

FCC Test Report

Report No.: AGC00408221201FE07

FCC ID : 2A3DR-G2

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: 5G Smart phone

BRAND NAME : AGM

MODEL NAME

AGM G2, AGM G2 Pro, AGM G2 Guardian, AGM G2 1KM,

Glory G2

APPLICANT : AGM MOBILE LIMITED

DATE OF ISSUE : Feb. 23, 2023

FCC Part 22 Rules

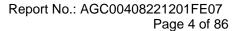
STANDARD(S) FCC Part 24 Rules

FCC Part 27 Rules FCC Part 90 Rules

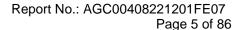
REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

Page 2 of 86


REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Feb. 23, 2023	Valid	Initial Release


TABLE OF CONTENTS

1. GENERAL INFORMATION	5
2. PRODUCT INFORMATION	6
2.1 PRODUCT TECHNICAL DESCRIPTION	6
2.2 RELATED SUBMITTAL(S) / GRANT (S)	9
2.3 TEST METHODOLOGY	9
2.4 DEVICE CAPABILITIES	9
2.5 SPECIAL ACCESSORIES	10
2.6 EQUIPMENT MODIFICATIONS	10
2.7 EMISSION DESIGNATOR	10
3. TEST ENVIRONMENT	11
3.1 ADDRESS OF THE TEST LABORATORY	11
3.2 TEST FACILITY	11
3.3 ENVIRONMENTAL CONDITIONS	12
3.4 MEASUREMENT UNCERTAINTY	12
3.5 LIST OF TEST EQUIPMENT	13
4. SYSTEM TEST CONFIGURATION	15
4.1 EUT CONFIGURATION	15
4.2 EUT EXERCISE	15
4.3 CONFIGURATION OF EUT SYSTEM	15
4.4 EQUIPMENT USED IN TESTED SYSTEM	15
5. SUMMARY OF TEST RESULTS	16
5.1 TEST CONDITION : CONDUCTED TEST	16
5.2 TEST CONDITION : RADIATED TEST	
6. DESCRIPTION OF TEST MODES	17
7. CONDUCTED OUTPUT POWER	26
7.1 PROVISIONS APPLICABLE	26
7.2 MEASUREMENT METHOD	26
7.3 MEASUREMENT SETUP	26
7.4 MEASUREMENT RESULT	26
8. RADIATED OUTPUT POWER	27
8.1 PROVISIONS APPLICABLE	27
8.2 MEASUREMENT METHOD	27
8.3 MEASUREMENT SETUP	28

8.4 MEASUREMENT RESULT	30
9. PEAK-TO-AVERAGE RATIO	57
9.1 PROVISIONS APPLICABLE	57
9.2 MEASUREMENT METHOD	57
9.3 MEASUREMENT SETUP	58
9.4 MEASUREMENT RESULT	58
10. SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	59
10.1 PROVISIONS APPLICABLE	59
10.2 MEASUREMENT METHOD	59
10.3 MEASUREMENT SETUP	60
10.4 MEASUREMENT RESULT	60
11. RADIATED SPURIOUS EMISSION	61
11.1 PROVISIONS APPLICABLE	61
11.2 MEASUREMENT PROCEDURE	61
11.3 MEASUREMENT SETUP	63
11.4 MEASUREMENT RESULT	64
12. FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	81
12.1 PROVISIONS APPLICABLE	81
12.2 MEASUREMENT METHOD	81
12.3 MEASUREMENT SETUP	82
12.4 MEASUREMENT RESULT	82
13. OCCUPIED BANDWIDTH	83
13.1 PROVISIONS APPLICABLE	83
13.2 MEASUREMENT METHOD	83
13.3 MEASUREMENT SETUP	83
13.4 MEASUREMENT RESULT	83
14. BAND EDGE	84
14.1 PROVISIONS APPLICABLE	84
14.2 MEASUREMENT METHOD	84
14.3 MEASUREMENT METHOD	85
14.4 MEASUREMENT RESULT	85
APPENDIX E PHOTOGRAPHS OF TEST SETUP	86
APPENDIX F: PHOTOGRAPHS OF EUT	86

1. GENERAL INFORMATION

Applicant	AGM MOBILE LIMITED
Address	FLAT/RM 2253 22/F HOI TAI FACTORY ESTATE TSING YEUNG CIRCUIT TUEN MUN NT HONG KONG
Manufacturer	Shenzhen AlJIEMO Technology Company Limited
Address	1st Floor 101 and 2nd Floor 201, Building A2, Huafeng Century Technology Park, Nanchang Community, Xixiang, Baoan District, Shenzhen, China
Factory	Shenzhen AlJIEMO Technology Company Limited
Address	1st Floor 101 and 2nd Floor 201, Building A2, Huafeng Century Technology Park, Nanchang Community, Xixiang, Baoan District, Shenzhen, China
Product Designation	5G Smart phone
Brand Name	AGM
Test Model	AGM G2
Series Model	AGM G2 Pro, AGM G2 Guardian, AGM G2 1KM, Glory G2
Declaration of Difference	All the same except the model name
Date of receipt of test item	Dec. 28, 2022
Date of test	Dec. 28, 2022~Feb. 23, 2023
Deviation	No any deviation from the test method.
Condition of Test Sample	Normal

WE HEREBY CERTIFY THAT:

The above equipment was tested by Attestation of Global Compliance(Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA-603-E-2016. The sample tested as described in this report is in compliance with the FCC Rules Part 22, 24, 27and 90. The test results of this report relate only to the tested sample identified in this report.

Reviewed By

Bibo Zhang (Project Engineer)

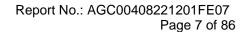
Calvin Liu (Reviewer)

Feb. 23, 2023

Approved By

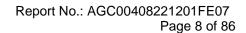
Max Zhang Authorized Officer

Feb. 23, 2023


Report No.: AGC00408221201FE07 Page 6 of 86

2. PRODUCT INFORMATION

2.1 PRODUCT TECHNICAL DESCRIPTION


A major technical description of EUT is described as following:

Product Designation:	5G Smart phone	<u>_</u>				
Hardware Version:	V1.00					
Software Version:	N2060.6.01.00.00					
Radio System Type:	LTE FUNCTION					
Frequency Bands:	 ⋉FDD Band 2 ⋉FDD Band 13 ⋉TDD Band 38 ⋉FDD Band 71 □FDD Band 1 □FDD Band 20 (Non-U.S. Bands) 	☑FDD Band 4☑FDD Band 17☑TDD Band 40(U.S. Bands)☑FDD Band 3☑FDD Band 28				
			9.3 MHz(1.4MHz	·		
	LTE-Band 2	1851.5 MHz – 1908.5 MHz(3.0MHz)				
		1852.5 MHz – 1907.5 MHz(5.0MHz)				
		1855.0 MHz – 1905.0 MHz(10.0MHz) 1857.5 MHz – 1902.5 MHz(15.0MHz)				
				·		
			0.0 MHz(20.0MH 64.3 MHz(1.4MHz	·		
			3.5 MHz(3.0MHz	·		
			2.5 MHz(5.0MHz	<u>, </u>		
	LTE-Band 4		60.0 MHz(10.0MH	,		
Transmission Frequency			7.5 MHz(15.0MH	•		
Range:			5.0 MHz(20.0MH	,		
		824.7 MHz – 848.3 MHz(1.4MHz)				
		825.5 MHz – 847.5 MHz(3.0MHz)				
	LTE-Band 5	826.5 MHz – 846.5 MHz(5.0MHz)				
		829.0 MHz – 844.0	O MHz(10.0MHz)			
		699.7 MHz – 715.3	3 MHz(1.4MHz)			
	LTE-Band 12	700.5 MHz – 714.5	5 MHz(3.0MHz)			
		701.5 MHz – 713.5 MHz(5.0MHz)				
		704.0 MHz – 711.0 MHz(10.0MHz)				
	LTE-Band 13	779.5 MHz – 784.5	5 MHz(5.0MHz)			

	700 0 1411 700 0 1411 (40 01411)
	782.0 MHz – 782.0 MHz(10.0MHz)
LTE-Band 17	706.5 MHz – 713.5 MHz(5.0MHz)
	709.0 MHz – 711.0 MHz(10.0MHz)
	1850.7 MHz – 1914.3 MHz(1.4MHz)
	1851.5 MHz – 1913.5 MHz(3.0MHz)
LTE-Band 25	1852.5 MHz – 1912.5 MHz(5.0MHz)
2.2 54.14 25	1855.0 MHz – 1910.0 MHz(10.0MHz)
	1857.5 MHz – 1907.5 MHz(15.0MHz)
	1860.0 MHz – 1905.0 MHz(20.0MHz)
	824.7 MHz –848.3 MHz(1.4MHz)
	825.5 MHz-847.5 MHz(3.0MHz)
LTE-Band 26A	826.5 MHz-846.5 MHz(5.0MHz)
	829 MHz-844 MHz(10.0MHz)
	831.5 MHz-841.5 MHz(15.0MHz)
	814.7 MHz-823.3 MHz(1.4MHz)
	815.5 MHz -822.5 MHz(3.0MHz)
LTE-Band 26B	816.5 MHz -821.5 MHz(5.0MHz)
	819.0 MHz -819.0 MHz(10.0MHz)
	821.5 MHz -821.5 MHz(15.0MHz)
	2572.5 MHz-2617.5 MHz(5.0MHz)
LTC Dand 20	2575 MHz-2615MHz(10.0MHz)
LTE-Band 38	2577.5 MHz-2612.5 MHz(15.0MHz)
	2580 MHz-2610 MHz(20.0MHz)
LTE-Band 40	2307.5 MHz-2312.5 MHz(5MHz)
(Lower Side)	2310.0 MHz(10.0MHz)
LTE-Band 40	2352.5 MHz-2357.5 MHz(5.0MHz)
(Upper Side)	2355.0 MHz(10.0MHz)
	2498.5 MHz –2687.5 MHz(5.0MHz)
LTE D. LAA	2501.0 MHz –2685.0 MHz(10.0MHz)
LTE-Band 41	2503.5 MHz –2682.5 MHz(15.0MHz)
	2506.0 MHz –2680.0 MHz(20.0MHz)
	1710.7 MHz – 1779.3 MHz(1.4MHz)
	1711.5 MHz – 1778.5 MHz(3.0MHz)
LTE-Band 66	1712.5 MHz – 1777.5 MHz(5.0MHz)
	1715.0 MHz – 1775.0 MHz(10.0MHz)
	1717.5 MHz – 1772.5 MHz(15.0MHz)
	1 ' '

	ı	1			
	1720.0 MHz – 1770.0 MHz(20.0MHz)				
	665.5 MHz – 695.5 MHz(5.0MHz)				
	LTC D = = 4.74	668.0 MHz – 693.0 MHz(10.0MHz)			
	LTE-Band 71	670.5 MHz – 690.5	5 MHz(15.0MHz)		
	673.0 MHz – 688.0 MHz(20.0MHz)				
Antenna Type:	PIFA Antenna				
Type of Modulation:	QPSK/16QAM				
	Band 2:1.28dBi	Band 4:1.56dBi	Band 5: 0.26dBi	Band 12: -0.42dBi	
Antonna gain:	Band 13:-0.42dBi	Band 17:-0.42dBi	Band 25:1.28dBi	Band 26: 0.26dBi	
Antenna gain:	Band 38: 0.68dBi	Band 40:0.50dBi	Band 41:0.68dBi	Band 66:1.56dBi	
	Band 71:0.13dBi				
	Band 2:1.22dBi	Band 4:1.50dBi	Band 5:0.22dBi	Band 12:-0.45dBi	
Diversity gain	Band 13:-0.45dBi	Band 17:-0.46dBi	Band 25:1.25dBi	Band 26:0.21dBi	
Diversity gain	Band 38:0.62dBi	Band 40:0.45dBi	Band 41:0.55dBi	Band 66:1.50dBi	
	Band 71:0.10dBi				
Power Supply:	DC 3.85V by batte	ry			
Category	NB1				
Deployment	Stand-alone	Stand-alone			
Sub-carrier spacing	3.75KHz, 15KHz				
Ntones	Single, Multi-tone				
Dual Card:	WCDMA/LTE Card	l Slot			
Power Class:	3				
Extreme Vol. Limits:	DC 3.27V to 4.40V	' (Normal: 3.85V)			
Extreme Temp. Tolerance	-30 °C to +50 °C				
Temperature range:	-20℃ to +50℃				
Note1: The High Voltage D	C4.40V and Low Vo	oltage DC3.27V wer	e declared by manu	facturer. The EUT	

Note1: The High Voltage DC4.40V and Low Voltage DC3.27V were declared by manufacturer, The EUT couldn't be operating normally with higher or lower voltage..

Report No.: AGC00408221201FE07 Page 9 of 86

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID:2A3DR-G2**, filing to comply with the FCC Part 22, Part 24 and Pant 27, Part 90 requirements.

2.3 TEST METHODOLOGY

The tests were performed according to following standards:

No.	Identity	Document Title
1	47 CFR FCC Part 2	Frequency allocations and radio treaty matters, general rules and regulations.
2	47 CFR FCC Part 22	Public Mobile Services.
3	47 CFR FCC Part 24	Personal Communications Services.
4	47 CFR FCC Part 27	Miscellaneous Wireless Communications Services.
5	47 CFR FCC Part 90	Private Land Mobile Radio Services.
6	ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
7	ANSI/TIA-603-E-2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
8	KDB 971168	D01 v03r01 Measurement Guidance For Certification Of Licensed Digital Transmitters.

2.4 DEVICE CAPABILITIES

This device contains the following capabilities:

850/1900 GSM/GPRS/EGPRS,850/1700/1900 WCDMA/HSPA, Multi-Band LTE,802.11 b/g/n/ax for WLAN,802.11 a/n/ac/ax for UNII,Bluetooth (1X,EDR,LE),GPS,NFC.

This device uses a tuner circuit that dynamically updates the antenna impedance parameters to optimize antenna performance for certain bands and modes of operation. The tuner for this device was set to simulate a "free space" condition where the transmit antenna is matched to the medium into which it is transmitting and, thus, the power is at its maximum level.

LTE Band 12 (698 - 716 MHz) overlaps the entire frequency range of LTE Band 17 (704 - 716 MHz).

Therefore, test data provided in this report covers Band 17 as well as Band 12.

LTE Band 26 (814.7-849 MHz) overlaps the entire frequency range of LTE Band 5 (824 – 849 MHz).

Therefore, test data provided in this report covers Band 5 and the portion of Band 26 subject to Part 22.

LTE Band 66 (1710-1780 MHz) overlaps the entire frequency range of LTE Band 4 (1710 - 1755 MHz).

Therefore, test data provided in this report covers Band 4 as well as Band 66.

LTE Band 25 (1850-1915 MHz) overlaps the entire frequency range of LTE Band 2 (1850 - 1910 MHz).

Therefore, test data provided in this report covers Band 2 as well as Band 25.

The above inclusion relationship is only a statement of the frequency coverage between the LTE working bands, and the actual supported frequency bands are subject to the reported data.

LTE Band 41 (2496-2690 MHz) overlaps the entire frequency range of LTE Band 38 (2560 - 2620 MHz). Therefore, test data provided in this report covers Band 41 as well as Band 38.

Report No.: AGC00408221201FE07 Page 10 of 86

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration.

The emissions below 1GHz and above 18GHz were tested with the highest transmitting power channel and the worst case configuration.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

2.5 SPECIAL ACCESSORIES

The battery was supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.7 EMISSION DESIGNATOR

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

Page 11 of 86

3. TEST ENVIRONMENT

3.1 ADDRESS OF THE TEST LABORATORY

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842

Page 12 of 86

3.3 ENVIRONMENTAL CONDITIONS

	NORMAL CONDITIONS	EXTREME CONDITIONS	
Temperature range	15~35℃	-20℃~50℃	
Humidty range	20 % to 75 %.	20 % to 75 %.	
Pressure range	86-106kPa	86-106kPa	
Power supply	DC 3.85V	DC 3.27V or 4.40V	
Note: The Following Team and transport of Following Valleying dealered by the account at time.			

Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

3.4 MEASUREMENT UNCERTAINTY

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)
Radio Frequency	± 6.5 x 10-8	(1)
RF Power, Conducted	± 0.9 dB	(1)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: AGC00408221201FE07 Page 13 of 86

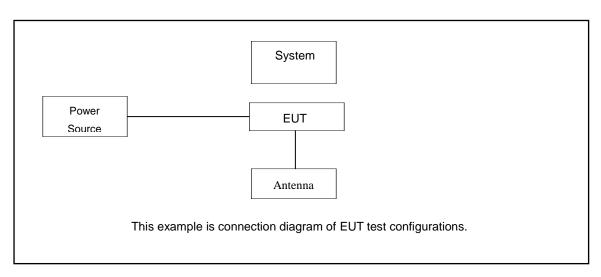
3.5 LIST OF TEST EQUIPMENT

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Mar. 28, 2022	Mar. 27, 2023
LISN	R&S	ESH2-Z5	100086	Jun. 08, 2022	Jun. 07, 2023
TEST RECEIVER	R&S	ESCI	10096	Mar. 28, 2022	Mar. 27, 2023
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Aug. 04, 2022	Aug. 03, 2023
EXA Signal Analyzer	Aglient	N9020B	MY56101792	Aug. 14, 2021	Aug. 13 2023
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 19, 2021	Sep. 18, 2023
preamplifier	ChengYi	EMC184045SE	980508	Oct. 29, 2021	Oct. 28, 2023
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	Apr. 23, 2021	Apr. 22, 2023
Broadband Preamplifier	SCHWARZBECK	00073	BBHA 9120 J	N/A	N/A
ANTENNA	SCHWARZBECK	VULB9168	D69250	Apr. 28, 2021	Apr. 27, 2023
ANTENNA	SCHWARZBECK	VULB9168	VULB9168-494	Jan. 08, 2021	Jan. 07, 2023
SIGNAL ANALYZER	Agilent	N9020A	MY52090123	Aug. 04, 2022	Aug. 03, 2023
USB Wideband Power Sensor	Agilent	U2021XA	MY54110007	May 11, 2021	May 10, 2025
Wireless communicationtest	R&S	CMW500	120909	Aug. 03, 2022	Aug. 02, 2023
Power Splitter	Agilent	11636A	34	Jun.06, 2022	Jun.05, 2023
Attenuator	JFW	50FHC-006-50	N/A	Jun.06, 2022	Jun.05, 2023
Artificial Mains Network ENV216	R&S	101242	/	Jun. 07, 2022	Jun. 06, 2023
Filter Bank Notch 1(880-915MHz)	MICRO-TRONICS	010	1	Feb. 21, 2022	Feb. 20, 2023
Filter Bank Notch 1(880-915MHz)	MICRO-TRONICS	010	1	Feb. 19, 2023	Feb. 18, 2024
Filter Bank Notch 2 (1710-1785MHz)	MICRO-TRONICS	009	/	Feb. 21, 2022	Feb. 20, 2023
Filter Bank Notch 2 (1710-1785MHz)	MICRO-TRONICS	009	/	Feb. 19, 2023	Feb. 18, 2024
Filter Bank Notch 3 (1920-1980MHz)	MICRO-TRONICS	008	/	Feb. 21, 2022	Feb. 20, 2023

Page 14 of 86

Filter Bank Notch 3 (1920-1980MHz) MICRO-TRONICS 008	Feb. 19, 2023	Feb. 18, 2024
--	---------------	---------------

Report No.: AGC00408221201FE07 Page 15 of 86


4. SYSTEM TEST CONFIGURATION

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

4.3 CONFIGURATION OF EUT SYSTEM

Table 2-1 Equipment Used in EUT System

4.4 EQUIPMENT USED IN TESTED SYSTEM

The Following Peripheral Devices And Interface Cables Were Connected During The Measurement:

- ☐ Test Accessories Come From The Laboratory

Item	Equipment	Model No.	Identifier	Note
1	5G Smart phone	AGM G2	2A3DR-G2	EUT
2	Adapter	U312QC1801	Input: AC 100-240V 50/60Hz, 0.5A Output: DC 5V 3A, 9V 2A, 12V 1.5A	AE
3	Battery	Glory G2	DC 3.85V 7000mAh	AE
4	USB Cable	N/A	N/A	AE

Page 16 of 86

5. SUMMARY OF TEST RESULTS

5.1 TEST CONDITION: CONDUCTED TEST

Item	Test Description	FCC Rules	Result
1	Occupied Bandwidth	§2.1049	Pass
	Channel Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§2.1051, §90.691	Pass
2	Band Edge / Spurious and Harmonic Emissions at Antenna Terminal	§2.1051, §22.917(a) , §24.238(a) §27.53(h), §27.53(m) (4), §27.53(g) §27.53(c), §27.53(a)	Pass
3	On all frequencies between 763-775 MHz and 793-805 MHz	§27.53(c)(4)	Pass*
4	Conducted Output Power	§2.1046, §90.635	Pass
5	Frequency stability / variation of ambient temperature	§2.1055, §22.355, §24.235, §27.54 §90.213,	Pass
6	Peak- to- Average Ratio	§24.232(d), §27.50(d)(5)	Pass

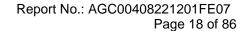
Note:

5.2 TEST CONDITION: RADIATED TEST

Item	Test Description	FCC Rules	Result
1	Effective Radiated Power Equivalent Isotropic Radiated Power	§22.913(a)(5), §24.232(c), §27.50(d)(4), §27.50(h)(2) §27.50(c)(10), §27.50(b)(10) §27.50(a)(3)	Pass
2	Radiated Spurious and Harmonic Emissions	§2.1053, §22.917(a), §24.238(a) §27.53(h), §27.53(m)(4), §27.53(g) §27.53(c), §90.691, §27.53(a)	Pass
3	Undesirable Emissions in the 1559-1610 MHz band	§2.1053, §27.53(f)	Pass

^{*}Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment, a bandwidth of 10kHz was used instead to show compliance.

Report No.: AGC00408221201FE07 Page 17 of 86

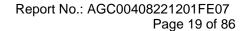

6. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMW 500) to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both LTE frequency band.

The worst condition was recorded in the test report if no other modes test data.

LTE Band 2 Channel and Frequency List				
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest
20	Channel	18700	18900	19100
20	Frequency	1860	1880	1900
45	Channel	18675	18900	19125
15	Frequency	1857.5	1880	1902.5
40	Channel	18650	18900	19150
10	Frequency	1855	1880	1905
5	Channel	18625	18900	19175
5	Frequency	1852.5	1880	1907.5
3	Channel	18615	18900	19185
3	Frequency	1851.5	1880	1908.5
1.4	Channel	18607	18900	19193
1.4	Frequency	1850.7	1880	1909.3

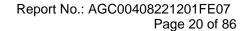
LTE Band 4 Channel and Frequency List				
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest
20	Channel	20050	20175	20300
20	Frequency	1720	1732.5	1745
15	Channel	20025	20175	20325
15	Frequency	1717.5	1732.5	1747.5
10	Channel	20000	20175	20350
10	Frequency	1715	1732.5	1750
5	Channel	19975	20175	20375
5	Frequency	1712.5	1732.5	1752.5
3	Channel	19965	20175	20385
3	Frequency	1711.5	1732.5	1753.5
1.4	Channel	19957	20175	20393
1.4	Frequency	1710.7	1732.5	1754.3



LTE Band 5 Channel and Frequency List				
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest
10	Channel	20450	20525	20600
10	Frequency	829	836.5	844
5	Channel	20425	20525	20625
	Frequency	826.5	836.5	846.5
3	Channel	20415	20525	20635
	Frequency	825.5	836.5	847.5
1.4	Channel	20407	20525	20643
	Frequency	824.7	836.5	848.3

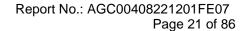
LTE Band 12 Channel and Frequency List				
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest
10	Channel	23060	23095	23130
10	Frequency	704	707.5	711
5	Channel	23035	23095	23155
5	Frequency	701.5	707.5	713.5
3	Channel	23025	23095	23165
3	Frequency	700.5	707.5	714.5
4.4	Channel	23017	23095	23173
1.4	Frequency	699.7	707.5	715.3

LTE Band 13 Channel and Frequency List					
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest	
10	Channel	-	23230	-	
10	Frequency	-	782	-	
5	Channel	23205	23230	23255	
	Frequency	779.5	782	784.5	



LTE Band 17 Channel and Frequency List				
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest
10	Channel	23780	23790	23800
	Frequency	709	710	711
5	Channel	23755	23790	23825
	Frequency	706.5	710	713.5

LTE Band 25 Channel and Frequency List				
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest
20	Channel	26140	26340	26590
20	Frequency	1860	1880	1905
15	Channel	26115	26340	26615
15	Frequency	1857.5	1880	1907.5
10	Channel	26090	26340	26640
	Frequency	1855	1880	1910
5	Channel	26065	26340	26665
	Frequency	1852.5	1880	1912.5
2	Channel	26055	26340	26675
3	Frequency	1851.5	1880	1913.5
1.4	Channel	26047	26340	26683
	Frequency	1850.7	1880	1914.3

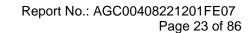

	LTE Band 26A Channel and Frequency List				
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest	
15	Channel	26865	26915	26965	
15	Frequency	831.5	836.5	841.5	
10	Channel	26840	26915	26990	
10	Frequency	829	836.5	844	
5	Channel	26815	26915	27015	
5	Frequency	826.5	836.5	846.5	
2	Channel	26805	26915	27025	
3	Frequency	825.5	836.5	847.5	
4.4	Channel	26797	26915	27033	
1.4	Frequency	824.7	836.5	848.3	

LTE Band 26B Channel and Frequency List				
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest
15	Channel	26765		
15	Frequency	821.5		
10	Channel		26740	
10	Frequency		819.0	
5	Channel	26715	26740	26765
5	Frequency	816.5	819.0	821.5
2	Channel	26705	26740	26775
3	Frequency	815.5	819.0	822.5
4.4	Channel	26697	26740	26783
1.4	Frequency	814.7	819.0	823.3

	LTE Band 38 Channel and Frequency List										
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest							
20	Channel	37850	38000	38150							
20	Frequency	2580	2595	2610							
15	Channel	37825	38000	38175							
	Frequency	2577.5	2595	2612.5							
10	Channel	37800	38000	38200							
10	Frequency	2575	2595	2615							
_	Channel	37775	38000	38225							
5	Frequency	2572.5	2595	2617.5							

	LTE Band 40 Channel and Frequency List-Lower Side										
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest							
10	Channel		38750								
10	Frequency		2310								
E	Channel	38725	38750	38775							
5	Frequency	2307.5	2310	2312.5							
	LTE Band 40 Channel	and Frequency List	-Upper Side								
10	Channel	1	39200								
10	Frequency		2355								
5	Channel	39175	39200	39225							
3	Frequency	2352.5	2355	2357.5							

	LTE Band 41 Channel and Frequency List									
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest						
20	Channel	39750	40620	41490						
20	Frequency	2506.0	2593.0	2680.0						
15	Channel	39725	40620	41515						
	Frequency	2503.5	2593.0	2682.5						
10	Channel	39700	40620	41540						
10	Frequency	2501.0	2593.0	2685.0						
5	Channel	39675	40620	41565						
	Frequency	2498.5	2593.0	2687.5						


	LTE Band 66 Channel and Frequency List										
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest							
20	Channel	132072	132322	132572							
20	Frequency	1720	1745	1770							
15	Channel	132047	132322	132597							
15	Frequency	1717.5	1745	1772.5							
10	Channel	132022	132322	132622							
10	Frequency	1715	1745	1775							
5	Channel	131997	132322	132647							
	Frequency	1712.5	1745	1777.5							
3	Channel	131987	132322	132657							

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 22 of 86

	Frequency	1711.5	1745	1778.5
1.4	Channel	131979	132322	132665
1.4	Frequency	1710.7	1745	1779.3

	LTE Band 71 Channel and Frequency List										
BW [MHz]	Channel/Frequency (MHz)	Lowest	Middle	Highest							
20	Channel	133222	133322	133372							
20	Frequency	673	680.5	688							
15	Channel	133197	133322	133397							
	Frequency	670.5	680.5	690.5							
10	Channel	133172	133322	133422							
10	Frequency	668	680.5	693							
_	Channel	133147	133322	133447							
5	Frequency	665.5	680.5	695.5							

Test Mode	Test Modes Description
LTE BAND 2	LTE system, QPSK modulation
LIE BAIND 2	LTE system, 16QAM modulation
LTE BAND 4	LTE system, QPSK modulation
LIE BAIND 4	LTE system, 16QAM modulation
LTE BAND 5	LTE system, QPSK modulation
LIE BAIND 3	LTE system, 16QAM modulation
LTE BAND 12	LTE system, QPSK modulation
LTE BAND 12	LTE system, 16QAM modulation
LTE BAND 13	LTE system, QPSK modulation
LIE BAND 13	LTE system, 16QAM modulation
LTE BAND 17	LTE system, QPSK modulation
LIE BAND 17	LTE system, 16QAM modulation
LTE BAND 25	LTE system, QPSK modulation
LIE BAND 25	LTE system, 16QAM modulation
LTE BAND 26A	LTE system, QPSK modulation
LIE BAND 20A	LTE system, 16QAM modulation
LTE BAND 26B	LTE system, QPSK modulation
LIE BAND 20B	LTE system, 16QAM modulation
LTE BAND 38	LTE system, QPSK modulation
LIL BAND 30	LTE system, 16QAM modulation
LTE BAND 40	LTE system, QPSK modulation
LIL BAND 40	LTE system, 16QAM modulation
LTE BAND 41	LTE system, QPSK modulation
LIL DAND 41	LTE system, 16QAM modulation
LTE BAND 66	LTE system, QPSK modulation
LIE DAND 00	LTE system, 16QAM modulation
LTE BAND 71	LTE system, QPSK modulation
LIL DAND II	LTE system, 16QAM modulation

Page 25 of 86

ACCORDING TO 3GPP 36.521 SUB-CLAUSE 6.2.3.3, THE MAXIMUM OUTPUT POWER IS ALLOWED TO BE REDUCED BY FOLLOWING THE TABLE.

TABLE 6.2.3.3-1: MAXIMUM POWER REDUCTION (MPR) FOR POWER CLASS 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth configuration									
		[RB]									
	1.4	1.4 3.0 5 10 15 20									
	MHz	MHz	MHz	MHz	MHz	MHz					
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1				
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1				
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2				

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (For PRACH, PUCCH and SRS transmission, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.).

When PRACH, PUCCH are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

For each subframe, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot, the maximum MPR over the two slots is then applied for the entire subframe.

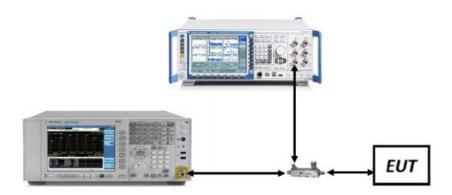
For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5.3 apply. The normative reference for this requirement is TS 36.101 clause 6.2.3.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Report No.: AGC00408221201FE07 Page 26 of 86

7. CONDUCTED OUTPUT POWER

7.1 PROVISIONS APPLICABLE


The conduction test is carried out in a shielded room.

According to the test, connect the device under test to the antenna port on the non-conductive platform directly to the test device for evaluation and measurement (ANSI-C63.26-2015 Clause 5.4)

7.2 MEASUREMENT METHOD

- -The transmitter output port was connected to base station.
- -Set EUT at maximum power through base station.
- -Select lowest, middle, and highest channels for each band and different test mode.

7.3 MEASUREMENT SETUP

7.4 MEASUREMENT RESULT

Note: The test data please reference to attachment "AGC00408221201FE07 Appendix Data"

Report No.: AGC00408221201FE07 Page 27 of 86

8. RADIATED OUTPUT POWER

8.1 PROVISIONS APPLICABLE

The radiation test is carried out in a semi-anechoic chamber.

According to the test, put the device under test on a non-conductive platform 3 meters away from the receiving antenna (ANSI/TIA-603-E-2016 Article 2.2.17).

The following rules are for the maximum radiated power limit requirements of the product:

Mode	Nominal Peak Power
LTE Band 2	< 2 Watts max. EIRP (33dBm)
LTE Band 4	< 1 Watts max. EIRP (30dBm)
LTE Band 5	< 7 Watts max. ERP (38.45dBm)
LTE Band 12	< 3 Watts max. ERP (34.77dBm)
LTE Band 13	< 3 Watts max. ERP (34.77dBm)
LTE Band 17	< 3 Watts max. ERP (34.77dBm)
LTE Band 25	< 2 Watts max. EIRP (33dBm)
LTE Band 26A	< 7 Watts max. ERP (38.45dBm)
LTE Band 26B	< 7 Watts max. ERP (38.45dBm) < 100 Watts. Conducted Power (50dBm)
LTE Band 38	< 2 Watts max. EIRP (33dBm)
LTE Band 40	< 0.25 Watts max. EIRP (23.98dBm)
LTE Band 41	< 2 Watts max. EIRP (33dBm)
LTE Band 66	< 1 Watts max. EIRP (30dBm)
LTE Band 71	< 3 Watts max. ERP (34.77dBm)

8.2 MEASUREMENT METHOD

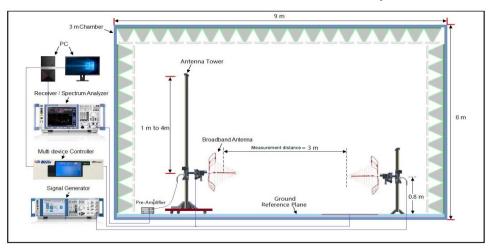
- 1. Radiated power measurements are performed using the signal analyzer's "channel power"
 - a) measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize.

Report No.: AGC00408221201FE07 Page 28 of 86

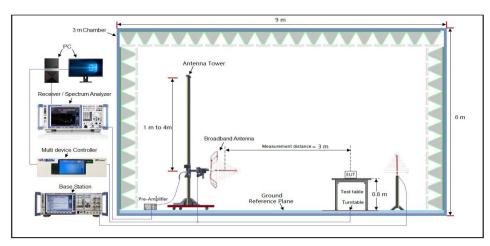
RADIATION CONSTRUCTION METHOD:

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

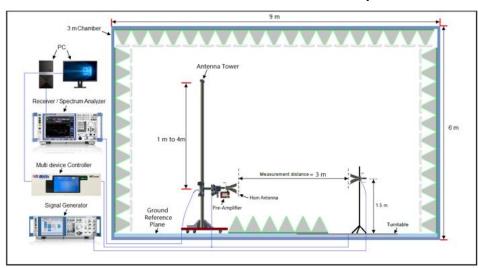
The power is calculated by the following formula:


Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB)

Where: Pd is the dipole equivalent power and Pg is the generator output power into the substitution antenna.


- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes (X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

8.3 MEASUREMENT SETUP


Radiated Power 30MHz to 1GHz Test setup

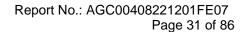
Radiated Power Above 1GHz Test setup

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Report No.: AGC00408221201FE07 Page 30 of 86

r age of

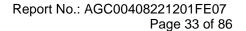

EIRP for LTE Band 2

8.4 MEASUREMENT RESULT

				LIKI IOI LI					
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
1850.7	1.4	QPSK	1/0	13.55	V	7.95	0.79	20.71	33
1880.0	1.4	QPSK	1/0	13.10	V	7.95	0.79	20.26	33
1909.3	1.4	QPSK	1/0	12.97	V	7.95	0.79	20.13	33
1850.7	1.4	QPSK	1/0	13.70	Н	7.95	0.79	20.86	33
1880.0	1.4	QPSK	1/0	13.70	Н	7.95	0.79	20.86	33
1909.3	1.4	QPSK	1/0	13.57	Н	7.95	0.79	20.73	33
1850.7	1.4	16-QAM	1/5	14.83	V	7.95	0.79	21.99	33
1880.0	1.4	16-QAM	1/0	14.56	V	7.95	0.79	21.72	33
1909.3	1.4	16-QAM	1/0	14.60	V	7.95	0.79	21.76	33
1850.7	1.4	16-QAM	1/5	15.05	Н	7.95	0.79	22.21	33
1880.0	1.4	16-QAM	1/0	14.98	Н	7.95	0.79	22.14	33
1909.3	1.4	16-QAM	1/0	14.84	Н	7.95	0.79	22.00	33
1851.5	3	QPSK	1/0	13.07	V	7.95	0.79	20.23	33
1880.0	3	QPSK	1/0	13.09	V	7.95	0.79	20.25	33
1908.5	3	QPSK	1/0	12.76	V	7.95	0.79	19.92	33
1851.5	3	QPSK	1/0	13.39	Н	7.95	0.79	20.55	33
1880.0	3	QPSK	1/0	13.30	Н	7.95	0.79	20.46	33
1908.5	3	QPSK	1/0	13.23	Н	7.95	0.79	20.39	33
1851.5	3	16-QAM	1/0	13.09	V	7.95	0.79	20.25	33
1880.0	3	16-QAM	1/0	13.09	V	7.95	0.79	20.25	33
1908.5	3	16-QAM	1/0	12.05	V	7.95	0.79	19.21	33
1851.5	3	16-QAM	1/0	13.45	Н	7.95	0.79	20.61	33
1880.0	3	16-QAM	1/0	13.33	Н	7.95	0.79	20.49	33
1908.5	3	16-QAM	1/0	12.46	Н	7.95	0.79	19.62	33
1852.5	5	QPSK	1/0	14.05	V	7.95	0.79	21.21	33
1880.0	5	QPSK	1/0	14.16	V	7.95	0.79	21.32	33
1907.5	5	QPSK	1/24	13.88	V	7.95	0.79	21.04	33
1852.5	5	QPSK	1/0	14.27	Н	7.95	0.79	21.43	33
1880.0	5	QPSK	1/0	14.26	Н	7.95	0.79	21.42	33
1907.5	5	QPSK	1/24	14.12	Н	7.95	0.79	21.28	33
1852.5	5	16-QAM	1/0	13.85	V	7.95	0.79	21.01	33
1880.0	5	16-QAM	1/0	12.78	V	7.95	0.79	19.94	33

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

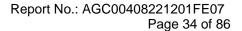
Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/



1852.5 5					T	I	1	ı	I	<u> </u>
1880.0 5	1907.5	5	16-QAM	1/24	13.70	V	7.95	0.79	20.86	33
1907.5 5	1852.5	5	16-QAM	1/0	14.09	Н	7.95	0.79	21.25	33
1855 10 QPSK 1/0 12.25 V 7.95 0.79 19.41 33 1880 10 QPSK 1/49 11.20 V 7.95 0.79 18.36 33 1905 10 QPSK 1/0 11.91 V 7.95 0.79 19.07 33 1855 10 QPSK 1/0 12.54 H 7.95 0.79 19.07 33 1880 10 QPSK 1/49 12.44 H 7.95 0.79 19.60 33 1805 10 GPSK 1/0 12.25 H 7.95 0.79 19.41 33 1855 10 16-QAM 1/0 12.71 V 7.95 0.79 19.87 33 1855 10 16-QAM 1/0 12.93 V 7.95 0.79 19.87 33 1850 10 16-QAM 1/0 12.95 H 7.95 0.	1880.0	5	16-QAM	1/0	14.14	Н	7.95	0.79	21.30	33
1880 10	1907.5	5	16-QAM	1/24	13.95	Н	7.95	0.79	21.11	33
1905 10	1855	10	QPSK	1/0	12.25	V	7.95	0.79	19.41	33
1855 10 QPSK 1/0 12.54 H 7.95 0.79 19.70 33 1880 10 QPSK 1/49 12.44 H 7.95 0.79 19.60 33 1905 10 QPSK 1/0 12.25 H 7.95 0.79 19.41 33 1855 10 16-QAM 1/0 12.71 V 7.95 0.79 19.87 33 1880 10 16-QAM 1/0 12.59 V 7.95 0.79 19.49 33 1855 10 16-QAM 1/0 12.59 V 7.95 0.79 19.75 33 1855 10 16-QAM 1/0 12.83 H 7.95 0.79 20.11 33 1880 10 16-QAM 1/0 12.83 H 7.95 0.79 19.85 33 1857.5 15 QPSK 1/0 14.61 V 7.95 <	1880	10	QPSK	1/49	11.20	V	7.95	0.79	18.36	33
1880 10 QPSK 1/49 12.44 H 7.95 0.79 19.60 33 1905 10 QPSK 1/0 12.25 H 7.95 0.79 19.41 33 1855 10 16-QAM 1/0 12.71 V 7.95 0.79 19.87 33 1880 10 16-QAM 1/0 12.59 V 7.95 0.79 19.49 33 1905 10 16-QAM 1/0 12.59 V 7.95 0.79 19.75 33 1855 10 16-QAM 1/0 12.95 H 7.95 0.79 20.11 33 1880 10 16-QAM 1/0 12.83 H 7.95 0.79 19.85 33 1857.5 15 QPSK 1/0 14.61 V 7.95 0.79 21.77 33 1880 15 QPSK 1/0 13.94 V 7.95 <	1905	10	QPSK	1/0	11.91	V	7.95	0.79	19.07	33
1905 10	1855	10	QPSK	1/0	12.54	Н	7.95	0.79	19.70	33
1855 10 16-QAM 1/0 12.71 V 7.95 0.79 19.87 33 1880 10 16-QAM 1/49 12.33 V 7.95 0.79 19.49 33 1905 10 16-QAM 1/0 12.59 V 7.95 0.79 19.75 33 1855 10 16-QAM 1/0 12.89 H 7.95 0.79 20.11 33 1880 10 16-QAM 1/0 12.83 H 7.95 0.79 19.85 33 1905 10 16-QAM 1/0 12.83 H 7.95 0.79 19.85 33 1857.5 15 QPSK 1/0 14.61 V 7.95 0.79 21.77 33 1880 15 QPSK 1/0 13.94 V 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95	1880	10	QPSK	1/49	12.44	Н	7.95	0.79	19.60	33
1880 10 16-QAM 1/49 12.33 V 7.95 0.79 19.49 33 1905 10 16-QAM 1/0 12.59 V 7.95 0.79 19.75 33 1855 10 16-QAM 1/0 12.95 H 7.95 0.79 20.11 33 1880 10 16-QAM 1/49 12.69 H 7.95 0.79 19.99 33 1905 10 16-QAM 1/0 12.83 H 7.95 0.79 19.99 33 1857.5 15 QPSK 1/0 14.61 V 7.95 0.79 21.77 33 1880 15 QPSK 1/0 13.94 V 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95	1905	10	QPSK	1/0	12.25	Н	7.95	0.79	19.41	33
1905 10 16-QAM 1/0 12.59 V 7.95 0.79 19.75 33 1855 10 16-QAM 1/0 12.95 H 7.95 0.79 20.11 33 1880 10 16-QAM 1/49 12.69 H 7.95 0.79 19.85 33 1905 10 16-QAM 1/0 12.83 H 7.95 0.79 19.99 33 1857.5 15 QPSK 1/0 14.61 V 7.95 0.79 21.77 33 1902.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.10 33 1880 15 QPSK 1/0 14.74 H 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.31 33 1800 15 QPSK 1/74 14.15 H 7.95 0.79 21.31 33 1857.5 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1857.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1860 20 QPSK 1/99 12.33 V 7.95 0.79 19.49 33 1860 20 QPSK 1/99 12.28 V 7.95 0.79 19.44 33 1900 20 QPSK 1/99 12.28 V 7.95 0.79 19.44 33 1900 20 QPSK 1/99 12.57 H 7.95 0.79 19.76 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1855	10	16-QAM	1/0	12.71	V	7.95	0.79	19.87	33
1855 10 16-QAM 1/0 12.95 H 7.95 0.79 20.11 33 1880 10 16-QAM 1/49 12.69 H 7.95 0.79 19.85 33 1905 10 16-QAM 1/0 12.83 H 7.95 0.79 19.99 33 1857.5 15 QPSK 1/0 14.61 V 7.95 0.79 21.77 33 1880 15 QPSK 1/0 13.94 V 7.95 0.79 20.95 33 1902.5 15 QPSK 1/0 13.94 V 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.10 33 1880 15 QPSK 1/74 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95	1880	10	16-QAM	1/49	12.33	V	7.95	0.79	19.49	33
1880 10 16-QAM 1/49 12.69 H 7.95 0.79 19.85 33 1905 10 16-QAM 1/0 12.83 H 7.95 0.79 19.99 33 1857.5 15 QPSK 1/0 14.61 V 7.95 0.79 21.77 33 1880 15 QPSK 1/74 13.79 V 7.95 0.79 20.95 33 1902.5 15 QPSK 1/0 13.94 V 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.31 33 1880 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95	1905	10	16-QAM	1/0	12.59	V	7.95	0.79	19.75	33
1905 10 16-QAM 1/0 12.83 H 7.95 0.79 19.99 33 1857.5 15 QPSK 1/0 14.61 V 7.95 0.79 21.77 33 1880 15 QPSK 1/74 13.79 V 7.95 0.79 20.95 33 1902.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.31 33 1880 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/0 12.42 V 7.95	1855	10	16-QAM	1/0	12.95	Н	7.95	0.79	20.11	33
1857.5 15 QPSK 1/0 14.61 V 7.95 0.79 21.77 33 1880 15 QPSK 1/74 13.79 V 7.95 0.79 20.95 33 1902.5 15 QPSK 1/0 13.94 V 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.90 33 1880 15 QPSK 1/74 14.15 H 7.95 0.79 21.31 33 1802.5 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/74 12.38 V 7.95 0.79 19.54 33 1857.5 15 16-QAM 1/0 12.42 V 7.95	1880	10	16-QAM	1/49	12.69	Н	7.95	0.79	19.85	33
1880 15 QPSK 1/74 13.79 V 7.95 0.79 20.95 33 1902.5 15 QPSK 1/0 13.94 V 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.90 33 1880 15 QPSK 1/74 14.15 H 7.95 0.79 21.31 33 1902.5 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/74 12.38 V 7.95 0.79 19.54 33 1857.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.76 H 7.95	1905	10	16-QAM	1/0	12.83	Н	7.95	0.79	19.99	33
1902.5 15 QPSK 1/0 13.94 V 7.95 0.79 21.10 33 1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.90 33 1880 15 QPSK 1/74 14.15 H 7.95 0.79 21.31 33 1902.5 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/74 12.38 V 7.95 0.79 19.54 33 1857.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.76 H 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.62 H 7.95 </td <td>1857.5</td> <td>15</td> <td>QPSK</td> <td>1/0</td> <td>14.61</td> <td>V</td> <td>7.95</td> <td>0.79</td> <td>21.77</td> <td>33</td>	1857.5	15	QPSK	1/0	14.61	V	7.95	0.79	21.77	33
1857.5 15 QPSK 1/0 14.74 H 7.95 0.79 21.90 33 1880 15 QPSK 1/74 14.15 H 7.95 0.79 21.31 33 1902.5 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/74 12.38 V 7.95 0.79 19.54 33 1902.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.76 H 7.95 0.79 19.58 33 1880 15 16-QAM 1/0 12.76 H 7.95 0.79 19.78 33 1902.5 15 16-QAM 1/74 12.62 H 7.95<	1880	15	QPSK	1/74	13.79	V	7.95	0.79	20.95	33
1880 15 QPSK 1/74 14.15 H 7.95 0.79 21.31 33 1902.5 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/74 12.38 V 7.95 0.79 19.54 33 1902.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.76 H 7.95 0.79 19.58 33 1880 15 16-QAM 1/0 12.62 H 7.95 0.79 19.78 33 1902.5 15 16-QAM 1/0 12.97 H 7.95 0.79 19.78 33 1860 20 QPSK 1/99 12.33 V 7.95 <td>1902.5</td> <td>15</td> <td>QPSK</td> <td>1/0</td> <td>13.94</td> <td>V</td> <td>7.95</td> <td>0.79</td> <td>21.10</td> <td>33</td>	1902.5	15	QPSK	1/0	13.94	V	7.95	0.79	21.10	33
1902.5 15 QPSK 1/0 14.15 H 7.95 0.79 21.31 33 1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/74 12.38 V 7.95 0.79 19.54 33 1902.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.76 H 7.95 0.79 19.58 33 1880 15 16-QAM 1/0 12.76 H 7.95 0.79 19.78 33 1902.5 15 16-QAM 1/74 12.62 H 7.95 0.79 19.78 33 1902.5 15 16-QAM 1/0 12.97 H 7.95 0.79 20.13 33 1860 20 QPSK 1/99 12.28 V 7.9	1857.5	15	QPSK	1/0	14.74	Н	7.95	0.79	21.90	33
1857.5 15 16-QAM 1/0 12.43 V 7.95 0.79 19.59 33 1880 15 16-QAM 1/74 12.38 V 7.95 0.79 19.54 33 1902.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.76 H 7.95 0.79 19.92 33 1880 15 16-QAM 1/74 12.62 H 7.95 0.79 19.78 33 1902.5 15 16-QAM 1/0 12.97 H 7.95 0.79 19.78 33 1860 20 QPSK 1/99 12.33 V 7.95 0.79 19.49 33 1880 20 QPSK 1/99 12.28 V 7.95 0.79 19.44 33 1900 20 QPSK 1/0 12.60 V 7.95 <td>1880</td> <td>15</td> <td>QPSK</td> <td>1/74</td> <td>14.15</td> <td>Н</td> <td>7.95</td> <td>0.79</td> <td>21.31</td> <td>33</td>	1880	15	QPSK	1/74	14.15	Н	7.95	0.79	21.31	33
1880 15 16-QAM 1/74 12.38 V 7.95 0.79 19.54 33 1902.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.76 H 7.95 0.79 19.92 33 1880 15 16-QAM 1/74 12.62 H 7.95 0.79 19.78 33 1902.5 15 16-QAM 1/0 12.97 H 7.95 0.79 20.13 33 1860 20 QPSK 1/99 12.33 V 7.95 0.79 19.49 33 1900 20 QPSK 1/99 12.28 V 7.95 0.79 19.74 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1902.5	15	QPSK	1/0	14.15	Н	7.95	0.79	21.31	33
1902.5 15 16-QAM 1/0 12.42 V 7.95 0.79 19.58 33 1857.5 15 16-QAM 1/0 12.76 H 7.95 0.79 19.92 33 1880 15 16-QAM 1/74 12.62 H 7.95 0.79 19.78 33 1902.5 15 16-QAM 1/0 12.97 H 7.95 0.79 20.13 33 1860 20 QPSK 1/99 12.33 V 7.95 0.79 19.49 33 1880 20 QPSK 1/99 12.28 V 7.95 0.79 19.44 33 1900 20 QPSK 1/0 12.60 V 7.95 0.79 19.76 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1857.5	15	16-QAM	1/0	12.43	V	7.95	0.79	19.59	33
1857.5 15 16-QAM 1/0 12.76 H 7.95 0.79 19.92 33 1880 15 16-QAM 1/74 12.62 H 7.95 0.79 19.78 33 1902.5 15 16-QAM 1/0 12.97 H 7.95 0.79 20.13 33 1860 20 QPSK 1/99 12.33 V 7.95 0.79 19.49 33 1880 20 QPSK 1/99 12.28 V 7.95 0.79 19.44 33 1900 20 QPSK 1/0 12.60 V 7.95 0.79 19.76 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1880	15	16-QAM	1/74	12.38	V	7.95	0.79	19.54	33
1880 15 16-QAM 1/74 12.62 H 7.95 0.79 19.78 33 1902.5 15 16-QAM 1/0 12.97 H 7.95 0.79 20.13 33 1860 20 QPSK 1/99 12.33 V 7.95 0.79 19.49 33 1880 20 QPSK 1/99 12.28 V 7.95 0.79 19.44 33 1900 20 QPSK 1/0 12.60 V 7.95 0.79 19.76 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1902.5	15	16-QAM	1/0	12.42	V	7.95	0.79	19.58	33
1902.5 15 16-QAM 1/0 12.97 H 7.95 0.79 20.13 33 1860 20 QPSK 1/99 12.33 V 7.95 0.79 19.49 33 1880 20 QPSK 1/99 12.28 V 7.95 0.79 19.44 33 1900 20 QPSK 1/0 12.60 V 7.95 0.79 19.76 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1857.5	15	16-QAM	1/0	12.76	Н	7.95	0.79	19.92	33
1860 20 QPSK 1/99 12.33 V 7.95 0.79 19.49 33 1880 20 QPSK 1/99 12.28 V 7.95 0.79 19.44 33 1900 20 QPSK 1/0 12.60 V 7.95 0.79 19.76 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1880	15	16-QAM	1/74	12.62	Н	7.95	0.79	19.78	33
1880 20 QPSK 1/99 12.28 V 7.95 0.79 19.44 33 1900 20 QPSK 1/0 12.60 V 7.95 0.79 19.76 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1902.5	15	16-QAM	1/0	12.97	Н	7.95	0.79	20.13	33
1900 20 QPSK 1/0 12.60 V 7.95 0.79 19.76 33 1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1860	20	QPSK	1/99	12.33	V	7.95	0.79	19.49	33
1860 20 QPSK 1/99 12.57 H 7.95 0.79 19.73 33	1880	20	QPSK	1/99	12.28	V	7.95	0.79	19.44	33
	1900	20	QPSK	1/0	12.60	V	7.95	0.79	19.76	33
1880 20 QPSK 1/99 12.61 H 7.95 0.79 19.77 33	1860	20	QPSK	1/99	12.57	Н	7.95	0.79	19.73	33
<u>, , , , , , , , , , , , , , , , , , , </u>	1880	20	QPSK	1/99	12.61	Н	7.95	0.79	19.77	33
1900 20 QPSK 1/0 12.85 H 7.95 0.79 20.01 33	1900	20	QPSK	1/0	12.85	Н	7.95	0.79	20.01	33
	1860	20	16-QAM	1/99		V	7.95		18.62	33
	1880	20	+	1/99		V	7.95		21.21	33

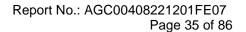
Page 32 of 86

1900	20	16-QAM	1/0	13.57	V	7.95	0.79	20.73	33
1860	20	16-QAM	1/99	11.66	Η	7.95	0.79	18.82	33
1880	20	16-QAM	1/99	14.30	Н	7.95	0.79	21.46	33
1900	20	16-QAM	1/0	13.91	Н	7.95	0.79	21.07	33



EIRP for LTE Band 4

	Channel			Substituted	Antenna	Antenna	Cable	Absolute	Limit
Frequency	Bandwidth	Mode.	RB	level	Polarization	Gain correction	Loss	Level	(dBm)
1710.7	1.4	QPSK	1/0	13.23	V	7.95	0.79	20.39	30
1732.5	1.4	QPSK	1/0	12.74	V	7.95	0.79	19.90	30
1754.3	1.4	QPSK	1/0	12.69	V	7.95	0.79	19.85	30
1710.7	1.4	QPSK	1/0	13.38	Н	7.95	0.79	20.54	30
1732.5	1.4	QPSK	1/0	13.34	Н	7.95	0.79	20.50	30
1754.3	1.4	QPSK	1/0	13.29	Н	7.95	0.79	20.45	30
1710.7	1.4	16-QAM	1/5	14.68	V	7.95	0.79	21.84	30
1732.5	1.4	16-QAM	1/0	14.39	V	7.95	0.79	21.55	30
1754.3	1.4	16-QAM	1/0	14.59	V	7.95	0.79	21.75	30
1710.7	1.4	16-QAM	1/5	14.90	Н	7.95	0.79	22.06	30
1732.5	1.4	16-QAM	1/0	14.81	Н	7.95	0.79	21.97	30
1754.3	1.4	16-QAM	1/0	14.83	Н	7.95	0.79	21.99	30
1711.5	3	QPSK	1/0	14.71	V	7.95	0.79	21.87	30
1732.5	3	QPSK	1/0	14.83	V	7.95	0.79	21.99	30
1753.5	3	QPSK	1/0	14.50	V	7.95	0.79	21.66	30
1711.5	3	QPSK	1/0	15.03	Н	7.95	0.79	22.19	30
1732.5	3	QPSK	1/0	15.04	Н	7.95	0.79	22.20	30
1753.5	3	QPSK	1/0	14.97	Н	7.95	0.79	22.13	30
1711.5	3	16-QAM	1/0	14.73	V	7.95	0.79	21.89	30
1732.5	3	16-QAM	1/0	14.80	V	7.95	0.79	21.96	30
1753.5	3	16-QAM	1/0	13.65	V	7.95	0.79	20.81	30
1711.5	3	16-QAM	1/0	15.09	Н	7.95	0.79	22.25	30
1732.5	3	16-QAM	1/0	15.04	Н	7.95	0.79	22.20	30
1753.5	3	16-QAM	1/0	14.06	Н	7.95	0.79	21.22	30
1712.5	5	QPSK	1/0	13.71	V	7.95	0.79	20.87	30
1732.5	5	QPSK	1/0	13.89	V	7.95	0.79	21.05	30
1752.5	5	QPSK	1/24	13.72	V	7.95	0.79	20.88	30
1712.5	5	QPSK	1/0	13.93	Н	7.95	0.79	21.09	30
1732.5	5	QPSK	1/0	13.99	Н	7.95	0.79	21.15	30
1752.5	5	QPSK	1/24	13.96	Н	7.95	0.79	21.12	30
1712.5	5	16-QAM	1/0	13.60	V	7.95	0.79	20.76	30
1732.5	5	16-QAM	1/0	12.50	V	7.95	0.79	19.66	30
1752.5	5	16-QAM	1/24	13.56	V	7.95	0.79	20.72	30
1712.5	5	16-QAM	1/0	13.84	Н	7.95	0.79	21.00	30
1732.5	5	16-QAM	1/0	13.86	Н	7.95	0.79	21.02	30
1752.5	5	16-QAM	1/24	13.81	Н	7.95	0.79	20.97	30

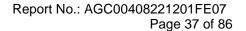

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

1715	10	QPSK	1/0	13.82	V	7.95	0.79	20.98	30
1732.5	10	QPSK	1/49	13.11	V	7.95	0.79	20.27	30
1750	10	QPSK	1/0	13.62	V	7.95	0.79	20.78	30
1715	10	QPSK	1/0	14.11	Н	7.95	0.79	21.27	30
1732.5	10	QPSK	1/49	14.35	Н	7.95	0.79	21.51	30
1750	10	QPSK	1/0	13.96	Н	7.95	0.79	21.12	30
1715	10	16-QAM	1/0	12.25	V	7.95	0.79	19.41	30
1732.5	10	16-QAM	1/49	11.97	V	7.95	0.79	19.13	30
1750	10	16-QAM	1/0	12.11	V	7.95	0.79	19.27	30
1715	10	16-QAM	1/0	12.49	Н	7.95	0.79	19.65	30
1732.5	10	16-QAM	1/49	12.33	Н	7.95	0.79	19.49	30
1750	10	16-QAM	1/0	12.35	Н	7.95	0.79	19.51	30
1717.5	15	QPSK	1/0	14.84	V	7.95	0.79	22.00	30
1732.5	15	QPSK	1/74	13.64	V	7.95	0.79	20.80	30
1747.5	15	QPSK	1/0	13.79	V	7.95	0.79	20.95	30
1717.5	15	QPSK	1/0	14.97	Н	7.95	0.79	22.13	30
1732.5	15	QPSK	1/74	14.00	Н	7.95	0.79	21.16	30
1747.5	15	QPSK	1/0	14.00	Н	7.95	0.79	21.16	30
1717.5	15	16-QAM	1/0	12.43	V	7.95	0.79	19.59	30
1732.5	15	16-QAM	1/74	12.38	V	7.95	0.79	19.54	30
1747.5	15	16-QAM	1/0	12.42	V	7.95	0.79	19.58	30
1717.5	15	16-QAM	1/0	12.76	Н	7.95	0.79	19.92	30
1732.5	15	16-QAM	1/74	12.62	Н	7.95	0.79	19.78	30
1747.5	15	16-QAM	1/0	12.97	Н	7.95	0.79	20.13	30
1720	20	QPSK	1/99	13.92	V	7.95	0.79	21.08	30
1732.5	20	QPSK	1/99	13.76	V	7.95	0.79	20.92	30
1745	20	QPSK	1/0	12.19	V	7.95	0.79	19.35	30
1720	20	QPSK	1/99	14.16	Н	7.95	0.79	21.32	30
1732.5	20	QPSK	1/99	14.09	Н	7.95	0.79	21.25	30
1745	20	QPSK	1/0	12.44	Н	7.95	0.79	19.60	30
1720	20	16-QAM	1/99	11.16	V	7.95	0.79	18.32	30
1732.5	20	16-QAM	1/99	13.83	V	7.95	0.79	20.99	30
1745	20	16-QAM	1/0	13.61	V	7.95	0.79	20.77	30
1720	20	16-QAM	1/99	11.36	Н	7.95	0.79	18.52	30
1732.5	20	16-QAM	1/99	14.08	Н	7.95	0.79	21.24	30
1745	20	16-QAM	1/0	13.95	Н	7.95	0.79	21.11	30

ERP for LTE Band 5

Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
824.7	1.4	QPSK	1/0	17.21	V	6.7	0.49	23.42	38.45
836.5	1.4	QPSK	1/0	17.11	V	6.7	0.49	23.32	38.45
848.3	1.4	QPSK	1/0	16.76	V	6.7	0.49	22.97	38.45
824.7	1.4	QPSK	1/0	17.46	Н	6.7	0.49	23.67	38.45
836.5	1.4	QPSK	1/0	17.37	Н	6.7	0.49	23.58	38.45
848.3	1.4	QPSK	1/0	17.18	Н	6.7	0.49	23.39	38.45
824.7	1.4	16-QAM	1/0	13.22	V	6.7	0.49	19.43	38.45
836.5	1.4	16-QAM	1/0	13.61	V	6.7	0.49	19.82	38.45
848.3	1.4	16-QAM	1/0	13.53	V	6.7	0.49	19.74	38.45
824.7	1.4	16-QAM	1/0	13.56	Н	6.7	0.49	19.77	38.45
836.5	1.4	16-QAM	1/0	13.80	Н	6.7	0.49	20.01	38.45
848.3	1.4	16-QAM	1/0	13.82	Н	6.7	0.49	20.03	38.45
825.5	3	QPSK	1/0	13.39	V	6.7	0.49	19.60	38.45
836.5	3	QPSK	1/0	15.46	V	6.7	0.49	21.67	38.45
847.5	3	QPSK	1/0	15.65	V	6.7	0.49	21.86	38.45
825.5	3	QPSK	1/0	13.81	Н	6.7	0.49	20.02	38.45
836.5	3	QPSK	1/0	15.98	Н	6.7	0.49	22.19	38.45
847.5	3	QPSK	1/0	16.18	Н	6.7	0.49	22.39	38.45
825.5	3	16-QAM	1/0	15.64	V	6.7	0.49	21.85	38.45
836.5	3	16-QAM	1/0	15.62	V	6.7	0.49	21.83	38.45
847.5	3	16-QAM	1/0	14.66	V	6.7	0.49	20.87	38.45
825.5	3	16-QAM	1/0	16.13	Н	6.7	0.49	22.34	38.45
836.5	3	16-QAM	1/0	16.19	Н	6.7	0.49	22.40	38.45
847.5	3	16-QAM	1/0	15.19	Н	6.7	0.49	21.40	38.45
826.5	5	QPSK	1/0	15.16	V	6.7	0.49	21.37	38.45
836.5	5	QPSK	1/0	12.66	V	6.7	0.49	18.87	38.45
846.5	5	QPSK	1/0	12.56	V	6.7	0.49	18.77	38.45
826.5	5	QPSK	1/0	15.51	Н	6.7	0.49	21.72	38.45
836.5	5	QPSK	1/0	13.03	Н	6.7	0.49	19.24	38.45
846.5	5	QPSK	1/0	13.09	Н	6.7	0.49	19.30	38.45
826.5	5	16-QAM	1/0	12.46	V	6.7	0.49	18.67	38.45
836.5	5	16-QAM	1/0	12.23	V	6.7	0.49	18.44	38.45
846.5	5	16-QAM	1/0	12.36	V	6.7	0.49	18.57	38.45
826.5	5	16-QAM	1/0	13.09	Н	6.7	0.49	19.30	38.45
836.5	5	16-QAM	1/0	12.68	Н	6.7	0.49	18.89	38.45
846.5	5	16-QAM	1/0	12.75	Н	6.7	0.49	18.96	38.45


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 36 of 86

829	10	QPSK	1/0	14.84	V	6.7	0.49	21.05	38.45
836.5	10	QPSK	1/0	14.96	V	6.7	0.49	21.17	38.45
844	10	QPSK	1/0	14.63	V	6.7	0.49	20.84	38.45
829	10	QPSK	1/0	15.36	Н	6.7	0.49	21.57	38.45
836.5	10	QPSK	1/0	15.11	Н	6.7	0.49	21.32	38.45
844	10	QPSK	1/0	15.01	Н	6.7	0.49	21.22	38.45
829	10	16-QAM	1/0	16.90	V	6.7	0.49	23.11	38.45
836.5	10	16-QAM	1/0	16.67	V	6.7	0.49	22.88	38.45
844	10	16-QAM	1/0	16.44	V	6.7	0.49	22.65	38.45
829	10	16-QAM	1/0	17.67	Н	6.7	0.49	23.88	38.45
836.5	10	16-QAM	1/0	17.21	Н	6.7	0.49	23.42	38.45
844	10	16-QAM	1/0	16.81	Н	6.7	0.49	23.02	38.45

ERP for LTE Band 12

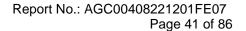
				EKP IOI LII	- Dana 12				
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
699.7	1.4	QPSK	1/0	17.82	V	6.6	0.47	23.95	34.77
707.5	1.4	QPSK	1/0	17.82	V	6.6	0.47	23.95	34.77
715.3	1.4	QPSK	1/24	17.52	V	6.6	0.47	23.65	34.77
699.7	1.4	QPSK	1/0	18.15	Н	6.6	0.47	24.28	34.77
707.5	1.4	QPSK	1/0	18.34	Н	6.6	0.47	24.47	34.77
715.3	1.4	QPSK	1/24	18.15	Н	6.6	0.47	24.28	34.77
699.7	1.4	16-QAM	1/0	16.78	V	6.6	0.47	22.91	34.77
707.5	1.4	16-QAM	1/0	17.81	V	6.6	0.47	23.94	34.77
715.3	1.4	16-QAM	1/24	17.59	V	6.6	0.47	23.72	34.77
699.7	1.4	16-QAM	1/0	17.33	Н	6.6	0.47	23.46	34.77
707.5	1.4	16-QAM	1/0	18.22	Н	6.6	0.47	24.35	34.77
715.3	1.4	16-QAM	1/24	18.00	Н	6.6	0.47	24.13	34.77
700.5	3	QPSK	1/0	14.78	V	6.6	0.47	20.91	34.77
707.5	3	QPSK	1/49	14.80	V	6.6	0.47	20.93	34.77
714.5	3	QPSK	1/0	14.47	V	6.6	0.47	20.60	34.77
700.5	3	QPSK	1/0	15.03	Н	6.6	0.47	21.16	34.77
707.5	3	QPSK	1/49	14.94	Н	6.6	0.47	21.07	34.77
714.5	3	QPSK	1/0	14.80	Н	6.6	0.47	20.93	34.77
700.5	3	16-QAM	1/0	17.25	V	6.6	0.47	23.38	34.77
707.5	3	16-QAM	1/49	17.37	V	6.6	0.47	23.50	34.77
714.5	3	16-QAM	1/0	16.88	V	6.6	0.47	23.01	34.77
700.5	3	16-QAM	1/0	17.46	Н	6.6	0.47	23.59	34.77
707.5	3	16-QAM	1/49	17.51	Н	6.6	0.47	23.64	34.77
714.5	3	16-QAM	1/0	17.51	Н	6.6	0.47	23.64	34.77
701.5	5	QPSK	1/0	15.92	V	6.6	0.47	22.05	34.77
707.5	5	QPSK	1/74	16.89	V	6.6	0.47	23.02	34.77
713.5	5	QPSK	1/0	16.81	V	6.6	0.47	22.94	34.77
701.5	5	QPSK	1/0	16.47	Н	6.6	0.47	22.60	34.77
707.5	5	QPSK	1/74	17.34	Н	6.6	0.47	23.47	34.77
713.5	5	QPSK	1/0	17.22	Н	6.6	0.47	23.35	34.77
701.5	5	16-QAM	1/0	16.36	V	6.6	0.47	22.49	34.77
707.5	5	16-QAM	1/74	15.90	V	6.6	0.47	22.03	34.77
713.5	5	16-QAM	1/0	13.60	V	6.6	0.47	19.73	34.77
701.5	5	16-QAM	1/0	16.81	Н	6.6	0.47	22.94	34.77
707.5	5	16-QAM	1/74	16.04	Н	6.6	0.47	22.17	34.77
713.5	5	16-QAM	1/0	14.12	Н	6.6	0.47	20.25	34.77

Page 38 of 86

	1			1					
704.0	10	QPSK	1/99	13.85	V	6.6	0.47	19.98	34.77
707.5	10	QPSK	1/99	13.52	V	6.6	0.47	19.65	34.77
711.0	10	QPSK	1/0	13.24	V	6.6	0.47	19.37	34.77
704.0	10	QPSK	1/99	13.99	Н	6.6	0.47	20.12	34.77
707.5	10	QPSK	1/99	13.74	Н	6.6	0.47	19.87	34.77
711.0	10	QPSK	1/0	13.76	Н	6.6	0.47	19.89	34.77
704.0	10	16-QAM	1/99	18.24	V	6.6	0.47	24.37	34.77
707.5	10	16-QAM	1/99	18.21	V	6.6	0.47	24.34	34.77
711.0	10	16-QAM	1/0	17.30	V	6.6	0.47	23.43	34.77
704.0	10	16-QAM	1/99	18.57	Н	6.6	0.47	24.70	34.77
707.5	10	16-QAM	1/99	18.62	Н	6.6	0.47	24.75	34.77
711.0	10	16-QAM	1/0	17.66	Н	6.6	0.47	23.79	34.77

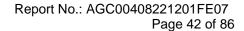
Page 39 of 86

ERP for LTE Band 13


Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
779.5	5	QPSK	1/0	13.98	V	6.6	0.47	20.11	34.77
782.0	5	QPSK	1/74	14.09	V	6.6	0.47	20.22	34.77
784.5	5	QPSK	1/0	14.16	V	6.6	0.47	20.29	34.77
779.5	5	QPSK	1/0	14.31	Н	6.6	0.47	20.44	34.77
782.0	5	QPSK	1/74	14.61	Н	6.6	0.47	20.74	34.77
784.5	5	QPSK	1/0	14.79	Н	6.6	0.47	20.92	34.77
779.5	5	16-QAM	1/0	13.03	V	6.6	0.47	19.16	34.77
782.0	5	16-QAM	1/74	14.23	V	6.6	0.47	20.36	34.77
784.5	5	16-QAM	1/0	14.65	V	6.6	0.47	20.78	34.77
779.5	5	16-QAM	1/0	13.58	Н	6.6	0.47	19.71	34.77
782.0	5	16-QAM	1/74	14.64	Н	6.6	0.47	20.77	34.77
784.5	5	16-QAM	1/0	15.06	Н	6.6	0.47	21.19	34.77
782.0	10	QPSK	1/99	14.82	V	6.6	0.47	20.95	34.77
782.0	10	QPSK	1/99	15.29	Н	6.6	0.47	21.42	34.77
782.0	10	16-QAM	1/99	15.31	V	6.6	0.47	21.44	34.77
782.0	10	16-QAM	1/99	15.07	Н	6.6	0.47	21.20	34.77

Report No.: AGC00408221201FE07 Page 40 of 86

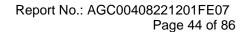
ERP for LTE Band 17


				EKP IOI LIE	- Dana ii				
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
706.5	5	QPSK	1/0	18.68	V	6.6	0.47	24.81	34.77
710.0	5	QPSK	1/74	18.00	V	6.6	0.47	24.13	34.77
713.5	5	QPSK	1/0	16.99	V	6.6	0.47	23.12	34.77
706.5	5	QPSK	1/0	19.01	Н	6.6	0.47	25.14	34.77
710.0	5	QPSK	1/74	18.52	Н	6.6	0.47	24.65	34.77
713.5	5	QPSK	1/0	17.62	Н	6.6	0.47	23.75	34.77
706.5	5	16-QAM	1/0	16.97	V	6.6	0.47	23.10	34.77
710.0	5	16-QAM	1/74	17.89	V	6.6	0.47	24.02	34.77
713.5	5	16-QAM	1/0	16.75	V	6.6	0.47	22.88	34.77
706.5	5	16-QAM	1/0	17.52	Н	6.6	0.47	23.65	34.77
710.0	5	16-QAM	1/74	18.30	H	6.6	0.47	24.43	34.77
713.5	5	16-QAM	1/0	17.16	H	6.6	0.47	23.29	34.77
709.0	10	QPSK	1/99	16.36	V	6.6	0.47	22.49	34.77
710.0	10	QPSK	1/99	15.47	V	6.6	0.47	21.60	34.77
711.0	10	QPSK	1/0	14.62	V	6.6	0.47	20.75	34.77
709.0	10	QPSK	1/99	16.61	Η	6.6	0.47	22.74	34.77
710.0	10	QPSK	1/99	15.61	Н	6.6	0.47	21.74	34.77
711.0	10	QPSK	1/0	14.95	Н	6.6	0.47	21.08	34.77
709.0	10	16-QAM	1/99	17.82	V	6.6	0.47	23.95	34.77
710.0	10	16-QAM	1/99	17.57	V	6.6	0.47	23.70	34.77
711.0	10	16-QAM	1/0	16.17	V	6.6	0.47	22.30	34.77
709.0	10	16-QAM	1/99	18.03	Н	6.6	0.47	24.16	34.77
710.0	10	16-QAM	1/99	17.71	Н	6.6	0.47	23.84	34.77
711.0	10	16-QAM	1/0	16.80	Н	6.6	0.47	22.93	34.77

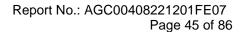
EIRP for LTE Band 25

				EIRP for LI	E Danu 25				
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
1850.7	1.4	QPSK	1/0	14.70	V	6.6	0.47	20.83	33
1882.5	1.4	QPSK	1/0	14.53	V	6.6	0.47	20.66	33
1914.3	1.4	QPSK	1/0	14.36	V	6.6	0.47	20.49	33
1850.7	1.4	QPSK	1/0	14.95	Н	6.6	0.47	21.08	33
1882.5	1.4	QPSK	1/0	14.79	Н	6.6	0.47	20.92	33
1914.3	1.4	QPSK	1/0	14.78	Н	6.6	0.47	20.91	33
1850.7	1.4	16-QAM	1/5	15.31	V	6.6	0.47	21.44	33
1882.5	1.4	16-QAM	1/0	15.39	V	6.6	0.47	21.52	33
1914.3	1.4	16-QAM	1/0	15.28	V	6.6	0.47	21.41	33
1850.7	1.4	16-QAM	1/5	15.65	Н	6.6	0.47	21.78	33
1882.5	1.4	16-QAM	1/0	15.58	Н	6.6	0.47	21.71	33
1914.3	1.4	16-QAM	1/0	15.57	Н	6.6	0.47	21.70	33
1851.5	3	QPSK	1/0	15.18	V	6.6	0.47	21.31	33
1882.5	3	QPSK	1/0	13.77	V	6.6	0.47	19.90	33
1913.5	3	QPSK	1/0	13.87	V	6.6	0.47	20.00	33
1851.5	3	QPSK	1/0	15.60	Н	6.6	0.47	21.73	33
1882.5	3	QPSK	1/0	14.29	Н	6.6	0.47	20.42	33
1913.5	3	QPSK	1/0	14.40	Н	6.6	0.47	20.53	33
1851.5	3	16-QAM	1/0	14.01	V	6.6	0.47	20.14	33
1882.5	3	16-QAM	1/0	13.89	V	6.6	0.47	20.02	33
1913.5	3	16-QAM	1/0	12.95	V	6.6	0.47	19.08	33
1851.5	3	16-QAM	1/0	14.50	Н	6.6	0.47	20.63	33
1882.5	3	16-QAM	1/0	14.46	Н	6.6	0.47	20.59	33
1913.5	3	16-QAM	1/0	13.48	Н	6.6	0.47	19.61	33
1852.5	5	QPSK	1/0	12.67	V	6.6	0.47	18.80	33
1882.5	5	QPSK	1/0	14.60	V	6.6	0.47	20.73	33
1912.5	5	QPSK	1/24	14.26	V	6.6	0.47	20.39	33
1852.5	5	QPSK	1/0	13.02	Н	6.6	0.47	19.15	33
1882.5	5	QPSK	1/0	14.97	Н	6.6	0.47	21.10	33
1912.5	5	QPSK	1/24	14.79	Н	6.6	0.47	20.92	33
1852.5	5	16-QAM	1/0	14.16	V	6.6	0.47	20.29	33
1882.5	5	16-QAM	1/0	14.33	V	6.6	0.47	20.46	33
1912.5	5	16-QAM	1/24	14.29	V	6.6	0.47	20.42	33
1852.5	5	16-QAM	1/0	14.79	Н	6.6	0.47	20.92	33
1882.5	5	16-QAM	1/0	14.78	Н	6.6	0.47	20.91	33
1912.5	5	16-QAM	1/24	14.68	Н	6.6	0.47	20.81	33

1855.0										
1910.0 10	1855.0	10	QPSK	1/0	12.99	V	6.6	0.47	19.12	33
1855.0	1882.5	10	QPSK	1/49	13.37	V	6.6	0.47	19.50	33
1882.5 10	1910.0	10	QPSK	1/0	13.01	V	6.6	0.47	19.14	33
1910.0 10	1855.0	10	QPSK	1/0	13.51	Н	6.6	0.47	19.64	33
1855.0	1882.5	10	QPSK	1/49	13.52	Н	6.6	0.47	19.65	33
1882.5 10	1910.0	10	QPSK	1/0	13.39	Н	6.6	0.47	19.52	33
1910.0	1855.0	10	16-QAM	1/0	14.23	V	6.6	0.47	20.36	33
1855.0	1882.5	10	16-QAM	1/49	14.24	V	6.6	0.47	20.37	33
1882.5	1910.0	10	16-QAM	1/0	14.31	V	6.6	0.47	20.44	33
1910.0 10	1855.0	10	16-QAM	1/0	15.00	Н	6.6	0.47	21.13	33
1857.5 15 QPSK 1/0 14.55 V 6.6 0.47 20.68 33 1882.5 15 QPSK 1/74 16.48 V 6.6 0.47 22.61 33 1907.5 15 QPSK 1/0 16.25 V 6.6 0.47 22.38 33 1857.5 15 QPSK 1/0 16.02 H 6.6 0.47 22.15 33 1882.5 15 QPSK 1/74 15.39 H 6.6 0.47 21.52 33 1907.5 15 QPSK 1/0 15.30 H 6.6 0.47 21.43 33 1857.5 15 16-QAM 1/0 15.01 V 6.6 0.47 21.43 33 1825.5 15 16-QAM 1/74 15.37 V 6.6 0.47 21.24 33 1827.5 15 16-QAM 1/0 15.11 V 6.6	1882.5	10	16-QAM	1/49	14.78	Н	6.6	0.47	20.91	33
1882.5 15 QPSK 1/74 16.48 V 6.6 0.47 22.61 33 1907.5 15 QPSK 1/0 16.25 V 6.6 0.47 22.38 33 1857.5 15 QPSK 1/0 16.02 H 6.6 0.47 22.15 33 1897.5 15 QPSK 1/0 15.39 H 6.6 0.47 21.52 33 1907.5 15 QPSK 1/0 15.30 H 6.6 0.47 21.43 33 1857.5 15 16-QAM 1/0 15.37 V 6.6 0.47 21.14 33 1882.5 15 16-QAM 1/74 15.37 V 6.6 0.47 21.24 33 1857.5 15 16-QAM 1/0 15.14 H 6.6 0.47 21.27 33 1882.5 15 16-QAM 1/74 15.14 H 6.6	1910.0	10	16-QAM	1/0	14.68	Н	6.6	0.47	20.81	33
1907.5 15 QPSK 1/0 16.25 V 6.6 0.47 22.38 33 1857.5 15 QPSK 1/0 16.02 H 6.6 0.47 22.15 33 1882.5 15 QPSK 1/74 15.39 H 6.6 0.47 21.52 33 1907.5 15 QPSK 1/0 15.30 H 6.6 0.47 21.43 33 1857.5 15 16-QAM 1/0 15.01 V 6.6 0.47 21.14 33 1882.5 15 16-QAM 1/74 15.37 V 6.6 0.47 21.24 33 1897.5 15 16-QAM 1/0 15.11 V 6.6 0.47 21.24 33 1887.5 15 16-QAM 1/0 15.14 H 6.6 0.47 21.27 33 1882.5 15 16-QAM 1/0 14.29 H 6.6	1857.5	15	QPSK	1/0	14.55	V	6.6	0.47	20.68	33
1857.5 15 QPSK 1/0 16.02 H 6.6 0.47 22.15 33 1882.5 15 QPSK 1/74 15.39 H 6.6 0.47 21.52 33 1907.5 15 QPSK 1/0 15.30 H 6.6 0.47 21.43 33 1857.5 15 16-QAM 1/0 15.01 V 6.6 0.47 21.14 33 1882.5 15 16-QAM 1/74 15.37 V 6.6 0.47 21.50 33 1907.5 15 16-QAM 1/0 15.11 V 6.6 0.47 21.24 33 1857.5 15 16-QAM 1/0 15.14 H 6.6 0.47 21.27 33 1882.5 15 16-QAM 1/0 14.29 H 6.6 0.47 20.42 33 1860.0 20 QPSK 1/99 14.28 V 6.6	1882.5	15	QPSK	1/74	16.48	V	6.6	0.47	22.61	33
1882.5 15 QPSK 1/74 15.39 H 6.6 0.47 21.52 33 1907.5 15 QPSK 1/0 15.30 H 6.6 0.47 21.43 33 1857.5 15 16-QAM 1/0 15.01 V 6.6 0.47 21.14 33 1882.5 15 16-QAM 1/74 15.37 V 6.6 0.47 21.50 33 1907.5 15 16-QAM 1/0 15.11 V 6.6 0.47 21.24 33 1857.5 15 16-QAM 1/0 15.14 H 6.6 0.47 21.27 33 1882.5 15 16-QAM 1/0 14.29 H 6.6 0.47 21.27 33 1860.0 20 QPSK 1/99 14.26 V 6.6 0.47 20.42 33 1860.0 20 QPSK 1/99 14.28 V 6.6	1907.5	15	QPSK	1/0	16.25	V	6.6	0.47	22.38	33
1907.5 15 QPSK 1/0 15.30 H 6.6 0.47 21.43 33 1857.5 15 16-QAM 1/0 15.01 V 6.6 0.47 21.14 33 1882.5 15 16-QAM 1/74 15.37 V 6.6 0.47 21.50 33 1907.5 15 16-QAM 1/0 15.11 V 6.6 0.47 21.24 33 1857.5 15 16-QAM 1/0 15.14 H 6.6 0.47 21.27 33 1882.5 15 16-QAM 1/0 14.29 H 6.6 0.47 21.27 33 1860.0 20 QPSK 1/99 14.26 V 6.6 0.47 20.42 33 1860.0 20 QPSK 1/99 14.28 V 6.6 0.47 20.41 33 1860.0 20 QPSK 1/99 14.97 H 6.6	1857.5	15	QPSK	1/0	16.02	Н	6.6	0.47	22.15	33
1857.5 15 16-QAM 1/0 15.01 V 6.6 0.47 21.14 33 1882.5 15 16-QAM 1/74 15.37 V 6.6 0.47 21.50 33 1907.5 15 16-QAM 1/0 15.11 V 6.6 0.47 21.24 33 1857.5 15 16-QAM 1/0 15.14 H 6.6 0.47 21.27 33 1882.5 15 16-QAM 1/74 15.14 H 6.6 0.47 21.27 33 1907.5 15 16-QAM 1/0 14.29 H 6.6 0.47 20.42 33 1860.0 20 QPSK 1/99 14.28 V 6.6 0.47 20.41 33 1905.0 20 QPSK 1/99 14.97 H 6.6 0.47 20.22 33 1882.5 20 QPSK 1/99 14.48 H 6.6 </td <td>1882.5</td> <td>15</td> <td>QPSK</td> <td>1/74</td> <td>15.39</td> <td>Н</td> <td>6.6</td> <td>0.47</td> <td>21.52</td> <td>33</td>	1882.5	15	QPSK	1/74	15.39	Н	6.6	0.47	21.52	33
1882.5 15 16-QAM 1/74 15.37 V 6.6 0.47 21.50 33 1907.5 15 16-QAM 1/0 15.11 V 6.6 0.47 21.24 33 1857.5 15 16-QAM 1/0 15.14 H 6.6 0.47 21.27 33 1882.5 15 16-QAM 1/74 15.14 H 6.6 0.47 21.27 33 1907.5 15 16-QAM 1/0 14.29 H 6.6 0.47 20.42 33 1860.0 20 QPSK 1/99 14.28 V 6.6 0.47 20.39 33 1882.5 20 QPSK 1/99 14.28 V 6.6 0.47 20.41 33 1905.0 20 QPSK 1/99 14.97 H 6.6 0.47 20.22 33 1882.5 20 QPSK 1/99 14.48 H 6.6 <td>1907.5</td> <td>15</td> <td>QPSK</td> <td>1/0</td> <td>15.30</td> <td>Н</td> <td>6.6</td> <td>0.47</td> <td>21.43</td> <td>33</td>	1907.5	15	QPSK	1/0	15.30	Н	6.6	0.47	21.43	33
1907.5 15 16-QAM 1/0 15.11 V 6.6 0.47 21.24 33 1857.5 15 16-QAM 1/0 15.14 H 6.6 0.47 21.27 33 1882.5 15 16-QAM 1/74 15.14 H 6.6 0.47 21.27 33 1907.5 15 16-QAM 1/0 14.29 H 6.6 0.47 20.42 33 1860.0 20 QPSK 1/99 14.26 V 6.6 0.47 20.39 33 1882.5 20 QPSK 1/99 14.28 V 6.6 0.47 20.41 33 1905.0 20 QPSK 1/0 14.09 V 6.6 0.47 20.22 33 1860.0 20 QPSK 1/99 14.48 H 6.6 0.47 21.10 33 1905.0 20 QPSK 1/0 14.49 H 6.6	1857.5	15	16-QAM	1/0	15.01	V	6.6	0.47	21.14	33
1857.5 15 16-QAM 1/0 15.14 H 6.6 0.47 21.27 33 1882.5 15 16-QAM 1/74 15.14 H 6.6 0.47 21.27 33 1907.5 15 16-QAM 1/0 14.29 H 6.6 0.47 20.42 33 1860.0 20 QPSK 1/99 14.26 V 6.6 0.47 20.39 33 1882.5 20 QPSK 1/99 14.28 V 6.6 0.47 20.41 33 1905.0 20 QPSK 1/0 14.09 V 6.6 0.47 20.22 33 1860.0 20 QPSK 1/99 14.97 H 6.6 0.47 21.10 33 1905.0 20 QPSK 1/99 14.48 H 6.6 0.47 20.61 33 1905.0 20 QPSK 1/0 14.49 H 6.6	1882.5	15	16-QAM	1/74	15.37	V	6.6	0.47	21.50	33
1882.5 15 16-QAM 1/74 15.14 H 6.6 0.47 21.27 33 1907.5 15 16-QAM 1/0 14.29 H 6.6 0.47 20.42 33 1860.0 20 QPSK 1/99 14.26 V 6.6 0.47 20.39 33 1882.5 20 QPSK 1/99 14.28 V 6.6 0.47 20.41 33 1905.0 20 QPSK 1/0 14.09 V 6.6 0.47 20.22 33 1860.0 20 QPSK 1/99 14.97 H 6.6 0.47 21.10 33 1882.5 20 QPSK 1/99 14.48 H 6.6 0.47 20.61 33 1860.0 20 QPSK 1/0 14.49 H 6.6 0.47 17.98 33 1882.5 20 16-QAM 1/99 11.78 V 6.6	1907.5	15	16-QAM	1/0	15.11	V	6.6	0.47	21.24	33
1907.5 15 16-QAM 1/0 14.29 H 6.6 0.47 20.42 33 1860.0 20 QPSK 1/99 14.26 V 6.6 0.47 20.39 33 1882.5 20 QPSK 1/99 14.28 V 6.6 0.47 20.41 33 1905.0 20 QPSK 1/0 14.09 V 6.6 0.47 20.22 33 1860.0 20 QPSK 1/99 14.97 H 6.6 0.47 21.10 33 1882.5 20 QPSK 1/99 14.48 H 6.6 0.47 20.61 33 1860.0 20 QPSK 1/0 14.49 H 6.6 0.47 20.62 33 1882.5 20 16-QAM 1/99 11.78 V 6.6 0.47 17.91 33 1905.0 20 16-QAM 1/99 11.72 H 6.6	1857.5	15	16-QAM	1/0	15.14	Н	6.6	0.47	21.27	33
1860.0 20 QPSK 1/99 14.26 V 6.6 0.47 20.39 33 1882.5 20 QPSK 1/99 14.28 V 6.6 0.47 20.41 33 1905.0 20 QPSK 1/0 14.09 V 6.6 0.47 20.22 33 1860.0 20 QPSK 1/99 14.97 H 6.6 0.47 21.10 33 1882.5 20 QPSK 1/99 14.48 H 6.6 0.47 20.61 33 1860.0 20 QPSK 1/0 14.49 H 6.6 0.47 20.62 33 1860.0 20 16-QAM 1/99 11.85 V 6.6 0.47 17.98 33 1905.0 20 16-QAM 1/9 11.63 V 6.6 0.47 17.76 33 1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1882.5	15	16-QAM	1/74	15.14	Н	6.6	0.47	21.27	33
1882.5 20 QPSK 1/99 14.28 V 6.6 0.47 20.41 33 1905.0 20 QPSK 1/0 14.09 V 6.6 0.47 20.22 33 1860.0 20 QPSK 1/99 14.97 H 6.6 0.47 21.10 33 1882.5 20 QPSK 1/99 14.48 H 6.6 0.47 20.61 33 1905.0 20 QPSK 1/0 14.49 H 6.6 0.47 20.62 33 1860.0 20 16-QAM 1/99 11.85 V 6.6 0.47 17.98 33 1905.0 20 16-QAM 1/99 11.78 V 6.6 0.47 17.76 33 1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1907.5	15	16-QAM	1/0	14.29	Н	6.6	0.47	20.42	33
1905.0 20 QPSK 1/0 14.09 V 6.6 0.47 20.22 33 1860.0 20 QPSK 1/99 14.97 H 6.6 0.47 21.10 33 1882.5 20 QPSK 1/99 14.48 H 6.6 0.47 20.61 33 1905.0 20 QPSK 1/0 14.49 H 6.6 0.47 20.62 33 1860.0 20 16-QAM 1/99 11.85 V 6.6 0.47 17.98 33 1905.0 20 16-QAM 1/9 11.78 V 6.6 0.47 17.76 33 1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1860.0	20	QPSK	1/99	14.26	V	6.6	0.47	20.39	33
1860.0 20 QPSK 1/99 14.97 H 6.6 0.47 21.10 33 1882.5 20 QPSK 1/99 14.48 H 6.6 0.47 20.61 33 1905.0 20 QPSK 1/0 14.49 H 6.6 0.47 20.62 33 1860.0 20 16-QAM 1/99 11.85 V 6.6 0.47 17.98 33 1882.5 20 16-QAM 1/99 11.78 V 6.6 0.47 17.91 33 1905.0 20 16-QAM 1/0 11.63 V 6.6 0.47 17.76 33 1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1882.5	20	QPSK	1/99	14.28	V	6.6	0.47	20.41	33
1882.5 20 QPSK 1/99 14.48 H 6.6 0.47 20.61 33 1905.0 20 QPSK 1/0 14.49 H 6.6 0.47 20.62 33 1860.0 20 16-QAM 1/99 11.85 V 6.6 0.47 17.98 33 1882.5 20 16-QAM 1/99 11.78 V 6.6 0.47 17.91 33 1905.0 20 16-QAM 1/0 11.63 V 6.6 0.47 17.76 33 1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1905.0	20	QPSK	1/0	14.09	V	6.6	0.47	20.22	33
1905.0 20 QPSK 1/0 14.49 H 6.6 0.47 20.62 33 1860.0 20 16-QAM 1/99 11.85 V 6.6 0.47 17.98 33 1882.5 20 16-QAM 1/99 11.78 V 6.6 0.47 17.91 33 1905.0 20 16-QAM 1/0 11.63 V 6.6 0.47 17.76 33 1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1860.0	20	QPSK	1/99	14.97	Н	6.6	0.47	21.10	33
1860.0 20 16-QAM 1/99 11.85 V 6.6 0.47 17.98 33 1882.5 20 16-QAM 1/99 11.78 V 6.6 0.47 17.91 33 1905.0 20 16-QAM 1/0 11.63 V 6.6 0.47 17.76 33 1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1882.5	20	QPSK	1/99	14.48	Н	6.6	0.47	20.61	33
1882.5 20 16-QAM 1/99 11.78 V 6.6 0.47 17.91 33 1905.0 20 16-QAM 1/0 11.63 V 6.6 0.47 17.76 33 1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1905.0	20	QPSK	1/0	14.49	Н	6.6	0.47	20.62	33
1905.0 20 16-QAM 1/0 11.63 V 6.6 0.47 17.76 33 1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1860.0	20	16-QAM	1/99	11.85	V	6.6	0.47	17.98	33
1860.0 20 16-QAM 1/99 11.72 H 6.6 0.47 17.85 33	1882.5	20	16-QAM	1/99	11.78	V	6.6	0.47	17.91	33
	1905.0	20	16-QAM	1/0	11.63	V	6.6	0.47	17.76	33
	1860.0	20	16-QAM	1/99	11.72	Н	6.6	0.47	17.85	33
1882.5 20 16-QAM 1/99 13.77 H 6.6 0.47 19.90 33	1882.5	20	16-QAM	1/99	13.77	Н	6.6	0.47	19.90	33
1905.0 20 16-QAM 1/0 13.61 H 6.6 0.47 19.74 33	1905.0	20	16-QAM	1/0	13.61	Н	6.6	0.47	19.74	33

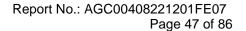


Page 43 of 86


ERP for LTE Band 26A

				EKP IOI LIE					
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
824.7	1.4	QPSK	1/0	13.65	V	6.6	0.48	19.74	34.77
836.5	1.4	QPSK	1/0	13.55	V	6.6	0.48	19.64	34.77
848.3	1.4	QPSK	1/0	13.32	V	6.6	0.48	19.41	34.77
824.7	1.4	QPSK	1/0	13.90	Н	6.6	0.48	19.99	34.77
836.5	1.4	QPSK	1/0	13.81	Н	6.6	0.48	19.90	34.77
848.3	1.4	QPSK	1/0	13.74	Н	6.6	0.48	19.83	34.77
824.7	1.4	16-QAM	1/0	9.81	V	6.6	0.48	15.90	34.77
836.5	1.4	16-QAM	1/0	10.04	V	6.6	0.48	16.13	34.77
848.3	1.4	16-QAM	1/0	9.99	V	6.6	0.48	16.08	34.77
824.7	1.4	16-QAM	1/0	10.15	Н	6.6	0.48	16.24	34.77
836.5	1.4	16-QAM	1/0	10.23	Н	6.6	0.48	16.32	34.77
848.3	1.4	16-QAM	1/0	10.28	Н	6.6	0.48	16.37	34.77
825.5	3	QPSK	1/0	9.92	V	6.6	0.48	16.01	34.77
836.5	3	QPSK	1/0	12.00	V	6.6	0.48	18.09	34.77
847.5	3	QPSK	1/0	12.10	V	6.6	0.48	18.19	34.77
825.5	3	QPSK	1/0	10.34	Н	6.6	0.48	16.43	34.77
836.5	3	QPSK	1/0	12.52	Н	6.6	0.48	18.61	34.77
847.5	3	QPSK	1/0	12.63	Н	6.6	0.48	18.72	34.77
825.5	3	16-QAM	1/0	12.15	V	6.6	0.48	18.24	34.77
836.5	3	16-QAM	1/0	11.81	V	6.6	0.48	17.90	34.77
847.5	3	16-QAM	1/0	11.23	V	6.6	0.48	17.32	34.77
825.5	3	16-QAM	1/0	12.64	Н	6.6	0.48	18.73	34.77
836.5	3	16-QAM	1/0	12.38	Н	6.6	0.48	18.47	34.77
847.5	3	16-QAM	1/0	11.76	Н	6.6	0.48	17.85	34.77
826.5	5	QPSK	1/0	11.49	V	6.6	0.48	17.58	34.77
836.5	5	QPSK	1/0	11.06	V	6.6	0.48	17.15	34.77
846.5	5	QPSK	1/0	11.93	V	6.6	0.48	18.02	34.77
826.5	5	QPSK	1/0	11.84	Н	6.6	0.48	17.93	34.77
836.5	5	QPSK	1/0	11.43	Н	6.6	0.48	17.52	34.77
846.5	5	QPSK	1/0	12.46	Н	6.6	0.48	18.55	34.77
826.5	5	16-QAM	1/0	11.83	V	6.6	0.48	17.92	34.77
836.5	5	16-QAM	1/0	11.72	V	6.6	0.48	17.81	34.77
846.5	5	16-QAM	1/0	11.76	V	6.6	0.48	17.85	34.77

5	16-QAM	4.10						
	. 0 3,	1/0	12.46	Н	6.6	0.48	18.55	34.77
5	16-QAM	1/0	12.17	Н	6.6	0.48	18.26	34.77
5	16-QAM	1/0	12.15	Н	6.6	0.48	18.24	34.77
10	QPSK	1/0	12.36	V	6.6	0.48	18.45	34.77
10	QPSK	1/0	11.41	V	6.6	0.48	17.50	34.77
10	QPSK	1/0	11.22	V	6.6	0.48	17.31	34.77
10	QPSK	1/0	12.88	Н	6.6	0.48	18.97	34.77
10	QPSK	1/0	11.56	Н	6.6	0.48	17.65	34.77
10	QPSK	1/0	11.60	Н	6.6	0.48	17.69	34.77
10	16-QAM	1/0	13.13	V	6.6	0.48	19.22	34.77
10	16-QAM	1/0	13.09	V	6.6	0.48	19.18	34.77
10	16-QAM	1/0	12.78	V	6.6	0.48	18.87	34.77
10	16-QAM	1/0	13.90	Н	6.6	0.48	19.99	34.77
10	16-QAM	1/0	13.63	Н	6.6	0.48	19.72	34.77
10	16-QAM	1/0	13.15	Н	6.6	0.48	19.24	34.77
15	QPSK	1/0	13.31	V	6.6	0.48	19.43	34.77
15	QPSK	1/0	10.76	V	6.6	0.48	16.88	34.77
15	QPSK	1/0	11.04	V	6.6	0.48	17.16	34.77
15	QPSK	1/0	13.22	Н	6.6	0.48	19.34	34.77
15	QPSK	1/0	12.92	Н	6.6	0.48	19.04	34.77
15	QPSK	1/0	12.76	Н	6.6	0.48	18.88	34.77
15	16-QAM	1/0	11.97	V	6.6	0.48	18.09	34.77
15	16-QAM	1/0	12.01	V	6.6	0.48	18.13	34.77
15	16-QAM	1/0	13.13	V	6.6	0.48	19.25	34.77
15	16-QAM	1/0	13.43	Н	6.6	0.48	19.55	34.77
15	16-QAM	1/0	13.19	Н	6.6	0.48	19.31	34.77
15	16-QAM	1/0	12.34	Н	6.6	0.48	18.46	34.77
	5 10 10 10 10 10 10 10 10 10 10 10 15 15 15 15 15 15 15 15	5 16-QAM 10 QPSK 10 16-QAM 10 16-QAM 10 16-QAM 10 16-QAM 10 16-QAM 15 QPSK	5 16-QAM 1/0 10 QPSK 1/0 10 16-QAM 1/0 15 QPSK 1/0	5 16-QAM 1/0 12.15 10 QPSK 1/0 12.36 10 QPSK 1/0 11.41 10 QPSK 1/0 11.22 10 QPSK 1/0 12.88 10 QPSK 1/0 11.56 10 QPSK 1/0 11.60 10 16-QAM 1/0 13.13 10 16-QAM 1/0 13.09 10 16-QAM 1/0 13.90 10 16-QAM 1/0 13.63 10 16-QAM 1/0 13.63 10 16-QAM 1/0 13.31 15 QPSK 1/0 13.31 15 QPSK 1/0 13.31 15 QPSK 1/0 11.04 15 QPSK 1/0 13.22 15 QPSK 1/0 12.92 15 QPSK 1/0 12.76 15 16-QAM 1/0 13.13 15 16-QAM 1/0 1	5 16-QAM 1/0 12.15 H 10 QPSK 1/0 12.36 V 10 QPSK 1/0 11.41 V 10 QPSK 1/0 11.22 V 10 QPSK 1/0 12.88 H 10 QPSK 1/0 11.56 H 10 QPSK 1/0 11.60 H 10 16-QAM 1/0 13.13 V 10 16-QAM 1/0 13.09 V 10 16-QAM 1/0 13.90 H 10 16-QAM 1/0 13.63 H 10 16-QAM 1/0 13.63 H 10 16-QAM 1/0 13.31 V 15 QPSK 1/0 13.31 V 15 QPSK 1/0 13.31 V 15 QPSK 1/0 10.76 V 15 QPSK 1/0 13.22 H 15 QPSK 1/0 12.92 </td <td>5 16-QAM 1/0 12.15 H 6.6 10 QPSK 1/0 12.36 V 6.6 10 QPSK 1/0 11.41 V 6.6 10 QPSK 1/0 11.22 V 6.6 10 QPSK 1/0 11.56 H 6.6 10 QPSK 1/0 11.56 H 6.6 10 QPSK 1/0 11.60 H 6.6 10 16-QAM 1/0 13.13 V 6.6 10 16-QAM 1/0 13.09 V 6.6 10 16-QAM 1/0 13.09 V 6.6 10 16-QAM 1/0 13.90 H 6.6 10 16-QAM 1/0 13.63 H 6.6 15 QPSK 1/0 13.31 V 6.6 15 QPSK 1/0 13.31 V 6.6</td> <td>5 16-QAM 1/0 12.15 H 6.6 0.48 10 QPSK 1/0 12.36 V 6.6 0.48 10 QPSK 1/0 11.41 V 6.6 0.48 10 QPSK 1/0 11.22 V 6.6 0.48 10 QPSK 1/0 12.88 H 6.6 0.48 10 QPSK 1/0 11.56 H 6.6 0.48 10 QPSK 1/0 11.60 H 6.6 0.48 10 QPSK 1/0 13.13 V 6.6 0.48 10 16-QAM 1/0 13.09 V 6.6 0.48 10 16-QAM 1/0 13.90 H 6.6 0.48 10 16-QAM 1/0 13.63 H 6.6 0.48 10 16-QAM 1/0 13.31 V 6.6 0.48 15</td> <td>5 16-QAM 1/0 12.15 H 6.6 0.48 18.24 10 QPSK 1/0 12.36 V 6.6 0.48 18.45 10 QPSK 1/0 11.41 V 6.6 0.48 17.50 10 QPSK 1/0 11.22 V 6.6 0.48 17.51 10 QPSK 1/0 12.88 H 6.6 0.48 18.97 10 QPSK 1/0 11.56 H 6.6 0.48 17.65 10 QPSK 1/0 11.60 H 6.6 0.48 17.69 10 16-QAM 1/0 13.13 V 6.6 0.48 19.22 10 16-QAM 1/0 13.09 V 6.6 0.48 19.18 10 16-QAM 1/0 13.90 H 6.6 0.48 19.99 10 16-QAM 1/0 13.15 H 6.6</td>	5 16-QAM 1/0 12.15 H 6.6 10 QPSK 1/0 12.36 V 6.6 10 QPSK 1/0 11.41 V 6.6 10 QPSK 1/0 11.22 V 6.6 10 QPSK 1/0 11.56 H 6.6 10 QPSK 1/0 11.56 H 6.6 10 QPSK 1/0 11.60 H 6.6 10 16-QAM 1/0 13.13 V 6.6 10 16-QAM 1/0 13.09 V 6.6 10 16-QAM 1/0 13.09 V 6.6 10 16-QAM 1/0 13.90 H 6.6 10 16-QAM 1/0 13.63 H 6.6 15 QPSK 1/0 13.31 V 6.6 15 QPSK 1/0 13.31 V 6.6	5 16-QAM 1/0 12.15 H 6.6 0.48 10 QPSK 1/0 12.36 V 6.6 0.48 10 QPSK 1/0 11.41 V 6.6 0.48 10 QPSK 1/0 11.22 V 6.6 0.48 10 QPSK 1/0 12.88 H 6.6 0.48 10 QPSK 1/0 11.56 H 6.6 0.48 10 QPSK 1/0 11.60 H 6.6 0.48 10 QPSK 1/0 13.13 V 6.6 0.48 10 16-QAM 1/0 13.09 V 6.6 0.48 10 16-QAM 1/0 13.90 H 6.6 0.48 10 16-QAM 1/0 13.63 H 6.6 0.48 10 16-QAM 1/0 13.31 V 6.6 0.48 15	5 16-QAM 1/0 12.15 H 6.6 0.48 18.24 10 QPSK 1/0 12.36 V 6.6 0.48 18.45 10 QPSK 1/0 11.41 V 6.6 0.48 17.50 10 QPSK 1/0 11.22 V 6.6 0.48 17.51 10 QPSK 1/0 12.88 H 6.6 0.48 18.97 10 QPSK 1/0 11.56 H 6.6 0.48 17.65 10 QPSK 1/0 11.60 H 6.6 0.48 17.69 10 16-QAM 1/0 13.13 V 6.6 0.48 19.22 10 16-QAM 1/0 13.09 V 6.6 0.48 19.18 10 16-QAM 1/0 13.90 H 6.6 0.48 19.99 10 16-QAM 1/0 13.15 H 6.6


ERP for LTE Band 26B

				ERP for LIE	Dallu 20D				
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
814.7	1.4	QPSK	1/0	17.50	V	6.5	0.49	23.51	50
819.0	1.4	QPSK	1/0	17.65	V	6.5	0.49	23.66	50
823.3	1.4	QPSK	1/0	17.42	V	6.5	0.49	23.43	50
814.7	1.4	QPSK	1/0	17.75	Н	6.5	0.49	23.76	50
819.0	1.4	QPSK	1/0	17.91	Н	6.5	0.49	23.92	50
823.3	1.4	QPSK	1/0	17.84	Н	6.5	0.49	23.85	50
814.7	1.4	16-QAM	1/0	17.69	V	6.5	0.49	23.70	50
819.0	1.4	16-QAM	1/0	17.90	V	6.5	0.49	23.91	50
823.3	1.4	16-QAM	1/0	17.71	V	6.5	0.49	23.72	50
814.7	1.4	16-QAM	1/0	18.03	Н	6.5	0.49	24.04	50
819.0	1.4	16-QAM	1/0	18.09	Н	6.5	0.49	24.10	50
823.3	1.4	16-QAM	1/0	18.00	Н	6.5	0.49	24.01	50
815.5	3	QPSK	1/0	17.65	V	6.5	0.49	23.66	50
819.0	3	QPSK	1/0	17.42	V	6.5	0.49	23.43	50
822.5	3	QPSK	1/0	17.42	V	6.5	0.49	23.43	50
815.5	3	QPSK	1/0	18.07	Н	6.5	0.49	24.08	50
819.0	3	QPSK	1/0	17.94	Н	6.5	0.49	23.95	50
822.5	3	QPSK	1/0	17.95	Н	6.5	0.49	23.96	50
815.5	3	16-QAM	1/0	17.48	V	6.5	0.49	23.49	50
819.0	3	16-QAM	1/0	17.32	V	6.5	0.49	23.33	50
822.5	3	16-QAM	1/0	16.49	V	6.5	0.49	22.50	50
815.5	3	16-QAM	1/0	17.97	Н	6.5	0.49	23.98	50
819.0	3	16-QAM	1/0	17.89	Н	6.5	0.49	23.90	50
822.5	3	16-QAM	1/0	17.02	Н	6.5	0.49	23.03	50
816.5	5	QPSK	1/0	15.68	V	6.5	0.49	21.69	50
819.0	5	QPSK	1/0	17.14	V	6.5	0.49	23.15	50
821.5	5	QPSK	1/0	16.73	V	6.5	0.49	22.74	50
816.5	5	QPSK	1/0	16.03	Н	6.5	0.49	22.04	50
819.0	5	QPSK	1/0	17.51	Н	6.5	0.49	23.52	50
821.5	5	QPSK	1/0	17.26	Н	6.5	0.49	23.27	50
816.5	5	16-QAM	1/0	16.63	V	6.5	0.49	22.64	50
819.0	5	16-QAM	1/0	16.61	V	6.5	0.49	22.62	50
821.5	5	16-QAM	1/0	16.67	V	6.5	0.49	22.68	50
816.5	5	16-QAM	1/0	17.26	Н	6.5	0.49	23.27	50
819.0	5	16-QAM	1/0	17.06	Н	6.5	0.49	23.07	50
821.5	5	16-QAM	1/0	17.06	Н	6.5	0.49	23.07	50

Page 46 of 86

819.0	10	QPSK	1/0	16.55	V	6.5	0.49	22.56	50
819.0	10	QPSK	1/0	16.60	Н	6.5	0.49	22.61	50
819.0	10	16-QAM	1/0	16.50	V	6.5	0.49	22.51	50
819.0	10	16-QAM	1/0	17.07	H	6.5	0.49	23.08	50
821.5	15	QPSK	1/0	15.25	٧	6.5	0.49	21.26	50
821.5	15	QPSK	1/0	15.54	Н	6.5	0.49	21.55	50
821.5	15	16-QAM	1/0	15.76	V	6.5	0.49	21.77	50
821.5	15	16-QAM	1/0	16.18	H	6.5	0.49	22.19	50

EIRP for LTE Band 38

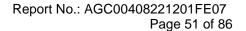
				EIKP IOI LI	L Barra 00				
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
2572.5	5	QPSK	1/0	13.97	V	8.22	1.10	21.09	33
2595	5	QPSK	1/0	14.58	V	8.22	1.10	21.70	33
2617.5	5	QPSK	1/24	14.88	V	8.22	1.10	22.00	33
2572.5	5	QPSK	1/0	14.49	Н	8.22	1.10	21.61	33
2595	5	QPSK	1/0	14.94	Н	8.22	1.10	22.06	33
2617.5	5	QPSK	1/24	15.29	Н	8.22	1.10	22.41	33
2572.5	5	16-QAM	1/0	13.67	V	8.22	1.10	20.79	33
2595	5	16-QAM	1/0	12.72	V	8.22	1.10	19.84	33
2617.5	5	16-QAM	1/24	12.67	V	8.22	1.10	19.79	33
2572.5	5	16-QAM	1/0	13.89	Н	8.22	1.10	21.01	33
2595	5	16-QAM	1/0	13.35	Н	8.22	1.10	20.47	33
2617.5	5	16-QAM	1/24	13.25	Н	8.22	1.10	20.37	33
2575	10	QPSK	1/0	13.52	V	8.22	1.10	20.64	33
2595	10	QPSK	1/49	12.57	V	8.22	1.10	19.69	33
2615	10	QPSK	1/0	12.44	V	8.22	1.10	19.56	33
2575	10	QPSK	1/0	13.66	Н	8.22	1.10	20.78	33
2595	10	QPSK	1/49	13.20	Н	8.22	1.10	20.32	33
2615	10	QPSK	1/0	12.24	Н	8.22	1.10	19.36	33
2575	10	16-QAM	1/0	13.72	V	8.22	1.10	20.84	33
2595	10	16-QAM	1/49	12.71	V	8.22	1.10	19.83	33
2615	10	16-QAM	1/0	14.51	V	8.22	1.10	21.63	33
2575	10	16-QAM	1/0	13.95	Н	8.22	1.10	21.07	33
2595	10	16-QAM	1/49	14.40	Н	8.22	1.10	21.52	33
2615	10	16-QAM	1/0	14.62	Н	8.22	1.10	21.74	33
2577.5	15	QPSK	1/0	12.06	V	8.22	1.10	19.18	33
2595	15	QPSK	1/74	12.55	V	8.22	1.10	19.67	33
2612.5	15	QPSK	1/0	11.87	V	8.22	1.10	18.99	33
2577.5	15	QPSK	1/0	12.92	Н	8.22	1.10	20.04	33
2595	15	QPSK	1/74	12.77	Н	8.22	1.10	19.89	33
2612.5	15	QPSK	1/0	12.72	Н	8.22	1.10	19.84	33
2577.5	15	16-QAM	1/0	12.61	V	8.22	1.10	19.73	33
2595	15	16-QAM	1/74	11.31	V	8.22	1.10	18.43	33
2612.5	15	16-QAM	1/0	10.94	V	8.22	1.10	18.06	33
2577.5	15	16-QAM	1/0	12.72	Н	8.22	1.10	19.84	33
2595	15	16-QAM	1/74	11.52	Н	8.22	1.10	18.64	33
2612.5	15	16-QAM	1/0	11.52	Н	8.22	1.10	18.64	33

Page 48 of 86

2580	20	QPSK	1/99	12.74	V	8.22	1.10	19.86	33
2595	20	QPSK	1/99	12.81	V	8.22	1.10	19.93	33
2610	20	QPSK	1/0	11.07	V	8.22	1.10	18.19	33
2580	20	QPSK	1/99	12.89	Н	8.22	1.10	20.01	33
2595	20	QPSK	1/99	12.95	Н	8.22	1.10	20.07	33
2610	20	QPSK	1/0	11.70	Н	8.22	1.10	18.82	33
2580	20	16-QAM	1/99	13.95	V	8.22	1.10	21.07	33
2595	20	16-QAM	1/99	14.79	V	8.22	1.10	21.91	33
2610	20	16-QAM	1/0	14.65	V	8.22	1.10	21.77	33
2580	20	16-QAM	1/99	14.40	Н	8.22	1.10	21.52	33
2595	20	16-QAM	1/99	15.12	Н	8.22	1.10	22.24	33
2610	20	16-QAM	1/0	15.21	Н	8.22	1.10	22.33	33

Page 49 of 86

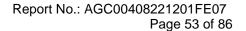
EIRP for LTE Band 40-Lower Side


Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
2307.5	5	QPSK	1/0	13.80	V	8.10	0.98	20.92	23.98
2310.0	5	QPSK	1/0	14.07	V	8.10	0.98	21.19	23.98
2312.5	5	QPSK	1/24	14.50	V	8.10	0.98	21.62	23.98
2307.5	5	QPSK	1/0	13.95	Н	8.10	0.98	21.07	23.98
2310.0	5	QPSK	1/0	14.67	Н	8.10	0.98	21.79	23.98
2312.5	5	QPSK	1/24	15.10	Н	8.10	0.98	22.22	23.98
2307.5	5	16-QAM	1/0	14.18	V	8.10	0.98	21.30	23.98
2310.0	5	16-QAM	1/0	14.43	V	8.10	0.98	21.55	23.98
2312.5	5	16-QAM	1/24	14.83	V	8.10	0.98	21.95	23.98
2307.5	5	16-QAM	1/0	14.40	Н	8.10	0.98	21.52	23.98
2310.0	5	16-QAM	1/0	14.85	Н	8.10	0.98	21.97	23.98
2312.5	5	16-QAM	1/24	15.07	Н	8.10	0.98	22.19	23.98
2310	10	QPSK	1/0	14.88	V	8.10	0.98	22.00	23.98
2310	10	QPSK	1/49	15.31	V	8.10	0.98	22.43	23.98
2310	10	QPSK	1/0	15.00	Н	8.10	0.98	22.12	23.98
2310	10	QPSK	1/49	15.20	Н	8.10	0.98	22.32	23.98
2310	10	16-QAM	1/0	15.52	V	8.10	0.98	22.64	23.98
2310	10	16-QAM	1/49	15.47	V	8.10	0.98	22.59	23.98
2310	10	16-QAM	1/0	13.81	Н	8.10	0.98	20.93	23.98
2310	10	16-QAM	1/49	14.03	Н	8.10	0.98	21.15	23.98

Report No.: AGC00408221201FE07 Page 50 of 86

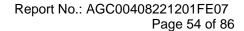
EIRP for LTE Band 40-UpperSide

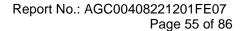
Entri for ETE Band 40 Opperolae									
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
2352.5	5	QPSK	1/0	10.79	V	8.10	0.98	17.91	23.98
2355.0	5	QPSK	1/0	12.18	V	8.10	0.98	19.30	23.98
2357.5	5	QPSK	1/24	11.95	V	8.10	0.98	19.07	23.98
2352.5	5	QPSK	1/0	10.94	Н	8.10	0.98	18.06	23.98
2355.0	5	QPSK	1/0	12.78	Н	8.10	0.98	19.90	23.98
2357.5	5	QPSK	1/24	12.55	Н	8.10	0.98	19.67	23.98
2352.5	5	16-QAM	1/0	12.42	V	8.10	0.98	19.54	23.98
2355.0	5	16-QAM	1/0	11.95	V	8.10	0.98	19.07	23.98
2357.5	5	16-QAM	1/24	12.03	V	8.10	0.98	19.15	23.98
2352.5	5	16-QAM	1/0	12.64	Н	8.10	0.98	19.76	23.98
2355.0	5	16-QAM	1/0	12.37	Н	8.10	0.98	19.49	23.98
2357.5	5	16-QAM	1/24	12.27	Н	8.10	0.98	19.39	23.98
2355	10	QPSK	1/0	12.29	V	8.10	0.98	19.41	23.98
2355	10	QPSK	1/49	12.58	V	8.10	0.98	19.70	23.98
2355	10	QPSK	1/0	12.42	Н	8.10	0.98	19.54	23.98
2355	10	QPSK	1/49	12.61	Н	8.10	0.98	19.73	23.98
2355	10	16-QAM	1/0	12.79	V	8.10	0.98	19.91	23.98
2355	10	16-QAM	1/49	12.89	V	8.10	0.98	20.01	23.98
2355	10	16-QAM	1/0	11.01	Н	8.10	0.98	18.13	23.98
2355	10	16-QAM	1/49	11.34	Н	8.10	0.98	18.46	23.98


EIRP for LTE Band 41

	EIRP for LIE Band 41											
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)			
2498.5	5	QPSK	1/0	13.92	V	8.23	1.12	21.03	33			
2593.0	5	QPSK	1/0	13.65	V	8.23	1.12	20.76	33			
2687.5	5	QPSK	1/24	13.52	V	8.23	1.12	20.63	33			
2498.5	5	QPSK	1/0	14.15	Н	8.23	1.12	21.26	33			
2593.0	5	QPSK	1/0	13.9	Н	8.23	1.12	21.01	33			
2687.5	5	QPSK	1/24	13.75	Н	8.23	1.12	20.86	33			
2498.5	5	16-QAM	1/0	12.69	V	8.23	1.12	19.80	33			
2593.0	5	16-QAM	1/0	12.81	V	8.23	1.12	19.92	33			
2687.5	5	16-QAM	1/24	15.19	V	8.23	1.12	22.30	33			
2498.5	5	16-QAM	1/0	12.83	Н	8.23	1.12	19.94	33			
2593.0	5	16-QAM	1/0	13.06	Н	8.23	1.12	20.17	33			
2687.5	5	16-QAM	1/24	15.32	Н	8.23	1.12	22.43	33			
2501.0	10	QPSK	1/0	15.31	V	8.23	1.12	22.42	33			
2593.0	10	QPSK	1/49	15.21	V	8.23	1.12	22.32	33			
2685.0	10	QPSK	1/0	13.74	V	8.23	1.12	20.85	33			
2501.0	10	QPSK	1/0	15.68	Н	8.23	1.12	22.79	33			
2593.0	10	QPSK	1/49	15.73	Н	8.23	1.12	22.84	33			
2685.0	10	QPSK	1/0	14.25	Н	8.23	1.12	21.36	33			
2501.0	10	16-QAM	1/0	13.14	V	8.23	1.12	20.25	33			
2593.0	10	16-QAM	1/49	12.79	V	8.23	1.12	19.90	33			
2685.0	10	16-QAM	1/0	12.76	V	8.23	1.12	19.87	33			
2501.0	10	16-QAM	1/0	13.37	Н	8.23	1.12	20.48	33			
2593.0	10	16-QAM	1/49	13.2	Н	8.23	1.12	20.31	33			
2685.0	10	16-QAM	1/0	12.99	Н	8.23	1.12	20.10	33			
2503.5	15	QPSK	1/0	11.44	V	8.23	1.12	18.55	33			
2593.0	15	QPSK	1/74	12.5	V	8.23	1.12	19.61	33			
2682.5	15	QPSK	1/0	12.52	V	8.23	1.12	19.63	33			
2503.5	15	QPSK	1/0	11.8	Н	8.23	1.12	18.91	33			
2593.0	15	QPSK	1/74	12.72	Н	8.23	1.12	19.83	33			
2682.5	15	QPSK	1/0	12.67	Н	8.23	1.12	19.78	33			
2503.5	15	16-QAM	1/0	11.44	V	8.23	1.12	18.55	33			
2593.0	15	16-QAM	1/74	11.36	V	8.23	1.12	18.47	33			
2682.5	15	16-QAM	1/0	13.93	V	8.23	1.12	21.04	33			
2503.5	15	16-QAM	1/0	11.59	Н	8.23	1.12	18.70	33			
2593.0	15	16-QAM	1/74	11.49	Н	8.23	1.12	18.60	33			
2682.5	15	16-QAM	1/0	14.29	Н	8.23	1.12	21.40	33			

Page 52 of 86


2506.0	20	QPSK	1/99	14.33	V	8.23	1.12	21.44	33
2593.0	20	QPSK	1/99	14.47	V	8.23	1.12	21.58	33
2680.0	20	QPSK	1/0	12.84	V	8.23	1.12	19.95	33
2506.0	20	QPSK	1/99	14.57	Н	8.23	1.12	21.68	33
2593.0	20	QPSK	1/99	14.77	Н	8.23	1.12	21.88	33
2680.0	20	QPSK	1/0	13.34	Н	8.23	1.12	20.45	33
2506.0	20	16-QAM	1/99	13.62	V	8.23	1.12	20.73	33
2593.0	20	16-QAM	1/99	13.17	V	8.23	1.12	20.28	33
2680.0	20	16-QAM	1/0	13.18	V	8.23	1.12	20.29	33
2506.0	20	16-QAM	1/99	13.84	Н	8.23	1.12	20.95	33
2593.0	20	16-QAM	1/99	13.42	Н	8.23	1.12	20.53	33
2680.0	20	16-QAM	1/0	13.42	Н	8.23	1.12	20.53	33


EIRP for LTE Band 66

				LIIVI IOI LI					
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)
1710.7	1.4	QPSK	1/0	13.03	V	7.95	0.79	20.19	30
1745.0	1.4	QPSK	1/0	13.05	V	7.95	0.79	20.21	30
1779.3	1.4	QPSK	1/0	12.76	V	7.95	0.79	19.92	30
1710.7	1.4	QPSK	1/0	13.28	Н	7.95	0.79	20.44	30
1745.0	1.4	QPSK	1/0	13.31	Н	7.95	0.79	20.47	30
1779.3	1.4	QPSK	1/0	13.18	Н	7.95	0.79	20.34	30
1710.7	1.4	16-QAM	1/5	13.55	V	7.95	0.79	20.71	30
1745.0	1.4	16-QAM	1/0	13.79	V	7.95	0.79	20.95	30
1779.3	1.4	16-QAM	1/0	13.63	V	7.95	0.79	20.79	30
1710.7	1.4	16-QAM	1/5	13.89	Н	7.95	0.79	21.05	30
1745.0	1.4	16-QAM	1/0	13.98	Н	7.95	0.79	21.14	30
1779.3	1.4	16-QAM	1/0	13.92	Н	7.95	0.79	21.08	30
1711.5	3	QPSK	1/0	13.52	V	7.95	0.79	20.68	30
1745.0	3	QPSK	1/0	13.45	V	7.95	0.79	20.61	30
1778.5	3	QPSK	1/0	13.58	V	7.95	0.79	20.74	30
1711.5	3	QPSK	1/0	13.94	Н	7.95	0.79	21.10	30
1745.0	3	QPSK	1/0	13.97	Н	7.95	0.79	21.13	30
1778.5	3	QPSK	1/0	14.11	Н	7.95	0.79	21.27	30
1711.5	3	16-QAM	1/0	13.66	V	7.95	0.79	20.82	30
1745.0	3	16-QAM	1/0	13.70	V	7.95	0.79	20.86	30
1778.5	3	16-QAM	1/0	12.77	V	7.95	0.79	19.93	30
1711.5	3	16-QAM	1/0	14.15	Н	7.95	0.79	21.31	30
1745.0	3	16-QAM	1/0	14.27	Н	7.95	0.79	21.43	30
1778.5	3	16-QAM	1/0	13.30	Н	7.95	0.79	20.46	30
1712.5	5	QPSK	1/0	11.08	V	7.95	0.79	18.24	30
1745.0	5	QPSK	1/0	12.86	V	7.95	0.79	20.02	30
1777.5	5	QPSK	1/24	12.54	V	7.95	0.79	19.70	30
1712.5	5	QPSK	1/0	11.43	Н	7.95	0.79	18.59	30
1745.0	5	QPSK	1/0	13.23	Н	7.95	0.79	20.39	30
1777.5	5	QPSK	1/24	13.07	Н	7.95	0.79	20.23	30
1712.5	5	16-QAM	1/0	12.44	V	7.95	0.79	19.60	30
1745.0	5	16-QAM	1/0	12.55	V	7.95	0.79	19.71	30
1777.5	5	16-QAM	1/24	12.62	V	7.95	0.79	19.78	30
1712.5	5	16-QAM	1/0	13.07	Н	7.95	0.79	20.23	30
1745.0	5	16-QAM	1/0	13.00	Н	7.95	0.79	20.16	30
1777.5	5	16-QAM	1/24	13.01	Н	7.95	0.79	20.17	30

1715.0									
	10	QPSK	1/0	12.82	V	7.95	0.79	19.98	30
1745.0	10	QPSK	1/49	13.29	V	7.95	0.79	20.45	30
1775.0	10	QPSK	1/0	12.66	V	7.95	0.79	19.82	30
1715.0	10	QPSK	1/0	13.34	Н	7.95	0.79	20.50	30
1745.0	10	QPSK	1/49	13.44	Н	7.95	0.79	20.60	30
1775.0	10	QPSK	1/0	13.04	Н	7.95	0.79	20.20	30
1715.0	10	16-QAM	1/0	12.59	V	7.95	0.79	19.75	30
1745.0	10	16-QAM	1/49	12.62	V	7.95	0.79	19.78	30
1775.0	10	16-QAM	1/0	12.72	V	7.95	0.79	19.88	30
1715.0	10	16-QAM	1/0	13.36	Н	7.95	0.79	20.52	30
1745.0	10	16-QAM	1/49	13.16	Н	7.95	0.79	20.32	30
1775.0	10	16-QAM	1/0	13.09	Н	7.95	0.79	20.25	30
1717.5	15	QPSK	1/0	12.96	V	7.95	0.79	20.12	30
1745.0	15	QPSK	1/74	14.56	V	7.95	0.79	21.72	30
1772.5	15	QPSK	1/0	14.65	V	7.95	0.79	21.81	30
1717.5	15	QPSK	1/0	14.64	Н	7.95	0.79	21.80	30
1745.0	15	QPSK	1/74	13.66	Н	7.95	0.79	20.82	30
1772.5	15	QPSK	1/0	13.49	Н	7.95	0.79	20.65	30
1717.5	15	16-QAM	1/0	13.46	V	7.95	0.79	20.62	30
1745.0	15	16-QAM	1/74	13.66	V	7.95	0.79	20.82	30
1772.5	15	16-QAM	1/0	14.45	V	7.95	0.79	21.61	30
1717.5	15	16-QAM	1/0	14.86	Н	7.95	0.79	22.02	30
1745.0	15	16-QAM	1/74	15.05	Н	7.95	0.79	22.21	30
1772.5	15	16-QAM	1/0	13.79	Н	7.95	0.79	20.95	30
1720.0	20	QPSK	1/99	13.74	V	7.95	0.79	20.90	30
1745.0	20	QPSK	1/99	14.03	V	7.95	0.79	21.19	30
1770.0	20	QPSK	1/0	13.67	V	7.95	0.79	20.83	30
1720.0	20	QPSK	1/99	13.35	Н	7.95	0.79	20.51	30
1745.0	20	QPSK	1/99	12.90	Н	7.95	0.79	20.06	30
1770.0	20	QPSK	1/0	12.77	Н	7.95	0.79	19.93	30
1720.0	20	16-QAM	1/99	10.22	V	7.95	0.79	17.38	30
1745.0	20	16-QAM	1/99	10.16	V	7.95	0.79	17.32	30
1770.0	20	16-QAM	1/0	10.07	V	7.95	0.79	17.23	30
1720.0	20	16-QAM	1/99	10.15	Н	7.95	0.79	17.31	30
1745.0	20	16-QAM	1/99	11.86	Н	7.95	0.79	19.02	30
1770.0	20	16-QAM	1/0	12.00	Н	7.95	0.79	19.16	30

ERP for LTE Band 71

	ERF IOI LIE BAIIU / I										
Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)		
665.5	5	QPSK	1/0	14.99	V	6.6	0.47	21.12	34.77		
680.5	5	QPSK	1/0	14.72	V	6.6	0.47	20.85	34.77		
695.5	5	QPSK	1/24	14.51	V	6.6	0.47	20.64	34.77		
665.5	5	QPSK	1/0	15.32	Н	6.6	0.47	21.45	34.77		
680.5	5	QPSK	1/0	15.24	Н	6.6	0.47	21.37	34.77		
695.5	5	QPSK	1/24	15.14	Н	6.6	0.47	21.27	34.77		
665.5	5	16-QAM	1/0	13.67	V	6.6	0.47	19.80	34.77		
680.5	5	16-QAM	1/0	15.05	V	6.6	0.47	21.18	34.77		
695.5	5	16-QAM	1/24	15.28	V	6.6	0.47	21.41	34.77		
665.5	5	16-QAM	1/0	14.22	Н	6.6	0.47	20.35	34.77		
680.5	5	16-QAM	1/0	15.46	Н	6.6	0.47	21.59	34.77		
695.5	5	16-QAM	1/24	15.69	Н	6.6	0.47	21.82	34.77		
668.0	10	QPSK	1/0	16.86	V	6.6	0.47	22.99	34.77		
680.5	10	QPSK	1/49	17.49	V	6.6	0.47	23.62	34.77		
693.0	10	QPSK	1/0	17.59	V	6.6	0.47	23.72	34.77		
668.0	10	QPSK	1/0	17.11	Н	6.6	0.47	23.24	34.77		
680.5	10	QPSK	1/49	17.63	Н	6.6	0.47	23.76	34.77		
693.0	10	QPSK	1/0	17.92	Н	6.6	0.47	24.05	34.77		
668.0	10	16-QAM	1/0	14.23	V	6.6	0.47	20.36	34.77		
680.5	10	16-QAM	1/49	14.27	V	6.6	0.47	20.40	34.77		
693.0	10	16-QAM	1/0	13.67	V	6.6	0.47	19.80	34.77		
668.0	10	16-QAM	1/0	14.44	Н	6.6	0.47	20.57	34.77		
680.5	10	16-QAM	1/49	14.41	Н	6.6	0.47	20.54	34.77		
693.0	10	16-QAM	1/0	14.30	Н	6.6	0.47	20.43	34.77		
670.5	15	QPSK	1/0	13.68	V	6.6	0.47	19.81	34.77		
680.5	15	QPSK	1/74	14.39	V	6.6	0.47	20.52	34.77		
690.5	15	QPSK	1/0	14.31	V	6.6	0.47	20.44	34.77		
670.5	15	QPSK	1/0	14.23	Н	6.6	0.47	20.36	34.77		
680.5	15	QPSK	1/74	14.84	Н	6.6	0.47	20.97	34.77		
690.5	15	QPSK	1/0	14.98	Н	6.6	0.47	21.11	34.77		
670.5	15	16-QAM	1/0	13.31	V	6.6	0.47	19.44	34.77		
680.5	15	16-QAM	1/74	13.38	V	6.6	0.47	19.51	34.77		
690.5	15	16-QAM	1/0	15.67	V	6.6	0.47	21.80	34.77		
670.5	15	16-QAM	1/0	13.76	Н	6.6	0.47	19.89	34.77		
680.5	15	16-QAM	1/74	13.52	Н	6.6	0.47	19.65	34.77		
690.5	15	16-QAM	1/0	16.19	Н	6.6	0.47	22.32	34.77		

Page 56 of 86

673.0	20	QPSK	1/99	16.51	V	6.6	0.47	22.64	34.77
680.5	20	QPSK	1/99	16.65	V	6.6	0.47	22.78	34.77
688.0	20	QPSK	1/0	15.31	V	6.6	0.47	21.44	34.77
673.0	20	QPSK	1/99	16.65	Н	6.6	0.47	22.78	34.77
680.5	20	QPSK	1/99	16.87	Н	6.6	0.47	23.00	34.77
688.0	20	QPSK	1/0	15.83	Н	6.6	0.47	21.96	34.77
673.0	20	16-QAM	1/99	14.60	V	6.6	0.47	20.73	34.77
680.5	20	16-QAM	1/99	14.73	V	6.6	0.47	20.86	34.77
688.0	20	16-QAM	1/0	13.76	V	6.6	0.47	19.89	34.77
673.0	20	16-QAM	1/99	14.93	Н	6.6	0.47	21.06	34.77
680.5	20	16-QAM	1/99	15.14	Н	6.6	0.47	21.27	34.77
688.0	20	16-QAM	1/0	14.12	Н	6.6	0.47	20.25	34.77

Note: Above is the worst mode data.

Report No.: AGC00408221201FE07 Page 57 of 86

9. PEAK-TO-AVERAGE RATIO

9.1 PROVISIONS APPLICABLE

① CCDF Procedure for PAPR:

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
- -for continuous transmissions, set to 1 ms,
- -or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time
 - that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1%.

② Alternate Procedure for PAPR:

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as PPk. Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and recordas PAvg. Determine the P.A.R. from:

P.A.R(dB) = PPk (dBm) - PAvg (dBm) (PAvg = Average Power + Duty cycle Factor)

9.2 MEASUREMENT METHOD

Test Settings(Peak Power):

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW \geq 3 × RBW.

- 1. Set the RBW ≥ OBW.
- 2. Set VBW ≥ 3 × RBW.
- 3. Set span ≥ 2 × OBW.
- 4. Sweep time ≥ 10 × (number of points in sweep) × (transmission symbol period).
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.

Report No.: AGC00408221201FE07 Page 58 of 86

Test Settings(Average Power)

- 1. Set span to $2 \times$ to $3 \times$ the OBW.
- 2. Set RBW ≥ OBW.
- 3. Set VBW ≥ 3 × RBW.
- 4. Set number of measurement points in sweep ≥ 2 × span / RBW.
- 5. Sweep time: Set ≥ [10 × (number of points in sweep) × (transmission period)] for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25%.

9.3 MEASUREMENT SETUP

9.4 MEASUREMENT RESULT

Note: The test data please reference to attachment "AGC00408221201FE07 Appendix Data"

Report No.: AGC00408221201FE07 Page 59 of 86

10. SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

10.1 PROVISIONS APPLICABLE

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

10.2 MEASUREMENT METHOD

For Band 2/Band 4/Band 5/Band 12/Band 13/Band 17/Band 26/Band 38/Band 40/Band 41/Band 66/Band 71: The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

For Band 7:

- (i) 40 + 10 log10 p from the channel edges to 5 MHz away
- (ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
- (iii) 55 + 10 log10 p at X MHz and beyond from the channel edges

For Band 14:

On all frequencies between 769-775 MHz and 799-805 MHz:< 65 + 10log10 (P[Watts])

For Band 38/41:

- 1. The attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge,
- 2. 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge.
- 3. 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge.
- 4. The attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz.
- 5. 55 + 10 log (P) dB at or below 2490.5 MHz.
- 6. X is the greater of 6MHz or the actual emission bandwidth.

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 1. RBW = 1 MHz
- 2. VBW ≥ 3 MHz
- 3. Detector = RMS
- 4. Trace Mode = Average
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 * Span / RBW

Report No.: AGC00408221201FE07 Page 60 of 86

Test Note

Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

10.3 MEASUREMENT SETUP

10.4 MEASUREMENT RESULT

Note:

- 1. The test data please reference to attachment "AGC00408221201FE07_Appendix Data"
- 2. No transmission signal is found in standby or receiving mode, and the default value is lower than the limit of 20dB, which is not recorded in this report.

Report No.: AGC00408221201FE07 Page 61 of 86

11. RADIATED SPURIOUS EMISSION

11.1 PROVISIONS APPLICABLE

(A) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm.

At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

(B) For specific criteria, please refer to the description in section 10.2 of the report for corresponding evaluation.

11.2 MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.

Report No.: AGC00408221201FE07 Page 62 of 86

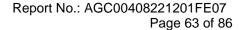
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- 11. For spurious emissions above 1GHz, a horn antenna is substituted in place of the EUT.

The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated. The spurious emissions is calculated by the following formula;

Result(dBm) = Pg(dBm) + Factor(dB)

Factor(dB) = Ant Gain(dB)-Cable Loss(dB) + Power Splitter(dB) (Above 1GHz)

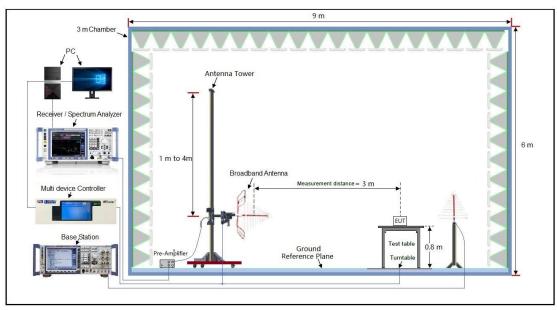
Factor(dB) = Ant Gain(dB)-Cable Loss(dB) (Below 1GHz)

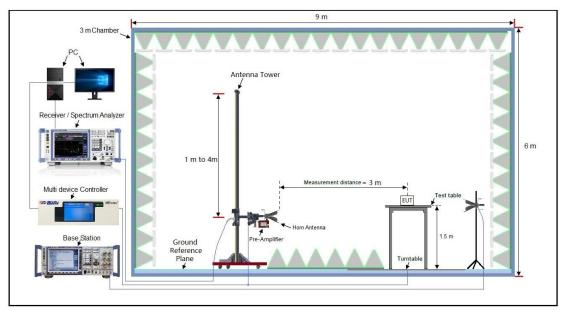

Where: Pgis the generator output power into the substitution antenna.

If the fundalmatal frequency is below 1GHz, RF output power has been converted to EIRP.

EIRP(dBm) = ERP(dBm) + 2.15

12. Examples of Factor parameters for testing radiation spurious:


Frequency Range(MHz)	Factor(dB)
30-500	6.18
500-1000	9.37
1000-1500	27.56
1500-2000	28.27
2000-3000	29.45
3000-5000	30.15
5000-10000	31.26
10000-15000	32.78
15000-20000	33.99
Above 20GHz	35.04



11.3 MEASUREMENT SETUP

Radiated Emissions 30MHz to 1GHz Test setup

Radiated Emissions Above 1GHz Test setup

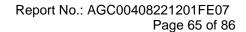
Page 64 of 86

11.4 MEASUREMENT RESULT

LTE Band 2_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5580	V	-40.57	-13	-27.57
3720	V	-40.19	-13	-27.19
695.5	V	-46.75	-13	-33.75
412.1	V	-48.92	-13	-35.92
5580	Н	-38.86	-13	-25.86
3720	Н	-40.68	-13	-27.68
678.3	Н	-47.73	-13	-34.73
452.1	Н	-49.40	-13	-36.40

Middle channel


Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5640	V	-41.09	-13	-28.09
3760	V	-39.59	-13	-26.59
885.1	V	-46.88	-13	-33.88
618.7	V	-48.16	-13	-35.16
5640	Н	-47.81	-13	-34.81
3760	Н	-41.39	-13	-28.39
851.3	Н	-44.81	-13	-31.81
732.5	Н	-48.02	-13	-35.02

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5700	V	-40.57	-13	-27.57
3800	V	-41.61	-13	-28.61
664.5	V	-45.86	-13	-32.86
525.8	V	-45.98	-13	-32.98
5700	Н	-38.61	-13	-25.61
3800	Н	-39.13	-13	-26.13
669.8	Н	-47.33	-13	-34.33
574.4	Н	-47.48	-13	-34.48

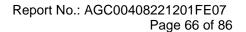
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

LTE Band 4_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5160	V	-38.96	-13	-25.96
3440	V	-39.49	-13	-26.49
745.5	V	-44.12	-13	-31.12
528.1	V	-47.12	-13	-34.12
5160	Н	-39.32	-13	-26.32
3440	Н	-39.70	-13	-26.70
520.5	Н	-46.64	-13	-33.64
395.8	Н	-43.51	-13	-30.51

Middle channel


Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5197.5	V	-37.77	-13	-24.77
3465	V	-37.87	-13	-24.87
669.4	V	-45.54	-13	-32.54
512.5	V	-47.39	-13	-34.39
5197.5	Н	-38.37	-13	-25.37
3465	Н	-39.05	-13	-26.05
569.4	Н	-45.87	-13	-32.87
469.3	Н	-46.04	-13	-33.04

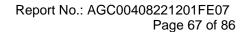
High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5235	V	-37.93	-13	-24.93
3490	V	-38.69	-13	-25.69
711.1	V	-47.34	-13	-34.34
528.7	V	-46.93	-13	-33.93
5235	Н	-37.88	-13	-24.88
3490	Н	-37.79	-13	-24.79
612.5	Н	-44.73	-13	-31.73
553.9	Н	-45.06	-13	-32.06

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

LTE Band 5_TX Mode Low channel


Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2487	V	-40.32	-13	-27.32
1658	V	-42.17	-13	-29.17
512.2	V	-45.33	-13	-32.33
365.5	V	-46.10	-13	-33.10
2487	Н	-39.68	-13	-26.68
1658	Н	-39.32	-13	-26.32
521.1	Н	-44.06	-13	-31.06
336.5	Н	-44.10	-13	-31.10

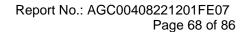
Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2509.5	V	-42.26	-13	-29.26
1673	V	-42.44	-13	-29.44
725.8	V	-45.78	-13	-32.78
616.6	V	-46.14	-13	-33.14
2509.5	Н	-40.48	-13	-27.48
1673	Н	-41.51	-13	-28.51
705.5	Н	-45.11	-13	-32.11
558.9	Н	-44.86	-13	-31.86

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2532	V	-39.37	-13	-26.37
1688	V	-39.32	-13	-26.32
648.3	V	-45.72	-13	-32.72
482.7	V	-45.79	-13	-32.79
2532	Н	-39.65	-13	-26.65
1688	Н	-40.09	-13	-27.09
785.6	Н	-45.77	-13	-32.77
615.7	Н	-46.98	-13	-33.98

LTE Band 12_TX Mode Low channel


Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2112.0	V	-42.07	-13	-29.07
1408	V	-40.55	-13	-27.55
658.1	V	-50.07	-13	-37.07
516.9	V	-49.46	-13	-36.46
2112	Н	-40.70	-13	-27.70
1408	Н	-41.12	-13	-28.12
714.4	Н	-48.40	-13	-35.40
669.5	Н	-48.01	-13	-35.01

Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2122.5	V	-44.11	-13	-31.11
1415	V	-43.48	-13	-30.48
651.5	V	-47.18	-13	-34.18
512.7	V	-50.05	-13	-37.05
2122.5	Н	-42.38	-13	-29.38
1415	Н	-42.99	-13	-29.99
525.4	Н	-48.71	-13	-35.71
498.7	Н	-49.67	-13	-36.67

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2133	V	-43.52	-13	-30.52
1422	V	-43.46	-13	-30.46
653.3	V	-46.58	-13	-33.58
592.7	V	-48.09	-13	-35.09
2133	Н	-44.04	-13	-31.04
1422	Н	-43.30	-13	-30.30
641.5	Н	-51.16	-13	-38.16
558.3	Н	-48.98	-13	-35.98

LTE Band 13_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2338.5	V	-46.73	-13	-33.73
1559	V	-44.22	-13	-31.22
678.2	V	-47.76	-13	-34.76
423.6	V	-51.65	-13	-38.65
2338.5	Н	-44.54	-13	-31.54
1559	Н	-44.01	-13	-31.01
577.3	Н	-52.31	-13	-39.31
345.9	Н	-48.23	-13	-35.23

Middle channel

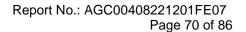
Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2346	V	-44.61	-13	-31.61
1564	V	-44.91	-13	-31.91
611.7	V	-51.25	-13	-38.25
444,8	V	-51.83	-13	-38.83
2346	Н	-43.64	-13	-30.64
1564	Н	-45.49	-13	-32.49
692.8	Н	-47.51	-13	-34.51
439.4	Н	-51.48	-13	-38.48

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2353.5	V	-44.55	-13	-31.55
1569	V	-43.94	-13	-30.94
572.8	V	-48.29	-13	-35.29
309.9	V	-51.32	-13	-38.32
2353.5	Н	-43.36	-13	-30.36
1569	Н	-42.97	-13	-29.97
602.7	Н	-49.61	-13	-36.61
413.6	Н	-49.01	-13	-36.01

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/



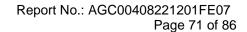
Page 69 of 86

LTE Band 13_TX Mode (1559 MHz ~ 1610 MHz Wideband Band)

Operating Frequency (MHz)	Measured Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm/MHz)	Margin (dB)
779.5	1559	V	-48.49	-40	-8.49
782.0	1564	V	-49.40	-40	-9.40
784.5	1569	V	-52.02	-40	-12.02
779.5	1559	Н	-50.78	-40	-10.78
782.0	1564	Н	-49.32	-40	-9.32
784.5	1569	Н	-46.96	-40	-6.96

Note: The spurious emissions found in the frequency band 1559-1610MHz meet the stricter Wideband limits.

LTE Band 17_TX Mode Low channel


Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2119.5	V	-42.14	-13	-29.14
1413	V	-47.32	-13	-34.32
652.8	V	-49.96	-13	-36.96
431.2	V	-48.29	-13	-35.29
2119.5	Н	-42.63	-13	-29.63
1413	Н	-51.21	-13	-38.21
547.1	Н	-48.95	-13	-35.95
425.3	Н	-45.67	-13	-32.67

Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2130	V	-42.32	-13	-29.32
1420	V	-43.51	-13	-30.51
625.5	V	-47.96	-13	-34.96
498.3	V	-50.41	-13	-37.41
2130	Н	-43.94	-13	-30.94
1420	Н	-46.07	-13	-33.07
515.3	Н	-50.14	-13	-37.14
412.5	Н	-48.99	-13	-35.99

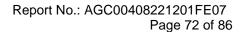
High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2140.5	V	-41.03	-13	-28.03
1427	V	-47.05	-13	-34.05
577.8	V	-48.52	-13	-35.52
412.3	V	-45.33	-13	-32.33
2140.5	Н	-39.88	-13	-26.88
1427	Н	-47.41	-13	-34.41
505.6	Н	-49.05	-13	-36.05
401.4	Н	-48.96	-13	-35.96

LTE Band 25_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5580	V	-47.14	-13	-34.14
3720	V	-46.27	-13	-33.27
718.5	V	-47.26	-13	-34.26
523.6	V	-52.15	-13	-39.15
5580	Н	-46.03	-13	-33.03
3720	Н	-43.91	-13	-30.91
613.3	Н	-53.53	-13	-40.53
352.9	Н	-49.81	-13	-36.81

Middle channel


Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5647.5	V	-44.20	-13	-31.20
3765	V	-46.38	-13	-33.38
596.4	V	-51.06	-13	-38.06
678.8	V	-52.92	-13	-39.92
5647.5	Н	-44.11	-13	-31.11
3765	Н	-46.36	-13	-33.36
655.8	Н	-48.40	-13	-35.40
411.2	Н	-51.88	-13	-38.88

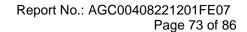
High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5715	V	-45.64	-13	-32.64
3810	V	-44.08	-13	-31.08
486.3	V	-49.35	-13	-36.35
256.1	V	-51.61	-13	-38.61
5715	Н	-45.09	-13	-32.09
3810	Н	-43.88	-13	-30.88
574.3	Н	-50.52	-13	-37.52
398.5	Н	-49.97	-13	-36.97

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

LTE Band 26A_TX Mode Low channel


Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2494.5	V	-47.22	-13	-34.22
1663	V	-46.17	-13	-33.17
563.4	V	-47.95	-13	-34.95
315.0	V	-53.19	-13	-40.19
2494.5	Н	-46.01	-13	-33.01
1663	Н	-43.56	-13	-30.56
463.8	Н	-54.60	-13	-41.60
367.5	Н	-49.77	-13	-36.77

Middle channel

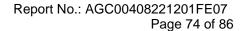
Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2509.5	V	-44.98	-13	-31.98
1673	V	-46.50	-13	-33.50
654.5	V	-50.26	-13	-37.26
543.2	V	-53.89	-13	-40.89
2509.5	Н	-45.19	-13	-32.19
1673	Н	-45.74	-13	-32.74
615.8	Н	-48.56	-13	-35.56
363.1	Н	-53.28	-13	-40.28

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2524.5	V	-45.51	-13	-32.51
1683	V	-43.59	-13	-30.59
526.8	V	-49.57	-13	-36.57
364.5	V	-51.98	-13	-38.98
2524.5	Н	-44.30	-13	-31.30
1683	Н	-44.27	-13	-31.27
683.4	Н	-50.81	-13	-37.81
475.9	Н	-49.74	-13	-36.74

LTE Band 26B_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2444.1	V	-50.56	-13	-37.56
1638	V	-49.24	-13	-36.24
842.3	V	-53.28	-13	-40.28
596.5	V	-55.83	-13	-42.83
2444.1	Н	-48.39	-13	-35.39
1638	Н	-47.43	-13	-34.43
774.5	Н	-56.99	-13	-43.99
617.2	Н	-51.45	-13	-38.45


Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2457	V	-47.00	-13	-34.00
1638	V	-47.84	-13	-34.84
745.5	V	-54.04	-13	-41.04
512.8	V	-57.39	-13	-44.39
2457	Н	-47.20	-13	-34.20
1638	Н	-47.06	-13	-34.06
693.7	Н	-50.75	-13	-37.75
497.2	Н	-56.59	-13	-43.59

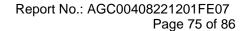
High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2469.9	V	-61.82	-13	-48.82
1646.6	V	-57.60	-13	-44.60
882.2	V	-54.04	-13	-50.92
694.7	V	-57.39	-13	-55.35
2469.9	Н	-47.20	-13	-46.41
1646.6	Н	-47.06	-13	-46.53
745.1	Н	-50.75	-13	-53.14
569.3	Н	-56.59	-13	-52.80

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

LTE Band 38_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
7717.5	V	-46.40	-25	-21.40
5145	V	-48.73	-25	-23.73
881.2	V	-54.82	-25	-29.82
594.3	V	-56.01	-25	-31.01
7717.5	Н	-48.14	-25	-23.14
5145	Н	-49.18	-25	-24.18
463.8	Н	-50.26	-25	-25.26
367.5	Н	-54.80	-25	-29.80


Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
7785	V	-47.34	-25	-22.34
5190	V	-48.69	-25	-23.69
674.1	V	-49.88	-25	-24.88
493.2	V	-54.32	-25	-29.32
7785	Н	-46.16	-25	-21.16
5190	Н	-46.69	-25	-21.69
421.8	Н	-55.03	-25	-30.03
203.1	Н	-53.74	-25	-28.74

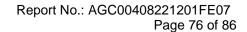
High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
7851	V	-51.75	-25	-26.75
5235	V	-46.79	-25	-21.79
745.3	V	-50.48	-25	-25.48
582.6	V	-54.22	-25	-29.22
7851	Н	-47.57	-25	-22.57
5235	Н	-46.64	-25	-21.64
742.1	Н	-57.03	-25	-32.03
652.7	Н	-50.67	-25	-25.67

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

LTE Band 40-Lower Side_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
6922.5	V	-51.40	-40	-11.40
4615.0	V	-50.17	-40	-10.17
857.3	V	-52.33	-40	-12.33
921.6	V	-56.72	-40	-16.72
6922.5	Н	-50.56	-40	-10.56
4615.0	Н	-47.65	-40	-7.65
584.3	Н	-57.84	-40	-17.84
462.8	Н	-52.17	-40	-12.17


Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
6930	V	-48.71	-40	-8.71
4620	V	-48.87	-40	-8.87
587.6	V	-55.61	-40	-15.61
415.9	V	-56.15	-40	-16.15
6930	Н	-47.73	-40	-7.73
4620	Н	-51.92	-40	-11.92
469.5	Н	-52.47	-40	-12.47
351.2	Н	-53.70	-40	-13.70

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
6937.5	V	-49.26	-40	-9.26
4625.0	V	-49.55	-40	-9.55
785.4	V	-54.39	-40	-14.39
569.3	V	-55.39	-40	-15.39
6937.5	Н	-47.22	-40	-7.22
4625.0	Н	-49.22	-40	-9.22
699.7	Н	-56.00	-40	-16.00
512.0	Н	-54.13	-40	-14.13

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

LTE Band 40-Upper Side_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
7057.5	V	-62.61	-40	-22.61
4705.0	V	-64.28	-40	-24.28
763.5	V	-63.34	-40	-23.34
512.8	V	-61.81	-40	-21.81
7057.5	Н	-64.48	-40	-24.48
4705.0	Н	-52.86	-40	-12.86
496.8	Н	-57.13	-40	-17.13
359.2	Н	-51.69	-40	-11.69

Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
7065	V	-62.94	-40	-22.94
4710	V	-64.28	-40	-24.28
887.4	V	-63.43	-40	-23.43
746.3	V	-61.52	-40	-21.52
7065	Н	-64.32	-40	-24.32
4710	Н	-53.18	-40	-13.18
649.7	Н	-57.44	-40	-17.44
523.1	Н	-51.87	-40	-11.87

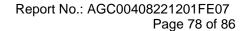
High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
7072.5	V	-68.77	-40	-28.77
4715.0	V	-67.22	-40	-27.22
469.8	V	-63.24	-40	-23.24
321.7	V	-65.65	-40	-25.65
7072.5	Н	-67.37	-40	-27.37
4715.0	Н	-59.97	-40	-19.97
447.5	Н	-58.34	-40	-18.34
369.3	Н	-55.65	-40	-15.65

Report No.: AGC00408221201FE07 Page 77 of 86

LTE Band 41_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
7495.5	V	-45.73	-25	-20.73
4997	V	-46.23	-25	-21.23
612.1	V	-48.82	-25	-23.82
483.6	V	-53.28	-25	-28.28
7495.5	Н	-44.32	-25	-19.32
4997	Н	-44.87	-25	-19.87
742.8	Н	-51.84	-25	-26.84
563.7	Н	-50.40	-25	-25.40


Middle channel

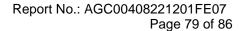
Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
7779	V	-45.43	-25	-20.43
5186	V	-47.67	-25	-22.67
568.2	V	-51.00	-25	-26.00
341.5	V	-54.99	-25	-29.99
7779	Н	-43.80	-25	-18.80
5186	Н	-46.33	-25	-21.33
552.7	Н	-49.90	-25	-24.90
421.5	Н	-53.53	-25	-28.53

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
8062.5	V	-47.72	-25	-22.72
5375	V	-46.19	-25	-21.19
642.9	V	-48.05	-25	-23.05
471.6	V	-55.29	-25	-30.29
8062.5	Н	-46.23	-25	-21.23
5375	Н	-45.81	-25	-20.81
363.2	Н	-55.06	-25	-30.06
274.6	Н	-51.01	-25	-26.01

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

LTE Band 66_TX Mode Low channel


Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5132.1	V	-43.06	-13	-30.06
3421.4	V	-41.98	-13	-28.98
698.3	V	-46.07	-13	-33.07
417.5	V	-48.70	-13	-35.70
5132.1	Н	-42.44	-13	-29.44
3421.4	Н	-42.63	-13	-29.63
504.9	Н	-50.60	-13	-37.60
431.9	Н	-47.81	-13	-34.81

Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5235	V	-42.86	-13	-29.86
3490	V	-42.37	-13	-29.37
578.2	V	-47.83	-13	-34.83
345.7	V	-49.32	-13	-36.32
5235	Н	-42.08	-13	-29.08
3490	Н	-42.11	-13	-29.11
634.8	Н	-46.72	-13	-33.72
412.9	Н	-50.45	-13	-37.45

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
5337.9	V	-41.46	-13	-28.46
3558.6	V	-40.74	-13	-27.74
752.6	V	-45.93	-13	-32.93
546.1	V	-49.02	-13	-36.02
5337.9	Н	-41.09	-13	-28.09
3558.6	Н	-41.43	-13	-28.43
687.3	Н	-48.17	-13	-35.17
436.6	Н	-47.27	-13	-34.27

LTE Band 71_TX Mode Low channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
1996.5	V	-41.49	-13	-28.49
1331	V	-40.94	-13	-27.94
511.2	V	-46.59	-13	-33.59
375.4	V	-49.62	-13	-36.62
1996.5	Н	-40.64	-13	-27.64
1331	Н	-41.07	-13	-28.07
577.1	Н	-48.55	-13	-35.55
309.6	Н	-47.52	-13	-34.52

Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2041.5	V	-41.95	-13	-28.95
1361	V	-43.35	-13	-30.35
515.1	V	-45.53	-13	-35.52
345.7	V	-48.57	-13	-37.46
2041.5	Н	-41.68	-13	-29.37
1361	Н	-43.39	-13	-29.03
564.5	Н	-50.74	-13	-33.27
315.9	Н	-47.64	-13	-38.08

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
2086.5	V	-41.99	-13	-28.99
1391	V	-42.24	-13	-29.24
546.6	V	-45.53	-13	-32.53
345.1	V	-48.57	-13	-35.57
2086.5	Н	-41.68	-13	-28.68
1391	Н	-43.39	-13	-30.39
534.2	Н	-50.74	-13	-37.74
322.9	Н	-47.64	-13	-34.64

Report No.: AGC00408221201FE07 Page 80 of 86

Note: 1. Margin (dB) = Emission Level(dBm) -Limit(dBm)

Emission Level(dBm)= Measurement Reading(dBm)+Factor(dB)

Factor(dB) = ANT Gain -Cable Loss + Power Splitter

- 2. The test refers to the value of Factor, please refer to the results listed in the test method in this section of the report.
- 3. The radiated spurious emission has been tested with maximum bandwidth QPSK modulation, resource block size 1 and resource block offset 0.
- 4. Below 30MHz, no spurious emission was found, and only the worst mode data above 30MHz is recorded in the report.

Report No.: AGC00408221201FE07 Page 81 of 86

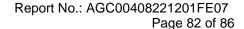
12. FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

12.1 PROVISIONS APPLICABLE

12.1.1 For Hand carried battery powered equipment

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

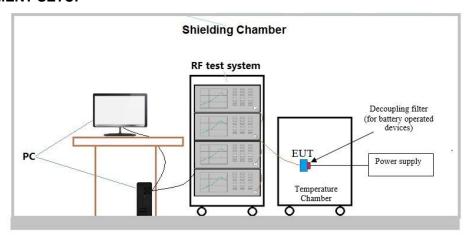
- a.) Temperature: The temperature is varied from -10°C to +40°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.
 - For Part 22, the frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency. For Part 24 and Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.


12.1.2 For equipment powered by primary supply voltage

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -10°C to +40°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

12.2 MEASUREMENT METHOD

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.


- 1 Measure the carrier frequency at room temperature.
- 2 Subject the EUT to overnight soak at -10°C. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on channel 20175 for LTE band 4 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- Repeat the above measurements at 10° C increments from -10°C to +40°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 4 Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

- 5 Subject the EUT to overnight soak at +50°C.
- 6 With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 7 Repeat the above measurements at 10° C increments from +50°C to -20°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 8 At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure.

12.3 MEASUREMENT SETUP

12.4 MEASUREMENT RESULT

Note: The test data please reference to attachment "AGC00408221201FE07_Appendix Data"

Report No.: AGC00408221201FE07 Page 83 of 86

13. OCCUPIED BANDWIDTH

13.1 PROVISIONS APPLICABLE

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission. The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

13.2 MEASUREMENT METHOD

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

13.3 MEASUREMENT SETUP

13.4 MEASUREMENT RESULT

Note: The test data please reference to attachment "AGC00408221201FE07 Appendix Data"

Report No.: AGC00408221201FE07 Page 84 of 86

14. BAND EDGE

14.1 PROVISIONS APPLICABLE

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

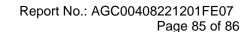
14.2 MEASUREMENT METHOD

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- $4. VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points ≥ 2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

TEST NOTE

§90.543(e)

- 1. On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.
- 2. On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.
- 3. On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.
- 4. Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measure ment instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.
- 5. Compliance with the provisions of paragraph (e)(3) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.


However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwid th of 30kHz may be employed.

§27.53(m)

Equipment shall comply with the following unwanted emission limits:

a) for base station and fixed subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least 43 + 10 log10 p

b) for mobile subscriber equipment, the power of any unwanted emissions measured as above

shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:40 + 10 log10 p from the channel edges to 5 MHz away 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and 55 + 10 log10 p at X MHz and beyond from the channel edges In addition, the attenuation shall not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz, and 55 + 10 log10 p at or below 2490.5 MHz.

In (a) and (b), p is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. All measurements were done at 2 channels(low and high operational frequency range.) The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

14.3 MEASUREMENT METHOD

14.4 MEASUREMENT RESULT

Note: The test data please reference to attachment "AGC00408221201FE07 Appendix Data"

Report No.: AGC00408221201FE07

Page 86 of 86

APPENDIX E PHOTOGRAPHS OF TEST SETUP

Refer to the Report No.: AGC00408221201AP01

APPENDIX F: PHOTOGRAPHS OF EUT

Refer to the Report No.: AGC00408221201AP03

----END OF REPORT----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.