0.8 m fro to a ground reference and reference plane. Th of the LISN 1 and the figuipment was at least 0 m emission, the relative	a $50\Omega/50\mu$ H + 5Ω linea the EUT were I to the ground r the unit being to connect multiple of the LISN was not table 0.8m above the angement, the EUT was erence plane. The rear reference plane. The horizontal ground om the boundary of the plane for LISNs is distance was EUT. All other units of .8 m from the LISN 2. e positions of
Exploratory Test Mode:	Non-hopping transmitting mod	e with all kind of modul , high channel.	
Final Test Mode:	recorded in the report.		
	Test Procedure:	Test Setup:Test Setup:1) The mains terminal disturt room.2) The EUT was connected to Impedance Stabilization Ne impedance. The power cab connected to a second LIS reference plane in the sam measured. A multiple socked power cables to a single LI exceeded.3) The tabletop EUT was place ground reference plane. An placed on the horizontal gr4) The test was performed with of the EUT shall be 0.4 m f vertical ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ec 5) In order to find the maximu equipment and all of the imit ANSI C63.10: 2013 on conExploratory Test Mode:Non-hopping transmitting mod data type at the lowest, middle	Test Setup: Image: Stream of the setup of the setu

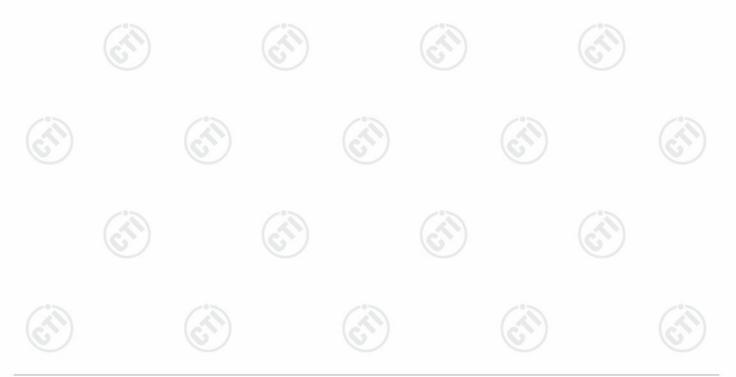



Page 15 of 47

		0.1700	42.50	5.07	52.05	04.05	-11.70	Gel	
	2	0.1768	26.04	9.87	35.91	54.63	-18.72	AVG	
2	3	0.3558	32.63	10.01	42.64	58.83	-16.19	QP	
6	4	0.4083	18.44	9.97	28.41	47.68	-19.27	AVG	
-	5	0.5350	32.22	9.99	42.21	56.00	-13.79	QP	
	6	0.5350	21.52	9.99	31.51	46.00	-14.49	AVG	
	7	1.7345	13.69	9.80	23.49	46.00	-22.51	AVG	
-	8	1.7437	28.20	9.80	38.00	56.00	-18.00	QP	
-	9	5.5347	9.48	9.78	19.26	50.00	-30.74	AVG	
	10	5.8668	21.76	9.78	31.54	60.00	-28.46	QP	
	11	26.4178	3.62	10.01	13.63	50.00	-36.37	AVG	
5	12	27.1270	18.52	10.01	28.53	60.00	-31.47	QP	
-									

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Page 17 of 47

6.3 Maximum Conducted Output Power

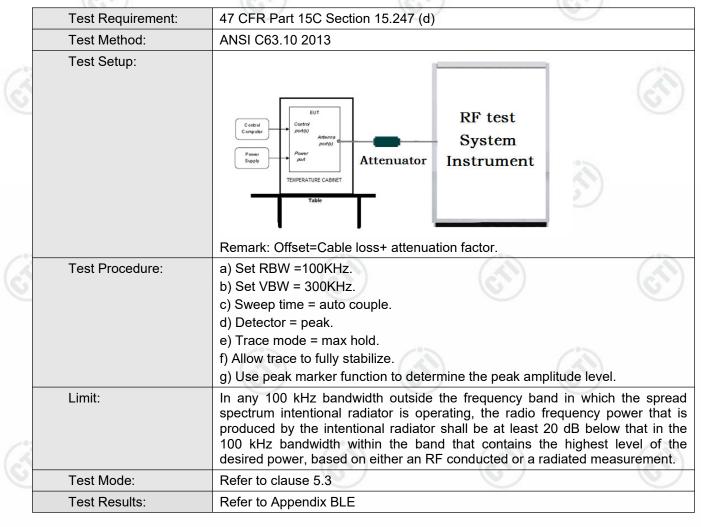
6.4 DTS Bandwidth

Test Requir	ement: 4	7 CFR Part 15C Sect	tion 15.247 (a)	(2)	S	
Test Method	d: A	ANSI C63.10 2013				
Test Setup:					1	(4)
		Control Computer Power Supply TEMPERATURE CABINET	Attenuator	RF test System Instrument	Ð	
	F	Remark: Offset=Cable	e loss+ attenua	tion factor.		
Test Proced	b c d f f f l c	a) Set RBW = 100 kHz b) Set the VBW \geq [3 > c) Detector = peak. d) Trace mode = max e) Sweep = auto coup c) Allow the trace to sta g) Measure the maximised requencies associate ower frequencies) that neasured in the fundation	< RBW]. hold. le. abilize. mum width of d with the two it are attenuate	outermost amplitued by 6 dB relative	ude points (u	pper and
Limit:	2	: 500 kHz	•)	(A)		(\mathcal{A})
Test Mode:	F	Refer to clause 5.3				S
Test Results	s: F	Refer to Appendix BLE	Ξ			

Page 19 of 47

6.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Comp
 Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth.
	 c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
Limit:	≤8.00dBm/3kHz
Test Mode:	Refer to clause 5.3
 Test Results:	Refer to Appendix BLE

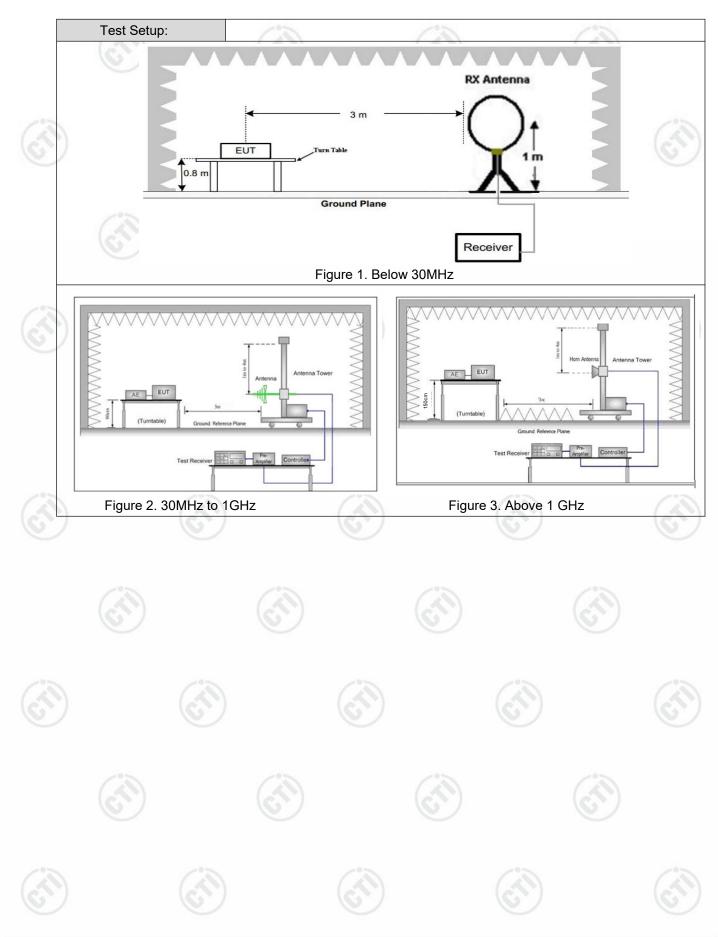


Page 20 of 47

6.6 Band Edge measurements and Conducted Spurious Emission

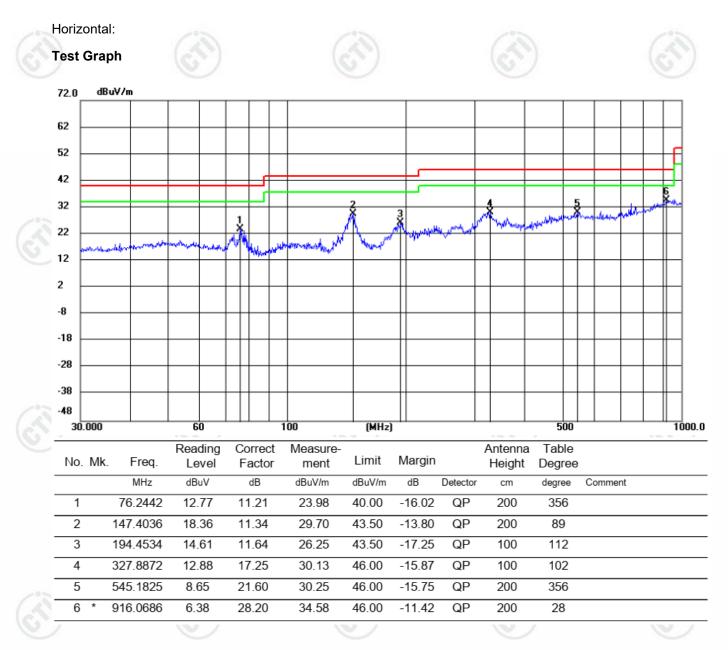
Page 21 of 47

6.7 Radiated Spurious Emission & Restricted bands


	A. 62. 32 1			S .			6	/	
	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		C		
	Test Method:	ANSI C63.10 2013							
100	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
	Receiver Setup:	Frequency	9	Detector	RBW	1	VBW	Remark	
6		0.009MHz-0.090MH	z	Peak	10kHz	z	30kHz	Peak	
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average	
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak	
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak	
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average	
		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak	
		30MHz-1GHz		Quasi-peak	100 kH	lz	300kHz	Quasi-peak	
13			2	Peak	1MHz	<u>.</u>	3MHz	Peak	
6		Above 1GHz		Peak	1MHz)	10kHz	Average	
	Limit:	Frequency		eld strength provolt/meter)	Limit (dBuV/m)	Remark		Measuremer distance (m	
		0.009MHz-0.490MHz	24	400/F(kHz)	-	-23		300	
		0.490MHz-1.705MHz	24	000/F(kHz)	-			30	
		1.705MHz-30MHz		30	-			30	
		30MHz-88MHz		100	40.0	Q	uasi-peak	3	
- 10-		88MHz-216MHz		150	43.5	Q	uasi-peak	3	
		216MHz-960MHz	5	200	46.0	Q	uasi-peak	3	
S.		960MHz-1GHz	1	500	54.0	Q	uasi-peak	3	
		Above 1GHz		500	54.0		Average	3	
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20d quip	B above the ment under t	maximum est. This p	ре	rmitted ave	erage emission	

Page 23 of 47

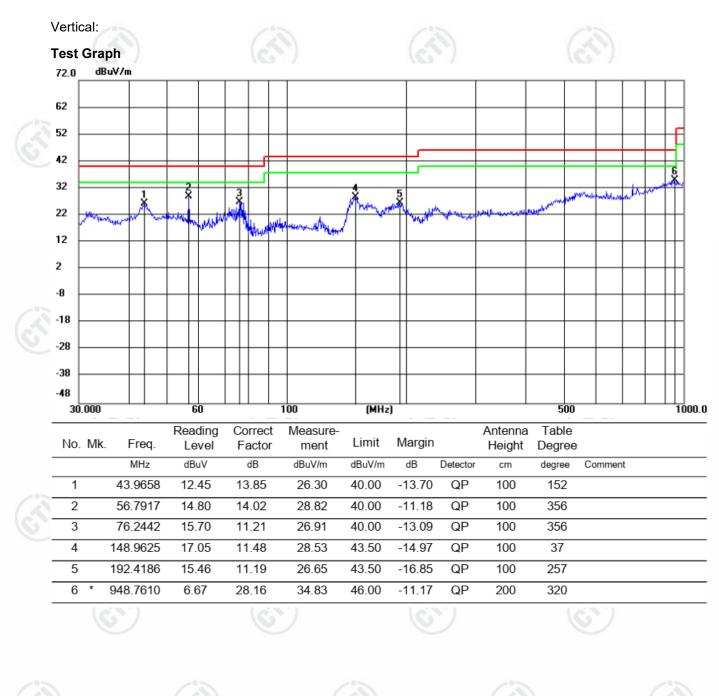
	Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
		antenna, which was mounted on the top of a variable-height antenna tower.c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
(N)		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
21		 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel
2		(2440MHz),the Highest channel (2480MHz)h. The radiation measurements are performed in X, Y, Z axis positioning
		for Transmitting mode, and found the X axis positioning which it is the worst case.
		i. Repeat above procedures until all frequencies measured was complete.
	Test Mode:	Refer to clause 5.3
	Test Results:	Pass



Page 24 of 47

Report No.: EED32O81956601

Radiated Spurious Emission below 1GHz:


During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode BLE 1Mbps HCH was recorded in the report.

Page 25 of 47

Page 26 of 47

Radiated Spurious Emission above 1GHz:

BLE_1M:

Мос	le:		BLE GFSK Tra	nsmitting	Channel:		2402 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1255.6256	0.95	40.03	40.98	74.00	33.02	Pass	Н	PK
2	1892.6893	3.97	38.60	42.57	74.00	31.43	Pass	Н	PK
3	5023.1349	-15.79	54.10	38.31	74.00	35.69	Pass	Н	PK
4	7206.2804	-11.83	56.58	44.75	74.00	29.25	Pass	Н	PK
5	11310.554	-6.57	51.65	45.08	74.00	28.92	Pass	Н	PK
6	16265.8844	1.44	49.04	50.48	74.00	23.52	Pass	Н	PK
7	1208.4208	0.82	40.17	40.99	74.00	33.01	Pass	V	PK
8	1864.0864	3.76	38.64	42.40	74.00	31.60	Pass	V	PK
9	3193.0129	-20.37	59.08	38.71	74.00	35.29	Pass	V	PK
10	4794.1196	-16.25	53.39	37.14	74.00	36.86	Pass	V	PK
11	7207.2805	-11.83	61.79	49.96	74.00	24.04	Pass	V	PK
12	10399.4933	-6.28	50.24	43.96	74.00	30.04	Pass	V	PK
12	10399.4933	-6.28	50.24	43.96	74.00	30.04	Pass	V	F

							×1.	1.0		
	Mode	:		BLE GFSK Trai	nsmitting		Channel:		2440 MHz	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1273.6274	0.99	40.30	41.29	74.00	32.71	Pass	Н	PK
2	2	1896.6897	4.01	38.69	42.70	74.00	31.30	Pass	Н	PK
	3	3830.0553	-19.20	55.73	36.53	74.00	37.47	Pass	Н	PK
	4	5661.1774	-14.05	52.49	38.44	74.00	35.56	Pass	Н	PK
	5	7840.3227	-11.19	51.76	40.57	74.00	33.43	Pass	Н	PK
	6	11788.5859	-6.13	52.36	46.23	74.00	27.77	Pass	Н	PK
	7	1269.4269	0.98	40.22	41.20	74.00	32.80	Pass	V	PK
	8	1875.2875	3.85	38.72	42.57	74.00	31.43	Pass	V	PK
	9	3760.0507	-19.51	54.77	35.26	74.00	38.74	Pass	V	PK
3	10	5874.1916	-13.60	53.59	39.99	74.00	34.01	Pass	V	PK
	11	7319.288	-11.65	66.70	55.05	74.00	18.95	Pass	V	PK
_	12	10215.481	-7.03	51.95	44.92	74.00	29.08	Pass	V	PK
	13	7320.288	-11.65	59.22	47.57	54.00	6.43	Pass	V	AV

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Ì

Page 27 of 47

	202			20-		20 m			0.00	
	Mode	:		BLE GFSK T	ransmitting		Channel:		2480 MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	g Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1222.8223	0.86	40.72	41.58	74.00	32.42	Pass	н	PK
	2	1983.6984	4.46	39.18	43.64	74.00	30.36	Pass	Н	PK
2	3	3779.0519	-19.39	9 55.00	35.61	74.00	38.39	Pass	Н	PK
	4	5578.1719	-14.32	2 51.84	37.52	74.00	36.48	Pass	Н	PK
	5	7439.296	-11.34	4 55.46	44.12	74.00	29.88	Pass	Н	PK
	6	10788.5192	-6.26	50.35	44.09	74.00	29.91	Pass	Н	PK
	7	1147.8148	0.83	40.87	41.70	74.00	32.30	Pass	V	PK
	8	1844.4844	3.61	38.40	42.01	74.00	31.99	Pass	V	PK
	9	4260.084	-17.55	5 55.64	38.09	74.00	35.91	Pass	V	PK
	10	7440.296	-11.34	69.79	58.45	74.00	15.55	Pass	V	PK
3	11	10271.4848	-6.65	50.26	43.61	74.00	30.39	Pass	V	PK
	12	15339.8227	-0.17	48.84	48.67	74.00	25.33	Pass	V	PK
_	13	7440.296	-11.34	4 60.25	48.91	54.00	5.09	Pass	V	AV

BLE_2M:

	- (
	Mode	:		BLE GFSK Tra	ansmitting		Channel:		2402 MHz	
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1305.2305	1.08	39.91	40.99	74.00	33.01	Pass	н	PK
2	2	1930.8931	4.19	38.74	42.93	74.00	31.07	Pass	Н	PK
	3	3673.0449	-20.04	56.18	36.14	74.00	37.86	Pass	Н	PK
	4	5827.1885	-13.58	3 52.29	38.71	74.00	35.29	Pass	Н	PK
	5	7207.2805	-11.83	55.25	43.42	74.00	30.58	Pass	Н	PK
	6	11160.544	-6.34	50.57	44.23	74.00	29.77	Pass	Н	PK
	7	1325.6326	1.15	39.81	40.96	74.00	33.04	Pass	V	PK
	8	1938.6939	4.24	38.19	42.43	74.00	31.57	Pass	V	PK
	9	4252.0835	-17.61	54.14	36.53	74.00	37.47	Pass	V	PK
3	10	7204.2803	-11.84	62.15	50.31	74.00	23.69	Pass	V	PK
	11	9705.447	-7.69	50.35	42.66	74.00	31.34	Pass	V	PK
	12	13752.7168	-1.70	49.24	47.54	74.00	26.46	Pass	V	PK

Page 28 of 47

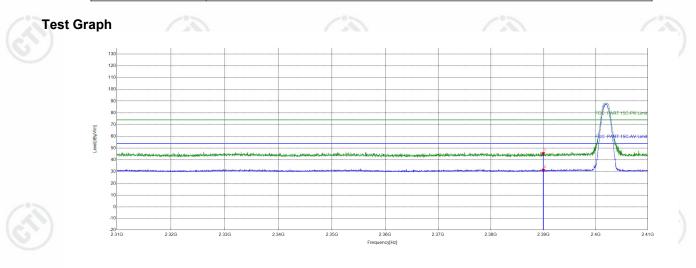
Mod	e:		BLE GFSK Tra	nsmitting	Channel:			2440 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1218.0218	0.85	40.25	41.10	74.00	32.90	Pass	н	PK	
2	1845.4845	3.62	39.10	42.72	74.00	31.28	Pass	Н	PK	
3	3891.0594	-19.12	56.13	37.01	74.00	36.99	Pass	Н	PK	
4	6515.2343	-12.71	52.40	39.69	74.00	34.31	Pass	Н	PK	
5	9211.4141	-7.89	51.42	43.53	74.00	30.47	Pass	Н	PK	
6	12389.626	-4.80	51.90	47.10	74.00	26.90	Pass	Н	PK	
7	1312.4312	1.10	39.49	40.59	74.00	33.41	Pass	V	PK	
8	1755.6756	3.13	40.19	43.32	74.00	30.68	Pass	V	PK	
9	3802.0535	-19.24	54.41	35.17	74.00	38.83	Pass	V	PK	
10	5737.1825	-13.79	52.65	38.86	74.00	35.14	Pass	V	PK	
11	7318.2879	-11.66	61.43	49.77	74.00	24.23	Pass	V	PK	
12	10272.4848	-6.65	51.31	44.66	74.00	29.34	Pass	V	PK	

Mode	:		BLE GFSK Tra	Channel:		2480 MHz			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1187.2187	0.81	40.07	40.88	74.00	33.12	Pass	Н	PK
2	1844.6845	3.61	39.38	42.99	74.00	31.01	Pass	Н	PK
3	4465.0977	-16.99	54.45	37.46	74.00	36.54	Pass	Н	PK
4	7438.2959	-11.35	56.09	44.74	74.00	29.26	Pass	Н	PK
5	10244.483	-6.83	50.85	44.02	74.00	29.98	Pass	Н	PK
6	15390.8261	0.41	47.76	48.17	74.00	25.83	Pass	Н	PK
7	1192.8193	0.80	39.95	40.75	74.00	33.25	Pass	V	PK
8	1670.067	2.74	39.01	41.75	74.00	32.25	Pass	V	PK
9	4825.1217	-16.22	54.10	37.88	74.00	36.12	Pass	V	PK
10	7441.2961	-11.34	67.98	56.64	74.00	17.36	Pass	V	PK
11	10225.4817	-6.95	50.15	43.20	74.00	30.80	Pass	V	PK
12	13109.674	-3.62	49.49	45.87	74.00	28.13	Pass	V	PK
13	7442.2962	-11.33	59.31	47.98	54.00	6.02	Pass	V	AV
2)		6)	(Δ)		6)		(2)

Remark:

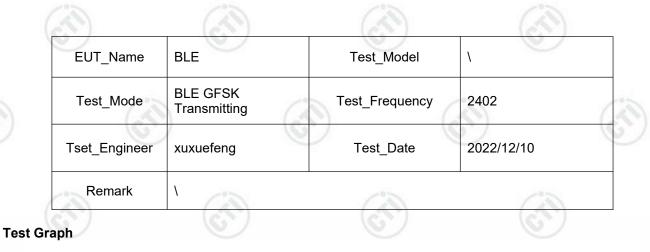
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

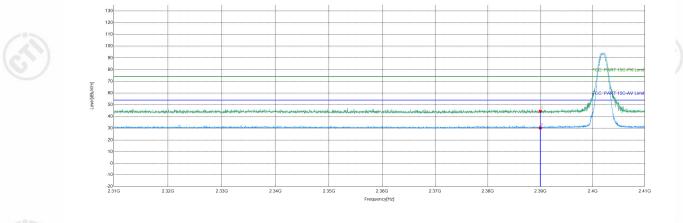
Page 29 of 47


Restricted bands:

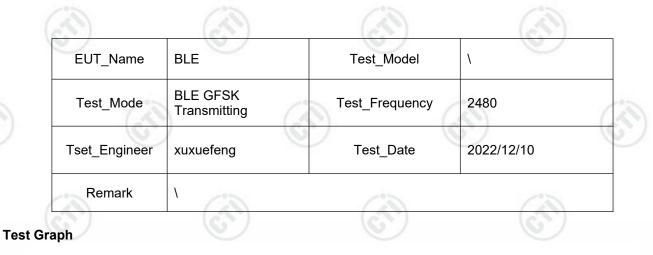
Test plot as follows:

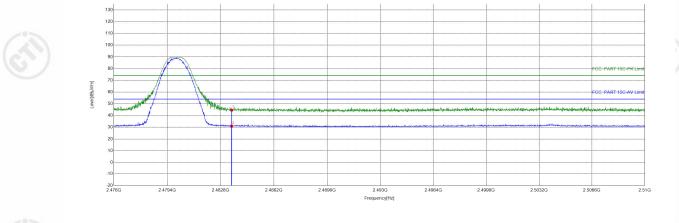
EUT_Name	BLE	Test_Model	(I)
Test_Mode	BLE GFSK Transmitting	Test_Frequency	2402
Tset_Engineer	xuxuefeng	Test_Date	2022/12/10
Remark	١		


PK Limit AV Limit Horizontal PK Horizontal AV PK Detector AV Detector

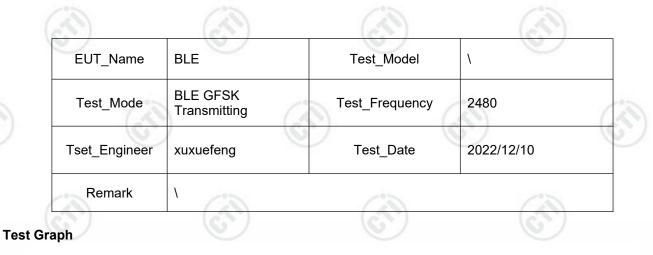

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
100	1	2390	5.77	39.74	45.51	74.00	28.49	PASS	Horizontal	PK
2	2	2390	5.77	25.48	31.25	54.00	22.75	PASS	Horizontal	AV
	1					•	6			

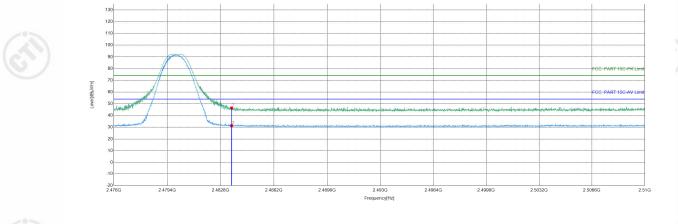
Page 30 of 47


PK Limit AV Limit Vertical PK Vertical AV
 PK Detector AV Detector

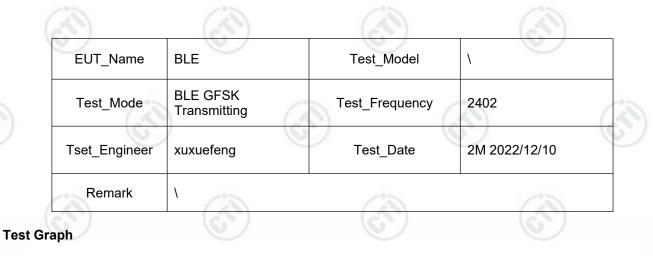

Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390	5.77	38.78	44.55	74.00	29.45	PASS	Vertical	PK			
2	2390	5.77	24.51	30.28	54.00	23.72	PASS	Vertical	AV			

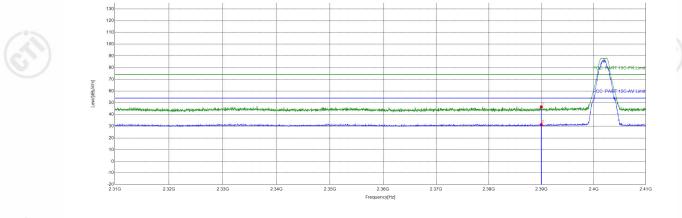
Page 31 of 47


PK Limit	AV Limit	Horizontal PK	Horizontal AV	
* AV Detector				


Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2483.5	6.57	38.06	44.63	74.00	29.37	PASS	Horizontal	PK			
2	2483.5	6.57	24.30	30.87	54.00	23.13	PASS	Horizontal	AV			

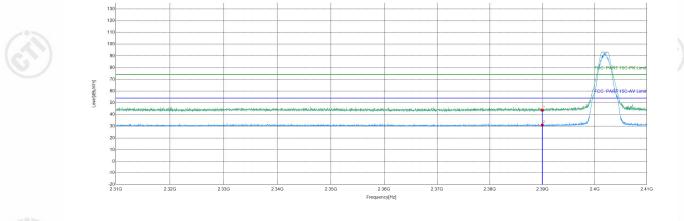
Page 32 of 47


PR Limit
 Vertical PK
 Vertical AV
 AV Detector

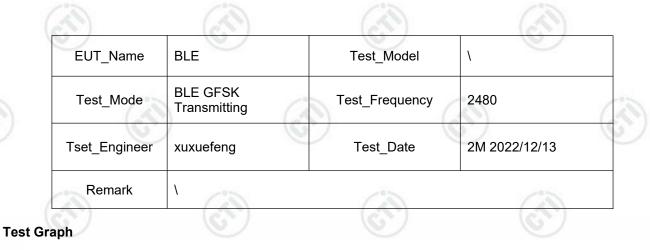

Suspecte	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2483.5	6.57	39.99	46.56	74.00	27.44	PASS	Vertical	PK				
2	2483.5	6.57	24.78	31.35	54.00	22.65	PASS	Vertical	AV				

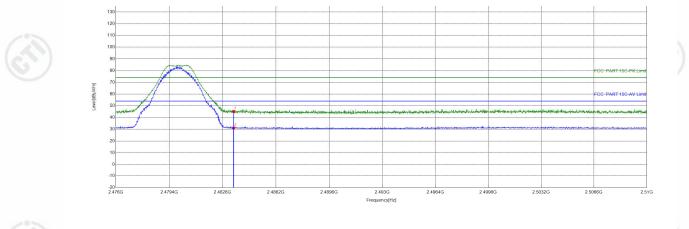
Page 33 of 47


PK Limit AV Limit Horizontal PK Horizontal AV
 PK Detector AV Detector

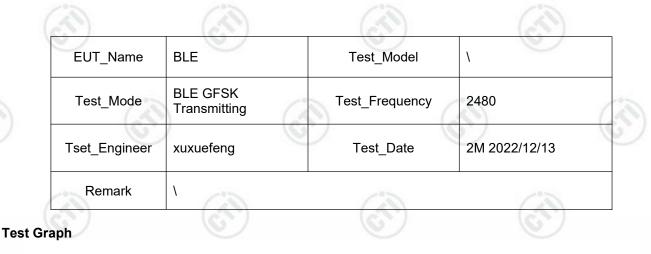

Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390	5.77	40.75	46.52	74.00	27.48	PASS	Horizontal	PK			
2	2390	5.77	25.52	31.29	54.00	22.71	PASS	Horizontal	AV			

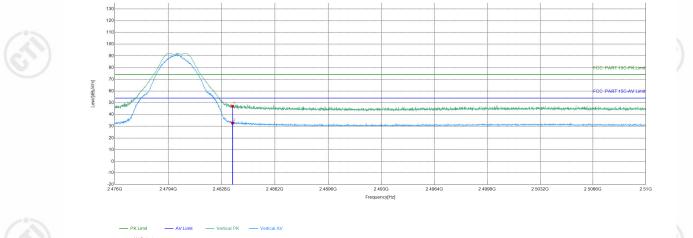
Page 34 of 47


PK Limit AV Limit Vertical PK Vertical AV
 PK Detector AV Detector

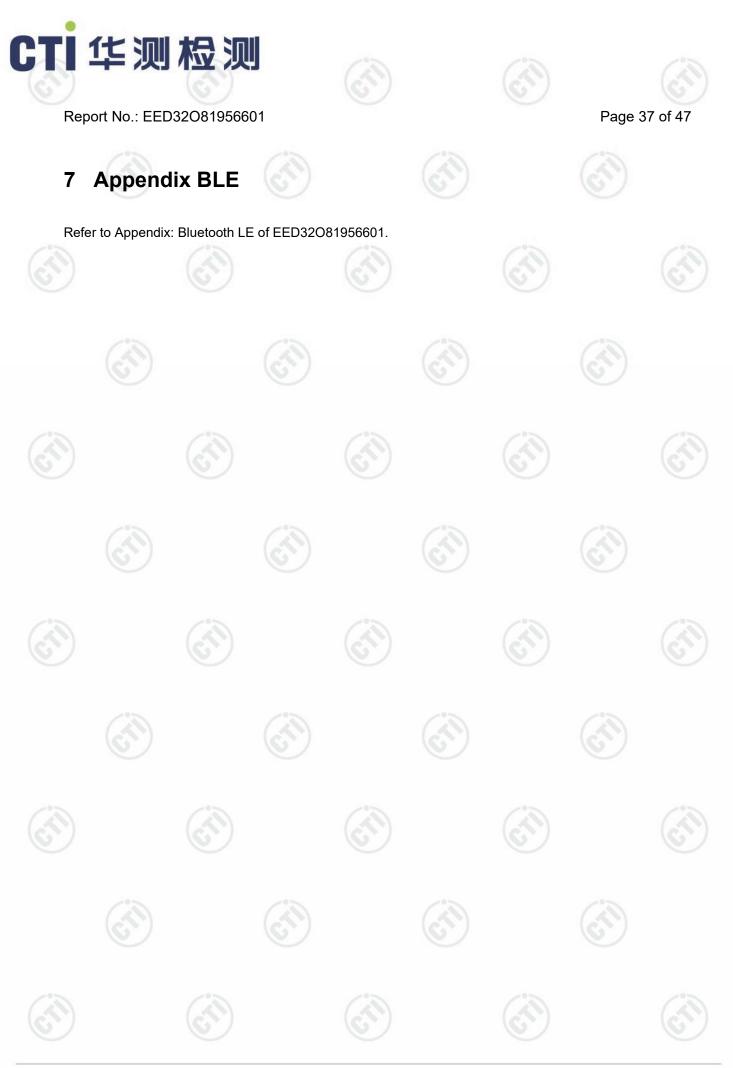

Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390	5.77	37.96	43.73	74.00	30.27	PASS	Vertical	PK			
2	2390	5.77	25.18	30.95	54.00	23.05	PASS	Vertical	AV			

Page 35 of 47


PR Limit — AV Limit — Horizontal PK — Horizontal AV
 AV Detector


Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	38.62	45.19	74.00	28.81	PASS	Horizontal	PK
	2	2483.5	6.57	24.45	31.02	54.00	22.98	PASS	Horizontal	AV

Page 36 of 47


Suspected List

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	6.57	40.45	47.02	74.00	26.98	PASS	Vertical	PK	
2	2483.5	6.57	26.11	32.68	54.00	21.32	PASS	Vertical	AV	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

