

TEST REPORT

Applicant Name: Shenzhen Junge Yunchuang Technology Co., Ltd.

Address: 1204, Unit 3, Building C, Fu Gui Yuan, Fu Gui Road, Fu Hua

Community, Xixiang Street, Baoan District, Shenzhen, China

Report Number: RA230324-14579E-RF-00B

FCC ID: 2A3FP-P11

Test Standard (s) FCC Part 15.247

Sample Description

Product: Projector

Tested Model: PJ-SK500W, F501, F502, F503, F504, F505, F506

Trade Name N/A

Date Received: 2023-03-24

Date of Test: 2023-04-10 to 2023-05-31

Report Date: 2023-05-31

Test Result: Pass*

Prepared and Checked By: Approved By:

Bob. Liao

Bob Liao Candy Li

EMC Engineer EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

Candy, Li

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503290 Web: www.atc-lab.com

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	
GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC §1.1307 (b) – RF EXPOSURE	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARDEUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	16
FACTOR & OVER LIMIT CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARDEUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	20
TEST PROCEDURE	20
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	
APPLICABLE STANDARD TEST PROCEDURE	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	29
APPLICABLE STANDARD	29
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	

FCC §15.247(e) - POWER SPECTRAL DENSITY	31
APPLICABLE STANDARD	31
TEST PROCEDURE	31
Test Data	32
APPENDIX A: 6dB Emission Bandwidth	33
APPENDIX B: Occupied Channel Bandwidth	38
APPENDIX C: Maximum Conducted Output Power	43
APPENDIX D: Band Edge Measurements	44
APPENDIX E: Maximum Power Spectral Density	48
APPENDIX F: Duty Cycle	53

DOCUMENT REVISION HISTORY

Revision Number	rision Number Report Number Description of Revision		Date of Revision
0	RA230324-14579E-RF-00B	Original Report	2023-05-31

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Projector		
Tested Model	PJ-SK500W		
Multiple Model	F501, F502, F503, F504, F505, F506		
Model Difference	Please refer to DOS Letter		
Frequency Range	Wi-Fi: 2412-2462MHz(802.11b/g/n20)/n40)	
	Wi-Fi		
Maximum Conducted Average Output Power	18.24dBm(802.11b),	18.62dBm(802.11g),	
T	17.34dBm(802.11n20),	14.13dBm(802.11n40)	
Modulation Technique	Wi-Fi: DSSS, OFDM		
Antenna Specification*	Internal Antenna: 3.35dBi (provided b	y the applicant)	
Voltage Range	AC 100-240V		
Sample serial number	RA230324-14579E-RF-S1(CE&RE) RA230324-14579E-RF-S2(RF Conducted Test) (Assigned by ATC, Shenzhen)		
Sample/EUT Status	Good condition		

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices, and KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Cha	nnel Bandwidth	5%	
RF output po	wer, conducted	0.71dB	
Unwanted Emi	ission, conducted	1.6dB	
AC Power Lines Conducted Emissions		2.74dB	
	30MHz - 1GHz	5.08dB	
Emissions,	1GHz - 18GHz	4.96dB	
Radiated	18GHz - 26.5GHz	5.16dB	
	26.5GHz - 40GHz	4.64dB	
Temperature		1°C	
Humidity		6%	
Supply voltages		0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b, 802.11g, 802.11n-HT20 and 802.11n-HT40 mode, total 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

802.11b, 802.11g and 802.11n-HT20 mode was tested with Channel 1, 6 and 11. 802.11n-HT40 mode was tested with Channel 3, 6 and 9.

Special Accessories

The AC power cable and HD Cable with ferrite cord.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

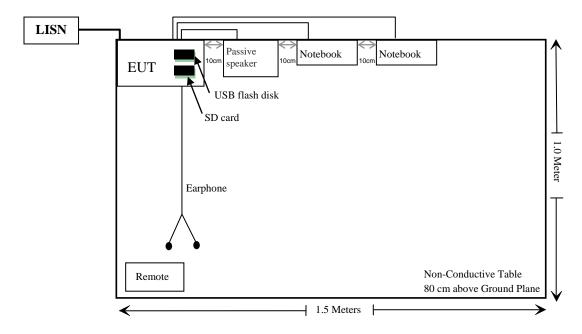
Software "Serial"* was used during testing and power level as below, which provided by manufacturer.

Mode	Data Rate (Mbps)	Power Level*
802.11 b	1	Default
802.11 g	6	Default
802.11 n20	MCS0	Default
802.11 n40	MCS0	15

The worse-case data rates are determined to be as above for each mode based upon investigations by measuring the output power and PSD across all data rates, bandwidths and modulations.

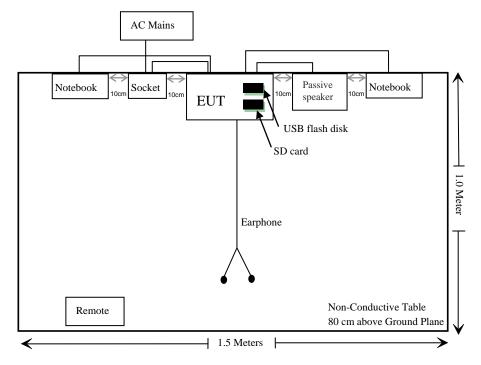
Duty cycle

Support Equipment List and Details

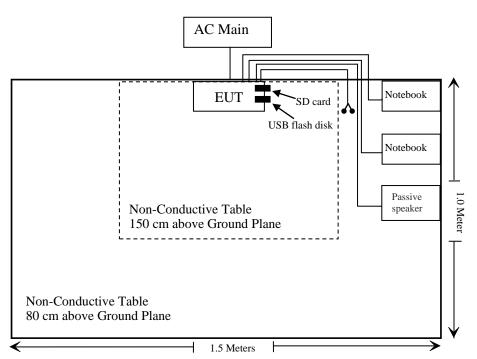

Manufacturer	Description	Model	Serial Number
LENOVO	Notebook	ThinkPad x240	SL10F31638JS
Hasee	Notebook CV15S01		K6406H01120953
Unknown	Earphone	Earphone Unknown Unknown	
Unknown	Passive speaker Unknown		Unknown
Kingston	USB flash disk DTKN Un		Unknown
Unknown	SD Card	Unknown	Unknown

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable AC Cable	1.4	EUT	L.I.S.N
Shielding Detachable HDMI Cable	1.2	EUT	Notebook
Un-shielding Detachable VAG Cable	1.0	EUT	Notebook
Un-shielding Detachable Earphone Cable	1	EUT	Earphone
Un-shielding Detachable Cable	0.9	EUT	Passive speaker


Block Diagram of Test Setup

For Conducted Emission:


For Radiated Emission:

Below 1G

Note: the support table edge was flush with center of turntable

Above 1G

Note: the support table edge was flush with center of turntable

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307(b)	RF Exposure	Compliant
§15.203	Antenna Requirement Comp	
§15.207 (a)	AC Line Conducted Emissions Comp	
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth Compli	
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge Comp	
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Conducted Emissions	s Test		
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24
R & S	L.I.S.N.	ENV216	101314	2022/11/25	2023/11/24
Anritsu Corp	50Ω Coaxial Switch	MP59B	6100237248	2022/12/07	2023/12/06
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24
	Conducte	d Emission Test Software	e: e3 191218 (V9)		
		Radiated Emissions	Test		
Rohde & Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07
Quinstar	Amplifier	QLW-18405536-J0	15964001002	2022/11/08	2023/11/07
Schwarzbeck	Bilog Antenna	VULB9163	9163-194	2023/02/14	2026/02/13
Schwarzbeck	Horn Antenna	BBHA9120D	837	2023/02/22	2026/02/21
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25
Wainwright	High Pass Filter	WHKX3.6/18G-10SS	5	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24
	Radiated Emission Test Software:e3 191218 (V9)				
RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2022/11/25	2023/11/24
Agilent	Power Sensor	U2021XA	MY5425003	2023/02/25	2024/02/24
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.31	RF-01	Eacl	h time

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (b) – RF EXPOSURE

Applicable Standard

According to FCC §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4 –MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	$3.83 R^2$.
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

Test result

For worst case:

Mode	Frequency Range	_	p Output Antenna (na Gain	ERP		Evaluation Distance	MPE-Based Exemption
Mode	(MHz)	(dBm)	(mW)	(dBi)	(dBd)	(dBm)	(W)	(cm)	Threshold (W)
BT	2402-2480	-1	0.79	-0.68	-2.83	-3.83	0.0004	20	0.768
2.4G Wi-Fi	2412-2462	19	79.43	3.35	1.2	20.2	0.1047	20	0.768
5G Wi-Fi	5150-5250	14.5	28.18	1.88	-0.27	14.23	0.0265	20	0.768

Note 1: The tune-up power was declared by the applicant.

Note 2: 0dBd=2.15dBi.

Note 3: The BT function can transmit at the same time with the Wi-Fi function.

Simultaneous transmitting consideration:

The ratio= MPE_{BT}/limit+MPE_{2.4G Wi-Fi}/limit=0.0004/0.768+0.1047/0.768=0.137 \leq 1.0

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20 cm from nearby persons.

Result: Compliant.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

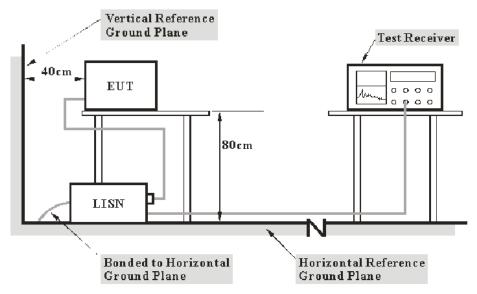
According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal antennas arrangement for 2.4G Wi-Fi, which were permanently attached to the EUT and the antenna gain is 3.35dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W			
150 kHz – 30 MHz	9 kHz			

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

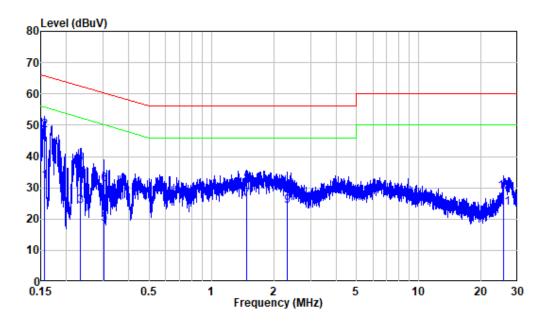
The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	22℃
Relative Humidity:	59 %
ATM Pressure:	101.0 kPa


The testing was performed by Jerry Wu on 2023-04-26.

EUT operation mode: Full load+2.4G WIFI Transmite (worst case 802.11b, high channel)

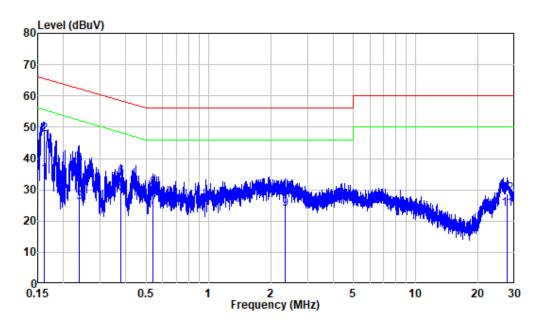
Note: Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded

Test Result: Please refer the below plots.

AC 120V/60 Hz, Line

Site : Shielding Room

Condition: Line


Job No. : RA230324-14579-RF

Mode : Full load+2.4Gwifi Transmite

Power : AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.156	10.09	22.01	32.10	55.65	-23.55	Average
2	0.156	10.09	38.13	48.22	65.65	-17.43	QP
3	0.234	10.20	13.84	24.04	52.30	-28.26	Average
4	0.234	10.20	27.65	37.85	62.30	-24.45	QP
5	0.302	10.22	8.28	18.50	50.17	-31.67	Average
6	0.302	10.22	20.78	31.00	60.17	-29.17	QP
7	1.479	10.38	15.97	26.35	46.00	-19.65	Average
8	1.479	10.38	20.86	31.24	56.00	-24.76	QP
9	2.324	10.41	13.67	24.08	46.00	-21.92	Average
10	2.324	10.41	18.75	29.16	56.00	-26.84	QP
11	25.727	10.06	13.62	23.68	50.00	-26.32	Average
12	25.727	10.06	18.77	28.83	60.00	-31.17	OP

AC 120V/60 Hz, Neutral

Site : Shielding Room

Condition: Neutral

Job No. : RA230324-14579-RF

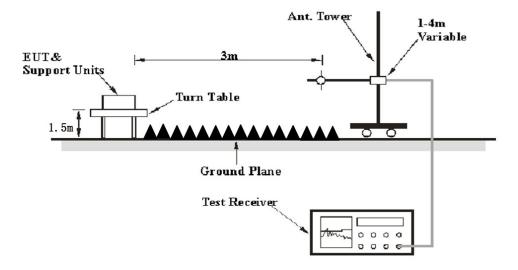
Mode : Full load+2.4Gwifi Transmite

Power : AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.161	9.68	24.94	34.62	55.41	-20.79	Average
2	0.161	9.68	38.00	47.68	65.41	-17.73	QP
3	0.239	9.70	16.22	25.92	52.14	-26.22	Average
4	0.239	9.70	28.19	37.89	62.14	-24.25	QP
5	0.378	9.74	19.17	28.91	48.32	-19.41	Average
6	0.378	9.74	24.52	34.26	58.32	-24.06	QP
7	0.537	9.77	14.53	24.30	46.00	-21.70	Average
8	0.537	9.77	20.57	30.34	56.00	-25.66	QP
9	2.341	9.81	14.11	23.92	46.00	-22.08	Average
10	2.341	9.81	19.20	29.01	56.00	-26.99	QP
11	27.452	10.05	13.76	23.81	50.00	-26.19	Average
12	27.452	10.05	18.67	28.72	60.00	-31.28	QP

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1 MHz	3 MHz	/	PK
Above 1 GHz	1 MHz	10Hz*	/	Ave.
	1 MHz	1/T**	/	Ave.

Note: * for duty cycle \geq 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

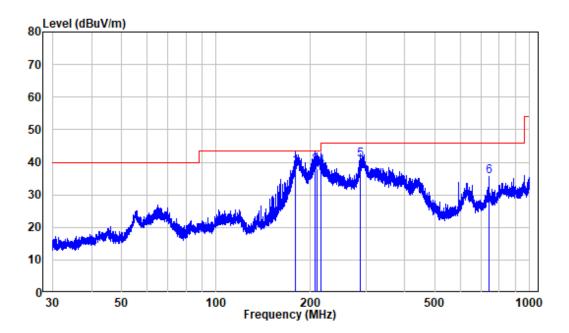
Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	23-24°C
Relative Humidity:	57-58%
ATM Pressure:	101.0kPa

The testing was performed by Jason Liu on 2023-05-12 for below 1G and on 2023-04-10 for above 1G.


EUT operation mode: Full load+2.4G WIFI Transmite or 2.4G WIFI Transmitting

Test Result: Please refer the below tables and plots.

^{**}for duty cycle < 98%, and T is maximum transmission duration.

30MHz-1GHz: (Worst case 802.11b mode, High Channel)

Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No. : RA230324-14579E-RF

Test Mode: Full load+2.4Gwifi Transmite

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	179.386	-12.73	51.30	38.57	43.50	-4.93	QP
2	206.579	-12.01	51.00	38.99	43.50	-4.51	QP
3	210.140	-12.04	49.99	37.95	43.50	-5.55	QP
4	215.835	-11.88	50.60	38.72	43.50	-4.78	QP
5	287.990	-9.31	50.20	40.89	46.00	-5.11	QP
6	741.934	-0.71	36.34	35.63	46.00	-10.37	Peak

Vertical

Site : chamber Condition: 3m VERTICAL

Job No. : RA230324-14579E-RF

Test Mode: Full load+2.4Gwifi Transmite

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	46.422	-10.08	43.14	33.06	40.00	-6.94	Peak
2	65.630	-12.81	46.26	33.45	40.00	-6.55	Peak
3	181.602	-12.50	49.20	36.70	43.50	-6.80	QP
4	206.850	-12.02	49.31	37.29	43.50	-6.21	QP
5	489.241	-4.51	41.67	37.16	46.00	-8.84	Peak
6	741.934	-0.71	38.76	38.05	46.00	-7.95	Peak

1-25 GHz:

T2	Rec	eiver	Turntable	Rx Ar	tenna	T4	Absolute	T !!4	N/
Frequency (MHz)	Reading (dBuV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
				802.11B,	Low Char	nnel			
2310	56.22	PK	274	1.5	Н	-10.36	45.86	74	-28.14
2310	57.58	PK	265	1.2	V	-10.36	47.22	74	-26.78
2390	58.73	PK	253	1.8	Н	-10.71	48.02	74	-25.98
2390	56.73	PK	73	2.2	V	-10.71	46.02	74	-27.98
4824	49.37	PK	158	1.3	Н	-6.11	43.26	74	-30.74
4824	48.48	PK	135	1.4	V	-6.11	42.37	74	-31.63
				802.11B, N	Aiddle Cha	annel			
4874	48.63	PK	304	1.1	Н	-5.94	42.69	74	-31.31
4874	49.2	PK	84	1.9	V	-5.94	43.26	74	-30.74
				802.11B,	High Cha	nnel			
2483.5	63.59	PK	79	1.5	Н	-10.55	53.04	74	-20.96
2483.5	58.06	PK	360	2.0	V	-10.55	47.51	74	-26.49
2500	58.68	PK	340	1.7	Н	-10.42	48.26	74	-25.74
2500	57.11	PK	212	1.3	V	-10.42	46.69	74	-27.31
4924	47.93	PK	1	2.0	Н	-5.67	42.26	74	-31.74
4924	47.65	PK	295	2.1	V	-5.67	41.98	74	-32.02
			1	802.11G,	Low Char	nnel	1		
2310	55.64	PK	258	1.6	Н	-10.36	45.28	74	-28.72
2310	62.61	PK	115	1.1	V	-10.36	52.25	74	-21.75
2390	79.22	PK	127	1.2	Н	-10.71	68.51	74	-5.49
2390	54.28	AVG	73	1.5	Н	-10.71	43.57	54	-10.43
2390	74.79	PK	73	1.5	V	-10.71	64.08	74	-9.92
2390	49.21	AVG	197	1.3	V	-10.71	38.50	54	-15.50
4824	48.4	PK	327	1.5	Н	-6.11	42.29	74	-31.71
4824	48.83	PK	200	1.2	V	-6.11	42.72	74	-31.28
			;	802.11G, N	Middle Cha	annel	1		
4874	47.38	PK	222	1.1	Н	-5.94	41.44	74	-32.56
4874	48.87	PK	197	1.6	V	-5.94	42.93	74	-31.07
				802.11G,	High Cha	nnel			
2483.5	78.23	PK	201	1.1	Н	-10.55	67.68	74	-6.32
2483.5	51.4	AV	43	2.0	Н	-10.55	40.85	54	-13.15
2483.5	74.39	PK	187	1.8	V	-10.55	63.84	74	-10.16
2483.5	49.1	AV	60	2.0	V	-10.55	38.55	54	-15.45
2500	60.13	PK	97	1.1	Н	-10.42	49.71	74	-24.29
2500	57.82	PK	97	1.1	V	-10.42	47.40	74	-26.60
4924	48.71	PK	342	1.5	Н	-5.67	43.04	74	-30.96
4924	48.04	PK	53	2.1	V	-5.67	42.37	74	-31.63

Frequency		eiver	Turntable	Rx An		Factor	Absolute	Limit	Margin		
(MHz)	Reading (dBuV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBuV/m)	(dBuV/m)	(dB)		
	802.11N20, Low Channel										
2310	56.46	PK	212	1.6	Н	-10.36	46.10	74	-27.90		
2310	56.61	PK	51	2.2	V	-10.36	46.25	74	-27.75		
2390	81.72	PK	343	1.2	Н	-10.71	71.01	74	-2.99		
2390	50.81	AV	273	1.9	Н	-10.71	40.10	54	-13.90		
2390	76.04	PK	71	1.1	V	-10.71	65.33	74	-8.67		
2390	50.01	AV	156	1.1	V	-10.71	39.30	54	-14.70		
4824	47.31	PK	21	1.0	Н	-6.11	41.20	74	-32.80		
4824	48.55	PK	251	1.9	V	-6.11	42.44	74	-31.56		
			80	2.11N20, N	Iiddle Cha	nnel					
4874	48.85	PK	76	1.2	Н	-5.94	42.91	74	-31.09		
4874	48.8	PK	65	1.7	V	-5.94	42.86	74	-31.14		
			80	02.11N20,	High Char	inel					
2483.5	78.59	PK	179	1.8	Н	-10.55	68.04	74	-5.96		
2483.5	47	AV	223	1.0	Н	-10.55	36.45	54	-17.55		
2483.5	72.74	PK	358	1.6	V	-10.55	62.19	74	-11.81		
2483.5	46.3	AV	179	1.3	V	-10.55	35.75	54	-18.25		
2500	60.47	PK	175	2.0	Н	-10.42	50.05	74	-23.95		
2500	61.67	PK	175	2.0	V	-10.42	51.25	74	-22.75		
4924	48.58	PK	209	1.1	Н	-5.67	42.91	74	-31.09		
4924	48.25	PK	87	1.7	V	-5.67	42.58	74	-31.42		
			8	02.11N40,	Low Chan	nel					
2310	56.86	PK	98	1.8	Н	-10.36	46.50	74	-27.50		
2310	55.98	PK	274	1.1	V	-10.36	45.62	74	-28.38		
2390	79.48	PK	274	1.1	Н	-10.71	68.77	74	-5.23		
2390	51.81	AV	303	1.3	Н	-10.71	41.10	54	-12.90		
2390	67.61	PK	249	2.2	V	-10.71	56.90	74	-17.10		
2390	47.21	AV	44	1.2	V	-10.71	36.50	54	-17.50		
4844	48.55	PK	206	1.9	Н	-6.09	42.46	74	-31.54		
4844	48.02	PK	187	1.4	V	-6.09	41.93	74	-32.07		
			80	2.11N40, N	Iiddle Cha	nnel					
4874	50.31	PK	195	1.1	Н	-5.94	44.37	74	-29.63		
4874	48.98	PK	160	1.7	V	-5.94	43.04	74	-30.96		

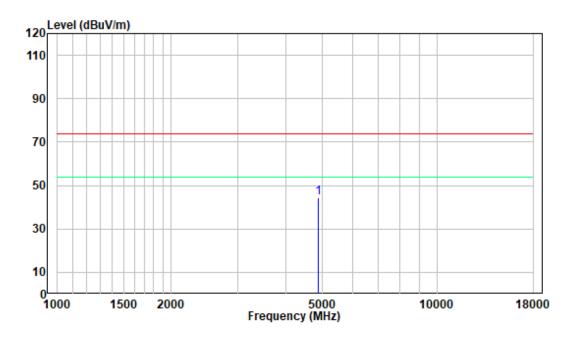
Frequency	Receiver		Turntable	Rx An	tenna	Factor	Absolute	Limit	Margin		
(MHz)	Reading (dBuV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBuV/m)	(dBuV/m)	(dB)		
	802.11N40, High Channel										
2483.5	83.9	PK	165	1.2	Н	-10.55	73.35	74	-0.65		
2483.5	55.8	AV	36	2.2	Н	-10.55	45.25	54	-8.75		
2483.5	82.07	PK	343	1.7	V	-10.55	71.52	74	-2.48		
2483.5	50	AV	212	1.3	V	-10.55	39.45	54	-14.55		
2500	71.77	PK	203	2.0	Н	-10.42	61.35	74	-12.65		
2500	53.9	AV	322	1.8	Н	-10.42	43.48	54	-10.52		
2500	68.77	PK	322	1.8	V	-10.42	58.35	74	-15.65		
2500	42.2	AV	90	1.2	V	-10.42	31.78	54	-22.22		
4904	49.28	PK	90	1.2	Н	-5.77	43.51	74	-30.49		
4904	48.74	PK	0	1.0	V	-5.77	42.97	74	-31.03		

Note:

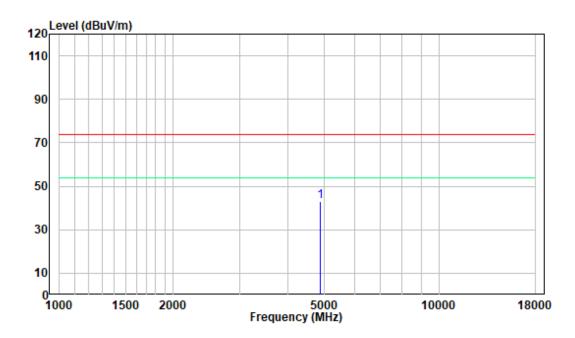
 $Factor = Antenna \; factor \; (RX) + Cable \; Loss - Amplifier \; Factor \;$

Absolute Level (Corrected Amplitude) = Factor + Reading

Margin = Absolute Level (Corrected Amplitude) – Limit

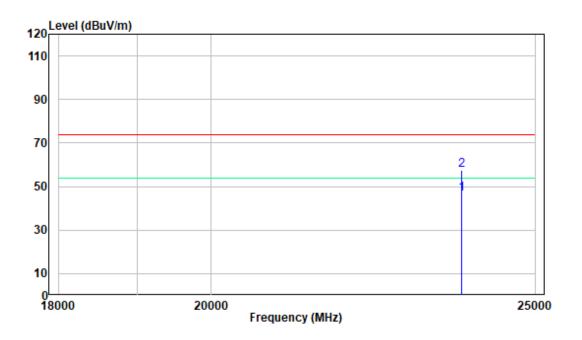

The other spurious emission which is in the noise floor level was not recorded.

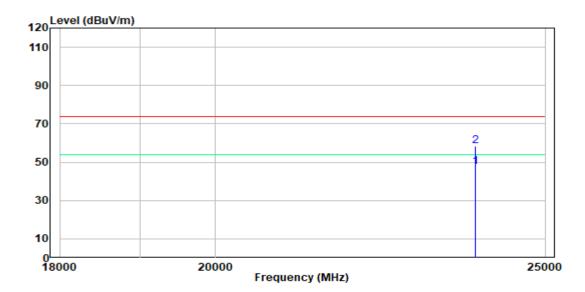
For above 1GHz, when the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, just peak value was recorded.


1-18 GHz: (Pre-scan plots)

802.11 n40 Middle Channel (Worst case)

Horizontal


Vertical

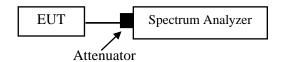

18 -25GHz: (Pre-scan plots)

802.11 n40 Middle Channel (Worst case)

Horizontal

Vertical

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH


Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

According to ANSI C63.10-2013, section 11.8 and section 6.9

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

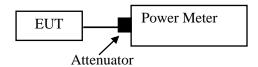
Environmental Conditions

Temperature:	24°C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Bob Liao on 2023-04-13.

EUT operation mode: Transmitting

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER


Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

According to ANSI C63.10-2013, section 11.9.2.3.2

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

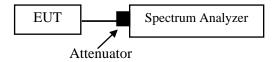
Environmental Conditions

Temperature:	24℃	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Bob Liao on 2023-04-13.

EUT operation mode: Transmitting

FCC §15.247(d) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

According to ANSI C63.10-2013, section 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24°C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Bob Liao on 2023-04-13.

EUT operation mode: Transmitting

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

According to ANSI C63.10-2013, section 11.10.3

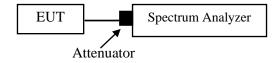
Method AVGPSD-1: (for duty cycle \geq 98%)

- 1. Use this procedure when the maximum conducted average output power in the fundamental emission is used to demonstrate compliance and with continuous transmission (or at least 98% duty cycle).
- 2. Set the RBW to: 3kHz < RBW < 100 kHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to at least 1.5 times the OBW.
- 5. Detector = power averaging (rms) or sample detector (when rms not available).
- 6. Sweep time = auto couple.
- 7. Ensure that the number of measurement points in the sweep $\geq [2 \cdot \text{span} / \text{RBW}]$.
- 8. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

According to ANSI C63.10-2013, section 11.10.5

Method AVGPSD-2: (for duty cycle < 98% and duty cycle is constant)

- 1. Use this procedure when the maximum conducted average output power in the fundamental emission is used to demonstrate compliance and the continuous transmission (or at least 98% duty cycle) cannot be achieved but exhibit a constant duty cycle during the measurement duration.
- 2. Measure the duty cycle (D) of the transmitter output signal as described in C63.10-2013 Clause 11.6.
- 3. Set the RBW to: $3kHz \le RBW \le 100 \text{ kHz}$.
- 4. Set the VBW \geq 3×RBW.
- 5. Set the span to at least 1.5 times the OBW.
- 6. Detector = power averaging (rms) or sample detector (when rms not available).
- 7. Sweep time = auto couple.
- 8. Ensure that the number of measurement points in the sweep \geq [2 *span / RBW].
- 9. Do not use sweep triggering; allow sweep to "free run."
- 10. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add [10 log (1 / D)], where D is the duty cycle measured in step 2), to the measured PSD to compute the average PSD during the actual transmission time.


13. If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

According to ANSI C63.10-2013, section 11.10.7

Method AVGPSD-3: (for duty cycle < 98% and duty cycle not constant)

The following procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., D < 98%), when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is not constant (i.e., duty cycle variations exceed $\pm 2\%$):

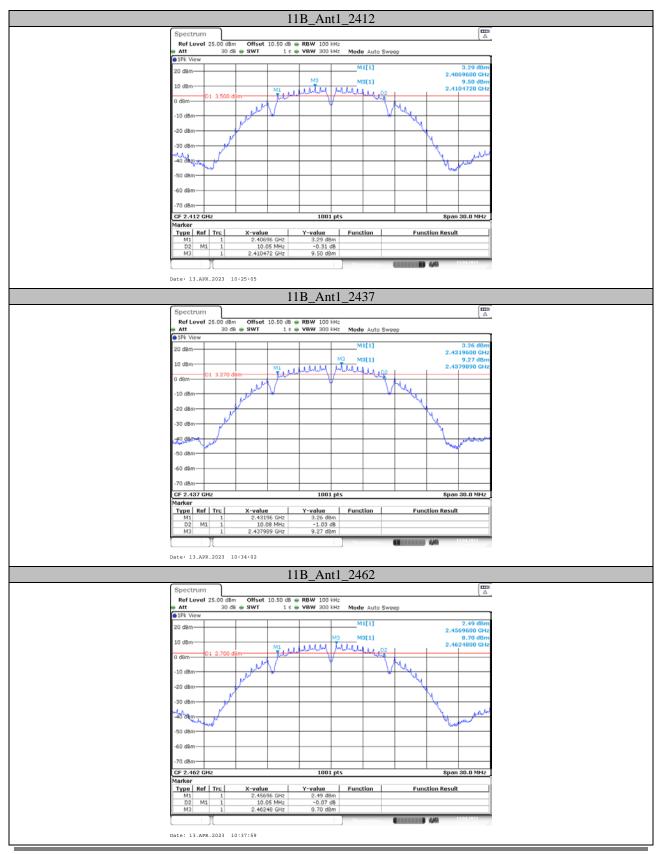
- a) Set the instrument span to a minimum of 1.5 times the OBW.
- b) Set sweep trigger to "free run."
- c) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set VBW \geq [3 \times RBW].
- e) Number of points in sweep \geq [2 \times span / RBW]. (This ensures that bin-to-bin spacing is \leq RBW /
- 2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time \leq (number of points in sweep) \times T, where T is defined in 11.6.
 - NOTE—If this results in a sweep time less than the auto sweep time of the instrument, then this method shall not be used (use AVGPSD-2A instead). The purpose of this step is to ensure that averaging time in each bin is less than or equal to the minimum time of a transmission.
- g) Detector = RMS (power averaging).
- h) Trace mode = max hold.
- i) Allow max hold to run for at least 60 s or longer as needed to allow the trace to stabilize.
- j) Use the peak marker function to determine the maximum PSD level.
- k) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

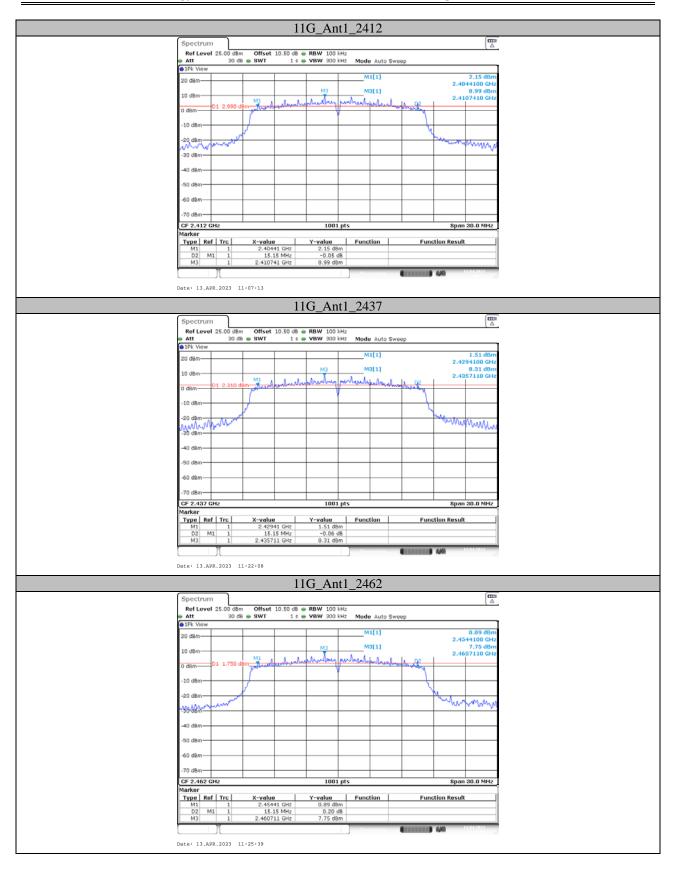
Test Data

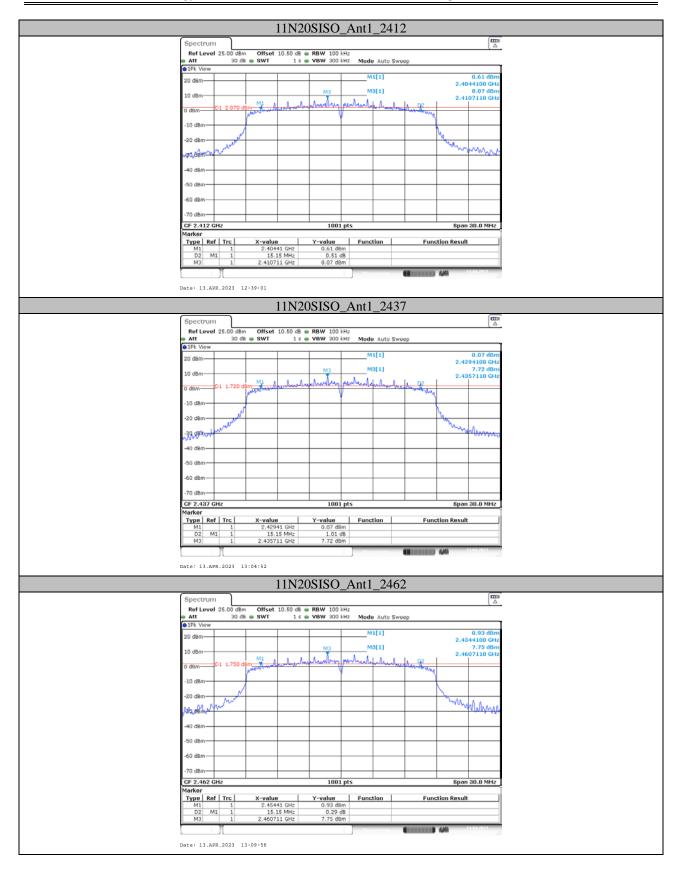
Environmental Conditions

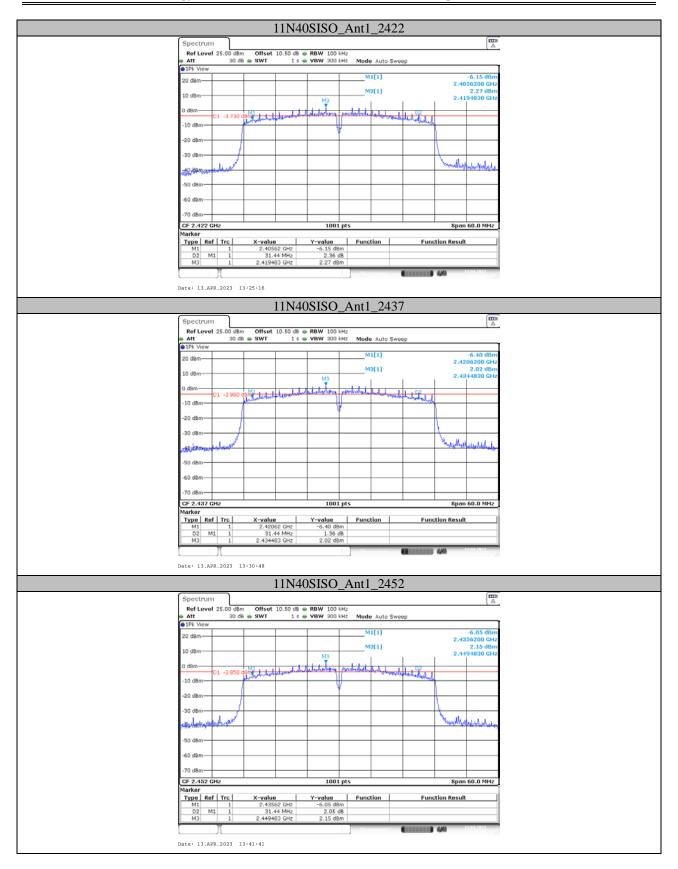
Temperature:	24°C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Bob Liao on 2023-06-04.

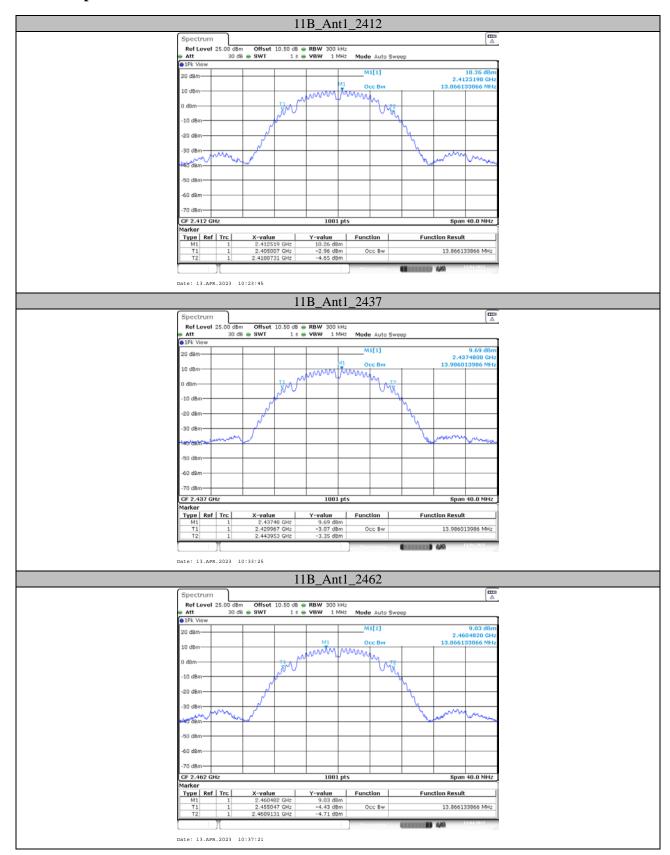

EUT operation mode: Transmitting

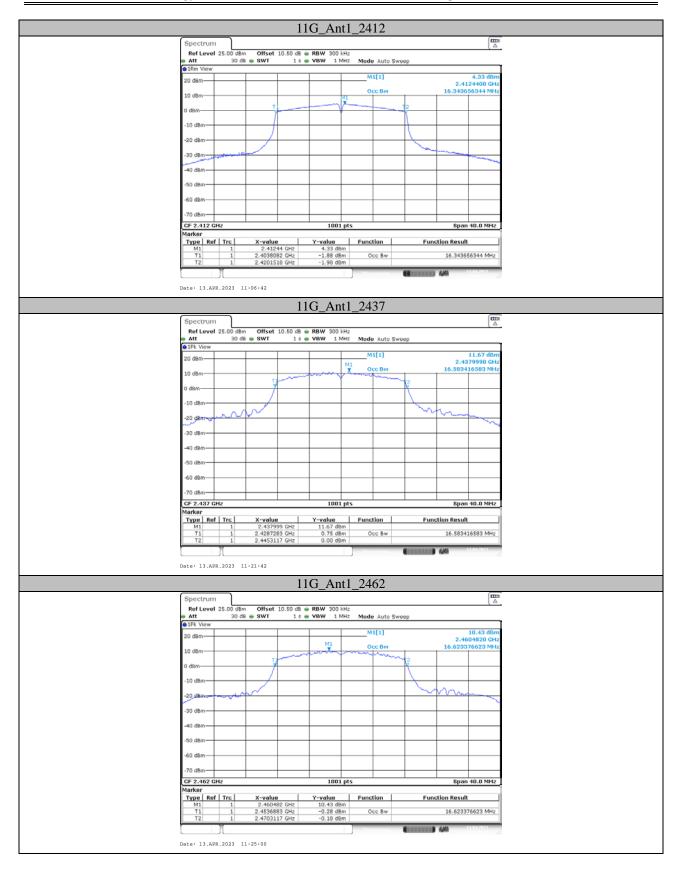

APPENDIX A: 6dB Emission Bandwidth

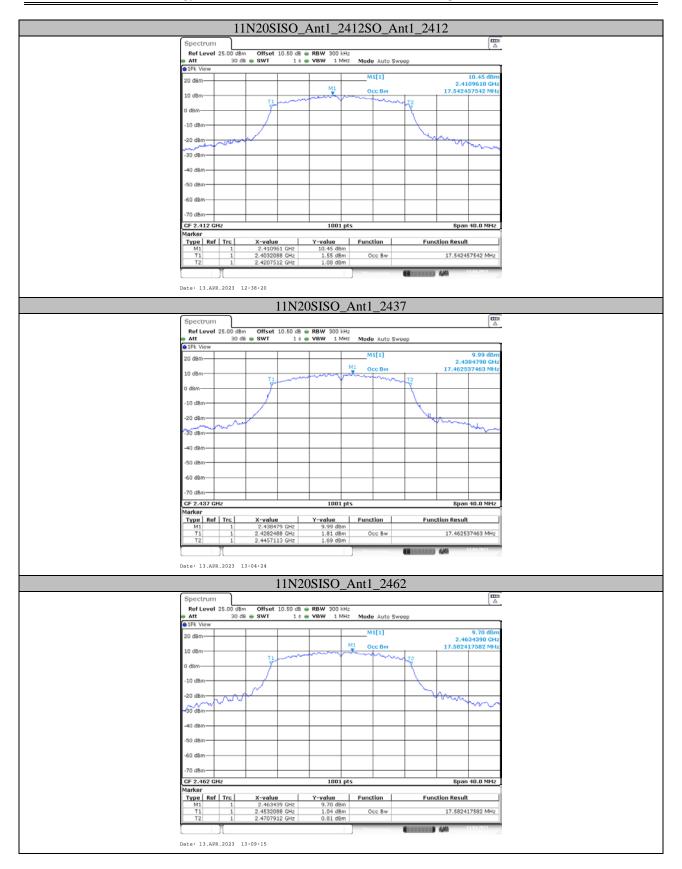

Test Result

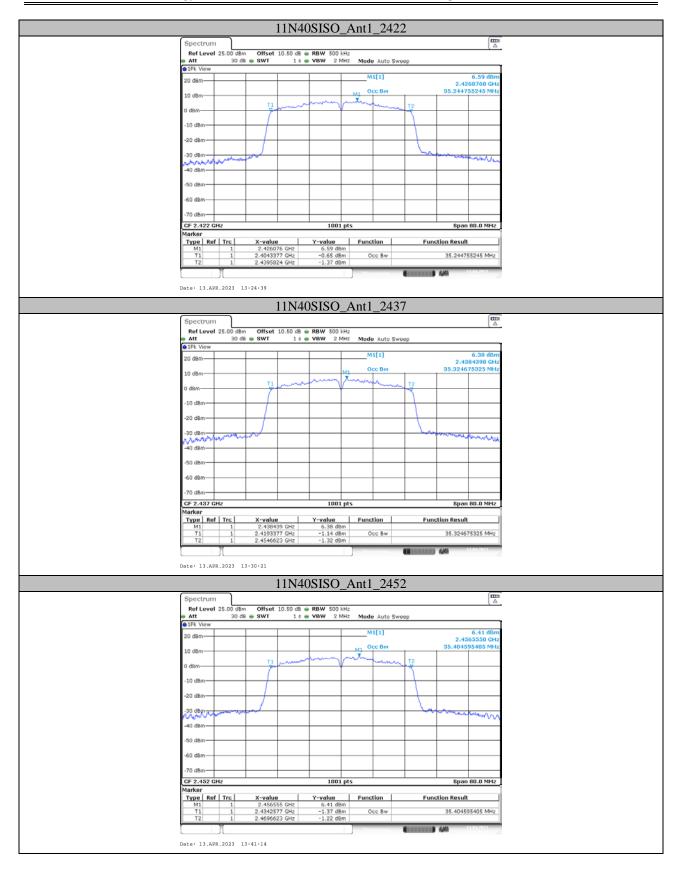

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	10.05	0.5	PASS
		2437	10.08	0.5	PASS
		2462	10.05	0.5	PASS
11G	Ant1	2412	15.15	0.5	PASS
		2437	15.15	0.5	PASS
		2462	15.15	0.5	PASS
11N20 SISO	Ant1	2412	15.15	0.5	PASS
		2437	15.15	0.5	PASS
		2462	15.15	0.5	PASS
11N40 SISO	Ant1	2422	31.44	0.5	PASS
		2437	31.44	0.5	PASS
		2452	31.44	0.5	PASS

Test Graphs

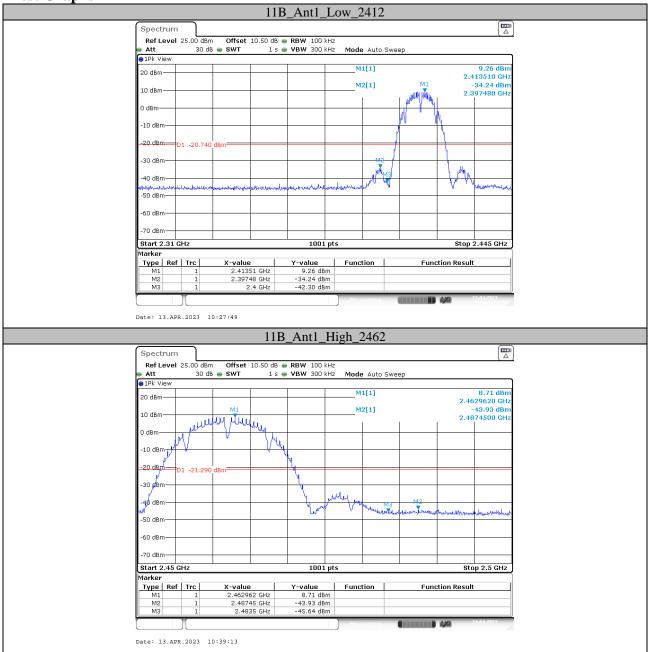


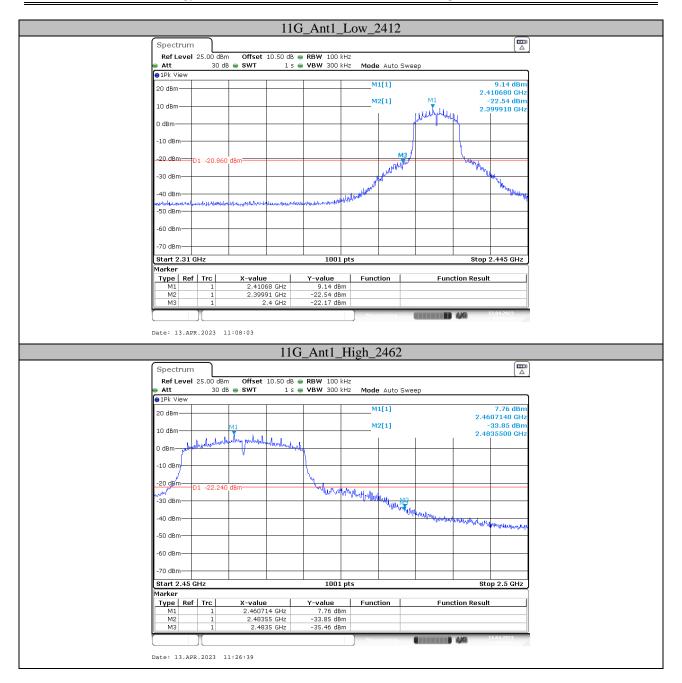

APPENDIX B: Occupied Channel Bandwidth

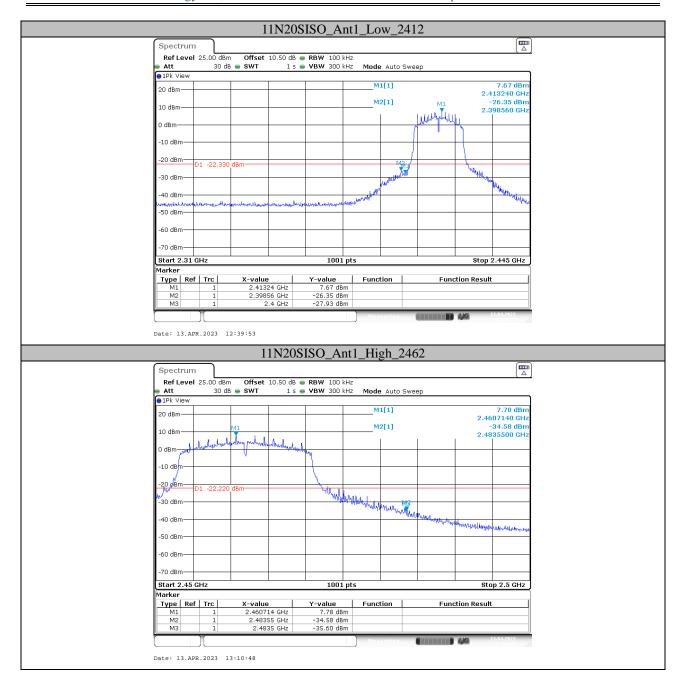

Test Result:


Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	13.866		PASS
		2437	13.986		PASS
		2462	13.866		PASS
11 G	Ant1	2412	16.344		PASS
		2437	16.583		PASS
		2462	16.623		PASS
11N20 SISO	Ant1	2412	17.542		PASS
		2437	17.463		PASS
		2462	17.582		PASS
11N40 MIMO	Ant1	2422	35.245		PASS
		2437	35.325		PASS
		2452	35.405		PASS

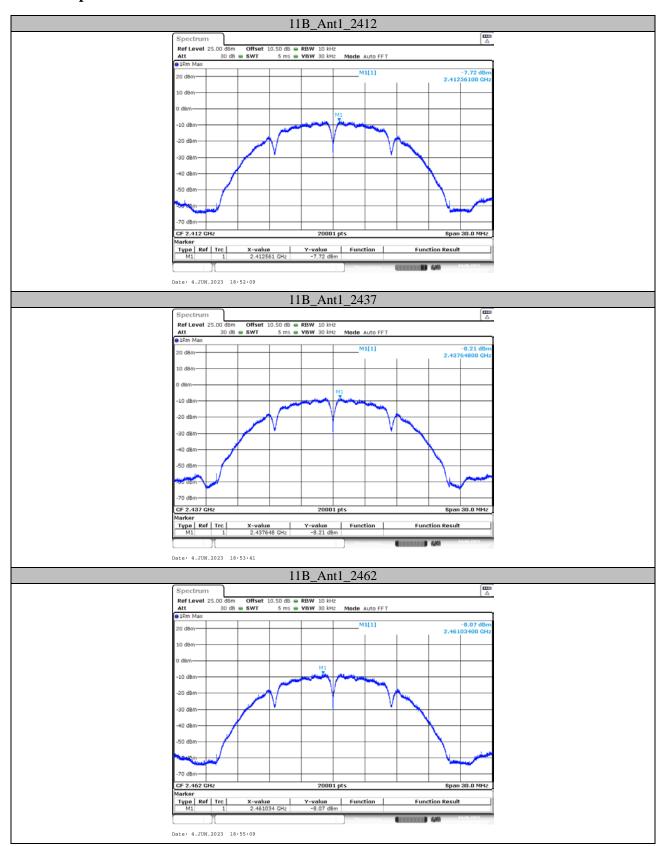
Test Graphs:

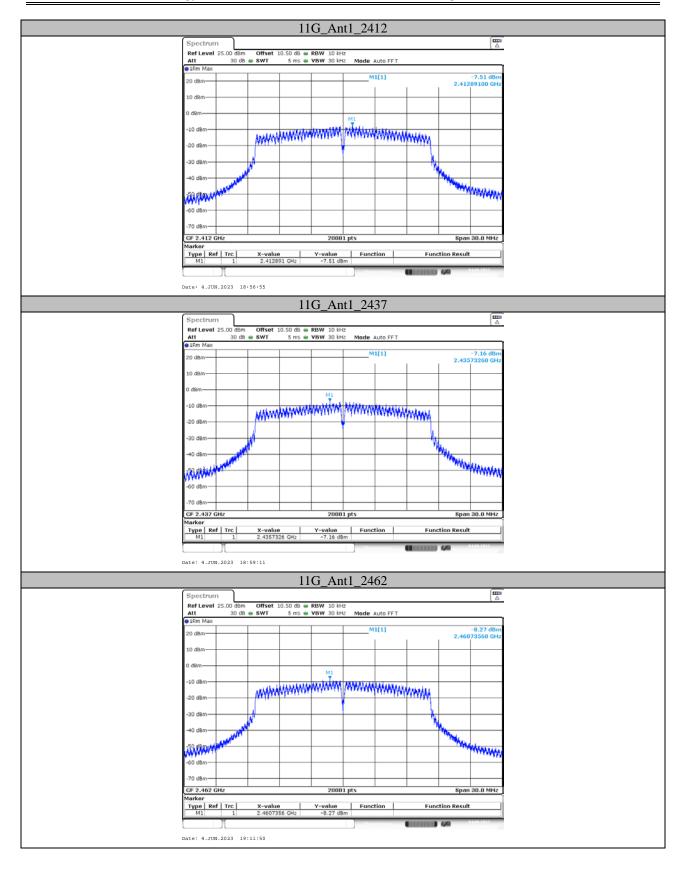

APPENDIX C: Maximum Conducted Output Power

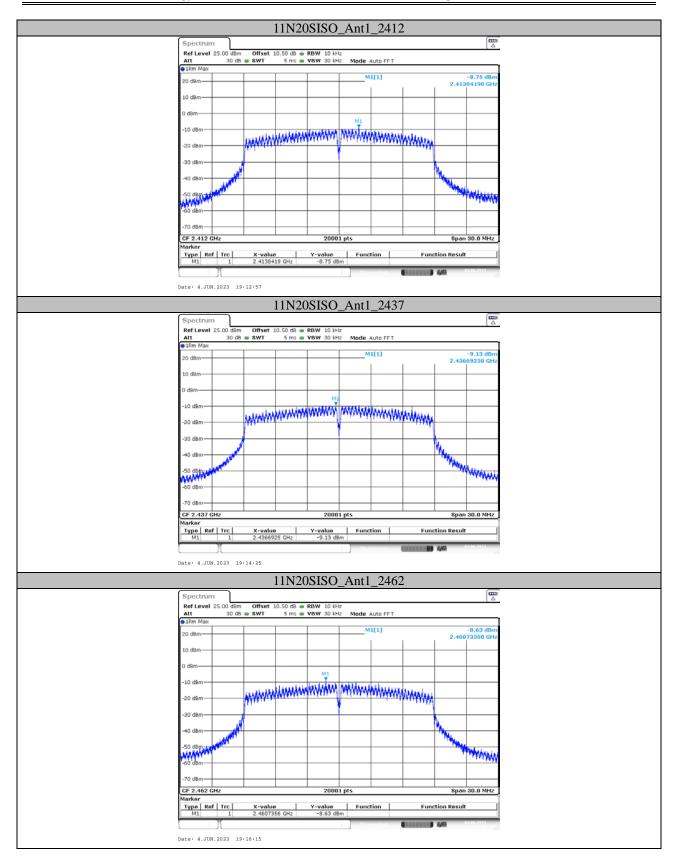

Test Result

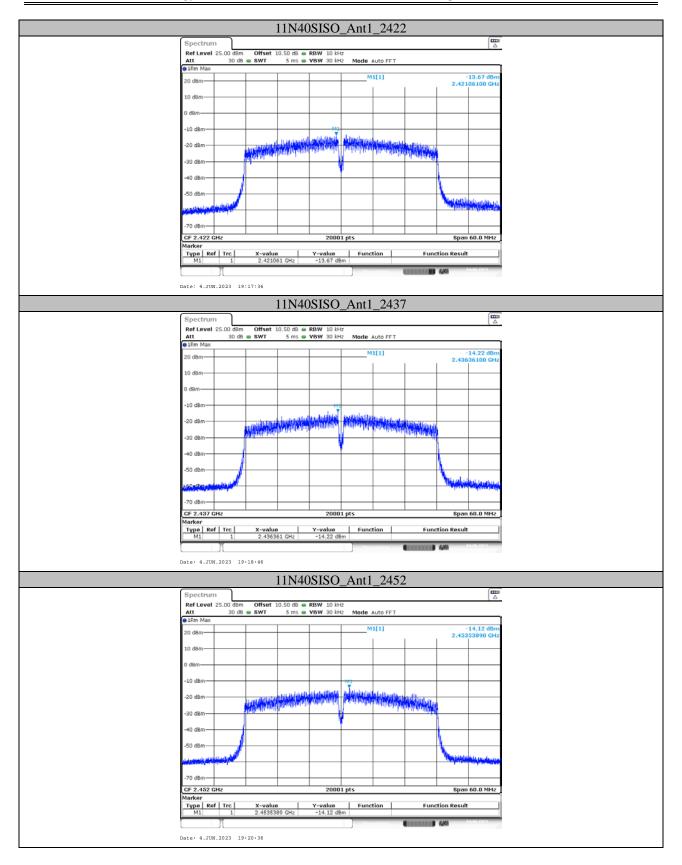

Test Mode	Antenna	Channel	Average Power[dBm]	Limit[dBm]	Verdict
11B	Ant1	2412	18.11	<=30	PASS
		2437	18.24	<=30	PASS
		2462	17.53	<=30	PASS
11 G	Ant1	2412	18.62	<=30	PASS
		2437	18.24	<=30	PASS
		2462	17.69	<=30	PASS
11N20 SISO	Ant1	2412	17.32	<=30	PASS
		2437	17.34	<=30	PASS
		2462	17.29	<=30	PASS
11N40 SISO	Ant1	2422	14.09	<=30	PASS
		2437	14.03	<=30	PASS
		2452	14.13	<=30	PASS

APPENDIX D: Band Edge Measurements

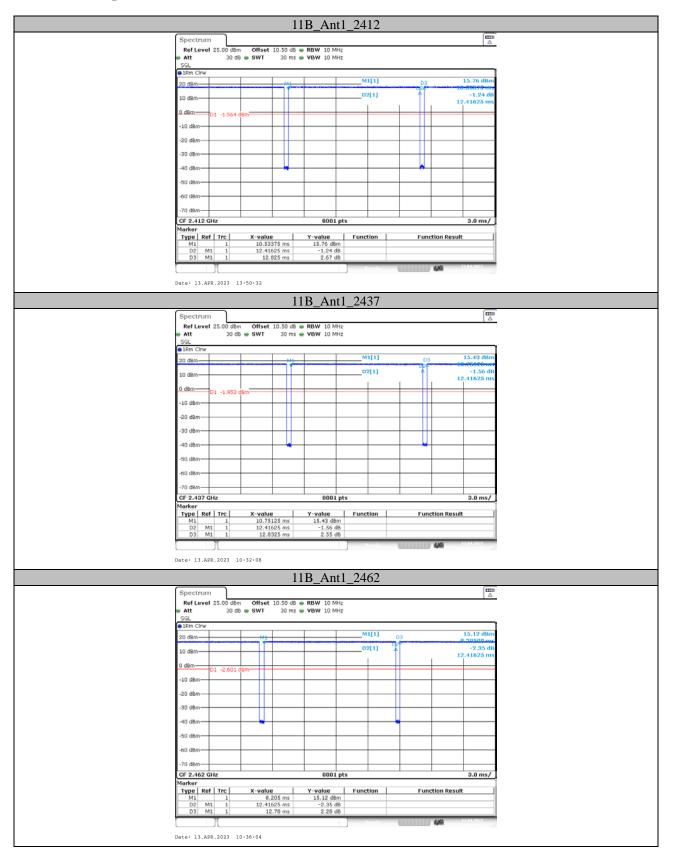

APPENDIX E: Maximum Power Spectral Density


Test Result

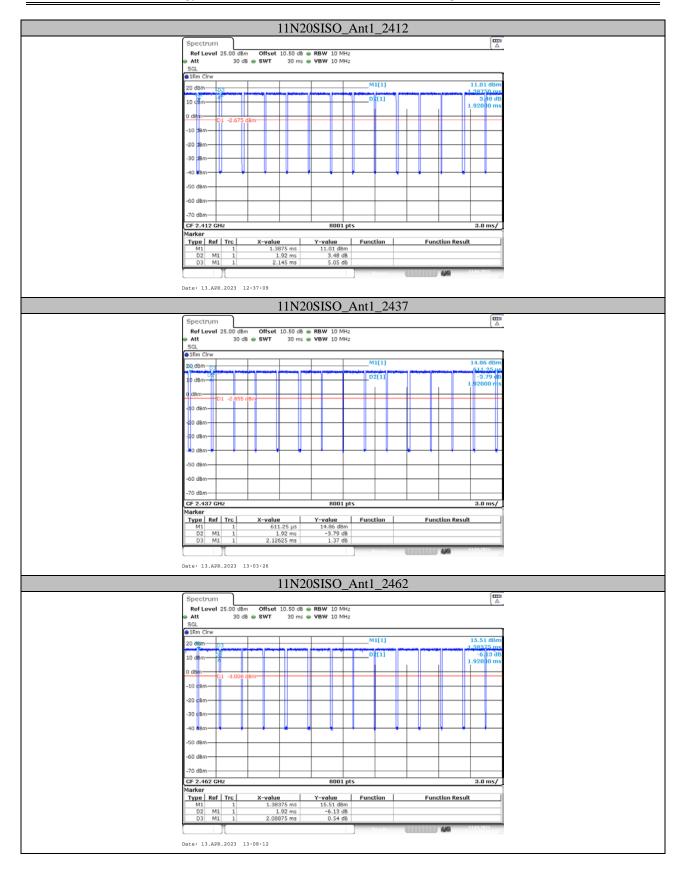

Test Mode	Antenna	Channel	PSD [dBm/10kHz]	Limit [dBm/3kHz]	Verdict
11B	Ant1	2412	-7.72	<=8	PASS
		2437	-8.21	<=8	PASS
		2462	-8.07	<=8	PASS
11 G	Ant1	2412	-7.51	<=8	PASS
		2437	-7.16	<=8	PASS
		2462	-8.27	<=8	PASS
11N20 SISO	Ant1	2412	-8.75	<=8	PASS
		2437	-9.13	<=8	PASS
		2462	-8.63	<=8	PASS
11N40 SISO	Ant1	2422	-13.67	<=8	PASS
		2437	-14.22	<=8	PASS
		2452	-14.12	<=8	PASS

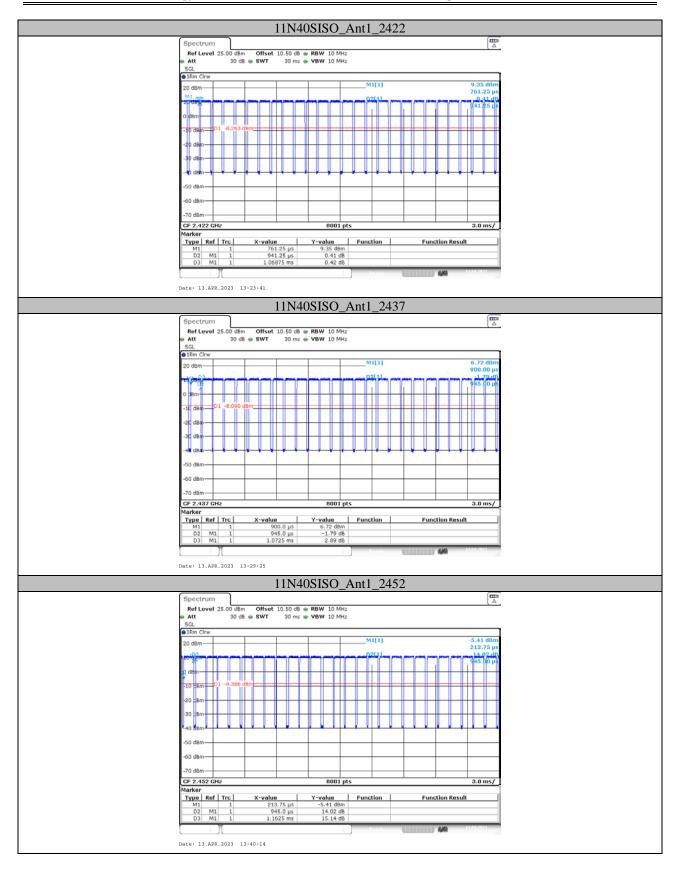

Note: the duty cycle not constant, method AVPSD-3 was used

Test Graphs



APPENDIX F: Duty Cycle


Test Result


Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T Minimum VBW[kHz]
11B	Ant1	2412	12.416	12.825	Not Constant	0.08
		2437	12.416	12.833	Not Constant	0.08
		2462	12.416	12.780	Not Constant	0.08
11G	Ant1	2412	2.066	2.246	Not Constant	0.48
		2437	2.066	2.273	Not Constant	0.48
		2462	2.063	2.235	Not Constant	0.48
11N20SISO	Ant1	2412	1.920	2.145	Not Constant	0.52
		2437	1.920	2.126	Not Constant	0.52
		2462	1.920	2.089	Not Constant	0.52
11N40SISO	Ant1	2422	0.941	1.069	Not Constant	1.06
		2437	0.945	1.073	Not Constant	1.06
		2452	0.945	1.163	Not Constant	1.06

Test Graphs

***** END OF REPORT *****