

# **FCC REPORT**

For LTE

Report No. ....:: CHTEW22040168

Report Verification:

Project No.....: SHT2202018603EW

FCC ID.....:: 2A3E5-EYEON12WC

Applicant .....:: EyeTech Digital Systems , Inc.

Address....: 2141 E Broadway Rd, Ste 202, Tempe, AZ 85282, United States

of America

Product Name .....: EyeOn Air

Trade Mark ..... EyeOn

Model No ....: EyeOn-12WC

Listed Model(s) .....:

FCC CFR Title 47 Part 2 Standard .....:

FCC CFR Title 47 Part 90

Date of receipt of test sample..... Feb. 21, 2022

Date of testing..... Feb. 22, 2022- Apr. 22., 2022

Date of issue..... Apr. 24., 2022

Result.....: **Pass** 

Compiled by

File administrators Silvia Li (position+printedname+signature)...:

Supervised by

(position+printedname+signature)....: Project Engineer Aaron Fang Silvia Li Aaron.Fang

Approved by

(position+printedname+signature)....: Manager Hans Hu

Testing Laboratory Name .....: Shenzhen Huatongwei International Inspection Co., Ltd.

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Address.....

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Page: 1 of 45

Report No.: CHTEW22040168 Page: 2 of 25 Date of issue: 2022-04-24

## **Contents**

| <u>1.</u>         | TEST STANDARDS AND REPORT VERSION                  | <u>ა</u> |
|-------------------|----------------------------------------------------|----------|
|                   |                                                    |          |
| 1.1.              | Applicable Standards                               | 3        |
| 1.2.              | Report version information                         | 3        |
|                   |                                                    |          |
| <u>2.</u>         | TEST DESCRIPTION                                   | 4        |
|                   |                                                    |          |
| <u>3.</u>         | SUMMARY                                            | 5        |
|                   |                                                    | _        |
| 3.1.              | Client Information                                 | 5        |
| 3.2.              | Product Description                                | 5        |
| 3.3.              | Radio Specification Description                    | 5        |
| 3.4.              | Testing Laboratory Information                     | 6        |
| <u>4.</u>         | TEST CONFIGURATION                                 | 7        |
| <del></del>       | TEST CONFIGURATION                                 |          |
| 4.1.              | Test frequency list                                | 7        |
| 4.2.              | Descriptions of Test mode                          | 7        |
| 4.3.              | Test sample information                            | 7        |
| 4.4.              | Support unit used in test configuration and system | 7        |
| 4.5.              | Testing environmental condition                    | 8        |
| 4.6.              | Statement of the measurement uncertainty           | 8        |
| 4.7.              | Equipments Used during the Test                    | 9        |
| <u>5.</u>         | TEST CONDITIONS AND RESULTS                        | 10       |
| 5.1.              | Conducted Output Power                             | 10       |
| 5.1.<br>5.2.      | Peak-to-Average Ratio                              | 11       |
| 5.2.<br>5.3.      | 99% Occupied Bandwidth & 26 dB Bandwidth           | 12       |
| 5.4.              | Band Edge                                          | 13       |
| 5. <del>5</del> . | Conducted Spurious Emissions                       | 14       |
| 5.6.              | Frequency stability VS Temperature measurement     | 15       |
| 5.7.              | Frequency stability VS Voltage measurement         | 16       |
| 5.8.              | Radiated Spurious Emission                         | 17       |
| <u>6.</u>         | TEST SETUP PHOTOS OF THE EUT                       | 25       |
| <u>v.</u>         | 1201 OLIGI TITOTOG OF THE EUT                      | 23       |
| <u>7.</u>         | EXTERNAL AND INTERNAL PHOTOS OF THE EUT            | 25       |
| 8.                | APPENDIX REPORT                                    | 25       |

Report No.: CHTEW22040168 Page: 3 of 25 Date of issue: 2022-04-24

## 1. TEST STANDARDS AND REPORT VERSION

## 1.1. Applicable Standards

The tests were performed according to following standards:

FCC Rules Part 2: FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS

FCC Rules Part 90: PRIVATE LAND MOBILE RADIO SERVICES.

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

### 1.2. Report version information

| Revision No. | Date of issue | Description |
|--------------|---------------|-------------|
| N/A          | 2022-04-24    | Original    |
|              |               |             |
|              |               |             |
|              |               |             |
|              |               |             |

Report No.: CHTEW22040168 Page: 4 of 25 Date of issue: 2022-04-24

# 2. Test Description

| Section | Test Item                                | Section in CFR 47                   | Result #1 | Test Engineer   |
|---------|------------------------------------------|-------------------------------------|-----------|-----------------|
| 5.1     | Conducted Output Power                   | Part 2.1046<br>Part 90.635(b)       | Pass      | Tiancheng Huang |
| 5.2     | Peak-to-Average Ratio                    | -                                   | Pass      | Tiancheng Huang |
| 5.3     | 99% Occupied Bandwidth & 26 dB Bandwidth | Part 2.1049                         | Pass      | Tiancheng Huang |
| 5.4     | Band Edge                                | Part 2.1051<br>Part 90.691          | Pass      | Tiancheng Huang |
| 5.5     | Conducted Spurious Emissions             | Part 2.1051<br>Part 90.691          | Pass      | Tiancheng Huang |
| 5.6     | Frequency stability vs temperature       | Part 2.1055(a)(1)(b)<br>Part 90.213 | Pass      | Tiancheng Huang |
| 5.7     | Frequency stability vs voltage           | Part 2.1055(d)(1)(2)<br>Part 90.213 | Pass      | Tiancheng Huang |
| 5.8     | Radiated Spurious Emissions              | Part 2.1053<br>Part 90.691          | Pass      | Pan Xie         |

Note:

#1: The test result does not include measurement uncertainty value

Report No.: CHTEW22040168 Page: 5 of 25 Date of issue: 2022-04-24

## 3. **SUMMARY**

## 3.1. Client Information

| Applicant:    | EyeTech Digital Systems , Inc.                                         |  |
|---------------|------------------------------------------------------------------------|--|
| Address:      | 2141 E Broadway Rd, Ste 202, Tempe, AZ 85282, United States of America |  |
| Manufacturer: | Shenzhen Chuangwei Electronic Appliance Tech Co.,Ltd.                  |  |
|               | 4F&6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street,  |  |
| Address:      | Bao'an District, Shenzhen, Guangdong, P.R. China                       |  |

## 3.2. Product Description

| Main unit information:      |                                                                                  |  |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------|--|--|--|--|
| Product Name:               | EyeOn Air                                                                        |  |  |  |  |
| Trade Mark:                 | EyeOn                                                                            |  |  |  |  |
| Model No.:                  | EyeOn-12WC                                                                       |  |  |  |  |
| Listed Model(s):            |                                                                                  |  |  |  |  |
| Power supply:               | DC 3.8V from Battery                                                             |  |  |  |  |
| Hardware version:           | TO116K_MB_V4.0                                                                   |  |  |  |  |
| Software version:           | TO116K_Y12_V1.0.0_20220422                                                       |  |  |  |  |
| Accessory unit information: |                                                                                  |  |  |  |  |
| Battery information:        | DC3.8V,5050mAh                                                                   |  |  |  |  |
| Adapter information:        | Model:SYS1649-6012-T3<br>Input: AC100-240V, 50/60Hz, 1.5A<br>Output: 12Vdc, 5.0A |  |  |  |  |

## 3.3. Radio Specification Description

| Operation Band:            | ⊠ FDD Band 26       |        |                   |         |                   |
|----------------------------|---------------------|--------|-------------------|---------|-------------------|
|                            |                     |        | Uplink            |         | Downlink          |
| Operation Frequency Range: | FDD Band 18         |        | 817.5 – 821.5 MHz |         | 862.5 – 866.5 MHz |
|                            | FDD Band 26         |        | 814.7 – 823.3 MHz |         | 859.7 – 868.3 MHz |
| Channel bandwidth:         | 1.4MHz, 3MHz, 5MH   | Hz, 10 | MHz, 10MHz        | z,15MHz |                   |
| Power Class:               | ⊠ Class 3           | ☐ Cla  | ass 4             |         |                   |
| Uplink Modulation type:    | ⊠ QPSK              | ⊠ 16   | QAM               | ☐ 64QAM | ☐ 256QAM          |
| Downlink Modulation type:  | ⊠ QPSK              | ⊠ 16   | QAM               | ☐ 64QAM | ☐ 256QAM          |
| Antenna type               | PIFA Antenna        |        |                   |         |                   |
| Antenna Gain <sup>#2</sup> | Band 18:-2.23dBi; B | and 2  | 26:-2.06dBi;      | ·       |                   |

Note:

 $<sup>\</sup>boxtimes$ : means that this feature is supported;  $\square$ : means that this feature is not supported

<sup>#2:</sup> The antenna gain is provided by the applicant, and the applicant should be responsible for its authenticity, HTW lab has not verified the authenticity of its information

Report No.: CHTEW22040168 Page: 6 of 25 Date of issue: 2022-04-24

# 3.4. Testing Laboratory Information

| Laboratory Name      | Shenzhen Huatongwei International Inspection Co., Ltd.                                       |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Laboratory Location  | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China |  |  |  |
| Connect information: | Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn                         |  |  |  |
| Qualifications       | Type Accreditation Number                                                                    |  |  |  |
| Qualifications       | FCC 762235                                                                                   |  |  |  |

Report No.: CHTEW22040168 Page: 7 of 25 Date of issue: 2022-04-24

## 4. TEST CONFIGURATION

## 4.1. Test frequency list

|             | Test Frequency ID    | Banwidth[MHz]                                  | NUL                                                     | Frequency of<br>Uplink [MHz]                          | NDL                                       | Frequency of<br>Downlink [MHz]                     |
|-------------|----------------------|------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|----------------------------------------------------|
| EDD D 140   | Low Range            | 5                                              | 23875                                                   | 817.5                                                 | 5875                                      | 862.5                                              |
| FDD Band 18 | Mid Range            | 5                                              | 23895                                                   | 819.5                                                 | 5895                                      | 864.5                                              |
|             | High Range           | 5                                              | 23915                                                   | 821.5                                                 | 5915                                      | 866.5                                              |
|             |                      | •                                              |                                                         | •                                                     |                                           |                                                    |
|             |                      |                                                |                                                         |                                                       |                                           |                                                    |
|             | Took Fragues av ID   | Demonstrately DAIL Inc.                        |                                                         |                                                       |                                           |                                                    |
|             | Test Frequency ID    | Banwidth[MHz]                                  | N <sub>UL</sub>                                         | Frequency of<br>Uplink [MHz]                          | N <sub>DL</sub>                           | Frequency of<br>Downlink [MHz]                     |
|             | Low Range            | Banwioth[MHz]                                  | N <sub>UL</sub><br>26997                                |                                                       | N <sub>DL</sub><br>8697                   |                                                    |
|             | . ,                  | -                                              |                                                         | Uplink [MHz]                                          |                                           | Downlink [MHz]                                     |
|             | . ,                  | 1.4                                            | 26997                                                   | Uplink [MHz]<br>814.7                                 | 8697                                      | Downlink [MHz]<br>859.7                            |
| TDD Band 26 | . ,                  | 1.4                                            | 26997<br>26705                                          | Uplink [MHz]<br>814.7<br>815.5                        | 8697<br>8705                              | Downlink [MHz]<br>859.7<br>860.5                   |
| TDD Band 26 | . ,                  | 1.4<br>3<br>5                                  | 26997<br>26705<br>26715                                 | Uplink [MHz]<br>814.7<br>815.5<br>816.5               | 8697<br>8705<br>8715                      | Downlink [MHz]<br>859.7<br>860.5<br>861.5          |
| TDD Band 26 | . ,                  | 1.4<br>3<br>5                                  | 26997<br>26705<br>26715                                 | Uplink [MHz]<br>814.7<br>815.5<br>816.5               | 8697<br>8705<br>8715                      | Downlink [MHz]<br>859.7<br>860.5<br>861.5          |
| TDD Band 26 | Low Range            | 1.4<br>3<br>5<br>10                            | 26997<br>26705<br>26715<br>-<br>26765                   | Uplink [MHz]<br>814.7<br>815.5<br>816.5<br>-<br>821.5 | 8697<br>8705<br>8715                      | Downlink [MHz]<br>859.7<br>860.5<br>861.5          |
| TDD Band 26 | Low Range  Mid Range | 1.4<br>3<br>5<br>10<br>15<br>1.4/3/5/10        | 26997<br>26705<br>26715<br>-<br>26765<br>26740          | Uplink [MHz] 814.7 815.5 816.5 - 821.5 819            | 8697<br>8705<br>8715<br>-<br>8740         | Downlink [MHz]<br>859.7<br>860.5<br>861.5<br>-     |
| TDD Band 26 | Low Range  Mid Range | 1.4<br>3<br>5<br>10<br>15<br>1.4/3/5/10<br>1.4 | 26997<br>26705<br>26715<br>-<br>26765<br>26740<br>26783 | Uplink [MHz] 814.7 815.5 816.5 - 821.5 819 823.3      | 8697<br>8705<br>8715<br>-<br>8740<br>8783 | Downlink [MHz]  859.7  860.5  861.5  -  864  868.3 |

## 4.2. Descriptions of Test mode

#### For RF test items

The EUT has been tested under typical operating condition. Testing was performed by configuring EUT to maximum output power status.

| LTE Band    | 1.4MHz | 3MHz | 5MHz         | 10MHz | 15MHz | 20MHz |
|-------------|--------|------|--------------|-------|-------|-------|
| FDD Band 18 |        |      | $\checkmark$ |       |       |       |
| FDD Band 26 | √      | √    | √            | √     | √     |       |

### 4.3. Test sample information

| Test item            | HTW sample no.                                         |  |  |
|----------------------|--------------------------------------------------------|--|--|
| Conducted test items | Please refer to the description in the appendix report |  |  |
| Radiated test items  | YPHT22020186003                                        |  |  |

Note:

Conducted test items: Conducted Output Power, Peak-Average Ratio, 99% Occupied Bandwidth & 26 dB

Bandwidth, Band Edge, Conducted Spurious Emissions, Frequency stability, ERP

Radiated test items: Radiated Spurious Emission

### 4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

| Whether support unit is used? |           |            |           |       |  |  |
|-------------------------------|-----------|------------|-----------|-------|--|--|
| ✓                             | No        |            |           |       |  |  |
| Item                          | Equipment | Trade Name | Model No. | Other |  |  |
| 1                             |           |            |           |       |  |  |

Report No.: CHTEW22040168 Page: 8 of 25 Date of issue: 2022-04-24

| 0 |  |  |
|---|--|--|
| 2 |  |  |

## 4.5. Testing environmental condition

| Voltage      | VN=Nominal Voltage    | DC 3.80V             |  |  |
|--------------|-----------------------|----------------------|--|--|
|              | VL=Lower Voltage      | DC 3.42V             |  |  |
|              | VH=Higher Voltage     | DC 4.18V             |  |  |
| Temperature  | TN=Normal Temperature | 25 °C                |  |  |
|              | Extreme Temperature   | From -30°C to + 50°C |  |  |
| Humidity     | 30~60 %               |                      |  |  |
| Air Pressure | 950-1050 hPa          |                      |  |  |

## 4.6. Statement of the measurement uncertainty

| Test Items                               | MeasurementUncertainty            |  |  |  |
|------------------------------------------|-----------------------------------|--|--|--|
| Radio frequency                          | <1GHz: 0.022ppm<br>>1GHz: 0.64ppm |  |  |  |
| Conducted output power                   | 0.65 dB                           |  |  |  |
| ERP                                      | 0.65 dB                           |  |  |  |
| Conducted spurious emission              | 0.65 dB                           |  |  |  |
| Radiated spurious emission               | <1GHz: 2.85dB<br>>1GHz: 3.66dB    |  |  |  |
| 99% Occupied Bandwidth & 26 dB Bandwidth | <1GHz: 0.022ppm<br>>1GHz: 0.64ppm |  |  |  |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW22040168 Page: 9 of 25 Date of issue: 2022-04-24

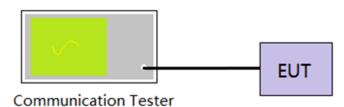
## 4.7. Equipments Used during the Test

| Used | Test Equipment                   | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |
|------|----------------------------------|--------------|---------------|-----------|------------|------------------------------|------------------------------|
| •    | Signal and spectrum Analyzer     | R&S          | HTWE0242      | FSV40     | 100048     | 2021/09/13                   | 2022/09/12                   |
| •    | Signal & Spectrum<br>Analyzer    | R&S          | HTWE0262      | FSW26     | 103440     | 2021/09/13                   | 2022/09/12                   |
| •    | Spectrum Analyzer                | Agilent      | HTWE0286      | N9020A    | MY50510187 | 2021/09/13                   | 2022/09/12                   |
| •    | Radio<br>communication<br>tester | R&S          | HTWE0287      | CMW500    | 137688-Lv  | 2021/09/13                   | 2022/09/12                   |
| •    | Test software                    | Tonscend     | N/A           | JS1120    | N/A        | N/A                          | N/A                          |

| •    | Radiated Spurious Emission |                    |                  |                      |             |                              |                              |  |  |
|------|----------------------------|--------------------|------------------|----------------------|-------------|------------------------------|------------------------------|--|--|
| Used | Test Equipment             | Manufacturer       | Equipment<br>No. | Model No.            | Serial No.  | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |
| •    | Semi-Anechoic<br>Chamber   | Albatross projects | HTWE0122         | SAC-3m-01            | N/A         | 2018/09/27                   | 2022/09/26                   |  |  |
| •    | Spectrum<br>Analyzer       | R&S                | HTWE0098         | FSP40                | 100597      | 2021/09/13                   | 2022/09/12                   |  |  |
| •    | Loop Antenna               | R&S                | HTWE0170         | HFH2-Z2              | 100020      | 2021/04/06                   | 2024/04/05                   |  |  |
| •    | Broadband Horn<br>Antenna  | SCHWARZBECK        | HTWE0103         | BBHA9170             | BBHA9170472 | 2020/04/27                   | 2023/04/26                   |  |  |
| •    | Ultra-Broadband<br>Antenna | SCHWARZBECK        | HTWE0123         | VULB9163             | 538         | 2021/04/06                   | 2024/04/05                   |  |  |
| •    | Horn Antenna               | SCHWARZBECK        | HTWE0126         | 9120D                | 1011        | 2020/04/01                   | 2023/03/31                   |  |  |
| •    | Pre-amplifier              | CD                 | HTWE0071         | PAP-0102             | 12004       | 2021/11/05                   | 2022/11/04                   |  |  |
| •    | Broadband<br>Preamplifier  | SCHWARZBECK        | HTWE0201         | BBV 9718             | 9718-248    | 2022/02/28                   | 2023/02/27                   |  |  |
| •    | RF Connection<br>Cable     | HUBER+SUHNER       | HTWE0120-<br>01  | 6m 18GHz<br>S Serisa | N/A         | 2022/02/25                   | 2023/02/24                   |  |  |
| •    | RF Connection<br>Cable     | HUBER+SUHNER       | HTWE0120-<br>02  | 6m 3GHz<br>RG Serisa | N/A         | 2022/02/25                   | 2023/02/24                   |  |  |
| •    | RF Connection<br>Cable     | HUBER+SUHNER       | HTWE0120-<br>03  | 6m 3GHz<br>RG Serisa | N/A         | 2022/02/25                   | 2023/02/24                   |  |  |
| •    | RF Connection<br>Cable     | HUBER+SUHNER       | HTWE0120-<br>04  | 6m 3GHz<br>RG Serisa | N/A         | 2022/02/25                   | 2023/02/24                   |  |  |
| •    | RF Connection<br>Cable     | HUBER+SUHNER       | HTWE0121-<br>01  | 6m 18GHz<br>S Serisa | N/A         | 2018/09/27                   | 2022/09/26                   |  |  |
| •    | EMI Test<br>Software       | Audix              | N/A              | E3                   | N/A         | N/A                          | N/A                          |  |  |

| •    | Auxiliary Equipment |              |               |           |            |                                 |                                 |  |
|------|---------------------|--------------|---------------|-----------|------------|---------------------------------|---------------------------------|--|
| Used | Test Equipment      | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal.<br>Date<br>(YY-MM-DD) | Next Cal.<br>Date<br>(YY-MM-DD) |  |
| •    | Climate chamber     | ESPEC        | HTWE0254      | GPL-2     | N/A        | 2021/09/14                      | 2022/09/13                      |  |
| •    | DC Power<br>Supply  | Gwinstek     | HTWE0274      | SPS-2415  | GER835793  | N/A                             | N/A                             |  |

Report No.: CHTEW22040168 Page: 10 of 25 Date of issue: 2022-04-24


## 5. TEST CONDITIONS AND RESULTS

### 5.1. Conducted Output Power

#### **LIMIT**

N/A

### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

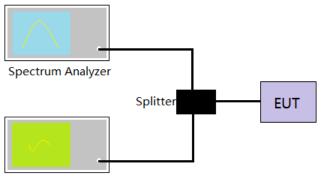
- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

#### **TEST MODE:**

Please refer to the clause 4.2

#### **TEST RESULTS**

Refer to appendix A on the section 8 appendix report


Report No.: CHTEW22040168 Page: 11 of 25 Date of issue: 2022-04-24

## 5.2. Peak-to-Average Ratio

#### LIMIT

13dB

#### **TEST CONFIGURATION**



Communication Tester

#### **TEST PROCEDURE**

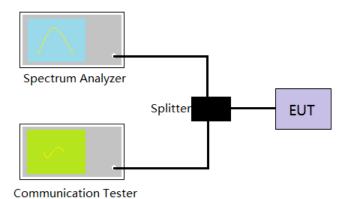
- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed.
  - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
  - ii. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in whichthetransmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

## TEST MODE:

Please refer to the clause 4.2

#### **TEST RESULTS**

Refer to appendix B on the section 8 appendix report


Report No.: CHTEW22040168 Page: 12 of 25 Date of issue: 2022-04-24

## 5.3. 99% Occupied Bandwidth & 26 dB Bandwidth

## LIMIT

N/A

### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Center Frequency= Carrier frequency, RBW=1% to 5% of the anticipated OBW, VBW= 3 \* RBW, Detector=Peak,

Trace maximum hold.

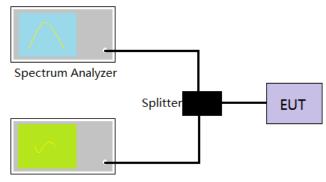
4. Record the value of 99% Occupied bandwidth and 26dB bandwidth.

#### **TEST MODE:**

Please refer to the clause 4.2

#### **TEST RESULTS**

Refer to appendix C on the section 8 appendix report


Report No.: CHTEW22040168 Page: 13 of 25 Date of issue: 2022-04-24

## 5.4. Band Edge

#### **LIMIT**

- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log<sub>10</sub>(f/6.1) decibels or 50 + 10 Log<sub>10</sub>(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log<sub>10</sub>(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

### **TEST CONFIGURATION**



Communication Tester

#### **TEST PROCEDURE**

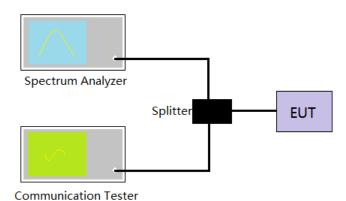
- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. The band edges of low and high channels were measured.
- Spectrum analyzer setting as follow:
   RBW= no less than 1% of the OBW, VBW =3 \* RBW, Sweep time= Auto
- 5. Record the test plot.

#### **TEST MODE:**

Please refer to the clause 4.2

#### **TEST RESULTS**

Refer to appendix D on the section 8 appendix report


Report No.: CHTEW22040168 Page: 14 of 25 Date of issue: 2022-04-24

## 5.5. Conducted Spurious Emissions

#### **LIMIT**

- (3) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log<sub>10</sub>(f/6.1) decibels or 50 + 10 Log<sub>10</sub>(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (4) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log<sub>10</sub>(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto Scan frequency range up to 10<sup>th</sup> harmonic.

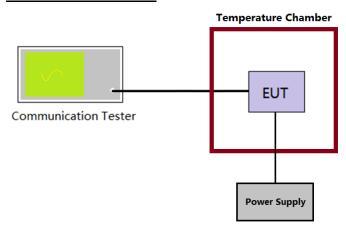
4. Record the test plot.

### **TEST MODE:**

Please refer to the clause 4.2

#### **TEST RESULTS**

Refer to appendix E on the section 8 appendix report


Report No.: CHTEW22040168 Page: 15 of 25 Date of issue: 2022-04-24

## 5.6. Frequency stability VS Temperature measurement

#### **LIMIT**

2.5ppm

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

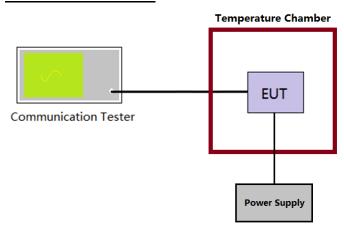
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to –30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

#### **TEST MODE:**

Please refer to the clause 4.2

#### **TEST RESULTS**

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW22040168 Page: 16 of 25 Date of issue: 2022-04-24

## 5.7. Frequency stability VS Voltage measurement

#### <u>LIMIT</u>

2.5ppm

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C
- 4. The power supply voltage to the EUT was varied ±15% of the nominal value measured at the input to the EUT
- 5. Record the maximum frequency change.

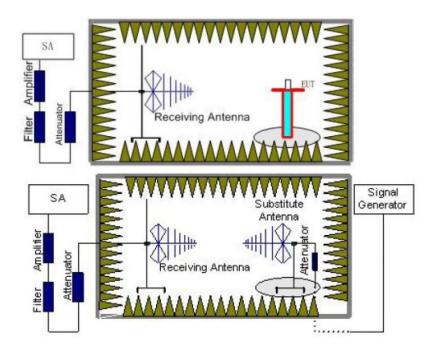
#### **TEST MODE:**

Please refer to the clause 4.2

#### **TEST RESULTS**

Refer to appendix F on the section 8 appendix report

Report No.: CHTEW22040168 Page: 17 of 25 Date of issue: 2022-04-24


## 5.8. Radiated Spurious Emission

#### **LIMIT**

(5) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log<sub>10</sub>(f/6.1) decibels or 50 + 10 Log<sub>10</sub>(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

(6) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log<sub>10</sub>(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- Place the EUT in the center of the turntable.
  - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
  - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
  - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
  - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.

Report No.: CHTEW22040168 Page: 18 of 25 Date of issue: 2022-04-24

c) Return the turntable to the azimuth where the highest emission amplitude level was observed.

- d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
- e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near
  as possible to where the center of the EUT radiating element was located during the initial EUT
  measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
  - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
  - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
  - Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

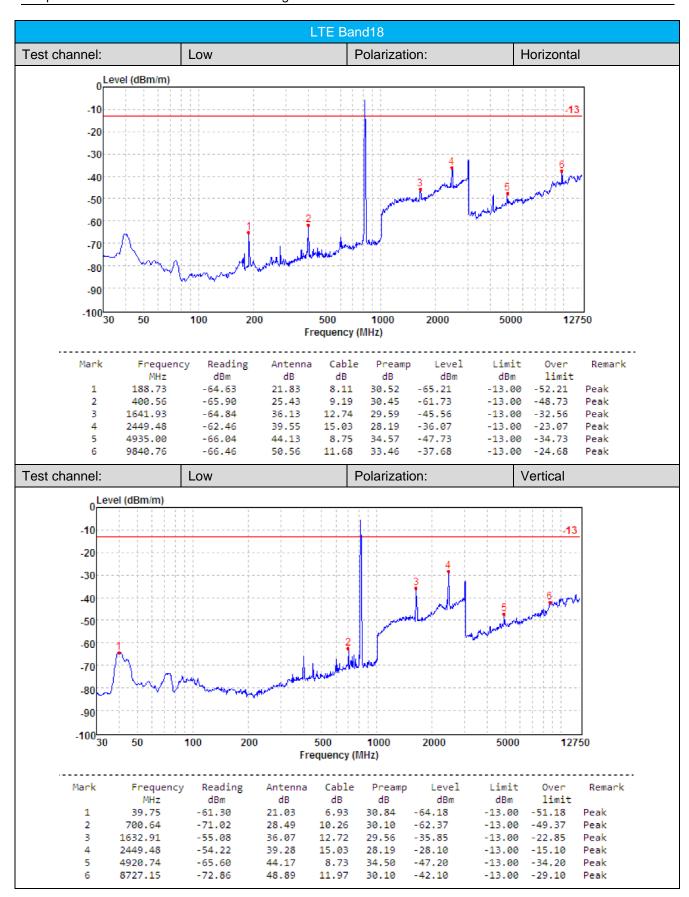
Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

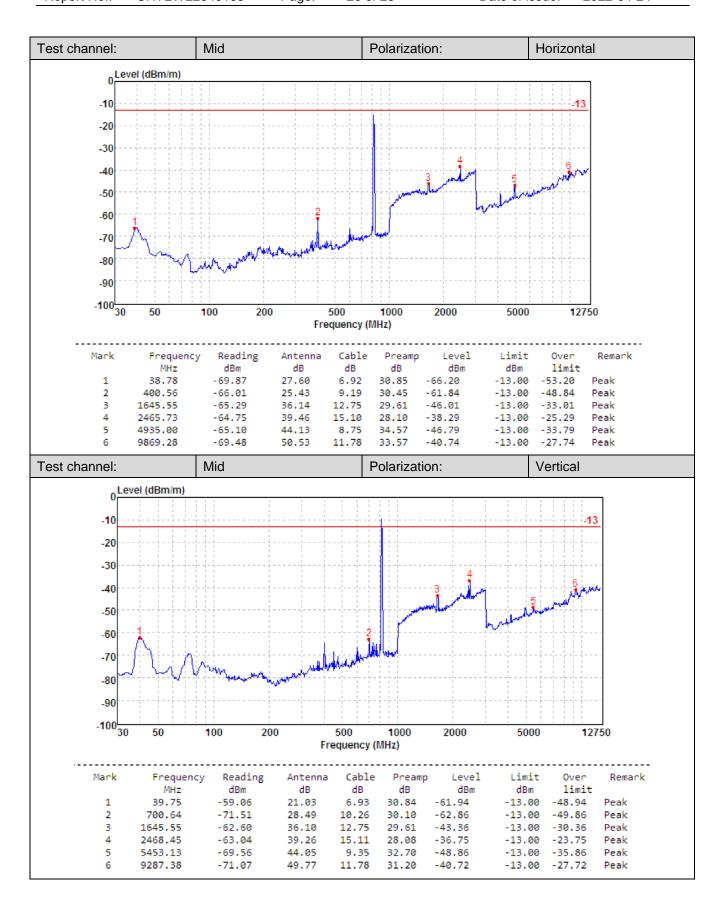
13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) -2.15 dB.

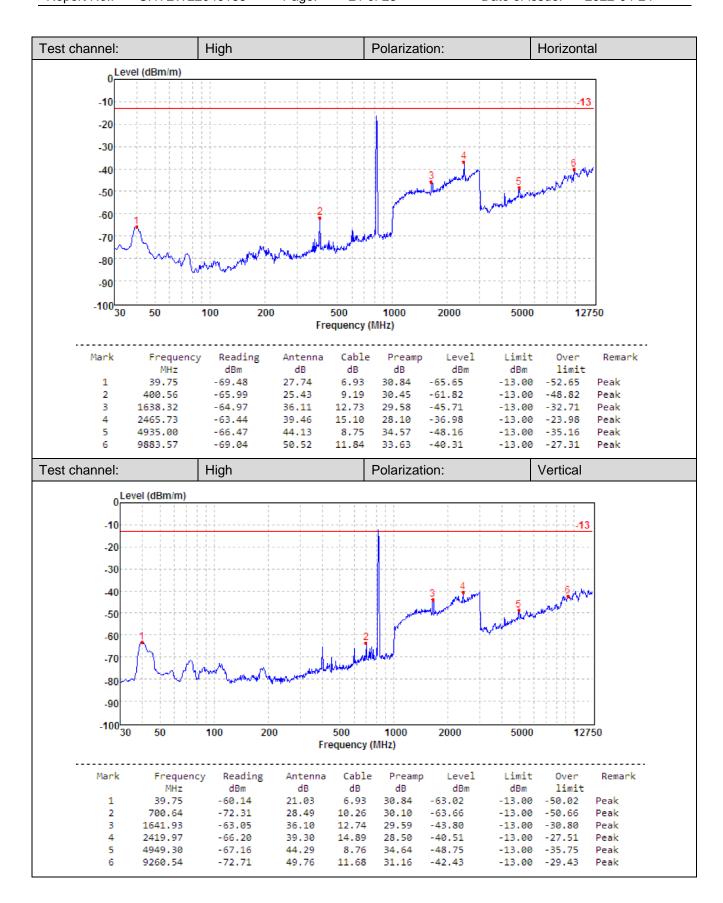
If necessary, the antenna gain can be calculated from calibrated antenna factor information


14. Provide the complete measurement results as a part of the test report.

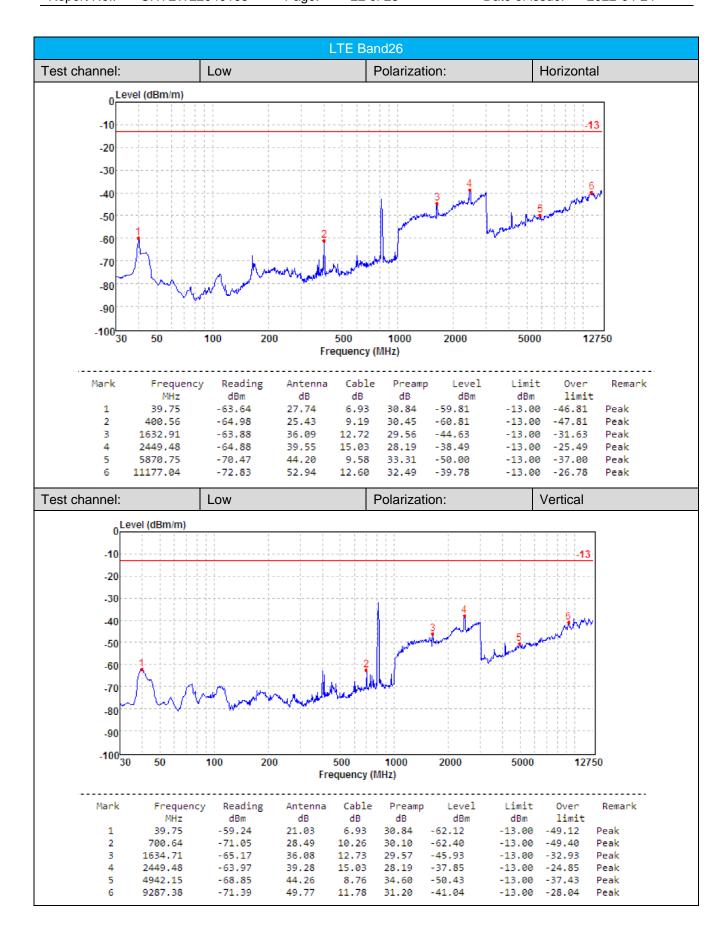
#### **TEST MODE:**


Please refer to the clause 4.2

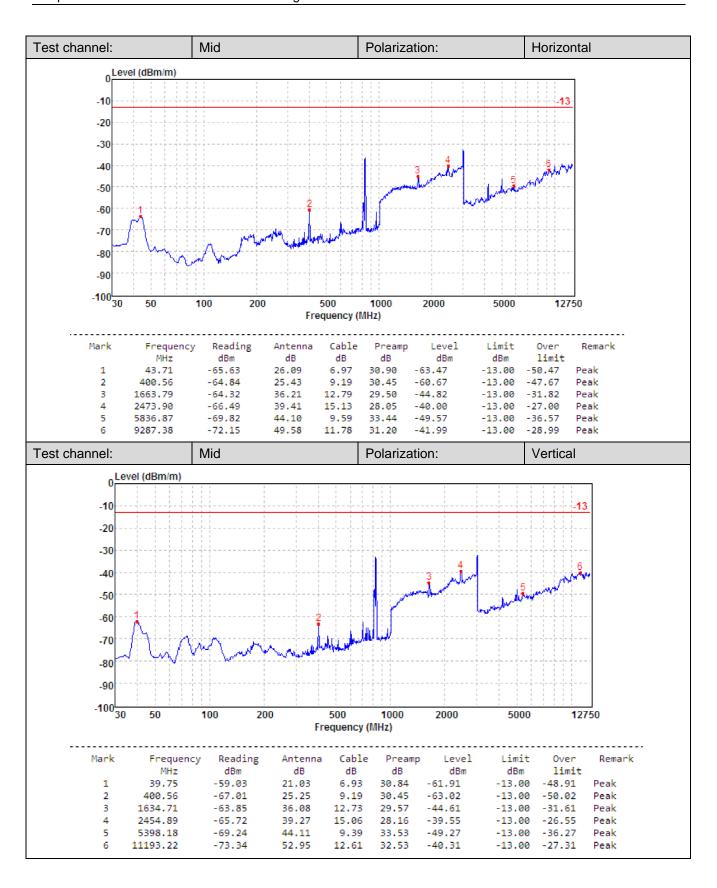
#### **TEST RESULTS**


 Report No.: CHTEW22040168 Page: 19 of 25 Date of issue: 2022-04-24

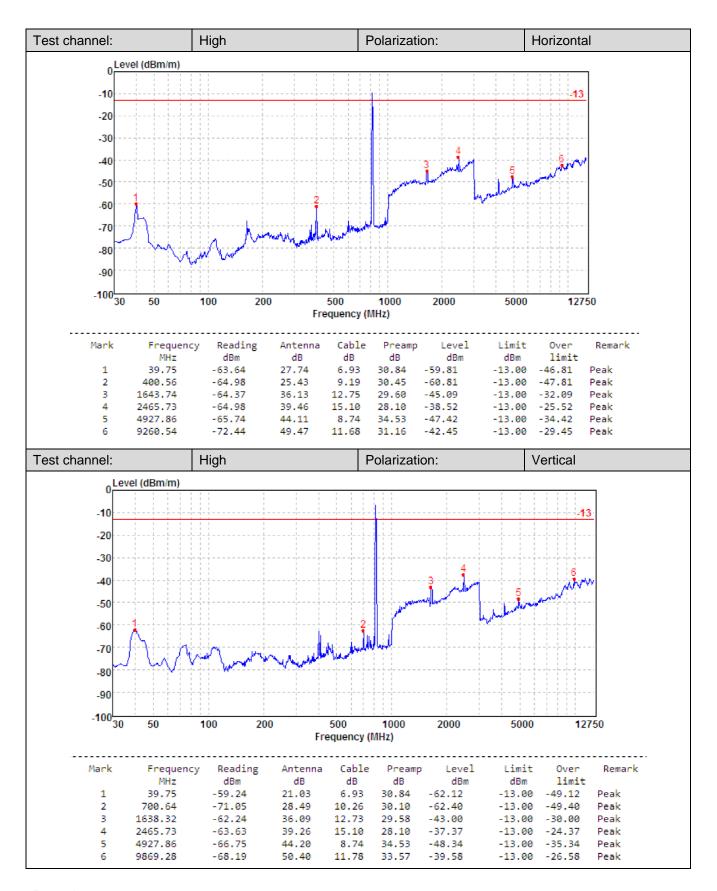



Report No.: CHTEW22040168 Page: 20 of 25 Date of issue: 2022-04-24




Report No.: CHTEW22040168 Page: 21 of 25 Date of issue: 2022-04-24




Report No.: CHTEW22040168 Page: 22 of 25 Date of issue: 2022-04-24

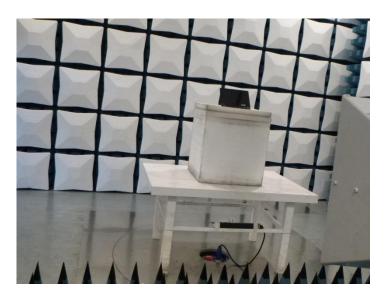


Report No.: CHTEW22040168 Page: 23 of 25 Date of issue: 2022-04-24



Report No.: CHTEW22040168 Page: 24 of 25 Date of issue: 2022-04-24




#### Remark:

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW22040168 Page: 25 of 25 Date of issue: 2022-04-24

# 6. TEST SETUP PHOTOS OF THE EUT





# 7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Refer to the test report No.: CHTEW22040160

# 8. APPENDIX REPORT